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I outline the construction of exactly Poincaré invariant quantum models that satisfy cluster sep-
arability but do not conserve particle number.

PACS numbers:

I. INTRODUCTION

Few-body physics has been transformational in terms of how we understand low-energy nuclear physics. The
success is largely due to the existence of uncoupled few-body problems that are directly related to experiment and
cluster properties that relate the few and many-body Hamiltonians. Thus, nucleon-nucleon interactions are fine tuned
by comparing cross sections calculated using numerically exact solutions of the Lippmann-Schwinger equation to
experimental nucleon-nucleon cross sections. Cluster properties fix how these nucleon-nucleon interactions appear
in N>2-body Hamiltonians. Small corrections due to three-body interactions can also be fine tuned by comparing
numerically exact solutions of the Faddeev equations with experiment. Cluster properties again fix how the two and
three-body interactions appear in the N>3-body Hamiltonians. The saturation of nuclear binding energies suggests
that at nuclear densities two, three and possibly four-body interactions are sufficient to construct Hamiltonians that
provide an accurate description of most nuclei. The level of success achieved in low-energy nuclear physics has not
been duplicated for energy scales above the threshold for the production of pions.
There are a number of reasons for the increased difficulty:
1.) For energies approaching or above the GeV scale the Poincaré group must be a symmetry of the theory so

calculations in the laboratory and center of momentum frame are consistent. Cluster properties become more difficult
to satisfy in Poincaré invariant models. While cluster properties can be satisfied for fixed number of particles[1][2],
there is no known systematic treatment of cluster properties for few-body systems where particle number is not
conserved.
2.) A consistent treatment of particle production also requires a Poincaré symmetric treatment. Particle production

violates Galilean invariance; momentum conservation cannot be simultaneously satisfied in two frames related by
Galilean boosts.
3.) There is no few-body problem directly related to experiment. Even the one-nucleon problem involves an infinite

number of bare pions. This makes it difficult to construct phenomenological few-body interactions by comparing
numerically exact calculations to experiment.
4.) Even if one can satisfy cluster properties, asymptotically separated clusters still involve infinite numbers of bare

particle degrees of freedom.
The few-GeV scale is an important energy scale. It is the scale where it is possible to study the sensitivity of

the dynamics to sub-nucleon degrees of freedom. Also, even though the physics involves an infinite number of bare
particle degrees of freedom, we expect that the dynamics should be dominated by a finite number of suitably chosen
degrees of freedom; it is hard to believe that a small change in energy would require the number of degrees of freedom
needed to describe nucleon-nucleon scattering to suddenly jump from two to infinity.
In this talk I discuss a strategy to address all of the difficulties discussed above, extending the few-body program

so it can be used to make realistic models of systems with invariant energy above the pion-production threshold that
preserve the properties that have made few-body methods transformational below the pion-production threshold. The
physics motivation for doing this is to extend the success of few-body methods to energy scales where sub-nucleon
degrees of freedom become relevant. This is also relevant because it is now possible to solve relativistic Faddeev
equations at the GeV scale [3][4][5].
To treat this problem it is useful to consider the structure of low-energy few-body models. In principle, from the

point of view of perturbative field theory, even low-energy nucleon-nucleon scattering involves an infinite number of
bare meson degrees of freedom. Physical nucleons can also be understood as bare nucleons with a cloud of virtual
mesons. However, in low-energy nuclear physics one never deals with the bare nucleon degrees of freedom; instead
the relevant degrees of freedom are taken as physical nucleons. Their masses are not calculated, they are measured.
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Even though the structure of the nucleons cannot be calculated, it can still be probed using scattering experiments.
For example, electron proton-scattering suggests that the proton has a non-trivial electromagnetic structure. The
fundamental vertex involving bare mesons and nucleons is replaced by a phenomenological nucleon-nucleon interaction
between physical nucleons. While the Lippmann-Schwinger equation with realistic nucleon-nucleon interactions can
be solved at all energies, it is only designed to be taken seriously for energies where the dominant degrees of freedom
are two physical nucleons. This means that the number of relevant degrees of freedom is dictated by the energy scale
of interest. All of this can even be done relativistically using Poincaré symmetric versions of the two-nucleon problem.
The observations in the previous paragraph suggest how to proceed. Building on the what was successful in the

low-energy case, we formulate the theory using only physical-particle degrees of freedom. Thus, nucleons, deuterons,
and pions will all be taken as physical particles. Since physical particles have no-self interactions, a theory formulated
in terms of physical particle degrees of freedom cannot have elementary vertices, otherwise there would be mass
renormalizations. Interactions must be short-ranged, involving two or more initial and two or more final particles.
The simplest interaction that changes particle number is a short-ranged 2 ↔ 3 interaction. Even if the theory is
formulated using physical particle degrees of freedom, if there is real particle production, the theory still involves an
infinite number of degrees of freedom. To have few-body problems directly constrained by experiment it is necessary
to replace a single theory that is applicable at all energy scales by an ordered sequence of effective theories with
successively more degrees of freedom that are relevant over different energy scales. When a system of physical
particles is broken up into asymptotically separated subsystems, the subsystems will involve lower-energy scales.
Cluster properties can be realized if these lower energy sub-systems are constrained by the lower-energy effective
theories.
In what follows I use the example of nucleon-nucleon scattering between the one and two pion-production threshold

to illustrate the structure and construction of such a theory.

II. HILBERT SPACE

Minimally, the model Hilbert space must have enough structure so that it is possible to compute probability
amplitudes for any experiment of interest. For experiments at a fixed energy scale, it is possible to measure the
momenta and spin projections of every particle that can appear in an initial or final state. This motivates the choice
of model Hilbert space as the direct sum of tensor products of single physical-particle Hilbert spaces, where the particle
content corresponds to the particles that can be experimentally observed at the given energy scale. This space has
enough degrees of freedom to describe the results of any experiment that can be performed at the given energy scale.
Complete experiments on isolated physical particles measure their mass, linear momentum, spin, and spin polar-

ization with respect to some axis in a given frame. A suitable representation of the one-particle Hilbert space, H1, is
the space of square integrable functions, ψ(p, µ), of these observables

ψ(p, µ) = 〈(m, j)p, µ|ψ〉 (2.1)

〈ψ|ψ〉 =
∫ j
∑

µ=−j

|ψ(p, µ)|2dp <∞ (2.2)

where (m, j) are the physical mass and spin of the particle.
The formulation of cluster properties works best when the theory is formulated in terms of tensor products. In

order to preserve the tensor product structure in models with particle production, it is useful to replace the single
particle Hilbert space by the direct sum of a single particle Hilbert space and a zero dimensional no-particle space:

H1 → H1 ⊕ {0}. (2.3)

These doublet spaces were first introduced by Sokolov[1]. The tensor product of doublet spaces can be decomposed
as a direct sum of tensor products. For example, if the system has particles of type b,c,and d, the tensor product of
the three doublet spaces can be expanded into a direct sum of subspaces with all particle contents involving particles
b, c, and d.

(Hb ⊕ {0})⊗ (Hc ⊕ {0})⊗ (Hd ⊕ {0}) =

(Hb ⊗Hc ⊗Hd)⊕ (Hb ⊗Hc)⊕ (Hc ⊗Hd)⊕
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(Hd ⊗Hb)⊕Hb ⊕Hc ⊕Hd ⊕ {0}. (2.4)

In specific models some of these combinations do not appear because of super-selection rules, energy considerations,
or properties of the interactions. In what follows, we construct our models assuming that the particles are initially
distinguishible, and then treat the particle identity when computing the cross sections.
The single-particle spaces are also irreducible representation spaces for the Poincaré group. The unitary irreducible

representation, U1(Λ, a), of the Poincaré group on the single particle Hilbert space H1 is

〈(m, j)p, µ|U1(Λ, a)|ψ〉 =

∫ j
∑

µ′=−j

〈(m, j)p, µ|U1(Λ, a)|(m, j)p′, µ′〉dp′×

〈(m, j)p′, µ′|ψ〉 =

∫ j
∑

µ′=−j

Dmj
p,µ;p′,µ′ [Λ, a]dp

′ψ(p′, µ′) (2.5)

where the Poincaré group Wigner function is

Dmj
p,µ;p′,µ′ [Λ, a] := 〈(m, j)p, µ|U1(Λ, a)|(m, j)p′, µ′〉 =

eip·a

√

ωm(p)

ωm(p′)
δ(p−Λp′)Di

µµ′ [B−1(p/m)ΛB(p′,m)] (2.6)

with

ωm(p) =
√

p2 +m2 (2.7)

and B(p/m) is a Lorentz boost

B(p/m)(m, 0, 0, 0) = p (2.8)

that depends on the choice of spin polarization observable (helicity, canonical spin, null-plane spin). The quantity
B−1(p/m)ΛB(p′/m) is a Wigner rotation.
The direct sum of tensor products of these single-particle unitary irreducible representations, where the repre-

sentation acts like the identity on the zero dimensional no-particle state, defines the non-interacting representation,
U0(Λ, a), of the Poincaré group on the model Hilbert space. On the tensor product of the three doublet spaces (2.4)
it has the form

U0(Λ, a) = [Ua(Λ, a)⊗ Ub(Λ, a)⊗ Uc(Λ, a)]⊕

[Ua(Λ, a)⊗ Ub(Λ, a)]⊕ [Ub(Λ, a)⊗ Uc(Λ, a)]⊕

[Uc(Λ, a)⊗ Ua(Λ, a)]⊕ Ua(Λ, a)⊕

Ub(Λ, a)⊕ Uc(Λ, a)⊕ I. (2.9)
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III. NUCLEON-NUCLEON SCATTERING MODEL

Consider nucleon-nucleon scattering for invariant energy between 2mN + mπ and 2mN + 2mπ. In this energy
range the possible baryon number two states are (NN), (NNπ), (Dπ), (Dππ) . Using Sokolov’s doublet formalism
and treating the nucleons and pions as distinguishible, the model Hilbert space is the following direct sum of tensor
products of two and three particle spaces:

H = HN1N2
⊕HN1N2π1

⊕HN1N2π2
⊕

HDπ1
⊕HDπ2

⊕HDπ1π2
. (3.1)

Vectors in this space are represented by six-component wave functions:

Ψ(· · · ) =















ψNN (pN , µN ,pN ′ , µN ′)
ψDπ(pD, µD,pπ)
ψDπ′(pD, µD,pπ′)

ψNNπ(pN , µN ,pN ′ , µN ′ ,pπ)
ψNNπ′(pN , µN ,pN ′ , µN ′ ,pπ′)

ψDππ(pD, µP ,pπ,pπ′)















. (3.2)

The kinematic unitary representation of the Poincaré group is

U0(Λ, a) = [UN (Λ, a)⊗ UN ′(Λ, a)]⊕ [UD(Λ, a)⊗ Uπ(Λ, a)]⊕

[UD(Λ, a)⊗ Uπ′(Λ, a)]⊗ [UN (Λ, a)⊗ UN ′(Λ, a)⊗ Uπ(Λ, a)]⊕

[UN(Λ, a)⊗ UN ′(Λ, a)⊗ Uπ′(Λ, a)]⊕

[UD(Λ, a)⊗ Uπ(Λ, a)⊗ Uπ′(Λ, a)]. (3.3)

IV. DYNAMICS

In a quantum mechanical model a Poincaré symmetry is implemented by a unitary representation of the Poincaré
group[6]. The representation is necessarily dynamical[7].
The free-particle representation, U0(Λ, a), is reducible on the model Hilbert space H. Poincaré group Clebsch-

Gordan coefficients [8][9][10] can be used to decompose the Hilbert space into a direct integral of invariant subspaces
on which U0(Λ, a) acts irreducibly. The Clebsch-Gordan coefficients have the form

〈(12)|3〉 =

〈(m1, j1)p1, µ1(m1, j2)p2, µ2|(k2, j3)p3, µ3, d〉 (4.1)

where k2 is a more convenient label for the invariant mass m3 of the combined system

m3 =
√

m2
1 + k2 +

√

m2
2 + k2. (4.2)

In what follows we use m3 and k2 = k2 interchangeably. Multiple copies of invariant subspaces with the same mass
and spin are separated by invariant degeneracy parameters d. The parameters d are related to the squares of spin
s2 and orbital angular momentum l2 of the 12-pair. Three particle irreducible representations can be constructed by
successive pairwise coupling.
The irreducible basis states are labeled by the same quantities that are used to label the single-particle states;

linear momentum, mass, spin, spin projection, as well as a number of Poincaré invariant degeneracy parameters which
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we label by dn, where n ∈ {NN ,NNπ,NNπ′,Dπ,Dπ′,Dππ} . These eigenstates are complete on the model Hilbert
space. A basis of non-interacting Poincaré irreducible states consists of the generalized vectors

|(m, j)p, µ, dn, n〉 =

















0
...

|(m, j)p, µ, dn〉
...
0

















. (4.3)

The non-interacting invariant mass operator, M0, is the mass Casimir operator of U0(Λ, a). It has a continuous
spectrum and is a multiplication operator in the representation (4.3). Interactions of the form [11]:

〈(m′, j′)p′, µ′, d′n′ , n′|V |(m, j)p, µ, dn, n〉 =

δ(p′ − p)δj′jδµ′µ〈m′, d′n′ , n′‖V j‖m, dn, n〉 (4.4)

are added to the non-interacting mass operator, M0, to construct a dynamical mass operator:

M =M0 + V. (4.5)

Simultaneous eigenstates |(λ, j)p, µ, d〉 of M, j,p, µ are complete. The dynamical problem is to solve the eigenvalue
problem

(M0 + V )|(λ, j)p, µ, d〉 = λ|(λ, j)p, µ, d〉 (4.6)

in the non-interacting irreducible basis. The eigenfunctions in the non-interacting irreducible representation can be
expressed in terms of wave functions Ψλ,j,d(m

′, d′n′ , n′):

〈(m′, j′)p′, µ′, d′n′ , n′|(λ, j)p, µ, d〉 =

δ(p′ − p)δj′jδµ′µΨλ,j,d(m
′, d′n′ , n′). (4.7)

There is a natural dynamical unitary representation of the Poincaré group defined on these eigenstates by

〈(m′, j′)p′, µ′, d′n′ , n′|U(Λ, a)|(λ, j)p, µ, d〉 =

Ψλ,j,d(m
′, d′n′n′)Dλj

p,µ;p′,µ′ [Λ, a] (4.8)

where λ the eigenvalue of M . Completeness of the eigenstates ensures that this representation is defined on any
state. The dynamics enters through the appearance of the mass eigenvalue, λ, in the Poincaré group Wigner function

Dλj
p,µ;p′,µ′ [Λ, a].
This construction can be done for any finite number of degree of freedom system. What is relevant in this con-

struction is that the spin j in the dynamical model is the same as the spin j in the non-interacting model. We
refer to this construction of dynamical representation of the Poincaré group as the generalized Bakamjian-Thomas[11]
construction.
Three different two-body models are needed as input to the full dynamical model. These two-body models are a

π−N model, a π− π model and a coupled channel NN ↔ Dπ model. In what follows we replace the invariant mass
m3 by the relative momentum variable k =

√
k2. For the coupled channel model the non-interacting invariant mass

operator has the form

M0 :=

(

2
√

k2NN +m2
N 0

0
√

k2Dπ +m2
D +

√

k2Dπ +m2
π

)

. (4.9)

The interaction V is defined by the kernel in the irreducible two-body variables

δ(p′ − p)δj′jδµ′µ×
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(

〈k′nn, l′, s′|vjNN ;NN |knn, l, s〉 〈k′nn, l′, s′|vjNN ;Dπ|kDπ , l, 1〉
〈k′Dπ, l

′, 1|vjDπ;NN |knn, l, s〉 〈k′Dπ , l
′, 1|vjDπ;Dπ|kDπ , l, 1〉

)

. (4.10)

The dynamical mass operator on HNN ⊕ HDπ is M = M0 + V , where V is the interaction defined by the kernel
(4.10). Simultaneous eigenstate of M , j, p, and ẑ · j from a complete set of basis vectors that transform irreducibly
with respect to a dynamical representation UNN−Dπ(Λ, a)

〈(λ′, j′)p′, µ′, d′|UNN−Dπ(Λ, a)|(λ, j)p, µ, d〉 =

δj′jδ(λ
′ − λ)δd′dDλj

p,µ;p′,µ′ [Λ, a] (4.11)

where λ is the eigenvalue of the dynamical mass operator M . A similar construction can be done for the π − π and
π−N systems, resulting in the representations UNN−πD(Λ, a) on HNN ⊕HDπ, UN−π(Λ, a) on HNπ and Uππ(Λ, a) on
Hππ. These models are only required to fit scattering below the pion-production threshold. Because the bound states
are treated as physical degrees of freedom, the spectrum of the mass operator in these two-body models is continuous.

V. ALGEBRAIC CLUSTER PROPERTIES

Cluster properties dictate how two-body interaction are embedded in the three-body sectors of the model Hilbert
space. Cluster properties are normally implemented by translations. In this framework translations used to separate
subsystems only operate on subspaces of the Hilbert space were the translations make sense; for example it makes
no sense to separate nucleons on a subspace containing the deuteron. Translations that asymptotically separate
subsystems ensure that the short-ranged interactions between particles in separated clusters vanish, however the
difficulty in Poincaré invariant quantum mechanics is that the translations can cause interactions that should not
vanish to vanish in the cluster limit. This will not happen if result of simply turning-off interactions results in a

tensor product of subsystem unitary representations of the Poincaré group. We call this type of clustering algebraic
clustering and use it in what follows.
Consider the problem of nucleon-nucleon scattering for invariant energies between the one and two pion-production

threshold. The model Hilbert has six orthogonal sectors with different particle contents. There are three three-body
sectors, each having at least one pion. If we translate one of the particles away from an interacting pair in one of the
three-body sectors, then the invariant energy remaining for the interacting pair is insufficient to produce another pion.
Algebraic cluster properties requires that in this limit the Poincaré generators in this sector should become the sum
of one-body generators corresponding to the spectator particle and dynamical two-body generators associated with
an interacting two-body systems having insufficient invariant energy to create an additional pion. This is equivalent
to the dynamical unitary representation of the Poincaré group becoming a tensor product. In each of these sectors
there are three different two-body interactions that arise from cluster properties, depending on which particle is
asymptotically separated.
These are the only constraints that cluster properties place on this model. The two-body sectors are relevant for

invariant energies above the threshold for the production of a pion and in principle do not have to be related to the
lower-energy two-body Hamiltonians.
The problem of two interacting particles and a spectator can be solved using two different methods. The first one

is to construct the two-body unitary representation of the Poincaré group, UNN−Dπ(Λ, a), UNπ(Λ, a), Uππ′(Λ, a) and
then take the tensor product with the spectator representation

UNN−Dπ(Λ, a)⊗ Uπ′(Λ, a), (5.1)

UNπ(Λ, a)⊗ UN ′(Λ, a), (5.2)

Uππ′(Λ, a)⊗ UD(Λ, a). (5.3)

The second method uses the standard construction where we first use Poincaré Clebsch Gordan coefficients to decom-
pose the non-interacting three-body representations into a direct integral of non-interacting irreducible representations.
Interactions of the from (4.4) are added to the non-interacting mass, which is then diagonalized to construct U(Λ, a).
We refer to these two representations as the tensor product representation and the Bakamjian-Thomas representation
respectively. I denote the Bakamjian-Thomas representations by

UNN−Dπ;π′(Λ, a), (5.4)
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UNπ;N ′(Λ, a), (5.5)

Uππ′;D(Λ, a). (5.6)

These operators do not act on the full Hilbert space. They act on a subspace of the full Hilbert space. They can be
extended to operators on the full Hilbert space by extending them to be the identity on the orthogonal complement
of the subspace.
The kernel of the two-body interaction in the two-body kinematic irreducible representation (4.4) depends on the

kinematic two-body relative momentum and kinematically-invariant two-body degeneracy parameters. By coupling
irreducible representations in the appropriate order, the same variables also appear in the three-body kinematic
irreducible basis. Using the same kernel, with different delta functions, it is easy to show that the tensor product
and Bakamjian-Thomas representations of the dynamics of two interacting particles and a spectator give the same
2 + 1 S-matrix. This follows because the delta functions that multiply the interaction also appear in the S-matrix,
and they become equivalent when the S-matrix is evaluated on-shell. While the 2 + 1 unitary representations of the
Poincaré group are not-equivalent, a theorem of Ekstein [12] implies that each representation is related by a unitary
transformation, W , that also preserves the S matrix.
Thus these two representations are related by

WNN−Dπ;π′UNN−Dπ;π′(Λ, a)W †
NN−Dπ;π′ =

UNN−Dπ(Λ, a)⊗ Uπ′(λ, a) (5.7)

WNπ;N ′UNπ;N ′(Λ, a)W †
Nπ;N ′ = UNπ(Λ, a)⊗ UN ′(Λ, a) (5.8)

Wππ′;DUππ′;D(Λ, a)W †
ππ′;D = Uππ′(Λ, a)⊗ UD(Λ, a). (5.9)

Because the interactions in the Bakamjian-Thomas representation commute with the kinematic spin, they can be
combined with the remaining short-ranged interactions in a manner that leads to an overall interaction of the form
(4.4). The Bakamjian Thomas construction then be used to construct a dynamical representation of the Poincaré
group on the model Hilbert space.
The unitary operators Wx operate on a subspace of the Hilbert space. They can be extended to unitary operators

on H by setting them equal to the identity on the orthogonal complement of the space on which they are defined.

VI. CONSTRUCTION OF THE DYNAMICAL MASS OPERATOR

The dynamical mass operator for our model in the Bakamjian-Thomas representation has three distinct types of
contributions
The first is the mass operator M0 for the non-interacting system

M0 =















M0NN′ 0 0 0 0 0
0 M0Dπ 0 0 0 0
0 0 M0Dπ′ 0 0 0
0 0 0 M0NN′π 0 0
0 0 0 0 M0NN′π′ 0
0 0 0 0 0 M0Dππ′















(6.1)

where the non-zero entries in this matrix are the invariant masses of the systems of particles on each subspace. This
is the limiting form of this mass operator when all interactions are switched off.
Next we add lower-energy two-body interactions in each of the three-particle sectors:

V2 =

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 vNN′ + vNπ + vN′π 0 vNN;πD

0 0 0 0 vNN′ + vNπ′ + vN′π′ vNN;π′D

0 0 0 v
†
NN;πD

v
†

NN;π′D
vDπ + vDπ′ + vππ′

















. (6.2)
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These are the interactions that come from the two-body Bakamjian-Thomas representations. They are related to
the tensor product representations by the unitary transformations W . For example:

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 vNN′ 0 vNN;πD

0 0 0 0 0 0

0 0 0 v
†
NN;πD

0 vDπ

















=

W
†

NN↔Dπ′

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 mNN′⊗π 0 mNN;π′D⊗π

0 0 0 0 0 0

0 0 0 m
†

NN;π′D⊗π
0 mDπ′;⊗π

















W
†

NN↔Dπ′
−















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 m0NN′π 0 0
0 0 0 0 0 0
0 0 0 0 0 m0Dπ′π















. (6.3)

The third class of operators, V3 are fully connected operators. These are two-body interactions in the two-body
sectors, three-body interactions in the three-body sectors, 2− 2 interactions coupling different two-body sectors and
2− 3-body interactions coupling two and three-body sectors. All of the two-body interactions in V3 describe physics
above the pion-production threshold and thus do not have to be related to the interactions below the pion-production
threshold. In addition to being connected, all of these interactions must have kernels of the form (4.4) in the non-
interacting Poincaré irreducible representation. These connected operators do not contribute to the cluster limit
associated with lower energy subsystems.
In this way the operator MBT = M0 + V2 + V3 commutes with j and commutes with and is independent of p and

j · ẑ. Simultaneous eigenstates of these operators are complete and transform irreducibly as mass λ = eigenvalue of
MBT , spin j, irreducible representations of the Poincaré group. We denote the resulting unitary representation of the
Poincaré group by UBT (Λ, a). When interactions between cluster b and c in one of the three-body sectors are turned
off, UBT (Λ, a) fails to break up into a tensor product. Instead it becomes:

UBT (Λ, a) →Wbc[(Ub(Λ, a)⊗ Uc(Λ, a))⊕ · · · ]W †
bc (6.4)

This can be repaired defining a symmetric product of the W operators

W := e
∑

lnWa (6.5)

where the sum runs over

a ∈ {[(NN −Dπ);π′], [(NN −Dπ′);π], (ππ′;D), (Dπ;π′),

(Dπ′;π), (Nπ;N ′), (N ′π;N), (Nπ′;N ′), (N ′π′;N)}. (6.6)

This operator is designed so

U(Λ, a) :=

W †UBT (Λ, a)W → [(Ub(Λ, a)⊗ Uc(Λ, a))⊕ · · · ] (6.7)

when the interactions between particles in cluster b and c are turned off. This shows that it satisfies algebraic cluster
properties. Because W is unitary, U(Λ, a) := W †UBT (Λ, a)W , is also a dynamical representation of the Poincaré
group.
The completes the construction of the dynamics for the two-nucleon system of energies between the one and two-

pion production threshold. Thus we have a two-particle model that describes nucleon-nucleon scattering below the
one-pion-production threshold, and we have a second model that described nucleon-nucleon scattering for invariant
energies between the one and two-pion-production thresholds. While the models are uncoupled, interactions from the
lower energy two-body model appear in the three-body sector of the higher-energy model. Both models are exactly
Poincaré invariant with interactions that can be directly constrained by few-body experiments.
This general construction can be repeated inductively at higher energy scales. By using the doublets the entire

inductive construction used in the fixed number of particle case [2] can be generalized to this setting.
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VII. OUTLOOK

This work demonstrates that it is possible to overcome all of the difficulties in needed to extend the successful
low-energy few-body program to higher energy scales. In this formalism the independent degrees of freedom are taken
as physical particles. This also applies to bound states. This is not a problem in principle, but it does mean that much
of the work done in constructing realistic few-body interactions needs to be repeated in this setting. Another new
feature is that the many-body interactions of the non-relativistic theory are replaced by both many-body interactions
and hard (high-energy) two-body interactions. At each successive energy scale it is necessary to introduce new hard
two-body interactions. In most cases these interactions appear in the entrance channel and thus cannot be ignored.
An independent method for constructing these hard interaction would prove to be very useful in this framework. Still,
a good part of the high-energy dynamics is strongly constrained by the few-body dynamics through cluster properties.
This work was performed in part under the auspices of the U. S. Department of Energy, Office of Nuclear Physics,

contract No. DE-FG02-86ER40286 with the University of Iowa.
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