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1 Introduction. Notations. Statement of prob-

lem.

Firs of all we recall ”an inequality ascribed to Wirtinger ([11], p. 66-68):

∫ b

a
f 2(x)dx ≤

(

b− a

2π

)2
∫ b

a
(f /)2(x)dx,

or equally

|f |2,(T ) ≤
b− a

2π
|f /|2,(T ). (0)

Here a, b = const,−∞ < a < b <∞, T = (a, b), the function f(·) has a generalized
square integrable first derivative and
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f(a) = f(b),
∫ b

a
f(x)dx = 0.

P.R. Beesack in [1] obtained the following generalization of Wirtinger inequality: if
p > 1, u/ ∈ C[0, π/2], u(0) = 0, then

∫ π/2

0
|u(x)|pdx ≤

1

p− 1

(

p/2

sin(π/p)

)p
∫ p

0
|u/(x)|pdx.

There are many generalizations of inequality (0), for example [4], [11], p. 80-81:

|f |p ≤ A(n, k) ∆n+1/p−1/q|f (n)|q,∆ := b− a, A(n, k) <∞, (1)

but in (1) the function f(·) has a k fold zero at the point a and (n− k) fold zero at
the point b.

The set of all such a functions will be denoted by Z(n, k); 0 < k ≤ n :

Z(n, k)
def
= {f : f (i)(a) = 0, i = 0, 1, . . . , k − 1; f (j)(b) = 0, j = 0, 1, . . . , n− k − 1}.

Hereafter n ≥ 2, 0 ≤ k < n.
Evidently, the function f(·) has n times generalized derivative belonging to the

space Lq.
More exactly, the constants A(n, k) may be define as follows:

A(n, k) = sup
p∈(1,∞)

sup
q∈(1,∞)

sup
f∈Z(n,k),f(n) 6=0

|f |p
|f (n)|q

<∞. (2)

Another version of Wirtinger’s inequality see, e.g. in [4], [11], p. 86-91: if
f(a) = f(b) = 0 and f / ∈ Lq, q ∈ (1,∞), then

|f |p ≤ K(p, q) |f /|q, p ∈ (1,∞), (3)

where

K(p, q) =
q

2

(1 + p∗/q)1/p

(1 + q/p∗)1/q
Γ(1/q + 1/p∗)

Γ(1/q)Γ(1/p∗)
, (4)

p∗ = p/(p− 1) and Γ(·) denotes usually Gamma-function.
Note that the inequality (3) is the particular case of inequality (1) with the exact

value of the constant A(n, k) = A(2, 1).

In the articles [30], [31] are considered some generalizations of Wirtinger’s in-
equality. In the article [6] was obtained the evaluated value of the constant A(n, k)
in the case of weight Lp − Lq spaces.

Our aim is generalization of Wirtinger’s-type inequalities (1), (3) on
some popular classes of rearrangement invariant (r.i.) spaces, namely, on
the so-called moment r.i. spaces.
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We intend to show also the invarianteness of offered estimations under
the dilation transform f → Tθ[f ](x) = f(x/θ), θ = const > 0, or as a mini-
mum to show the uniform exactness of obtained estimations at θ ∈ (0,∞).

The norms estimations for integral transforms, in particular, singular integral op-
erators with the weight, which are generalization of the classical Hardy-Littlewood-
Weil-Rieman operators, in the Bilateral Grand Lebesgue Spaces is considered in [17].

Hereafter C,Cj will denote any non-essential finite positive constants. As usually,
for the measurable function f : [a, b] → R we denote for sake of simplicity

|f |p =

[

∫ b

a
|f(x)|p dx

]1/p

, 1 ≤ p <∞,

Lp = {f : |f |p < ∞};m will denote usually Lebesgue measure, and we will write

m(dx) = dx; |f |∞
def
= supx∈(a,b) |f(x)|.

We will denote the normalized Lebesgue measure on the interval (a, b) with the
length ∆ = b− a by m∆ :

m∆(A) = m(A)/∆

and will denote the correspondent Lp(m∆) norm by |f |(∆)
p :

|f |(∆)
p =

[

∫ b

a
|f(x)|p m∆(dx)

]1/p

= ∆−1/p|f |p.

We define also for the values (p1, p2), where 1 ≤ p1 < p2 ≤ ∞

L(p1, p2) = ∩p∈(p1,p2) Lp.

The Wirtinger’s inequality play a very important role in the theory of approxi-
mation, theory of Sobolev’s spaces, theory of function of several variables, functional
analysis (imbedding theorems for Besov spaces). See, for example, [2], [10], [18] etc.

The inequality (1) may be rewritten as follows. Let (X, || · ||X) be any rear-
rangement invariant (r.i.) space on the set T ; denote by φ(X, δ) its fundamental
function

φ(X, δ) = sup
A,m(A)≤δ

||I(A)||X, I(A) = I(A, x) = I(x ∈ A) = 1, x ∈ A,

δ ∈ (0,∞); I(A) = I(A, x) = I(x ∈ A) = 0, x /∈ A.
Let us define for arbitrary r.i. space (X, || · ||X) over the set (a, b) = (0,∆) the

following functional:

R(f ;X,∆)
def
=

||f ||X

φ(X,∆)
,
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and define also for two functions r.i. spaces (X, || · ||X) and (Y, || · ||Y ) over our
set T = (a, b) with ∆ = b − a ∈ (0,∞) the so-called Wirtinger two-space

functional, briefly: W functional between the spaces X and Y as

Wn,k(X, Y ; ∆)
def
= sup

f∈Z(n,k),f(n) 6=0

[

||f ||X

φ(X,∆)
:
∆n ||f (n)||Y

φ(Y,∆)

]

=

sup
f∈Z(n,k),f(n) 6=0

[R(f ;X,∆) : (∆n R(f (n); Y,∆))], (5)

or if we replace the Lebesgue measure m by the normed measurem∆ in the definition
of the r.i. spaces X and Y and denote the correspondent norm in the X, Y spaces
over the measure m∆ by ||f ||(∆)X, ||f ||(∆)Y :

W
(∆)
n,k (X, Y ; ∆)

def
= sup

f∈Z(n,k),f(n) 6=0

[

||f ||(∆)X

∆n ||f (n)||(∆)Y

]

=

sup
f∈Z(n,k),f(n) 6=0

R(f ;X,∆)

(∆nR(f (n), Y,∆)
. (6)

Then (1) is equivalent to the following inequalities:

sup
p∈(1,∞)

sup
q∈(1,∞)

sup
∆∈(0,∞)

W
(∆)
n,k (Lq, Lp; ∆) = A(n, k) <∞, (7)

sup
p∈(1,∞)

sup
q∈(1,∞)

sup
∆∈(0,∞)

Wn,k(Lq, Lp; ∆) = A(n, k) <∞. (8)

Definition 1.

By definition, the pair of r.i. spaces (X, || · ||X) and (Y, || · ||Y ) is said

to be a (strong) Wirtinger’s pair, write: (X, Y ) ∈ Wir, if the W functional

between X and Y over the space (a, b);m is uniformly bounded:

sup
∆∈(0,∞)

Wn,k(X, Y ; ∆) <∞, (9)

and is called a weak Wirtinger’s pair, write (X, Y ) ∈ wWir, if for some

non-trivial constant C = C(n, k) = const ∈ (0,∞)

sup
∆∈(0,∞)

W
(∆)
n,k (X, Y ;C∆) <∞. (10)

Our aim is description of some pair of r.i. spaces with strong and weak
Wirtinger properties.

Roughly speaking, we will prove that the many of popular pairs of r.i. spaces
are strong, or at last weak Wirtinger’s pairs.

The paper is organized as follows. In the next section we recall the definition
and some properties of the so-called moment rearrangement invariant spaces, briefly,
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m.r.i. spaces, which are introduced in the article [18] and are applied in the theory
of approximation.

In the section 3 we formulate and prove the main result of this paper for m.r.i.
spaces. In the section 4 we investigate the invariantness of obtained estimations. In
the section 5 we will receive the Wirtinger’s inequality for (generalized) Zygmynd
spaces.

The sixth section is devoted to the obtaining of the low bound for weak
Wirtingers inequality in an arbitrary Orliczs spaces.

The last section contains some concluding remarks.

2 Auxiliary facts. Moment rearrangement

spaces.

Let (X, ||·||X) be a r.i. space, where X is linear subset on the space of all measurable
function T → R over our measurable space (T,m) with norm || · ||X.

Definition 2.

We will say that the space X with the norm || · ||X is moment rear-
rangement invariant space, briefly: m.r.i. space, or X = (X, || · ||X) ∈ m.r.i.,
if there exist a real constants A,B; 1 ≤ A < B ≤ ∞, and some rear-
rangement invariant norm < · > defined on the space of a real functions

defined on the interval (A,B), non necessary to be finite on all the

functions, such that

∀f ∈ X ⇒ ||f ||X =< h(·) >, h(p) = |f |p, p ∈ (A,B). (11)

We will say that the space X with the norm || · ||X is weak moment
rearrangement space, briefly, w.m.r.i. space, or X = (X, || · ||X) ∈ w.m.r.i.,
if there exist a constants A,B; 1 ≤ A < B ≤ ∞, and some functional
F, defined on the space of a real functions defined on the interval

(A,B), non necessary to be finite on all the functions, such that

∀f ∈ X ⇒ ||f ||X = F ( h(·) ), h(p) = |f |p, p ∈ (A,B). (12)

We will write for considered w.m.r.i. and m.r.i. spaces (X, || · ||X)

(A,B)
def
= supp(X),

(moment support; not necessary to be uniquely defined).
It is obvious that arbitrary m.r.i. space is r.i. space.
There are many r.i. spaces satisfied the definition of m.r.i. or w.m.r.i spaces:

exponential Orlicz’s spaces, some Martzinkiewitz spaces, interpolation spaces (see
[21], [29]).
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In the article [20] are introduced the so-called G(p, α) spaces consisted on all the
measurable function f : T → R with finite norm

||f ||p,α =

[

∫ ∞

1

(

|f |x
xα

)p

m(dx)

]1/p

.

Astashkin in [29] proved that the space G(p, α) coincides with the Lorentz
Λp(log

1−pα(2/s)) space. Therefore, both this spaces are m.r.i. spaces.
Another examples. Recently,, see [8], [23], [24], [25], [26], [27], [12], [13], [14],

[15], [16], [17] etc. appears the so-called Grand Lebesgue Spaces GLS = G(ψ) =
G(ψ;A,B), A, B = const, A ≥ 1, A < B ≤ ∞, spaces consisting on all the measur-
able functions f : T → R with finite norms

||f ||G(ψ)
def
= sup

p∈(A,B)
[|f |p/ψ(p)] . (13)

Here ψ(·) is some continuous positive on the open interval (A,B) function such
that

inf
p∈(A,B)

ψ(p) > 0, sup
p∈(A,B)

ψ(p) = ∞.

It is evident that G(ψ;A,B) is m.r.i. space and supp(G(ψ(A,B)) = (A,B).
We can suppose without loss of generality

inf
p∈(A,B)

ψ(p) = 1.

This spaces are used, for example, in the theory of probability [9], [8], [12]; theory
of Partial Differential Equations [24], [27]; functional analysis [15], [16]; theory of
Fourier series [18], theory of martingales [13] etc.

Note that if (X, || · ||X) is m.r.i. space with the correspondent functional h(·) and
with the support (A,B), then the fundamental function of this space has a view:

φ(δ,X) =< f(·) >, f(p) = δ1/p, p ∈ (A,B).

For instance, the fundamental function for the Grand Lebesgue Space G(ψ) with
the support (A,B) may be calculated by the formula

φ(δ, G(ψ)) = sup
p∈(A,B)

δ1/p

ψ(p)
.

The detail investigation of fundamental functions for Grand Lebesgue Spaces, with
consideration of many examples, see, e.g. in [19].

Let us consider now the (generalized) Zygmund’s spaces Lp (Log)
rL, which may

be defined as an Orlicz’s spaces over some subset of the space Rl with non-empty
interior and with N− Orliczs function of a view

Φ(u) = |u|p logr(C + |u|), p ≥ 1, r 6= 0.
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It is known [18] that:
1. All the spaces Lp (Log)rL over real line with measure m with condition r 6= 0
are not m.r.i. spaces.
2. If r is positive and integer, then the spaces Lp(Log)

rL are w.m.r.i. space.
3. There exists an r.i. space without the w.m.r.i. property.

3 Main result. Wirtinger’s inequality for the

pairs of m.r.i. spaces.

Theorem 3.1.
Let (X, || · ||X) be any m.r.i. space relatively the auxiliary norm < · >, and let

(Y, || · ||Y ) be another m.r.i. space over at the same set (T,m) relatively the second
auxiliary norm << · >> .

Then the pair of m.r.i. spaces (X, || · ||X) and (Y, || · ||Y ) is the (strong)
Wirtinger’s pair uniformly in ∆, ∆ ∈ (0,∞) :

sup
∆>0

Wn,k(X, Y ) ≤ A(n, k) <∞. (14)

Proof is very simple. Let f be arbitrary function from the set Z(n, k) : f ∈
Z(n, k) and let f (n) 6= 0.

It follows from the Brink’s inequality (1) that

|f |p ∆1/q ≤ A(n, k) ∆n|f (n)|q ∆
1/p. (15)

We get tacking the norm << · >> from both sides of inequality (15):

|f |p φ(Y,∆) ≤ A(n, k) ∆n||f (n)||Y ·∆1/p. (16)

We obtain now tacking the norm < · > from both sides of inequality (16):

||f ||X φ(Y,∆) ≤ A(n, k) ∆n ||f (n)||Y · φ(X,∆),

which is equivalent to the assertion of the considered theorem.
Note as an example that for the Grand Lebesgue Spaces G(ψ) and G(ν) the

proposition (14) may be rewritten as follows. Let us denote

V∆(f ;G(ν), G(ψ)) =

[

||f ||G(ν)

φ(G(ν),∆)
: ∆n ||f

(n)||G(ψ)

φ(G(ψ),∆)

]

;

then

sup
∆>0

sup
f∈Z(n,k),f(n) 6=0

V∆(f ;G(ν), G(ψ)) ≤ A(n, k) <∞. (17).
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4 Low bounds for Grand Lebesgue Spaces.

We investigate in this section the exactness of inequality (12), or in other words the
asymptotical invariableness under the dilation operators T∆.

Note that

(T∆f)
(n) = ∆nT∆f

(n).

Let g : [0, 1] → R be any function from the set Z(n, k) such that g(n) 6= 0. We
continue this function at the values x ≥ 1 by zero: x > 1 ⇒ g(x) = 0.

Let us denote

V0(ψ, ν) = inf
∆∈(0,∞)

sup
g∈Z(n,k),g(n) 6=0

[

||T∆g||G(ν)

φ(G(ν),∆)
:
||T∆g

(n)||G(ψ)

φ(G(ψ),∆)

]

.

Theorem 4.1.

V0(ψ, ν) ≥
kk (n− k)n−k

n! (n + 1)n+1
. (18)

Proof. We note first of all that if a function g : R+ → R is such that for some
positive finite constants C1 and C2

C1 ≤ inf
p∈[0,1]

|g|p ≤ sup
p∈[1,∞]

|g|p ≤ C2,

then

R(T∆g;G(ψ),∆) ∈ [C1, C2].

Further, let us choose

α =
k

n+ 1
, β =

n− k

n + 1
,

and
g(x) := gn,k(x) = xk (1− x)n−k, x ∈ [0, 1]; gn,k(x) = 0, x > 1.

We conclude after simple calculations that when x ∈ [α, β], then

gn,k(x) ≥
kk (n− k)n−k

(n + 1)n
,

and

max
x∈[0,1]

|gn,k(x)| =
kk (n− k)n−k

nn
;

therefore

kk (n− k)n−k

(n + 1)n+1
≤ |gn,k|p ≤

kk (n− k)n−k

nn
.
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Substituting into the expression for the value V0(ψ, ν), we obtain the inequality

V0(ψ, ν) ≥
kk (n− k)n−k

n! (n + 1)n+1
,

Q.E.D.
Note as a corollary that we obtain the following low bound for the constant

A(n, k) :

A(n, k) ≥
kk (n− k)n−k

n! (n+ 1)n+1
. (19)

5 The case of (generalized) Zygmund spaces.

Other method.

Recall that the (generalized) Zygmund space

X = Lq (Log)γ L

or correspondingly Y = Lp (Log)
−β L is defined as an Orliczs space with the Orliczs

function of a view:

Φ(u) = Φ(q, γ; u) = |u|q [log(C(q, γ) + u)]γ, (20)

where C(q, γ) is sufficiently great positive constant.
We assume in this section that p > 1, (q <∞), β, γ > 0.
Note that the fundamental functions for these spaces are as ∆ ∈ (0,∞) :

φ(Lq (Log)
γ L),∆) ≍ ∆−1/q (1 + | log∆|)γ/q. (21)

Let Y be another Zygmunds space: Y = Lp (Log L)−β.We will formulate and prove
now the Wirtinger’s inequality for Zygmund spaces, but only in the cases γ, β ≥ 0.

Let us denote

Lq,+ = ∪ǫ∈(0,1)Lq+ǫ

and correspondingly

Lp,− = ∪δ∈(0,0.5(p+1))Lp−δ;

we define also for the measurable function f : [0, 1] → R and f(x) = 0, x > 1 the
following quotient (Wirtinger’s functional):

W o(∆; p, q;n, k) = sup
f∈Z(n,k),f∈Lq,+

sup
f∈Lp,−

[

||T∆f ||X

φ(X,∆)
:
∆n||T∆f

(n)||Y

φ(Y,∆)

]

. (22)
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Theorem 5.1. Let γ ≥ 0, β ≥ 0. We assert that Wirtinger’s functional for
considered spaces is uniformly over the variable ∆ is bounded:

sup
∆∈(0,∞)

W o(∆; p, q;n, k) = C(p, q;n, k) <∞.

Proof. Since the cases γ = 0 or β = 0 are simple, we investigate further only
the possibility γ > 0, β > 0.

It is proved the articles [22], [28] that for g ∈ Lq,+ and for arbitrary values
r ∈ (q, q + 1)

||g||Lq (Log L)γ ≤ C

[

r

r − q

]γ/r

|g|r (23)

and analogously may be proved the inverse inequality: for arbitrary
s ∈ (0.5(1 + p), p)

||g||Lp (Log)
−βL ≥ C

[

s

p− s

]−β/s

|g|s. (24)

We have for g ∈ Lp,+ and for the values r ∈ (q, q + 1)

R(g;X,∆)
def
=

||g||X

φ(X,∆)
≤ C · R1,

where

R1 = R1(g;X,∆)
def
=

||g||X

∆1/q[1 + | log∆|]γ/q
≤

C
(r/(r − q))γ/r |g|r

∆1/q [1 + | log∆|]γ/q

and we find analogously for the values s ∈ (0.5(1 + p), p)

R(g; Y,∆)
def
=

∆n||g(n)||Y

φ(Y,∆)
≥ C · R2,

where

R2 = R2(g
(n); Y,∆)

def
=

∆n||g(n)||Y

∆1/p[1 + | log∆|]−β/p
≥

C
(s/(p− s))−β/s |∆ng(n)|s
∆1/p [1 + | log∆|]−β/p

.

The assertion of theorem 5.1 may be obtained after the dividing the estimation
for R1 over the estimation for R2, using the Brink’s inequality (1) for the estimation
of the quotient |g|r/∆

n|g(n)|s and after the minimizing over (s, r).
More simple, we can choose in order to prove theorem 5.1 in the expression for

R1/R2 for all sufficiently greatest values | log∆|

r := r0 = q +
γ

q [1 + | log∆|]
, s := s0 = p−

β

p [1 + | log∆|]
.
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6 Low bound for arbitrary Orliczs spaces.

Let us consider in this section a two arbitrary Orliczs spaces L(Φ) and L(Φ1) over
the set (a, b) = (0,∆) with the correspondent Orliczs functions Φ = Φ(u) and
Φ1 = Φ1(u).

Let also g = g(x), x ∈ [0, 1] be some function from the set Z(n, k) such that
g(n) 6= 0. Denote W n,k =

W n,k(Φ,Φ1) = inf
∆∈(0,∞)

sup
g∈Z(n,k),g(n) 6=0

[

||T∆g||L(Φ)

φ(L(Φ),∆/(n + 1))
:
||T∆g

(n)||L(Φ1)

φ(L(Φ1),∆)

]

.

Theorem 6.1.

W n,k ≥
kk (n− k)n−k

n! (n+ 1)n
. (25)

Proof. Recall that the norm of the measurable function h : (0,∆) → R in the L(Φ)
space may be introduced, for instance, by the formula

||h||L(Φ) = inf
v>0

v−1

[

1 +
∫ ∆

0
Φ(vh(x))dx

]

. (26)

For example, if h = T∆g, g : (0, 1) → R, then

||T∆g||L(Φ) = inf
v>0

v−1
[

1 + ∆
∫ 1

0
Φ(vg(y))dy

]

.

Let us choose as before

g(x) = gn,k(x) = xk(1− x)n−k, x ∈ [0, 1],

then gn,k(·) ∈ Z(n, k) and |g
(n)
n,k| = n!.

Therefore,

||T∆g
(n)
n,k(·)||L(Φ1) = inf

v>0
v−1[1 + ∆Φ1(v n!)] =

n! inf
v>0

v−1[1 + ∆Φ1(v)].

Note that the fundamental function for the L(Φ) space has a view:

φ(L(Φ), δ) = inf
v>0

v−1 [1 + δΦ(v)] , (27)

following

R(gn,k;L(Φ1),∆) = n!.

Furthermore, let us choose as before

α =
k

n+ 1
, β =

n− k

n + 1
,

11



we conclude that when x ∈ [α, β], then

gn,k(x) ≥
kk (n− k)n−k

(n + 1)n
,

therefore

||gn,k(·)||L(Φ) ≥ inf
v>0

v−1

[

1 + ∆
∫ β

α
Φ(vgn,k(x)dx)

]

≥

inf
v>0

v−1

[

1 + ∆
∫ β

α
Φ(v min

x∈[α,β]
gn,k(x)) dx

]

≥

inf
v>0

v−1
[

1 + (∆/(n+ 1))Φ(vkk (n− k)n−k/(n+ 1)n)
]

=

kk (n− k)n−k

(n+ 1)n
· inf
v>0

v−1 [1 + ∆/(n+ 1)Φ(v)] =

kk (n− k)n−k

(n + 1)n
φ(L(Φ),∆/(n + 1)) =

kk (n− k)n−k

(n + 1)n
. (28)

Dividing the last estimation on the φ(L(Φ),∆/(n+1)), we obtain the assertion (25)
of theorem 6.1.

7 Concluding remarks.

We consider in this section some slight generalization of Wirtinger’s-Brink’s inequal-
ities (3)-(4) on the Grand Lebesgue Spaces, with at the same notations, for instance
K(p, q) (4).

We suppose for definiteness a = 0, b = 1, so that ∆ = 1.
Let f : [0, 1] → R be some function such that for some ψ ∈ Ψ(A1, B1) ⇒

df/dx(·) ∈ G(ψ;A1, B1).
Note that the function ψ(·) may be ”constructive” introduced by means of equal-

ity

ψ(q) := |df/dx(·)|q,

(the so-called natural choice), if of course ψ(q) <∞, q ∈ (A1, B1).
Let us define the function ν(p) by the following way:

ν(p) = inf
q∈(A1,B1)

[K(p, q)ψ(q)], (29)

denote
(A2, B2) = {p : ν(p) <∞}

and suppose 1 ≤ A2 < B2 ≤ ∞.
Theorem 7.1. Let f(0) = f(1) = 0. We assert that

12



||f ||G(ν) ≤ ||f /||G(ψ). (30)

Proof. Let f(0) = f(1) = 0 and f / ∈ G(ψ); then

|f /|q ≤ ||f /||G(ψ) · ψ(q).

We get using the Brink’s inequality:

|f |p ≤ K(p, q)ψ(q) ||f /||G(ψ),

and thus

|f |p ≤ inf
q∈(A1,B1)

[K(p, q) ψ(q)] ||f /||G(ψ) = ν(p) ||f /||G(ψ), (31)

which is equivalent to the assertion of theorem 7.1 by virtue of definition of the norm
in G(ν) space.
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