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LIMITS OF BAUMSLAG-SOLITAR GROUPS AND DIMENSION ESTIMATES

IN THE SPACE OF MARKED GROUPS

LUC GUYOT AND YVES STALDER

Abstract. We prove that the limits of Baumslag-Solitar groups studied in [GS08] are non-
linear hopfian C*-simple groups with infinitely many twisted conjugacy classes. We exhibit
infinite presentations for these groups, classify them up to group isomorphism, describe their
automorphisms and discuss the word and conjugacy problems. Finally, we prove that the set of
these groups has non-zero Hausforff dimension in the space of marked groups on two generators.

Introduction

Baumslag-Solitar groups are ubiquitous in group theory and topology [BS62, Mol69, Gil79,
FM98, Why01, JS79] and offer a remarkable test bed for group-theoretic properties. Considering
their limits, we obtain in the present paper a Cantor set of pairwise non-isomorphic two-generated
groups with a number of combinatorial and geometrical non-closed properties. By a closed property,
we mean a property that defines a closed subset of the space of marked groups. We also give the
first estimates of non-vanishing Hausdorff dimension in the space of marked groups.

Let m ∈ Z \ {0}. For every sequence (ξn) of integers in Z such that |ξn| tends to infinity and ξn
tends to some m-adic integer ξ, define

BS(m, ξ) = lim
n→∞

BS(m, ξn)

where BS(p, q) =
〈
a, b

∣∣ abpa−1 = bq
〉
denotes the Baumslag-Solitar group with p, q in Z \ {0};

the limit is taken with respect to the topology of the space of marked groups [Sta06b, Th. 6]. As
a consequence of its definition, BS(m, ξ) enjoys the following closed properties: it is torsion-free,
centerless, non-Kazhdan1, contains a non-abelian free group generated by b and bab−1 if |m| > 1,
and satisfies the relation2 “[abma−1, b] = 1”. We present here results of a different nature, relying
on the existence of an HNN decomposition.

The limits BS(m, ξ) are first studied for their own right in [GS08], where it is shown that
BS(m, ξ) acts transitively on a tree and maps homomorphically onto the special limit BS(1, 0) =
Z ≀ Z. These two results are extensively used in this article.
Results. We first prove that BS(m, ξ) is a non-degenerate HNN extension of a free abelian group
of infinite countable rank. More precisely, consider the free abelian groups

E = Ze0 ⊕ Ze1 ⊕ Ze2 ⊕ · · ·

Em,ξ = Zme0 ⊕ Z(e1 − r1(ξ)e0)⊕ Z(e2 − r2(ξ)e0) · · ·

E1 = Ze1 ⊕ Ze2 ⊕ · · ·

where (ri(ξ)) is an integer sequence defined in Section 2.1. Let B̃S(m, ξ) be the HNN extension
of basis E with conjugated subgroups Em,ξ, E1 and stable letter a, where conjugacy from Em,ξ to
E1 is defined by a(me0)a

−1 = e1 and a(ei − ri(ξ)e0)a
−1 = ei+1.

2000 Mathematics Subject Classification. Primary 20E05, 20E08, 20F10, 20F05.
Key words and phrases. space of marked groups, HNN extension, groups acting on trees, Haudorff dimension,

Turing complexity of the word problem, Hopf property, C*-simplicity, twisted conjugacy.
1The property (T) of Kahzdan is open by [Sha00, Th. 6.7].
2This is actually the shortest relation with respect to a and b by [Sta06a, Pr. 2].
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Theorem A (Cor. 2.10 and Th. 3.1). Let (a, b) be the canonical generating pair of BS(m, ξ).
Then the map defined by f(a) = a and f(b) = e0 induces an isomorphism from BS(m, ξ) to

B̃S(m, ξ). Moreover, the group BS(m, ξ) admits the following infinite presentation:
〈
a, b

∣∣ [b, bi] = 1, i ≥ 1
〉

with b1 = abma−1 and bi = abi−1b
−ri−1(ξ)a−1 for every i ≥ 2.

In particular, we have BS(m, 0) =
〈
a, b

∣∣ [aibma−i, b] = 1, i ≥ 1
〉
. In addition, the latter pre-

sentation is minimal.

It follows from [GS08, Th. 4.1] that no group BS(m, ξ) can be finitely presented. Note also that
BS(m, ξ) enjoys any property shared by all non-degnerate HNN extensions, for instance it is prim-
itive [GG08] and has uniform exponential growth [HB00]. Using the latter HNN decomposition,
we show the following:

Theorem B. Assume that |m| > 1. Then we have:

• BS(m, ξ) is hopfian but not co-hopfian (Th. 5.8). If m is prime and ξ is algebraic over Q,
then BS(m, ξ) is not residually finite (Pr. 5.9).

• BS(m, ξ) is C*-simple and inner-amenable (Pr. 4.1 and Pr. 4.6).
• BS(m, ξ) has infinitely many twisted conjugacy classes (Pr. 5.4).
• BS(m, ξ) is not equationally noetherian and hence not linear (Pr. 5.16).
• The automorphism group of BS(m, ξ) is a split extension of BS(m, ξ) by an infinite dihe-
dral group (Pr. 5.12).

From our study of homomorphisms carried out in Section 5, we deduce the following classification
result.

Theorem C (Th. 5.10 and Pr. 2.6). Let m, m′ ∈ Z \ {0} and let ξ ∈ Zm, ξ
′ ∈ Zm′ . Then

BS(m, ξ) is abstractly isomorphic to BS(m′, ξ′) if and only if there is ǫ ∈ {±1} and d ∈ N such
that m = ǫm′, d = gcd(m, ξ) = gcd(m′, ξ′) and the m-adic numbers ξ/d, ǫξ′/d project onto the
same element of Zm/d via the canonical map Zm −→ Zm/d.

Thus two given limits are isomorphic if and only if they are isomorphic as marked groups [GS08,
Th. 2.1], i.e. if and only if they represent the same point in the space of marked groups on two
generators.

The first-named author has shown that the box-counting dimension of G2, the space of marked
groups on two generators, is infinite [Guy07]. Estimating the Hausdorff dimension of Z×

m, the set
of marked groups BS(m, ξ) such that ξ is invertible in Zm (Th. 6.5), we deduce the following:

Theorem D (Cor. 6.6). The Hausdorff dimension of G2 satisfies dimH(G2) > log(2)/6. In
particular, this dimension does not vanish.

Our last result pertains to the algorithmic complexity of the word and conjugacy problem (Prop.
7.3) and their degrees of undecidability. For every problem that can be suitably represented by
a language and every m-adic number there is a well-defined degree of undecidability, called the
Turing degree (Sec. 7).

Theorem E (Cor. 7.7). Assume that ξ is invertible in Zm. Then the following Turing degrees
coincide:

• the Turing degree of the word problem for BS(m, ξ);
• the Turing degree of the conjugacy problem for BS(m, ξ);
• the Turing degree of ξ.

In particular, the word problem is solvable for BS(m, ξ) if and only if ξ is a computable number.

The resolution degree rΓ(n) of the word problem for a finitely generated group Γ [Gri85, Def. 1]
is a quantitative measure of the undecidability of the word problem based on Kolgomorov’s ideas.
It is, intuitively, the minimal amount of information necessary to decide if w = 1 in G for every
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word w with |w| ≤ n, where |w| is the length of w with respect to a chosen generating set. Let
ω be an infinite sequence of symbols from some finite alphabet. We denote by ω(n) be the word
made of the first n symbols of ω. For a word w, we denote by KR(w) the Kolmogorov complexity
resolution of w which is, intuitively, the minimal amount of information necessary to obtain, for
every natural number i ≤ |w|, the i-th symbol of the word w. Two functions f and g are said to
be equivalent if there is some C ≥ 0 such that f(n) ≤ g(Cn) +C and g(n) ≤ f(Cn) +C for every
n.

Theorem F (Pr. 2.6 and Th. 6.1). Let Γ = BS(m, ξ) and let ω = (ri(ξ)). Then rΓ(n) is
equivalent to KR(ω(n)).

For comparison, the resolution degree of the Grigorchuk group Γ = Gω is equivalent to
KR(ω([logn])) [Gri85, Th. 3]. Thus, for a typical ω in the measure-theoretic sense, rΓ(n) is linear
for the corresponding BS(m, ξ) and logarithmic for Gω [ZL70].

1. Backgrounds

1.1. The space of marked groups. The commonly used definition of the space of marked
groups3 is due to Grigorchuk who proved by a topological argument that his intermediate growth
groups cannot be finitely presented [Gri84]. The space of marked groups has then been used to
prove both existence and abundance of groups with exotic properties [Ste96, Cha00] and has turned
to be a remarkably suited framework for the study of Sela’s limit groups [CG05]. Isolated points
were investigated in [CGP07] and an isolated group is used by de Cornulier to answer a question of
Gromov concerning the existence of sofic groups which do not arise as limits of amenable groups.
[Cor09b]. Very little is known on its topological type [Cor09a]. The box-counting dimension of the
space of marked groups on k generators is infinite if k ≥ 2 [Guy07]. We show that its Haudorff
dimension is non-zero in Section 6.

The free group on k generators will be denoted by Fk, or F(S) with S = (s1, . . . , sk), if we
want to precise the names of canonical generating elements. A marked group on k generators is
a pair (G,S) where G is a group and S = (s1, . . . , sk) ∈ Gk is an ordered generating set of G.
An isomorphism of marked groups is an isomorphism which respects the markings. A marked
group (G,S) is endowed with a canonical epimorphism φ : FS → G, which induces an isomorphism
of marked groups between FS/ kerφ and G. Hence a class of marked groups for the relation of
marked isomomorphism is represented by a unique quotient of FS . In particular if a group is given
by a presentation, this defines a marking on it. The non-trivial elements of R := kerφ are called
relations of (G,S). Given w ∈ Fk we will often write “w = 1 in G” to say that the image of w in
G is trivial.

Let w = xε11 · · ·xεnn be a reduced word in FS (with xi ∈ S and εi ∈ {±1}). The integer n is
called the length of w and denoted |w|. If (G,S) is a marked group on k generators and g ∈ G,
the length of g is

|g|G := min{n : g = s1 · · · sn with si ∈ S ⊔ S−1}

= min{|w| : w ∈ FS , φ(w) = g} .

Let Gk be the class of marked groups on k generators up to marked isomorphism. Let us recall
that the topology on Gk comes from the following ultrametric distance: for (G1, S1) 6= (G2, S2) ∈ Gk

we set d
(
(G1, S1), (G2, S2)

)
:= e−λ where λ is the length of a shortest element of Fk which vanishes

in one group and not in the other one. One may also keep in mind the following characterization
of convergent sequences [Sta06a, Pr. 1].

Lemma 1.1. Let (Gn) be a sequence of marked groups in Gk. The sequence (Gn) converges if and
only if for any w ∈ Fk, we have either w = 1 in Gn for n large enough, or w 6= 1 in Gn for n large
enough.

3A very similar topology was first considered in [Gro81, Final Remarks]. The general idea of topologizing sets
of groups goes back to Mahlers and Chabauty [Mah46, Cha50]. The interested reader should consult [Har08] for a
thorough account.
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The free group F2 = F(a, b), the Baumslag-Solitar groups BS(p, q) and their limits BS(m, ξ)
are marked by their canonical generating pair (a, b).

1.2. The ring of m-adic integers. Let m ∈ Z \ {0}. Recall that the ring of m-adic integers Zm
4

is the projective limit in the category of topological rings of the system

. . .→ Z/mhZ→ Z/mh−1Z→ . . .→ Z/m2Z→ Z/mZ

where the arrows are the canonical surjective homomorphisms. This shows that Zm is compact.
This topology is compatible with the ultrametric distance given, for ξ 6= η, by

|ξ − η|m = |m|−max{k∈N : ξ−η ∈mk
Zm} .

and Z embeds isomorphically and densely in Zm. To avoid ambiguity, we call elements of Z rational
integers. We only need the following easy facts aboutm-adic integers. Detailed proofs can be found
in the second-named author’s Ph.D. thesis [Sta05, Appendix C].

• There is a topological ring isomorphism from Zm to
⊕

p|m Zp, where p ranges in the set of

the prime divisors of m.
• Any non-zero ideal can be uniquely written under the form dZm where d is a positive
rational integer whose prime divisors divide m. Moreover we have Z∩ dZm = dZ. For any
n ∈ Z and any ξ ∈ Zm, we can define the greatest common divisor gcd(n, ξ) of n and ξ as
the a unique positive rational integer d such that n and ξ generate dZm.

• An m-adic integer ξ is invertible if and only if it does not belong to any of the ideals pZm

where p is a prime divisor of m in Z; equivalently gcd(m, ξ) = 1.

Note finally that non-zero rational integers are never zero divisors in Zm. Hence, we can consider
the ring Z−1Zm whose elements are fractions of the form a

b with a ∈ Zm and b ∈ Z\{0} and whose
laws are the classical ones for fractions.

1.3. HNN extensions and tree actions. In this section we fix our notations for HNN extensions
and collect several facts concerning their standard tree actions. Let G be a group, let H, K be
subgroups of G and let τ : H −→ K be an isomorphism. The HNN extension of base G whose
stable letter t conjugates H to K via τ , is the group

HNN(G,H,K, τ) =
〈
G, t

∣∣ tht−1 = τ(h) for every h ∈ H
〉
.

Let Γ = HNN(G,H,K, τ). We say that Γ is an ascending HNN extension if either G = H or
G = K. We say that Γ is a degenerate HNN extension if G = H = K, i.e. Γ = G ⋊ Z where 〈t〉
identifies with Z. Note that a given group (e.g. Z ≀Z) may have two different HNN decompositions,
one being degenerate whereas the other is not.
The Normal Form Theorem. A sequence g0, t

ǫ1 , g1, . . . , t
ǫn , gn, with n ≥ 0, is said to be a reduced

sequence if there is no consecutive subsequence t, gi, t
−1 with gi ∈ H or t−1, gi, t with gi ∈ K.

Britton’s lemma [LS77, page 181] asserts that the word g0t
ǫ1 · · · tǫngn has a non-trivial image γ in

Γ if g0, t
ǫ1 , . . . , tǫn , gn is reduced and n ≥ 1. Such a word is called a reduced form for γ. Although

γ may have different reduced forms, the sequence tǫ1 , . . . , tǫn is uniquely determined by γ and we
call its length n = |γ|t the t-length of γ. Fixing a set TH of representatives of right cosets of H in G
and a set TK of representatives of right cosets of K in G such that 1 ∈ TH ∩TK , the Normal Form
Theorem [LS77, Th. IV.2.1] asserts that there is a unique sequence g0, t

ǫ1 , . . . , tǫn , gn representing
γ ∈ Γ with the following properties:

• g0 is an arbitrary element of G,
• If ǫi = 1, then gi ∈ TH ,
• If ǫi = −1, then gi ∈ TK ,
• there is no consecutive subsequence tǫ, 1, t−ǫ.

This sequence is the normal sequence of γ with respect to TH and TK and we call the word
g0t

ǫ1 · · · tǫngn the normal form of γ.

4Note that Z−m = Zm and that Zm is the zero ring if |m| = 1.
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Action on the standard Bass-Serre tree and its boundary. The standard Bass-Serre tree of Γ is the
oriented tree T with vertex set V (T ) = Γ/G, with set of oriented edges E+(T ) = Γ/H subject to
the incidence relations o(γH) = γG and t(γH) = γt−1G.

Given a tree T , we define the boundary ∂T as the set of cofinal rays. The set ∂T has a natural
topology defined as follows. We call a shadow the boundary of any connected component of T
deprived of one of its edges. The family of shadows generates a topology on ∂T which is Hausdorff
and totally discontinuous. If T is a countable non-linear tree, e.g. the standard Bass-Serre tree of
a non-degenerate HNN extension, then ∂T is a perfect Baire space [HP09, Pr. 11 and 24.ii′]. Note
that every automorphism of T induces an homeomorphism of ∂T .

As Γ acts without inversion on its Bass-Serre tree T , every element γ ∈ Γ, viewed as a tree
automorphism, is either elliptic, i.e. γ fixes some vertex of T , or hyperbolic, i.e. γ fixes no vertex
of T but exactly two ends of ∂T [Ser77]. The action of Γ on ∂T has no fixed end if Γ is non-
ascending, exactly one fixed end if Γ is non-degenerate and ascending, and exactly two fixed ends
if Γ is degenerate [HP09, Pr. 24].

2. HNN decomposition of the limits

We fix m ∈ Z \ {0}, ξ ∈ Zm and (ξn) a sequence of rational integers such that |ξn| → ∞ and
ξn → ξ in Zm. A natural HNN decomposition arises from the transitive action of BS(m, ξ) on a
tree constructed in [GS08]. We recall this construction.

We denote by Hn (respectively Hm
n ) the subgroup of BS(m, ξn) generated by b (respectively

bm) and by Tn the Bass-Serre tree of BS(m, ξn). We set

Y =

( ∏
n∈N

V (Tn)

)
/ ∼ =

( ∏
n∈N

BS(m, ξn)/Hn

)
/ ∼

Y m =

( ∏
n∈N

E+(Tn)

)
/ ∼ =

( ∏
n∈N

BS(m, ξn)/H
m
n

)
/ ∼

where ∼ is defined by (xn) ∼ (yn) ⇐⇒ ∃n0 ∀n > n0 : xn = yn in both cases. We now define an
oriented graph X = Xm,ξ by

V (X) = {x ∈ Y : ∃w ∈ F2 such that (xn) ∼ (wHn)}
E+(X) = {y ∈ Y m : ∃w ∈ F2 such that (yn) ∼ (wHm

n )}
o
(
(wHm

n )
)

= (wHn) =
(
o(wHm

n )
)

t
(
(wHm

n )
)

= (wa−1Hn) =
(
t(wHm

n )
)

The graph Xm,ξ is a tree and that the obvious action of F2 on Xm,ξ factorizes through the

canonical projection F2 −→ BS(m, ξ) [GS08, Sec.3]. Let v0 = (Hn) and e0 = (Hm
n ). We denote by

B (respectively Bm) the stabilizer of v0 (respectively e0) in BS(m, ξ). We set Bξ = aBma
−1. As

the action of BS(m, ξ) is clearly transitive on vertices and geometrical edges, the group BS(m, ξ)
has a HNN decomposition:

Proposition 2.1. The group BS(m, ξ) is the HNN extension of base group B, stable letter a and
conjugated subgroups Bm and Bξ = aBma

−1.

We define the inner automorphism τa : γ 7→ aγa−1 ofBS(m, ξ) and we denote by HNN(B,Bm, Bξ, τ)
the previous HNN decomposition where τ is the isomorphism from Bm to Bξ induced by τa.

Proof. This follows from results in [Ser77]. See in particular Section I.5 and Remark 1 after
Theorem 7 in Section I.4. �

The following lemma is an immediate consequence of the definition of the action:

Lemma 2.2. Let w ∈ F2 and let γ be its image in BS(m, ξ). Then γ ∈ B (respectively γ ∈ Bm)
if and only if w = bλn (respectively bmλn) in BS(m, ξn) for all n large enough.
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As a result, B is abelian. Let Z[X ] be the ring of polynomials in the variable X with inte-
ger coefficients. A thorough study of the sequence (λn) of Lemma 2.2 enables us to embed B
isomorphically into the additive group of Z[X ]:

Proposition 2.3.

• Let w ∈ F2 with image γ ∈ B. Then there is a unique polynomial Pγ(X) ∈ Z[X ] such that

w = bPγ(ξn/m) in BS(m, ξn) for all n large enough.
• The map q : γ 7→ Pγ(X) defines an injective homomorphism from B into Z[X ].

The construction of the homomorphism q relies on a sequence of polynomials built up from
m and ξ in a non obvious way. Its definition is the subject of the next section. The proof of
Proposition 2.3 is therefore postponed to Section 2.2 (see Proposition 2.9).

2.1. The functions ri and si. In this section we define functions ri and si on Z which describe
how the b exponents of a given word w ∈ F2 behave when we reduce it in BS(m,n) for n ranging in
a given class modulo mh. In [Sta06b, GS08], these functions were decisive to describe converging
sequences of Baumslag-Solitar groups. It turns out that they extend continously to Zm and that
ξ, and hence BS(m, ξ), is uniquely determined by m and the sequence (ri(ξ)).

Definition 2.4. We define the functions r0, r1, . . . , s0, s1, . . . on Z depending on a parameter
m ∈ Z \ {0} by the inductive formulas:

(1) r0(n) = 0, s0(n) = 1;

(2) nsi−1(n) = msi(n) + ri(n) with ri(n) ∈ {0, . . . , |m| − 1} for every i ≥ 1.

Proposition 2.5. Let n, n′ ∈ Z such that gcd(n,m) = gcd(n′,m) = d. Let h ∈ N \ {0} and
m̂ = m/d.

(1) Assume that n ≡ n′ (mod m̂hdZ). Then the two following hold:
(i) ri(n) = ri(n

′) for i = 1, . . . , h;
(ii) si(n) ≡ si(n

′) (mod m̂h−iZ) for i = 1, . . . , h.
(2) If ri(n) = ri(n

′) for i = 1, . . . , h then n ≡ n′ (mod m̂hdZ).

Proof of Proposition 2.5. Proof of (1). We show by induction on i that

ri(n) = ri(n
′), si(n) ≡ si(n

′) (mod m̂h−iZ) and si(n) · n ≡ si(n
′) · n′ (mod m̂h−idZ)

for i = 0, 1, . . . , h. The case i = 0 is obvious. Assume that ri−1(n) = ri−1(n
′), si−1(n) ≡

si−1(n
′) (mod m̂h−i+1Z) and si−1(n) · n ≡ si−1(n

′) · n′ (mod m̂h−i+1dZ) for some 1 ≤ i ≤ h. By
construction 




si−1(n) · n = si(n) ·m+ ri(n)
and

si−1(n
′) · n′ = si(n

′) ·m+ ri(n
′).

We deduce from the induction hypothesis that ri(n) ≡ r′i(n
′) (modmZ) and hence ri(n) = ri(n

′).
As a result

si(n)− si(n
′) =

(si−1(n) · n− si−1(n
′) · n′)

m
,

from which we deduce that

(3) si(n) ≡ si(n
′) (mod m̂h−iZ)

still by using the induction hypothesis. Look at the right member of the relation

si(n) · n− si(n
′) · n′ = (si(n)− si(n

′)) · n+ si(n
′) · (n− n′) .

The first term is a multiple of m̂h−id because of equation (3) and the fact that d divides n.
The second one is a multiple of m̂h−id because of hypothesis (1). Therefore, we get si(n) · n ≡
si(n

′) · n′ (mod m̂h−idZ) as desired.
6



Proof of (2). By construction, we have:




si−1(n) · n = si(n) ·m+ ri(n)
and

si−1(n
′) · n′ = si(n

′) ·m+ ri(n
′)

for all i ∈ {1, . . . , h}. By hypothesis (2), we get si(n) − si(n
′) = (si−1(n) · n − si−1(n

′) · n′)/m,
which we write into the following form:

(4) si(n)− si(n
′) =

(si−1(n)− si−1(n
′)) · n̂

m̂
+
si−1(n̂

′)(n̂− n̂′)

m̂
.

where n̂ = n/d and n̂′ = n′/d. We show by induction on k that n̂ ≡ n̂′ (mod m̂kZ) for k = 1, . . . , h.
The case k = 1 follows directly from equation (4) for i = 1 (recall that s0(n) = 1 = s0(n

′)). For the
inductive step, we assume that 2 ≤ k ≤ h et n̂ ≡ n̂′ (mod m̂k−1Z), which implies that the second
term in the right member of equation (4) is a multiple of m̂k−2 (it is an integer in particular). We
then proceed in k steps using equation (4) and the fact that m̂ and n̂ are coprime:

- for i = k we get sk−1(n) ≡ sk−1(n
′) (mod m̂Z);

- for i = k − 1 (if k ≥ 3), we get sk−2(n) ≡ sk−2(n
′) (mod m̂2Z);

- so on so forth with i = k − 2, . . . , 2, we get the sequence of congruences

sk−3(n) ≡ sk−3(n
′) (mod m̂3Z), . . . , s1(n) ≡ s1(n

′) (mod m̂k−1Z);

- for i = 1, we get n̂ ≡ n̂′ (mod m̂kZ).

Finally, we obtain n ≡ n′ (mod m̂kdZ) and the proof is then complete. �

Proposition 2.6. (i) The functions ri and si admit unique continuous extensions

ri : Zm → {0, . . . , |m| − 1}, si : Zm → Zm

such that

(1ξ) r0(ξ) = 0, s0(ξ) = 1;

(2ξ) ξsi−1(ξ) = msi(ξ) + ri(ξ) with ri(ξ) ∈ {0, . . . , |m| − 1} for every i ≥ 1.

Let ξ, ξ′ ∈ Zm such that gcd(ξ,m) = gcd(ξ′,m) = d and let h ∈ N \ {0}. Setting
m̂ = m/d, the two following are equivalent:
(1) ξ ≡ ξ′ (mod m̂hdZm) holds;
(2) ri(ξ) = ri(ξ

′) for i = 1, . . . , h.
(ii) Let ξ, ξ′ ∈ Zm. The two following are equivalent:

(1) There is some d ∈ N such that gcd(ξ,m) = gcd(ξ′,m) = d and π(ξ/d) = π(ξ′/d)
where π : Zm −→ Zm/d is the canonical ring homomophism,

(2) ri(ξ) = ri(ξ
′) for every i.

(iii) The map ξ 7→ (ri(ξ))i≥1 defines a homeomorphism from Z×
m onto (Z/mZ)× × (Z/mZ)N

endowed with its product topology. (Here we identify Z/mZ with the set {0, . . . , |m| − 1}
and (Z/mZ)× with the set of integers k ∈ {0, . . . , |m| − 1} coprime with m.)

Proof. (i) Proposition 2.5 shows that the functions ri, si are uniformly continuous with respect to
the m-adic topology on Z and that ri is moreover constant on m-adic balls of radius |m|−i. The
existence and uniqueness of the extensions to Zm follow. The inductive formulas of Definition 2.4
extend continuously on Zm, which gives (1ξ) and (2ξ). Let us now pick n, n′ ∈ Z such that n ≡ ξ
and n′ ≡ ξ′ (modmhZm). Then, one has n ≡ n′ (mod m̂hd)Z if and only if ξ ≡ ξ′ (mod m̂hdZm).
As ri is constant on m-adic balls of radius |m|−i we have ri(n) = ri(ξ) and ri(n

′) = ri(ξ
′) for

i = 1, . . . , h. The equivalence between (1) and (2) now follows readily from Proposition 2.5.
(ii) As gcd(m, ξ) = gcd(m, r1(ξ)) for every ξ ∈ Zm by (2ξ), the result immediatly follows from

(i).
(iii) Let ξ ∈ Z×

m. By (2ξ), we have r1(ξ) ∈ (Z/mZ)×. For any ξ, ξ′ ∈ Z×
m, we have d =

gcd(ξ,m) = gcd(ξ′,m) = 1. We deduce from (2) that the map R : ξ 7→ (ri(ξ))i≥1 defines a
7



continuous embedding from Z×
m into P := (Z/mZ)× × (Z/mZ)N. As Z×

m and P are compact, it
is suffices to show that R has a dense image. Let Eh be the set of integers k ∈ {0, . . . , |m|h − 1}
coprime with m. Consider the map Rh : ξ 7→ (ri(ξ))1≤i≤h. This is an injective map from Eh

into Ph := (Z/mZ)× × (Z/mZ)h−1 by the equivalence of (1) and (2). As Eh and Ph have both
cardinality ϕ(m)|m|h−1, where ϕ denotes the Euler function, the map Rh is a bijection. Hence R
maps the set of integers coprime with |m| onto a dense subset of P . �

The following proposition shows that the restriction of si to a suitable congruence classe is a
polynomial in n with coefficients in Q.

Proposition 2.7. Let ξ ∈ Zm. We define recursively Ph(X) = Ph,ξ(X) by

P0(X) = m and Ph(X) = XPh−1(X)− rh(ξ) for h ≥ 1.

Then, we have:

(i) Ph(X) = mXh − r1(ξ)X
h−1 − · · · − rh(ξ) ∈ Z[X ].

(ii) sh(n) =
1
mPh(

n
m ) for all h ≥ 0 and all n ∈ Z such that n ≡ ξ (mod m̂hdZm).

Proof. (i) The proof is an obvious induction on h.
(ii) First, observe that ri(n) = ri(ξ) for all i ≤ h and all n ∈ Z such that n ≡ ξ (mod m̂hdZm)
by Proposition 2.6. An easy induction on h using the definitions of si(n) and Pi(X) gives the
conclusion. �

2.2. Stabilizers. This section is devoted to the study of the stabilizers B,Bm and Bξ.

Let b0 = b, b1 = abma−1, bi = abi−1b
−ri−1(ξ)
0 a−1 for i ≥ 2. The following lemma shows that bi

defines an element of B for every i.

Lemma 2.8. Let i ≥ 1. We have bi = b
ξn
m

Pi−1(
ξn
m

) in BS(m, ξn) for all n large enough.

Proof. We show by induction on i that:

(5) for every i ≥ 1 we have bi = bξnsi−1(ξn) in BS(m, ξn) for all n large enough.

Since b1 = abma−1 = bξn in BS(m, ξn) and s0(ξn) = 1 for all n, (5) holds if i = 1. Assume (5) holds
for some i ≥ 1. By the induction hypothesis we have bi+1 = abib

−ri(ξ)a−1 = abξnsi−1(ξn)−ri(ξ)a−1

for all n large enough. Recall that ξn tends to ξ in Zm and hence ri(ξn) = ri(ξ) for all n large enough
by Proposition 2.6. By Definition 2.4, we obtain bi+1 = bξnsi(ξn) in BS(m, ξn) for all n large enough.

Since ξnsi(ξn) =
ξn
m Pi(

ξn
m ) for all n large enough by Proposition 2.7, the proof is then complete. �

We can generalize the previous lemma by assigning to every γ ∈ B a polynomial with integer
coefficients.

Proposition 2.9.

(i) Let w ∈ F2 with image γ ∈ B. Then there is a unique polynomial Pγ(X) ∈ Z[X ] indepen-

dent of w such that w = bPγ(ξn/m) in BS(m, ξn) for all n large enough.
(ii) The map q : γ 7→ Pγ(X) defines an injective homomorphism from B into Z[X ]. The abelian

group B = q(B) is freely generated by {1, XP0(X), XP1(X), XP2(X), . . . }. Hence B is
freely generated by the set {b0, b1, b2, b3, . . . }.

(iii) Let w ∈ F2 with image γ ∈ B. Then γ belongs to Bm if and only if

Pγ(X) = k0 + k1mX + k2XP1(X) + · · ·+ ktXPt−1(X)

with k0 + k1r1(ξ) + k2r2(ξ) + · · · + ktrt(ξ) ≡ 0 (modmZ). Moreover the abelian group
Bm = q(Bm) is freely generated by P0(X) = m, P1(X) = XP0(X) − r1(ξ), P2(X) =

XP1(X)− r2(ξ), . . . . Hence Bm is freely generated by {bm0 , b1b
−r1(ξ)
0 , b2b

−r2(ξ)
0 , . . . }.

(iv) The abelian group Bξ = q(Bξ) is freely generated by {XP0(X), XP1(X), XP2(X), . . . }.
The abelian group Bξ is freely generated by {b1, b2, b3, . . . }.
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(v) For any γ ∈ Bm, we have q(aγa−1) = XPγ(X). Moreover the map a 7→ (0, 1), b 7→
(1, 0) induces a surjective homomorphism qm,ξ : BS(m, ξ) −→ Z ≀ Z = Z[X±1] ⋊ Z whose
restriction to B coincides with q.

(vi) Let d = gcd(m, ξ), m̂ = m/d and let π : Z −→ Zm̂ be the canonical map. The maps
χ : γ 7→ Pγ(ξ/m) and χ̂ = π ◦χ define homomorphisms from B to Zm and Zm̂ respectively.
Their kernels satisfy: kerχ ⊂

⋂
i≥0 a

−iBai ⊂ ker χ̂. Moreover, if
⋂

i≥0 a
−iBai is non-

trivial, then it contains some γ ∈ Bm \Bξ.

(vii) Let C be the image of Bξ by the map ι : P (X) 7→ X−1
X P (X). Then C is a subgroup of B

and B/C is an infinite cyclic group generated by the image of 1.

Proof of Proposition 2.9. (i) The uniqueness of Pγ(X) follows from the fact that a non-zero poly-
nomial with coefficients in Q has only finitely many zeros in Q. Using the fact that BS(m, ξn)
converges to BS(m, ξ), we also deduce that Pγ(X) is independent of w. To show the existence of
Pγ(X) we write w = be0aε1be1 · · · aεhbeh with εj = ±1 for j = 1, . . . , h. By Lemma 2.2, w reduces
to a power of b in BS(m, ξn) for all n large enough. Consequently we have σa(w) = 0 and hence
h = 2t for some t ∈ N. By [GS08, Lemma 2.6 with d = 1] there exist k0, . . . , kt ∈ Z depending
only on w and ξ such that w = bα(n) in BS(m, ξn) for all n such that ξn ≡ ξ (modmtZm) with
|ξn| large enough and

(6) α(n) = k0 + k1ξn + k2s1(ξn)ξn + · · ·+ ktst−1(ξn)ξn,

the latter equation being Formula (*) in the proof of [GS08, Lemma 2.6]. Since ξn tends to ξ in
Zm and |ξn| tends to infinity as n goes to infinity, the equality (6) holds for all n large enough.

Using Proposition 2.7, we can write α(n) = Pγ(
ξn
m ) with

(7) Pγ(X) = k0 + k1XP0(X) + k2XP1(X) + · · ·+ ktXPt−1(X).

(ii) The map q : γ 7→ Pγ(X) trivially induces a homomorphism from B to Z[X ] such that q(b) =
1. Let w ∈ F2 with image γ ∈ B. If Pγ(X) is the zero polynomial then w is trivial in BS(m, ξn) for

all n large enough and hence it is trivial in BS(m, ξ). Thus q is injective. It is immediate from (7)
that q(B) is a subgroup of the free abelian group with basis {1, XP0(X), XP1(X), . . . }. It follows
from Lemma 2.8 that q(bi) = XPi−1(X) for all i ≥ 1, so that q(B) coincides with the latter group.

(iii) Let w ∈ F2 with image γ ∈ B. By (i) we can write w = bPγ(ξn/m) in BS(m, ξn) for all n
large enough. Since ξnsi−1(ξn) ≡ ri(ξ) (modmZ) for every i ≥ 1 and for all n large enough, we
deduce from (7) that Pγ(ξn/m) ≡ k0 + k1r1(ξ) + k2r2(ξ) + · · · + ktrt(ξ) (mod mZ) for all n large
enough. By Lemma 2.2, we have: γ ∈ Bm if and only if α(n) ≡ 0 (modmZ). This proves the first
claim. We easily deduce that {m, XP0(X) − r1(ξ), XP1(X) − r2(ξ), . . . } freely generates Bm.

Since q(bm0 ) = m and q(bib
−ri(ξ)
0 ) = XPi−1(X)− ri(ξ) the set {bm0 , b1b

−r1(ξ)
0 , b2b

−r2(ξ)
0 , . . . } freely

generates Bm.
(iv) Since Bξ = aBma

−1, we deduce from (iii) and the definition of bi that {b1, b2, . . . } generates
Bξ. As the elements q(bi) = XPi−1(X) (i ≥ 1) freely generate Bξ, we deduce that {b1, b2, . . . }
freely generates Bξ.

(v) Let w ∈ F2 with image γ ∈ Bm. We can write w = bPγ(ξn/m) in BS(m, ξn) for all n large
enough with Pγ(ξn/m) ≡ 0 (modmZ). Thus aγa−1 = b(ξn/m)Pγ(ξn/m) in BS(m, ξn) for all n large
enough. Hence q(aγa−1) = XPγ(X) by definition of q.

The map qm,ξ is well-defined homomorphism by [GS08, Th. 3.12]. Using the first part of (v),
we easily deduce by induction that q(bi) = qm,ξ(bi) for every i ≥ 0, which completes the proof.

(vi) The map γ 7→ Pγ(ξ/m) is a well-defined homomorphism from B to Z−1Zm. By Proposition

2.6 we have si(ξ) ∈ Zm for every i. By Proposition 2.7, we have 1
mPi(

ξn
m ) = si(ξn) ∈ Z for every

n large enough and hence 1
mPi(

ξ
m ) = si(ξ) ∈ Zm by Proposition 2.6. Now it follows from (ii) that

Pγ(ξ/m) belongs to Zm for every γ ∈ B.
Let γ ∈ kerχ and let i ≥ 0. For all n large enough mi divides Pγ(ξn/m). We deduce from (i)

and Lemma 2.2 that aiγa−i ∈ B. Thus γ ∈
⋂

i≥0 a
−iBai.
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Let η = π(ξ/d). By (v) we have χ̂(aγa−1) = η
m̂ χ̂(γ) ∈ Zm̂ for every γ ∈ B ∩ a−1Ba. Consider

now γ ∈ B such that aiγa−i ∈ B for every i. As gcd(m̂, η) = 1, m̂i divides χ̂(γ) for every i.
Therefore we have γ ∈ ker χ̂.

Assume that B′ =
⋂

i≥0 a
−iBai is non-trivial. Clearly B′ ⊂ Bm and any γ ∈ B′ such that

Pγ(X) has minimal degree does not belong to Bξ by (v).

(vii) It follows from the definition of Pi(X) that multiplication by X−1
X maps XP0(X) to

−m + XP0(X) and XPi(X) to ri(ξ) − XPi−1(X) + XPi(X) for every i ≥ 1. Therefore C is a
subgroup of B. A straightforward induction on i shows that the image of XPi(X) in B/C lies
inside the cyclic subgroup generated by the image of 1. As Bξ does not contain any constant
polynomial, neither does C. Therefore B/C is infinite. �

Now, we can give a simple description of the HNN structure of BS(m, ξ). Let B̃S(m, ξ) be the
HNN extension of basis E with conjugated subgroups Em,ξ and E1 stable letter a, where E,Em, Eξ

are free abelian groups of countable rank, namely

E = Ze0 ⊕ Ze1 ⊕ Ze2 ⊕ · · ·

Em,ξ = Zme0 ⊕ Z(e1 − r1(ξ)e0)⊕ Z(e2 − r2(ξ)e0) · · ·

E1 = Ze1 ⊕ Ze2 ⊕ · · ·

and conjugacy from Em,ξ to E1 is defined by a(me0)a
−1 = e1 and a(ei − ri(ξ)e0)a

−1 = ei+1. We
denote by φ the isomorphism from Em,ξ to E1 induced by τa.

Corollary 2.10. The map defined by f(a) = a and f(b) = e0 induces an isomorphism from

BS(m, ξ) to B̃S(m, ξ). The inverse map is determined by f−1(a) = a and f−1(ei) = bi for every
i ≥ 0.

Proof. It is a straightforward corollary of Propositions 2.1 and 2.9. �

We have then three different notations for the same group, namely

• BS(m, ξ) = HNN(B,Bm, Bξ, τ) where B is generated by b = b0, b1, b2, . . . ,

• B̃S(m, ξ) = HNN(E,Em,ξ, E1, φ) where E is generated by e0, e1, e2, . . . ,
• BS(m, ξ) = HNN(B,Bm,Bξ, θ) where B is generated by 1, XP0(X), XP1(X), . . . and
θ is defined in the obvious way.

Our favoured HNN extension is B̃S(m, ξ) as it considerably eases off notations when different
parameters m and ξ are considered (Sec. 5 and Sec. 6). Nevertheless BS(m, ξ) is usefull when we
still need to see this group as limit in the space of marked groups (Sec. 5) and the HNN extension
BS(m, ξ) involving polynomials is advantageous to study relations in the group (Sec. 5).

3. An infinite presentation built up from ξ

In this section, we use of the HNN decomposition of BS(m, ξ) to give an infinite group presen-
tation which depends explicitely on m and the sequence (ri(ξ)). A group presentation

〈
X

∣∣ R
〉
is

said to be minimal if the kernel of the natural homomorphism
〈
X

∣∣ R′
〉
−→

〈
X

∣∣ R
〉
is non-trivial

for all R′  R.

Theorem 3.1. The group BS(m, ξ) admits the following infinite presentation:
〈
a, b

∣∣ [b, bi] = 1, i ≥ 1
〉

with b1 = abma−1 and bi = abi−1b
−ri−1(ξ)a−1 for every i ≥ 2.

In particular, we have BS(m, 0) =
〈
a, b

∣∣ [b, aibma−i] = 1, i ≥ 1
〉
. The latter presentation is

moreover minimal.

In the case ξ 6= 0, we previously showed [GS08, Th. 4.1] that BS(m, ξ) cannot be finitely
presented. The following consequence is therefore immediate.

Corollary 3.2. No group BS(m, ξ) is finitely presented.

10



Proof of Theorem 3.1. We divide the proof into two parts:
(1) We show that BS(m, ξ) =

〈
a, b

∣∣ [b, bi] = 1, i ≥ 1
〉
using Propositions 2.1 and 2.9.

(2) We show that this presentation is minimal in the case ξ = 0 using basic facts on graph groups.
Proof of (1). By Proposition 2.9 we can define an isomorphism φ : Bm −→ Bξ by φ(bm0 ) =

b1, φ(bib
−dri(ξ)
0 ) = bi+1 for i ≥ 1. Using the HNN decomposition of Proposition 2.1, we deduce

that BS(m, ξ) admits the presentation
〈
a,B

∣∣ aγa−1 = φ(γ), γ ∈ Bm

〉
. Since a and b generate

BS(m, ξ) and B is a free abelian group (Proposition 2.9), we deduce that

(8) BS(m, ξ) =
〈
a, b

∣∣ [bi, bj] = 1, 0 ≤ i < j
〉

(Note that the relations abm0 a
−1 = φ(bm0 ) and abib

−ri(ξ)
0 a−1 = φ(bib

−ri(ξ)
0 ) are satisfied by definition

of bi.) We show by induction on i ≥ 0 the following claim: any relation [bi, bj ] = 1 with 0 ≤ i < j is
a consequence of relations [b0, bk] = 1 with 1 ≤ k ≤ j. The case i = 0 is trivial. Assume now that

i ≥ 1. Using definitions, we can write [bi, bj] = a[bi−1b
−ri−1(ξ)
0 , bj−1b

−rj−1(ξ)
0 ]a−1. By induction

hypothesis the relation [bi−1, bj−1] = 1 is a consequence of relations [b0, bk] = 1 with 1 ≤ k ≤ j− 1.
Hence [bi, bj ] = 1 is a consequence of relations [b0, bk] = 1 with 1 ≤ k ≤ j. The induction is then
complete. Thus all relations [bi, bj ] = 1 with 1 ≤ i < j can be deleted in presentation (8).

Proof of (2). It remains to show that BS(m, ξ) =
〈
a, b

∣∣ [b0, bi] = 1, i ≥ 1
〉
is a minimal presen-

tation when ξ = π(ξ) = 0. In this case we have ri(ξ) = 0, and hence bi = aibma−i, for
all i ≥ 1. We fix some k ≥ 1 and we show that [b0, bk] = 1 does not hold in the group
Gk :=

〈
a, b

∣∣ [b0, bi] = 1, k 6= i ≥ 1
〉
.

To prove this we consider the group B̃ =
〈
g0, g1, . . .

∣∣ [gi, gj] = 1, |i− j| 6= k
〉
and its subgroups

B̃m = 〈gm0 , g1, g2, . . . 〉 and B̃ξ = 〈g1, g2, . . . 〉. We will use basic facts on graph groups, i.e. groups
defined by a presentation whose relators are commutators of some pairs of the generators. (Such
presentations are often encoded by a graph, whose vertices correspond to the generators and whose
edges tell which ones commute; this explains the terminology.) Let G =

〈
X

∣∣ R
〉
be a graph group.

Any element of G can be written as a word c1c2 . . . cl where each syllable ci belongs to some cyclic
group generated by some element of X . We consider three types of moves that we can perform on
such words.

1. Remove a syllable ci = 1.
2. Replace consecutive syllables ci and ci+1 in the same cyclic subgroup by the single syllable

(cici+1).
3. For consecutive syllables ci ∈ 〈x〉 and ci+1 ∈ 〈x′〉 with x, x′ ∈ X, [x, x′] ∈ R, exchange ci

and ci+1.

If g ∈ G is represented by a word w = c1 . . . cl which cannot be changed to a shorter word
using any sequence of the above moves, then w is said to be a normal form for g. We will use the
following results:

Theorem 3.3. [Bau81]
(Normal Form Theorem) A normal form in a graph group represents the trivial element if and only
if it is the trivial word.
(Abelian Subgroups) Any abelian subgroup of a graph group is a free abelian group.

We define the partial map ψ : B̃ξ −→ B̃m by ψ(g1) = gm0 and ψ(gi) = gi−1 for every i ≥ 2. By us-

ing the Normal FormTheorem, we can readily show that B̃ξ =
〈
g1, g2, . . .

∣∣ [gi, gj ] = 1, |i− j| 6= k
〉
.

We clearly have [ψ(gi), ψ(gj)] = 1 in B̃m for any i, j ≥ 1 such that |i− j| 6= k. Hence ψ induces a

surjective homomorphism from B̃ξ onto B̃m.

Let g ∈ B̃ξ. Replacing every gi by ψ(gi) in any non-trivial normal form for g in B̃ clearly

leads to a non-trivial normal form for ψ(g) in B̃. Hence ψ is injective, which proves that ψ is an

isomorphism. Let φ̃ be its inverse homomorphism. We set G̃k :=
〈
B̃, a

∣∣ aga−1 = φ̃(g), g ∈ B̃m

〉
.

We trivially check that the map a 7→ a, b 7→ g0 induces a surjective homomorphism from Gk onto
11



G̃k that maps [b0, bk] to [g0, gk]. Since the graph group B̃ embeds isomorphically into the HNN

extension G̃k, we have [g0, gk] 6= 1 and hence [b0, bk] 6= 1. �

4. C*-simplicity

We first recall some definitions. Let Γ = BS(m, ξ) and let σ : BS(m, ξ) −→ Z be the surjective
homomorphism defined by σ(a) = 1 and σ(b) = 0. Let Z ≀ Z = Z[X±1] ⋊X Z where the action
of Z on the additive group of Z[X±1] is the multiplication by X . This group is generated by
{(1, 0), (0, 1)} and the map a 7→ (0, 1), b 7→ (1, 0) induces a surjective homomorphism qm,ξ from Γ
onto Z ≀Z [GS08, Th. 3.12]. By (v) and (vi) of Proposition 2.9, the restriction of qm,ξ to B (which
identifies with a subgroup of Z[X ]) is the identity and the map γ 7→ Pγ(ξ/m) is a well-defined
homomorphism from B to the additive group of Zm.

Given a group Γ, recall that its reduced C*-algebra C∗
r (Γ) is the closure for the operator norm

of the group algebra C[Γ] acting by the left-regular representation on the Hilbert space ℓ2(Γ). For
an introduction to group C*-algebras, see for example [Dav96, Ch.VII]. A group is C*-simple if it
is infinite and if its reduced C*-algebra is a simple topological algebra.

Non-abelian free groups are C*-simple. The first proof of this fact, due to Powers [Pow75],
relies on a combinatorial property of free groups shared by many other groups, called for this
reason Powers groups. Thus Powers groups are C*-simple. The Baumslag-Solitar group BS(m,n)
is C*-simple if and only if |m| 6= |n| [Iva07, Th. 4.9]. In this case, it is actually a strongly Powers
group [HP09, Pr. 5]. A group G is said to be strongly Powers if any of its subnormal subgroups
is a Powers group.

Theorem 4.1. Let |m| > 1, ξ ∈ Zm. Then BS(m, ξ) is a strongly Powers group.

Amenable groups are not C*-simple [Har07, Pr. 3]. This is the reason why we have to exclude
the groups BS(m, ξ) whith |m| = 1. Actually, there is only one such marked group [GS08, Th.
2.1] and it is isomorphic to the solvable group Z ≀ Z [Sta06a, Th. 2].

We consider the action of Γ = BS(m, ξ) on its Bass-Serre tree T = Xm,ξ and use the criterion
of de la Harpe and Préaux [HP09, Pr. 16] on tree action to show Theorem 4.1. The latter criterion
needs the action of Γ to be faithful in a strong sense: it has to be slender. Two other conditions are
required, but both follow immediatly from [HP09, Pr. 24], as Γ is a non-ascending HNN extension.
Let us define a slender action. A tree automorphism γ of T is slender if its fixed point set (∂T )γ

has empty interior in ∂T with respect to the shadow topology (Sec. 1.3). The action of Γ on T is
slender if for every γ ∈ Γ \ {1} the automorphism of T induced by γ, also denoted by γ, is slender.
A slender action is faithful, it is even strongly faithful in the sense of [HP09, Sec. 1].

Since hyperbolic elements are obviously slender, we focus now on the fixed point set of elliptic
elements. We still need more definitions to describe the fixed point set T γ for any γ ∈ B.

Let l, u ∈ Z ∪ {±∞}. We denote by {l ≤ σ ≤ u} the subgraph of T whose vertices γB satisfy
l ≤ σ(γ) ≤ u. We denote by T [l, u] the connected component of 1B in {l ≤ σ ≤ u}.

Lemma 4.2. Let l, u ∈ Z ∪ {±∞}. Assume either that l > −∞ and |m| > 1, or that u < +∞.
Then, the set ∂{l ≤ σ ≤ u} ⊂ ∂T has empty interior in ∂T with respect to the shadow topology.

Proof. Assume that l > −∞ and |m| > 1. Since any vertex γB of T has |m| neighbours γ′B such
that σ(γ′) = σ(γ) − 1, any shadow contains (the class of) a geodesic ray (γ1B, γ2B, . . . , γnB, . . .)
such that σ(γn) tends to −∞. Such a ray does not lie in ∂{l ≤ σ ≤ u}. The proof of the
second case is analogous (any vertex γB of T has countably many neighbours γ′B such that
σ(γ′) = σ(γ) + 1). �

Let ν be the natural valuation on Z[X ], i.e. the one defined by ν(X i) = i for every i. Let ν
be the “valuation” defined on B by µ(γ) = sup{i ≥ 1 : Pγ(ξ/m) ∈ dm̂iZm} where sup ∅ = 0. Let
γ ∈ B. Observe that

• γ ∈ Bm if and only if µ(γ) ≥ 1,
• γ ∈ Bξ if and only if ν(Pγ) ≥ 1.
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Proposition 4.3. Let γ ∈ B. We have T γ = T [−µ(γ), ν(Pγ)].

Corollary 4.4. Let Γ = BS(m, ξ).

• The action of Γ on T is slender.
• The centralizer of b in Γ coincides with B if |m| > 1.
• The centralizer of ak in Γ coincides with 〈a〉 for every k 6= 0.

Proof of Corollary 4.4. Let us show that the action of Γ is slender. Remind that any hyperbolic
element of Γ is slender. Since any elliptic element is conjugated to some γ ∈ B by a homeomorphism
of ∂T , it suffices to prove that every γ ∈ B \{1} is slender. Since ν(Pγ) <∞ for every γ ∈ B \{1},
the result follows from Proposition 4.3 and Lemma 4.2.

Assume that |m| > 1 and let γ be an element of the centralizer of b in Γ. By Proposition 4.3,
we have T b = 1B. Since γ commutes with b, we have then γ · 1B = 1B, i.e. γ ∈ B.

Let k ∈ Z \ {0} and let γ be an element of the centralizer of ak in Γ. Let a+ (resp. a−) be the
class of rays which are cofinal with (anB)n≥0 (resp. (anB)n≤0). Then γ preserves the fixed point
set {a−, a+} of ak. Since σ(γan) = σ(γ) + n for every n ∈ Z, γ cannot exchange a+ and a− and
hence fixes them both. Consequently, there is some n ∈ Z such that γ · B = anB, i.e. there is
g ∈ B such that γ = ang. We deduce that g centralizes ak and hence g fixes a+ and a−. As g is
elliptic, Proposition 4.3 gives ν(Pg) = +∞, hence g = 1. Thus γ = an. �

Proposition 4.3 is a straightforward consequence of the following lemma.

Lemma 4.5. Let g ∈ Γ and let c0a
ǫ1c1 · · · aǫkck with ǫi ∈ {±1}, ci ∈ B be a reduced form of g.

Let σi(g) =
∑i

j=1 ǫj. Let γ ∈ B. The following are equivalent:

(i) gB ∈ T γ,
(ii) g−1γg ∈ B,
(iii) −µ(γ) ≤ σi(g) ≤ ν(Pγ) for every 1 ≤ i ≤ k.

If the previous conditions hold then we have: g−1γg = a−σ(g)γaσ(g).

Proof. (i) ⇔ (ii) is trivial. We show the equivalence (ii) ⇔ (iii) and the last statement of the
lemma by induction on k. If k = 0, both are trivial. Assume that k > 0 and write w = c0a

ǫ1g′.

(ii) ⇒ (iii): we have g′
−1
γ′g′ ∈ B with γ′ = a−ǫ1γaǫ1 . By Britton’s lemma, we have: g′

−1
γ′g′ ∈

B and, either γ ∈ Bm and ǫ1 = −1, or γ ∈ Bξ and ǫ1 = 1. We deduce that γ′ ∈ B, µ(γ′) =
µ(γ) + ǫ1, ν(Pγ′) = ν(Pγ)− ǫ1, γ

′ ∈ B and −µ(γ) ≤ ǫ1 ≤ ν(Pγ). The result then follows from the
induction hypothesis.
(iii) ⇒ (ii): As −µ(γ) ≤ ǫ1 ≤ ν(Pγ), we have either ǫ1 = −1 and hence γ ∈ Bm, or ǫ1 = 1 and
hence γ ∈ Bξ. We deduce that γ′ ∈ B. The result follows from the induction hypothesis.

Last statement: by induction hypothesis, we have

g′
−1
γ′g′ = a−σ(g′)γ′aσ(g

′) = a−ǫ1−σ(g′)γaǫ1+σ(g′) = a−σ(g)γaσ(g).

�

Proof of Theorem 4.1. Since Γ = BS(m, ξ) is a non-ascending HNN extension, the action of Γ is
strongly hyperbolic on T and minimal on ∂T [HP09, Pr. 22]. The action of Γ on T is slender by
Corollary 4.4. By [HP09, Pr. 16], Γ is a strongly Powers group. �

Inner amenability. A countable group G is said inner amenable if it admits a mean (i.e. a non-zero,
finite and finitely additive measure) on the set of all the subsets of G\{1} which is invariant under
inner automorphisms. We say that G has the icc property if the conjugacy class of any of its
non-trivial element is infinite. These two notions are motivated by the study of the von Neumann
algebra W ∗(G) of G (see [Eff75, BH86]). Amenable groups or groups that do not have icc are
clearly inner amenable. The second-named author has proved that the Baumslag-Solitar group
BS(m,n) has icc, is inner amenable but not amenable whenever |m| > |n| > 1 [Sta06b, Ex.2.4 and
3.2]. Note that for every |m| > 1, the group BS(m, ξ) also has icc since every Powers group does
[Har85, Pr. 1]
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Proposition 4.6. Let |m| > 1, ξ ∈ Zm. The group BS(m, ξ) is inner amenable and non-amenable.

The proof relies on:

Theorem 4.7. [Sta06b, Pr. A.0.2] Let Γ = HNN(Λ, H,K, φ) with H 6= Λ or K 6= Λ. Let Z(Λ)

be the center of Λ. If for every n ≥ 1 there exist some non-trivial elements h
(n)
0 , h

(n)
1 , . . . , h

(n)
n ∈

Z(Λ) ∩H ∩K such that h
(n)
i = φ(h

(n)
i−1) for i = 1, . . . , n, then Γ is inner amenable.

Proof of Proposition 4.6. Let n ≥ 1 and set h
(n)
i := aibm

n+1

a−i for i = 0, . . . , n. The hypotheses

of Theorem 4.7.ii are trivially satisfied by these elements, which proves that BS(m, ξ) is inner
amenable. Using Britton’s Lemma, we can readily show that the subgroup generated by a and
bab−1 is a non-abelian free subgroup of BS(m, ξ). Hence BS(m, ξ) is not amenable by a classical
result of von Neumann. �

Actually, we can prove a stronger statement than the existence of the elements h
(n)
i as in

Theorem 4.7. Indeed, it follows easily from Lemma 4.5 that
⋂

1≤i≤n γiBγ
−1
i is a free abelian group

of infinite countable rank for every n and every γ1, . . . , γn ∈ BS(m, ξ). By [Kro90, Lem. 1.1],
this yields the following vanishing cohomological property: for every free Z[BS(m, ξ)]-module F ,
we have Hi(BS(m, ξ), F ) = 0 for all i.

5. Homomorphisms

This section is devoted to the study of group homomorphisms from a given limit group to
another one. We classify the limits of Baumslag-Solitar groups BS(m, ξ) up to abstract group
isomorphism (Theorem 5.10), we compute the automorphism group of every limit (Proposition
5.12) and we prove that every limit is hopfian (Theorem 5.8). Finally, we show that every limit
has infinite twisted conjugacy classes (Proposition 5.4)

As the map a 7→ a, b 7→ b induces an isomorphism from BS(m,n) to BS(−m,−n), it also
induces an isomorphism from BS(m, ξ) to BS(−m,−ξ) for any ξ ∈ Zm. For these reason, we will
assume that m > 0.

The following lemma can be readily deduced from the definition of BS(m, ξ).

Lemma 5.1. Let d = gcd(m, ξ) and let η = π(ξ/d) where π : Zm −→ Zm̂ is the canonical map.
The map a 7→ a, b 7→ bd induces an injective homomorphism from BS(m̂, η) into BS(m, ξ).

From now on, we will consider B̃S(m, ξ) rather than BS(m, ξ) because it will ease off notations.

We fix m,m′ ∈ N \ {0} and ξ ∈ Zm, ξ
′ ∈ Zm′ and we set Γ = B̃S(m, ξ) and Γ′ = B̃S(m′, ξ′).

The following proposition shows that every surjective homomorphism from Γ onto Γ′ is conju-
gated to a simple one by an element of Γ′.

Proposition 5.2. Let p : Γ −→ Γ′ be a surjective homomorphism. Then m′ divides m, σ(p(a)) =
±1 and p(e0) is conjugated to ±e0. Moreover σ(p(a)) = 1 if m′ > 1.

Before proving Proposition 5.2, we quote the following observation for further reference.

Remark 5.3. For any Q ∈ Z[X±1], there exists ψQ ∈ Aut(Z[X±1]⋊Z) such that ψQ(1, 0) = (1, 0)
and ψQ(0, 1) = (Q, 1). This automorphism satisfies ψQ(P, 0) = (P, 0) for all P ∈ Z[X±1].

Indeed, this can be readily checked with the well-known presentation

Z[X±1]⋊ Z = Z ≀ Z =
〈
a, b

∣∣ [aiba−i, b] = 1 for all i ≥ 1
〉
,

where a corresponds to (0, 1) and b corresponds to (1, 0).

Proof of Proposition 5.2. We set α = p(a), β = p(e0) and γ = αβα−1. First we show that β is an
elliptic element of Γ′. Assume by contradiction that β is hyperbolic. Then γm is hyperbolic with
axis α(D), where D is the axis of β. Since e1 = a(me0)a

−1 commutes with e0 in Γ, β commutes
with γm. As a result, γm has the same axis as β, namely D. Thus D is invariant under α. There
are two cases: either α is hyperbolic (case 1) or α is elliptic (case 2).
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Case 1: the bi-infinite ray D is then the axis of α. As α and β generate Γ′, the two ends of D
are fixed ends of Γ′. This impossible since a non-degenerate HNN extension has at most one fixed
end on the boundary of its Bass-Serre tree.

Case 2: the automorphism α′ = αβ is hyperbolic, since Γ′ cannot be generated by two elliptic
elements. Indeed, the set of elliptic elements is contained in the kernel of σ : Γ′ → Z. So, the
argument used in case 1 applies to α′ and β.

Therefore, up to conjugacy, we can assume that β ∈ E. Now we use the surjective homomor-
phism qm′,ξ′ : Γ

′ −→ Z ≀ Z (see Proposition 2.9.v). Since σ(β) = 0 and {σ(α), σ(β)} generates Z,
we have σ(α) = ǫ′ with ǫ′ = ±1. We can write q(β) = (P, 0), q(α) = (Q, ǫ′) with P,Q ∈ Z[X±1]. If
ǫ′ = 1, the automorphism ψ−Q, defined as in Remark 5.3, maps (P, 0) to (P, 0) and (Q, 1) to (0, 1);
if ǫ′ = 1, the automorphism ψXQ maps (P, 0) to (P, 0) and (Q,−1) to (0,−1). In both cases, the
image {(P, 0), (0, ǫ′)} of {q(α), q(β)} by the latter automorphism generates Z ≀Z, i.e. the subgroup
PZ[X±1]⋊Z coincides with Z ≀Z. This implies that P is invertible in Z[X±1], which gives P = ǫX i

for some ǫ = ±1, i ∈ Z. As P = q(β) lies in Z[X ], we have i ∈ N, whence q(β) = q(ai(ǫe0)a
−i).

Since q is injective on E by Proposition 2.9, we deduce that β = ai(ǫe0)a
−i. Thus, up to conjugacy,

we can assume that β = ǫe0.
Assume now that m′ > 1. Let α = c1a

ǫ1c2a
ǫ2 · · · claǫlcl+1 = zaǫlcl+1 (with ǫi = ±1 and

ci ∈ E) be a reduced form in Γ′. As γm = α(mǫe0)α
−1 commutes with β = ǫe0, we deduce from

Corollary 4.4 that α(me0)α
−1 ∈ E. It follows that ǫl = 1 and m′ divides m by Britton’s lemma.

As aσ(α)(me0)a
−σ(α) ∈ E by Lemma 4.5, it follows from Britton’s lemma that σ(α) ≥ 0. Since

σ(α) ∈ {±1}, we deduce that σ(α) = 1. �

Let G be a group and let φ be an automorphism of G. Two elements γ, γ′ ∈ G are said to
be φ-twisted conjugate if there is g ∈ G such that γ′ = gγφ(g−1). We say that G has infinitely
many twisted conjugacy classes if G has infinitely many φ-twisted conjugacy classes for every
automorphism φ. The study of this property is mainly motivated by topological fixed point theory
and by the problem of finding a twisted analogue of the classical Burnside-Froebenius theorem (see
[FH94] for a introduction to these topics). Baumslag-Solitar groupsBS(m,n) with (m,n) 6= ±(1, 1)
[FG06, FG08] and the wreath product Z≀Z [GW06, Cor. 4.3] have infinitely many twisted conjugacy
classes (the reader may consult [Rom] for an up-to-date list of known examples).

Corollary 5.4. The group Γ has infinitely many twisted conjugacy classes.

Proof. If m = 1, one has Γ = Z ≀ Z. As mentioned above, it has infinitely many twisted conjugacy
classes.

Suppose now that m > 1 and let φ be an automorphism of Γ. It follows from Proposition 5.2
that σ ◦ φ = σ. Thus σ is constant on each φ-twisted conjugacy class. As σ takes infinitely many
values, Γ has infinitely many φ-twisted conjugacy classes. �

For every i ≥ 1, we set wi = ai(me0)a
−1(−r1(ξ)e0)a−1(−r2(ξ)e0)a−1(−ri−1(ξ)e0)a

−1. Then
ei = wi holds in Γ for every i ≥ 1. Recall that

Γ =

〈
a, e0, e1, . . .

∣∣ [ei, ej] = 1 for all i, j ≥ 0,
a(me0)a

−1 = e1, a(ei − ri(ξ)e0)a
−1 = ei+1 for all i ≥ 1

〉
(9)

=
〈
a, e0

∣∣ [e0, wi] = 1 for all i ≥ 1
〉

(10)

by Corollary 2.10 and Theorem 3.1.
Let J be the map defined by J(a) = a and J(e0) = −e0. It follows from presentation (9) that

J induces an automorphism of Γ such that J(ei) = −ei for every i.

Lemma 5.5. Let t1, . . . , tn ∈ {0, . . . ,m− 1} and let

w(m, t1, . . . , tn) = an+1(me0)a
−1(−t1e0)a

−1(−t2e0)a
−1 · · · (−tne0)a

−1.

Then the following are equivalent:

(i) The image of w(m, t1, . . . , tn) in Γ belongs to E,
(ii) The image of w(m, t1, . . . , tn)e0w(−m,−t1, . . . ,−tn)(−e0) in Γ is trivial,
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(iii) ti = ri(ξ) for every 1 ≤ i ≤ n.

Proof. (i) ⇒ (ii): As J(w(m, t1, . . . , tn)) = w(−m,−t1, . . . ,−tn) and J maps any element of E to
its inverse, we deduce that w(m, t1, . . . , tn)e0w(−m,−t1, . . . ,−tn)(−e0) = 1 in Γ.

(ii) ⇒ (iii): Assume that w = w(m, t1, . . . , tn)e0w(−m,−t1, . . . ,−tn)(−e0) has a trivial image
in Γ. We prove the following claim by induction: for every 1 ≤ i ≤ n, we have w = vie0J(vi)(−e0)
with vi = an+1−i(ei − tie0)a

−1(−ti+1e0)a
−1 · · · (−tne0)a−1 and tj = rj(ξ) for every 1 ≤ j ≤ i. For

i = 1, the claim follows from the relation a(me0)a
−1 = e1 in Γ. Assume that the claim holds for

some i ≥ 1. We have then w = vie0J(vi)(−e0) = 1 in Γ. By Britton’s lemma, the sequence (a, ei−
tie0, a

−1) is not reduced and hence ei−tie0 ∈ Em,ξ. Therefore ti = ri(ξ) and a(ei−tie0)a−1 = ei+1.
We deduce that w = vi+1e0J(vi+1) with vi+1 = an−i(ei+1 − ti+1e0)a

−1(−ti+2e0) · · · (−tne0)a−1,
which completes the induction.

(iii) ⇒ (i): it follows from the fact that w(m, r1(ξ), . . . , ri(ξ)) = wi and wi = ei in Γ for
i ≥ 1. �

Lemma 5.6. Assume that m = m′ > 1. Let θ be a map such that σ ◦ θ(a) = 1 and θ(e0) = e0.
If θ induces an homomorphism from Γ to Γ′ then ri(ξ) = ri(ξ

′) for every i ≥ 1. In this case, the
restriction of θ to E is the identity and we have |θ(γ)|a = |γ|a|θ(a)|a for every γ ∈ Γ. In particular
θ is injective.

Proof. We can write θ(a) = zae with e ∈ E and z ∈ Γ′ such that σ(z) = 0. Assume that θ
induces an homomorphism from Γ to Γ′. We show by induction that θ(ei) = wi for every i ≥ 1.
First, observe that θ(ei) commutes with θ(e0) = e0 for every i ≥ 1. Hence θ(ei) ∈ E for every
i ≥ 1 by Corollary 4.4. In particular, θ(e1) = θ(w1) = za(me0)a

−1z−1 ∈ E. As σ(z) = 0,
we deduce from Lemma 4.5 that θ(e1) = w1. Assume now that θ(ei) = wi for some i ≥ 1.
As ei+1 = a(ei − ri(ξ)e0)a

−1 in Γ, we have θ(ei+1) = za(wi − ri(ξ)e0)a
−1z−1 ∈ E. We obtain

θ(ei+1) = wi+1 by Lemma 4.5, wich completes the induction. As wi = θ(ei) ∈ E for every i ≥ 1,
we deduce from Lemma 5.5 that ri(ξ) = ri(ξ

′) for every i ≥ 1.
Assume that the latter conditions holds and let θ(a) = c1a

ǫ1c2a
ǫ2 · · · claǫlcl+1 (with ǫj = ±1 and

cj ∈ E for every j) be a reduced form in Γ′. Since θ(a)(me0)θ(a)
−1 = e1 and θ(a)−1e1θ(a) = me0,

we have ǫ1 = ǫl = 1 by Britton’s lemma. It readily follows that |θ(γ)|a = |γ|a|θ(a)|a for every
γ ∈ Γ. �

Hopf property and residual finiteness. An important reason for considering Baumslag-Solitar groups
was, at the origin, that they gave the first examples of non-hopfian one-relator groups [BS62]. Let
us recall that a group G is hopfian if every surjective endomorphism from G is an isomorphism. It
is known that the Hopf property is neither open [ABL+05, Sta06a] nor closed [CGP07, Pr. 5.10]
in the space of marked groups.

A group G is said to be residually finite if for every non-trivial element g of G there is a
finite quotient F of G such that the image of g in F is non-trivial. For m = 1, the only limit is

B̃S(1, 0) = Z ≀Z. This group is residually finite, hence hopfian by a well-known theorem of Malcev;
see e.g. [LS77, Theorem IV.4.10].

Definition 5.7. A group G is co-hopfian if every injective homomorphism from G to itself is an
isomorphism.

Theorem 5.8. The group Γ is hopfian but not co-hopfian.

We denote by J the automorphism of Γ defined by J(a) = a and J(e0) = −e0.

Proof. We can assume that m > 1. Let p be a surjective endomorphism of Γ. By Proposition
5.2, there is ǫ ∈ {0, 1} and an innner automorphism τ of Γ such that p′ = Jǫ ◦ τ ◦ p satisfies
σ ◦ p′(a) = 1 and p′(e0) = e0 with. By Lemma 5.6, p′ is injective and hence so is p. Therefore p is
an isomorphism.

Let k ∈ N \ {1} be coprime with m and let θ be the map defined by θ(a) = a, θ(e0) = ke0.
Considering the group presentation (9), we deduce that θ induces an endomorphism of Γ. We can
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readily check that θ(e) = ke for every e ∈ E and that |θ(γ)|a = |γ|a for every γ ∈ Γ. It follows
that θ is injective. We also deduce that θ(Γ)∩E = θ(E) = kE 6= E. Hence θ is not surjective. �

We say that ξ ∈ Zm =
⊕

p|m Zp is algebraic if the p-component ξp ∈ Zp of ξ is algebraic over

Q for every prime p dividing m. It only means that ξ is a root in Zm of some polynomial with
coefficients in Z. Let d = gcd(m, ξ) and η = π(ξ/d) where π : Zm −→ Zm̂ is the canonical map.
It readily follows from the definition of Proposition 2.9.vi that ξ (resp. η) is algebraic if and only
if kerχ 6= 1 (resp. ker χ̂ 6= 1). If ξ is invertible in Zm, i.e. gcd(m, ξ) = 1, then the two kernels
coincide with

⋂
i≥0 a

−iEai.

Proposition 5.9. If η is algebraic then Γ is not residually finite.

Proof. By Lemma 5.1, BS(m̂, η) embeds isomorphically into BS(m, ξ). As a subgroup of a residu-
ally finite group is residually finite, we can assume that gcd(m, ξ) = 1. By Proposition 2.9.vi, we can
pick e ∈

⋂
i≥0 a

−iEai\E1. We set γ = [e, ae0a
−1] = (−e)a(−e0)a−1eae0a

−1. By Britton’s Lemma,
γ is not trivial in Γ. We show that γ has trivial image in any finite quotient of Γ, which proves that
Γ is not residually finite. Let F be a finite quotient of Γ with cardinal n. There is e′ ∈ E, such that
e = a−n+1e′an−1 in Γ. Since an = 1 in F , we have γ = [a−n+1e′an−1, ae0a

−1] = a[e′, e0]a
−1 = 1

in F . The proof is then complete. �

Classification of limits up to group isomorphism.

Theorem 5.10. The group Γ is isomorphic to Γ′ if and only if m = m′ and ri(ξ) = ri(ξ
′) for

every i ≥ 1.

Proof. Assume that Γ is isomorphic to Γ′. If m′ = 1, then Γ′ is isomorphic to Z ≀ Z and so is
Γ. This forces m = 1 for Γ would contain a non-abelian free subgroup otherwise. It follows that
ri(ξ) = ri(ξ

′) = 0 for every i ≥ 1. Therefore we can assume that m′ > 1. By Proposition 5.2,
m′ divides m and there is an isomorphism θ : Γ −→ Γ′ such that σ ◦ θ(a) = 1 and θ(e0) = e0.
Considering θ−1, we also deduce that m divides m′ and hence m = m′. By Lemma 5.6, we have
ri(ξ) = ri(ξ

′) for every i ≥ 1.
The converse follows immediatly from the group presentation (9). �

Automorphism group. Let e ∈ E and let φe be the map Γ defined by φe(a) = ae and φ(e0) = e0.
We deduce from the group presentation (10) that φe induces an automorphism of Γ with inverse
map φ−e. Moreover, we have J ◦ φe ◦ J = φ−e. The following lemma is then immediate.

Lemma 5.11. The automorphisms φe0 and J generate a group isomorphic to an infinite dihedral
group, namely the semi-direct product Ze0⋊Z/2Z where the action of Z/2Z on E is multiplication
by −1.

Hence we can consider the semi-direct product Γ⋊ (Ze0⋊Z/2Z) where the action of Ze0⋊Z/2Z
on Γ is the obvious one. We denote by Inn(Γ) the group of inner automorphisms of Γ and by
Out(Γ) = Aut(Γ)/Inn(Γ) the group of outer automorphisms.

Proposition 5.12. Assume that m > 1.

• Out(Γ) is isomorphic to Ze0 ⋊ Z/2Z.
• Aut(Γ) is isomorphic to Γ⋊ (Ze0 ⋊ Z/2Z).

We denote by C the subgroup of E generated by e1 −me0 and the elements ei − ei−1 + ri−1e0
with i ≥ 1. Proposition 5.12 will follow from:

Lemma 5.13. Assume that m > 1 and let e ∈ E.

• The image of φe ◦ J in Out(Γ) is non-trivial.
• The image of φe is trivial in Out(Γ) if and only if e ∈ C.
• For every automorphism φ of Γ, there is e ∈ E, ǫ ∈ {0, 1} such that φ = φe ◦ J

ǫ holds in
Out(Γ).
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Proof. As Γ is centerless (see e.g. Corollary 4.4) and torsion-free, Inn(Γ) is torsion-free. The first
assertion follows from the fact that φe ◦ J has order 2.

Let e ∈ E and assume that there is z ∈ Γ such that φe = τz. As z centralizes e0, we deduce
from Corollary 4.4 that z ∈ E. We deduce from the equality φe(a) = zaz−1 that a(e+ z)a−1 = z.
By Britton’s lemma, we have e + z ∈ Em,ξ and hence z ∈ E1. Identifying E with B, we deduce

from Proposition 2.9.v, that X(Pe(X) + Pz(X)) = Pz(X). Therefore Pe(X) = −X−1
X Pz(X) =

ι(−Pz(X)) ∈ C where ι and C are defined in Proposition 2.9.vii. Since C = q(C) and q in injective,
we have e ∈ C. Conversely, if e ∈ C, we can readily check that φe = τz where z ∈ E1 is given by
the formula Pz(X) = − X

X−1Pe(X).

Consider now an arbitrary automorphism φ and let us show that φ = φe ◦ Jǫ holds in Out(Γ)
for some e ∈ E and some ǫ ∈ {0, 1}. By Proposition 5.2, we can assume that φ(e0) = ±e0 and
φ(a) = zae′ with z ∈ Γ such that σ(z) = 0 and e′ ∈ E. Composing possibly by J , we can assume
that φ(e0) = e0 hence that φ and φ−1 both satisfy the conditions of Lemma 5.6. We deduce from
Lemma 5.6 that 1 = |a|a = |φ(a)|a|φ

−1(a)|a. Therefore |z|a = 0, i.e. z ∈ E and hence φ = φe′+z

holds in Out(Γ). �

Proof of Proposition 5.12. By Lemma 5.13, Out(Γ) is generated by the images of J, φe with e ∈ E.
By Proposition 2.9.vii, the quotient E/C is infinite cyclic and generated by the image of e0. Hence,
by Lemma 5.13, the natural map Aut(Γ) → Out(Γ) induces an isomorphism from the subgroup
generated by J and φe0 onto Out(Γ). It follows then from Lemma 5.11 that Out(Γ) is isomorphic to
Ze0 ⋊ Z/2Z. As a result, the exact sequence 1 → Inn(Γ) → Aut(Γ) → Out(Γ) → 1 splits. Since Γ
is centerless it naturally identifies with Inn(Γ). Thus Aut(Γ) is isomorphic to Γ⋊(Ze0⋊Z/2Z). �

An immediate consequence of Proposition 5.12 is that every automorphism of Γ is induced by
an automorphism of F(a, e0). Group presentations with such property are called almost quasi-free
presentations [LS77, Ch. II.2].

Recall that the map a 7→ (0, 1), e0 7→ (1, 0) induces a surjective homomorphism qm,ξ from Γ

onto Z ≀ Z = B̃S(1, 0). Another consequence of Proposition 5.12 is:

Corollary 5.14. If |m| > 1, then the kernel of qm,ξ is a characteristic free subgroup of Γ of infinite
rank.

Proof. The normal subgroup N = ker qm,ξ is a free group by [GS08, Th. 3.11]. As N * Em,ξ and
NEm,ξ has infinite index in Γ, N is not finitely generated by [KS71, Th. 9].

To conclude, thanks to Proposition 5.12, it suffices to show that N is invariant under the
automorphisms J and φe0 . It is invariant under J since the diagram

Γ

qm,ξ

��
��

J
// Γ

qm,ξ

��
��

B̃S(1, 0)
J

// B̃S(1, 0)

commutes. A similar argument works for the automorphism φe0 . �

Equationally noetherian groups. In this section, we determine which groups BS(m, ξ) are equa-
tionally noetherian. Equationally noetherian groups play an important role in algebraic geometry
over groups [BMR99], the state-of-the-art approach to equations over groups. An equationally
neotherian group enjoys the following strong form of the Hopf property: any sequence of surjec-
tive endomorphisms is stationnary (see [MR00, Th. D1.2] or [OH07, Cor. 2.8]). Let us recall
the definition. Given w = w(x1, . . . , xn) ∈ G ∗ F(x1, . . . , xn) and a n-tuple (g1, . . . gn) ∈ Gn,
we denote by w(g1, . . . , gn) the element of G obtained by replacing xi by gi. For any subset
W ⊆ G ∗ F(x1, . . . , xn), we consider the roots

Root(W ) = {(g1, . . . , gn) ∈ Gn : w(g1, . . . , gn) = 1 for all w ∈W} .
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Definition 5.15. A group G is equationally noetherian if, for all n > 1 and for all W ⊆ G ∗
F(x1, . . . , xn), there exists a finite subset W0 ⊆W such that Root(W ) = Root(W0).

Linear groups over a commutative, noetherian, unitary ring (e.g. a field), are equationally
noetherian [Bry77, Gub86] while any wreath product of a non-abelian group by an infinite one is
not equationally noetherian [BMR97].

Proposition 5.16. Let m ∈ Z \ {0} and ξ ∈ Zm. The group BS(m, ξ) is equationally noetherian
if and only if |m| = 1.

We need the following result on Baumslag-Solitar groups.

Proposition 5.17. [BMR99, Pr. 5] Let m,n ∈ Z \ {0}.

(1) If either |m| = 1 or |n| = 1 or |m| = |n|, then the group BS(m,n) is linear over Q and
hence equationally noetherian;

(2) else, the group BS(m,n) is not equationally noetherian.

As we need some excerpts of the proof of Proposition 5.17, we provide it in full. Let R be a
commutative ring with unity. We will use the following elementary fact without further mention.
If a group G has a finite index subgroup which is linear over R, then so is G [Weh73, Lem. 2.3].

Proof of Proposition 5.17(1). Suppose first that |m| = 1 or |n| = 1. It is well known, and easy to
show, that the map a 7→ (x 7→ m

n x), b 7→ (x 7→ x + 1) yields an injective group homomorphism
from BS(m,n) into the affine group over Q. The group BS(m,n) is then linear over Q. As
BS(m,n) is soluble in this case, we observe that it is linear over Z if and only if it is polycyclic5,
i.e. |n| = |m| = 1.

If m = n, it is easy to check that the normal subgroup 〈〈a, bm〉〉 is isomorphic to F|m| × Z and
hence linear over Z. Clearly, it has index |m| in BS(m,m). Thus BS(m,n) is linear over Z.

Suppose finally n = −m. Let BS2(m,n) = 〈〈a2, b〉〉 ⊂ BS(m,n). The subgroups B2(m,m) and
B2(m,−m) are clearly isomorphic and have index two in BS(m,m) and BS(m,−m) respectively.
We have shown that BS(m,m) is linear over Z. We deduce that B2(m,m) is linear over Z and
hence so is BS(m,−m). �

It follows from the above proof that BS(m,n) is linear over Z if and only if |m| = |n|.

Proof of Proposition 5.17(2). As the groups BS(m,n) and BS(n,m) are isomorphic, we may as-
sume that |m| < |n|. Then, there exists ν > 0 and a prime number p such that pν divides n but
not m. Let us consider the set

W =
{
wi := [x−iyxi, z] : i ∈ N \ {0}

}
⊆ F(x, y, z)

and the triples (xk = a, yk = bn
k

, zk = b).6 If n divides an integer β, then we have a−1bβa = bβ
′

and the factorization of β′ contains (strictly) less factors p than the one of β. Consequently, for
all k, there exists N(k) ∈ N and α(k) ∈ Z such that

a−N(k)bn
k

aN(k) = bα(k) and n does not divide α(k) .

Remark 5.18. (1) As a−kbn
k

ak = bm
k

, we have N(k) > k;
(2) Set µ = µ(m) to be the maximal exponent arising in the factorization of m. Then we

obtain N(k) 6 (µ + 2)k. Indeed, we have a−kbn
k

ak = bm
k

and the exponent of p in the
factorization of mk is at most (µ+ 1)k.

The triple (xk = a, yk = bn
k

, zk = b) is a root of wi if and only if i 6 N(k). Indeed:

• if i 6 N(k), then a−ibn
k

ai is a power of b, so that [a−ibn
k

ai, b] = 1;

5By theorems of Mal’cev and Auslander [Seg83, Ch. 2 and Ch. 3], a soluble group is linear over Z if and only if
it is polycyclic.

6It is possible to use only one variable: replace W by W ′ = {[a−iyai, b] : i ∈ N \ {0}
}

⊆ BS(m,n) ∗ F(y).
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• if i > N(k), then [a−ibn
k

ai, b] = a−(i−N(k))bα(k)ai−N(k) · b · a−(i−N(k))b−α(k)ai−N(k) · b−1.
This is reduced in BS(m,n), since |m| > 1 and n does not divide α(k).

If we now consider a finite subset Wf = {wi1 , . . . , wis} ⊂ W , then, choosing k large enough, we
have N(k) > i1, . . . , is. Consequently, the triple (xk, yk, zk) is in Root(Wf )\Root(W ). This proves
that BS(m,n) is not equationally noetherian. �

Proof of Proposition 5.16. If |m| = 1, one has BS(m, ξ) = Z ≀ Z which is equationnally noetherian
(e.g. it is linear over the field Q(X)).

Let us now assume that |m| > 1. Consider a sequence (ξn) of rational integers such that
|ξn| → ∞ and ξn → ξ in Zm for n → ∞. We may assume that |m| < |ξn| for all n. Set

W = {wi := [x−iyxi, z] : i ∈ N \ {0}} and (xk = a, yk = bξ
k
n , zk = b), as in the proof of Proposition

5.17(2). We have proved the existence of natural numbers Nn(k) such that (xk, yk, zk) is a root of
wi in BS(m, ξn) if and only if i 6 Nn(k). Moreover, Remark 5.18 gives the estimates

k 6 Nn(k) 6 (µ(m) + 2)k

for all n. Therefore, if we take a finite subset Wf = {wi1 , . . . , wis} ⊂ W , then, choosing k large
enough, we have Nn(k) > k > i1, . . . , is for all n. Therefore, for all j, we have wij (xk, yk, zk) = 1
in all groups BS(m, ξn), and, passing to the limit, we see that (xk, yk, zk) is a root of Wf , in the

group BS(m, ξ).
On the other hand, by considering wi with i > (µ(m) + 2)k, we see that w(xk, yk, zk) 6= 1 in

all BS(m, ξn). Hence, in BS(m, ξ), the triple (xk, yk, zk) is not a root of W . This proves that
BS(m, ξ) is not equationally noetherian. �

6. Dimensions

In this section we give the first non-trivial Hausdorff dimension estimates of a subspace of the
space of marked groups on two generators. Let us recall that the map BSm : Zm → G2 ; ξ 7→
BS(m, ξ) is injective on Z×

m [GS08, Th. 1]. In order to estimate Hausdorff dimensions of the
subspaces

Z×
m = BSm(Z×

m) = {BS(m, ξ) : ξ is invertible in Zm} ,

we will prove that the maps between Z×
m and Z×

m satisfy Hölder conditions and then apply classical
results about Hausdorff dimension. In this section, we always assume that m is a rational integer
satisfying |m| > 2.

6.1. Distances between limits. The first step towards Hausdorff dimension estimates is to esti-
mate the distance between groups BS(m, ξ) and BS(m, ξ′) in terms in them-adic distance between
ξ and ξ′.

Theorem 6.1. Let h ∈ N \ {0} and ξ, ξ′ ∈ Zm satisfying d := gcd(m, ξ) = gcd(m, ξ′). Setting
m̂ = m/d, we have:

(1) If BS(m, ξ) and BS(m, ξ′) have the same relations up to length 2(|m| + 1)h + 2|m| + 6,
then ξ ≡ ξ′ (mod m̂hdZm);

(2) If ξ ≡ ξ′ (mod m̂hdZm), then BS(m, ξ) and BS(m, ξ′) have the same relations up to length
2h.

Proof of Theorem 6.1. Thanks to Corollary 2.10, we may work in B̃S(m, ξ) and B̃S(m, ξ′) instead
of BS(m, ξ) and BS(m, ξ′). Recall that, given the free abelian groups of countable rank

E = Ze0 ⊕ Ze1 ⊕ Ze2 ⊕ · · ·

M = Zme0 ⊕ Z(e1 − r1(ξ)e0)⊕ Z(e2 − r2(ξ)e0)⊕ · · · 6 E

M ′ = Zme0 ⊕ Z(e1 − r1(ξ
′)e0)⊕ Z(e2 − r2(ξ

′)e0)⊕ · · · 6 E

E1 = Ze1 ⊕ Ze2 ⊕ · · · 6 E ,
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We have

B̃S(m, ξ) =
〈
a,E

∣∣ aψ(x)a−1 = x ∀x ∈ E1

〉

B̃S(m, ξ′) =
〈
a,E

∣∣ aψ′(x)a−1 = x ∀x ∈ E1

〉
,

where the isomorphism ψ : E1 →M is defined by ψ(e1) = me0 and ψ(ei+1) = ei−ri(ξ)e0 for i > 0,
and the isomorphism ψ′ : E1 →M ′ is defined similarly. Recall also that the element b ∈ BS(m, ξ)

corresponds to e0 ∈ B̃S(m, ξ). By Proposition 2.6, the condition ξ ≡ ξ′ (mod m̂hdZm) is equivalent
to ri(ξ) = ri(ξ

′) for i = 1, . . . , h. We will consider the latter condition.
(1) Let w = w(m, r1(ξ), . . . , rh(ξ))e0w(−m,−r1(ξ), . . . ,−rh(ξ))(−e0) be defined as in Lemma

5.5. As |w| ≤ 2(|m| + 1)h + 2|m| + 6 and w = 1 in B̃S(m, ξ), we also have w = 1 in B̃S(m, ξ′).
We deduce from Lemma 5.5 that ri(ξ) = ri(ξ

′) for i = 1, . . . , h.
(2) Let w be a (freely reduced) word on the alphabet {a±1, b±1} satisfying |w| 6 2h. By

substituting occurences of bα by αe0, we obtain a sequence s = (x0, a
ε1 , x1, . . . , a

εk , xk), with
k ≥ 0, of length at most 2h, where εi = ±1 and xi is an element of the subgroup Ze0 6 E for all

i. What we have to show is that the product of the sequence s vanishes in B̃S(m, ξ) if and only if

it vanishes in B̃S(m, ξ′).

We reduce the sequence s in the HNN-extension B̃S(m, ξ), that is we perform, as long as possible,
substitutions of:

• a subsequence (a, x, a−1), with x ∈M , by the element ψ−1(x) ∈ E1;
• a subsequence (a−1, x, a), with x ∈ E1, by the element ψ(x) ∈M .

We then obtain a sequence t = (y0, a
δ1 , y1, . . . , a

δl , yl), with l > 0, which is reduced in B̃S(m, ξ),
and whose product in the latter group is equal to the product of s. The number of substitutions
from s to t is trivially at most h. Therefore, it is easy to see that t and the intermadiate sequences
contain only a±1 letters and elements of the subgroup Ze0 ⊕ · · · ⊕ Zeh.

Now, we use the hypothesis ri(ξ) = ri(ξ
′) for i = 1, . . . , h. Therefore, the relation

M ∩ (Ze0 ⊕ · · · ⊕ Zeh) =M ′ ∩ (Ze0 ⊕ · · · ⊕ Zeh)

holds and ψ and ψ′ are equal in restriction to Ze1 ⊕ · · · ⊕ Zeh+1. It is thus possible to reduce

the sequence s in B̃S(m, ξ′) by performing the same substitutions as in B̃S(m, ξ). Hence, the

sequences s and t have the same product in B̃S(m, ξ′). Moreover, the sequence t is also reduced

in B̃S(m, ξ′) — if not, an argument similar to the above one would show that t is not reduced in

B̃S(m, ξ).

Finally, by structure theorems on HNN-extensions, the product of t vanishes in B̃S(m, ξ) (resp.

B̃S(m, ξ′)) if and only if l = 0 and y0 = 0 in E. This concludes the proof of part (2).
�

We now turn to the case d = 1, that is, to the case of invertible m-adic integers. Recall that
the metric on G2 is given by d(N1, N2) = e−ν(N1,N2) if N1 6= N2, where ν(N1, N2) = inf{|w| : w ∈
N1△N2}.

Corollary 6.2. Let h ∈ N \ {0} and ξ, ξ′ ∈ Z×
m such that |ξ− ξ′|m = |m|−h. Setting x = BS(m, ξ)

and x′ = BS(m, ξ′), we have

e−2(|m|+1)(h+1)−2|m|−6 6 d(x, x′) 6 e−2h−1 .

Proof. If d(x, x′) < e−2(|m|+1)(h+1)−2|m|−6, then BS(m, ξ) and BS(m, ξ′) have the same relations
up to length 2(|m|+ 1)(h+ 1) + 2|m|+ 6. Theorem 6.1(1) gives then |ξ − ξ′|m 6 |m|−(h+1).

On the other hand, the relation |ξ − ξ′|m = |m|−h implies ξ ≡ ξ′ (modmhZm). Theorem 6.1(2)
gives then d(x, x′) 6 e−2h−1. �
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6.2. Hausdorff dimension estimates. We set f to be the inverse of the (bijective) map BSm :
Z×
m → Z×

m. We now show that f and f−1 = BSm both satisfy a Hölder condition.

Proposition 6.3. For all x, x′ ∈ Z×
m, we have

|f(x)− f(x′)|m 6 Cd(x, x′)α

where α = (2(|m|+ 1))−1 log |m| and C is some positive constant.

Proof. Set ξ = f(x) and ξ′ = f(x′), so that x = BS(m, ξ) and x′ = BS(m, ξ′), and write
|ξ − ξ′|m = |m|h with h ∈ N. Let us treat the case h ∈ N \ {0} first. Using Corollary 6.2 (at the
second line), we get:

|f(x)− f(x′)|m = |ξ − ξ′|m = e−h log |m|

d(x, x′) > e−2(|m|+1)h−4|m|−8 = C1e
−2(|m|+1)h = C1

(
e−h log |m|

) 2(|m|+1)
log |m|

with C1 > 0. Consequently, we have d(x, x′) > C1|f(x) − f(x′)|α
−1

m , whence |f(x) − f(x′)|m 6

C2d(x, x
′)α for some C2 > 0.

Finally, in case h = 0, that is ξ 6≡ ξ′ (modm), there is a word

a2bma−1b−ta−1b · a2b−ma−1bta−1b−1 , with 0 6 t 6 |m| − 1 ,

which is trivial in one of the marked groups x = BS(m, ξ), x′ = BS(m, ξ′) but not in the other
one. This gives a constant D > 0 such that d(x, x′) > D, hence a constant C3 > 0 such that
|f(x)− f(x′)|m = 1 6 C3d(x, x

′)α. �

Proposition 6.4. For all ξ, ξ′ ∈ Z×
m, we have

d(f−1(ξ), f−1(ξ′)) 6 |ξ − ξ′|βm

where β = 2(log |m|)−1.

Proof. Let us write |ξ − ξ′|m = |m|−h with h ∈ N. By corollary 6.2, we have d(f−1(ξ), f−1(ξ′)) 6
e−2h−1 (note that for h = 0 this is trivially true, since diam(G2) = e−1). Hence, we get

d(f−1(ξ), f−1(ξ′)) 6 e−2h = (e−h log |m|)2(log |m|)−1

= |ξ − ξ′|βm ,

which concludes the proof. �

Theorem 6.5. The Hausdorff dimension of Z×
m satisfies:

log |m|

2(|m|+ 1)
6 dimH(Z×

m) 6
log |m|

2

(for all m such that |m| > 2).

Proof. It is well-known, and easy to show, that dimH(Z×
m) = 1 with respect to the metric chosen

in Section 1.2. Set α = (2(|m|+1))−1 log |m| and β = 2(log |m|)−1, as in Propositions 6.3 and 6.4.
Classical theory of Haussdorf dimension (see e.g. [Fal03, Pr. 2.3] or [Rog70, Th. 29]) and these
propositions give 1 6 α−1 dimH(Z×

m) and dimH(Z×
m) 6 β−1, hence the result. �

Corollary 6.6. The Hausdorff dimension of G2 satisfies dimH(G2) > log(2)/6. In particular, this
dimension does not vanish.

We have estimated the Hausdorff dimension of the subspaces Z×
m, which are homeomorphic to

the Cantor set (provided that |m| ≥ 2). But many interesting subspaces of G2, or Gn, appeared in
the litterature, e.g:

• the Cantor set of Grigorchuk groups [Gri84]; many such groups have intermediate growth;
• the closure Hn ⊆ Gn of non-elementary hyperbolic groups considered by Champetier
[Cha00];

• the minimal Cantor subset of G3 constructed by Nekrashevych [Nek07].
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The first-named author has proved that the box-counting dimension (and hence the Hausdorff
dimension) of the set of Grigorchuk groups vanishes [Guy07]. It also holds for the set of Nekra-
shevych groups as these groups share similar contracting properties with the latter. In the case of
hyperbolic groups, we do not know whether the Hausdorff dimension vanishes or not.

7. Complexity of the word and conjugacy problems

In this section, we study isomorphism invariants of groups originating from language theory,
namely the space complexity and the Turing degree of the word and conjugacy problems. Our
results are inspired by the works for Grigorchuk [Gri84] and Garzon and Zalcstein [GZ91] on the
word problem of Grigorchuk groups. First, we show that the space complexity of the word problem
for BS(m, ξ) is tightly related to the space complexity of the rational integer sequence (ri(ξ))
(Proposition 7.3). Second, we show that the conjugacy problem for BS(m, ξ) is Turing reducible
to the word problem for BS(m, ξ) (Corollary 7.7). For the sake of simplicity, our emphasis is on
the space complexity of the word problem. Analogs of Proposition 7.3 for time complexity and the
conjugacy problem could be proved if one is prepared to more technicalities.
Space complexity. Let A be a set. We denote by A∗ the set all strings (or words) on A. Let s ∈ A∗.
We denote by |s|A the string length of s, that is the number of symbols of A in s. We may simply
write |s| when the underlying set is clearly given by the context. A set L is a language if it is a
subset of A∗ for some finite set A called alphabet.

Let G be a group and let X be a finite generating set of G. We denote by WP (G,X) the
set of strings s ∈ (X ∪X−1)

∗
such that s = 1 in G, i.e. s reduces to the trivial element of G.

The decision problem of membership in WP (G,X) is called the word problem with respect to X .
The Turing time and space complexity of the language WP (G,X) are group-theoretic properties
independant of X [MO85]; so X will be omitted.

Nota Bene 7.1. A Turing machine M is an off-line Turing machine if it has a read-only input tape
with endmarkers and finitely many semi-infinite storage tapes. All Turing machines considered in
this section are off-line Turing machines that halts on every input. We adress the reader to [HU79]
for the complete definitions of terms used in this section.

Let M be an off-line Turing machine and let f : R+ −→ N be a function. If for every input word
of length n, the machine M scans at most f(n) cells on any storage tape, then M is said to be
an f(n) space-bounded Turing machine. We denote by DSPACE(f) (resp. NSPACE(f)) the class
of languages which are accepted by a deterministic (resp. non-deterministic) f(n) space-bounded
Turing machine. A language L is recursive if it is accepted by a Turing machine. A function
g : Nk −→ Nl is a recursive function if it can be computed by a Turing machine (the k arguments
i1, . . . , ik of g are initially placed on the input tape separated by 1’s, as 0i110i21 · · · 10ik , the l
arguments are placed similarly in some output tape). A function g : N −→ Nl is said to belong to
DSPACE(f) (resp. NSPACE(f)) if there exists a deterministic (resp. non-deterministic) Turing
machine taking as input the binary expansion of j and computing g(j) in space bounded above
by f(n) where n is the number of binary digits of j. A language L (resp. a function g) is said to
separate the inclusion of two space complexity classes

DSPACE(f) ⊂ NSPACE(f)

if L (resp. g) belongs to NSPACE(f) but not to DSPACE(f). Proofs below use of the Tape
Compression Theorem [HU79, Th. 12.1] without mentioning it: the equality of language classes

DSPACE(f) = DSPACE(cf)

holds for any c > 0, with an analogue statement in the non-deterministic case.
Time complexity is analogously defined by counting the number of state transitions of a Turing

machine with a read-and-write input tape. Every input word of length n requires at least n state
transitions to be entirely read, hence DTIME(n) is the smallest time complexity class. For every
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function f , we have DTIME(f) ⊂ DSPACE(f). We collect few facts on the word problem of
finitely generated groups.

• The language WP (G) is regular if and only if G is a finite group [An̄ı71]. If G is infinite
then WP (G) does not belong to DSPACE(log log) [HS65].

• The language WP (G) is context-free if and only if G is virtually free [MS83, Dun85].
• The language WP (G) belongs to DSPACE(log) if G is a linear group over a field of char-
acteristic zero [LZ77]. There exists a finitely presented non-linear group G such that
WP (G) ∈ DSPACE(log) [Waa81].

• There is no known example of a “simple” group presentation for which the word problem
does not belong to DSPACE(log).

• If G contains a copy of Z then WP (G) does not belong to DSPACE(g) for any g such that
g(n)/ log(n) tends to 0 [AGM92, Th. 2]. In particular, log is a sharp bound for the space
complexity of the word problem of any infinite finitely generated linear group.

• The word problem of a word hyperbolic group G is solvable in real time [Hol00]. In
particular WP (G) ∈ DTIME(n).

Let p, q ∈ Z \ {0} and let WP (p, q) (resp. in WP (m, ξ)) be the set of strings s ∈ {a±1, b±1}∗

such that s = 1 in BS(p, q) (resp. BS(m, ξ)). Given BS(m, ξ), we define the function r on N by
r(0) = |m| and r(n) := rn(ǫmξ) where ǫm is the sign of m. This definition is motivated by the
fact that WP (m, ξ) = WP (|m|, ǫmξ) since BS(m, ξ) and BS(−m,−ξ) are isomorphic as marked
groups. The following proposition can be proved by using arguments similar to those of Lemma
7.4.

Proposition 7.2. WP (p, q) ∈ DSPACE(n) ∩DTIME(n2).

As BS(p, q) is not virtually free, we observe that the language WP (p, q) is not a context-free
language. The complement of WP (p, q) is not a context-free language either, except if |p| = |q|
[HRR+05]7. Solvable Baumslag-Solitar groups (i.e., groups BS(p, q) with |p| = 1 or |q| = 1)
have a tidy real-time word problem [HR03, Th. 2.1]. We still ignore wether WP (p, q) belongs to
DSPACE(log) in the case BS(p, q) is not linear. (Recall that BS(p, q) is linear if and only if either
|p| = |q| or |p| = 1 or |q| = 1 by Proposition 5.17.) The reader interested in goedesic languages of
Baumslag-Solitar groups should consult [Eld05, DL].

Provided r belongs to DSPACE(n), Proposition 7.2 holds for WP (m, ξ) and it corresponds to
the lowest complexity bound we obtain. Our next result relate the space complexity of WP (m, ξ)
to the space complexity of r. Let us stress on the fact that functions r are “numerous” because of
Proposition 2.5.iii: for any m ∈ Z \ {0}, d ∈ N \ {0} and for any g : N −→ {0, . . . , |m| − 1} there is
some ξ ∈ Z×

m such that g(n) = rn(ǫmξ) for all n ≥ 2. Hence the following proposition can be seen
as a result of density in the space hierarchy.

Proposition 7.3. Let f be a non-decreasing function such that f(n) ≥ n and DSPACE(f) 6=
NSPACE(f). Let BS(m, ξ) be such that r separates the inclusion DSPACE(f) ⊂ NSPACE(f).
Then WP (m, ξ) separates the inclusion

DSPACE(f(n/6|m|)) ⊂ NSPACE(f(n)).

This result is an immediate consequence of the following two lemmas.

Lemma 7.4. Assume r ∈ DSPACE(f(n)) for some non-decreasing function f . Then WP (m, ξ) ∈
DSPACE(n+ f(n)). Likewise for NSPACE.

Lemma 7.5. Assume WP (m, ξ) ∈ DSPACE(f(n/6|m|)) for some non-decreasing function f such
that f(n) ≥ n. Then r ∈ DSPACE(f(n)). Likewise for NSPACE.

7It is uncorrectly claimed in the proof of [HRR+05, Th. 13] that |p| = |q| if and only if BS(p, q) is virtually
abelian. The condition |p| = |q| is less restrictive for it means that BS(p, q) contains a copy of the direct product
F|p| × Z as a finite index subgroup, or equally that BS(p, q) is linear over Z.
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Let us summarize the idea of the proof of Lemma 7.4. Applying to a given word w ∈ {a±1, b±1}∗

the natural algorithm originating from Britton’s lemma, we obtain a reduced sequence for w. This
reduction is carried out within at most |w|a steps and at each step we consider a word whose
length is at most |m| times the length of the previous one. As we encode the exponents of a and
b by means of their binary expansions, this streching factor becomes an additive constant which
explains the linear part of the space complexity bound. The other part of the bound comes from
the fact that we need to compute r(n) to reduce words w such that |w|a = n.

As for the proof of Lemma 7.5, we notice that a Turing machine which can solve the word
problem for BS(m, ξ), can decide which of the words defined in Lemma 5.5 are trivial. Hence it
can be used to compute ri(ξ) for every i.

We will work with our favoured HNN extension B̃S(m, ξ) instead of BS(m, ξ). In order to make
a careful enough counting of the numbers of scanned cells, we will use following notations. We
fix A := {a±1,±e0,±e1, . . . }. Let m ∈ Z \ {0} and ξ ∈ Zm. Given w ∈ A∗, we can rewrite w in
〈a〉 ∗ E under the form

(11) w(0) = aα1c1a
α2c2 · · ·a

αhch

with cj = (β0je0)(β1je1) · · · (βkjjekj
), αj , βlj ∈ Z for all l, j. We denote by εj the sign of αj . We

suppose that the following holds: there is some j such that

(*) εj = −εj+1 = −1 and cj ∈ Em,ξ or εj = −εj+1 = 1 and cj ∈ E1.

We denote by ℓ = ℓ(w) the smallest j such that (*) holds. Let w′ be the word we get from w(0) by
replacing aαℓcℓa

αℓ+1 by aαℓ−εℓφεℓ(cℓ)a
αℓ+1+εℓ in w and reducing this new word as in 11. We write

w′ = aα
′
1c′1a

α′
2 · · ·aα

′
h′ c′h′ . Notice that a given exponent α of a in w either remains unchanged in

w′, vanishes or is replaced by some α′ such that |α′| = |α|− 1. The subwords cj remain unchanged
in w′ or vanish, except one which is replaced by some subword c′ with |c′| ≤ (2 + |m|)n where

n = |w|. As long as (*) holds for w(i) = aα
(i)
1 c

(i)
1 aα

(i)
2 · · · a

α
(i)

h(i) c
(i)

h(i) with i ≥ 0, we can define

w(i+1) = (w(i))′.
By Britton’s Lemma, for any w ∈ A∗, there is some i = i(w) ≥ 0 such that w(i) = 1 is a reduced

form for w. We call the previous algorithm the Britton’s algorithm.

Lemma 7.4. By hypothesis, there is an f(n) space-bounded Turing machine Mr computing r(n).
We denote by R1 its input tape and by Rk (2 ≤ k ≤ p) its storage tapes. We design an off-line
Turing machine M that halts on every input w ∈ {a±1,±e0}∗: if a non-trivial reduced form for
w has been found, it halts without accepting, else w is reduced to 1 and M halts in an accepting
state. Tape I is the read-only input tape where w is displayed without accounting for any space.
At the beginning, M writes the string s(0) on Tape 0 that encodes w(0):

s(0) := ¢ε1α1c1ε2α2c2 . . . εhαhch$.

The strings αj ∈ {0, 1}∗ are the binary expansions of |αj |; each string cj ∈ {0, 1,±}∗ is the
concatenation of the binary expansions of the numbers |βlj | separated by sign symbols. If α1 = 0
(respectively ch = 0) then ε1α1 (respectively ch) is replaced by the empty string.

We now describe how M works on its storage tapes Rk, (1 ≤ k ≤ p), T0, T1 and D. First, the
machine read the input: while the head of tape I scans the first j symbols of w, M stores the
number j using a counter situated in tape R1 and then M computes and stores rj(ǫmξ) in some of

the tapes Rk by simulating Mr. Meanwhile, the head of tape T0 writes s(0), following an obvious
linearly space-bounded algorithm. Once the input is read, M goes ahead by running Britton’s
algorithm. During the i-th step of this algorithm, with i even, the head of T0 writes the string
s(i) encoding w(i) over s(i−2) if condition (*) holds for w(i−1). The latter word is encoded by a
string s(i−1) stored in Tape T1. In the next step, the head of Tape T1 writes the string s(i+1)

encoding w(i+1) over s(i−1) if condition (*) holds for w(i−1). Tape D is a draft tape used to carry
out two kind of arithmetical computations on binary expansions: the tests for condition (*) and
the computations of c(i). The content of Tape D is erased after each step. The machine M halts
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in a state of acceptation if s(i) is the trivial string. It halts without accepting in case condition (*)
does not hold for w(i).

Space bound. The machine M scans at most f(n) cells on the storage tapes Rk while computing
r1(ǫmξ), . . . , rn(ǫmξ). It also scans at most C0n cells while storing each number j and all numbers
rj(ǫmξ) for j ≤ n, where C0 > 0 is independent of n.

Since |s(i+1)| ≤ |s(i)|+ log2(|m|) and |s(0)| ≤ 2n+ 2, we deduce that M scans at most C1n cells

on the storage tapes T0 and T1, where C1 > 0 is independent of n. In order to decide if c
(i)
j belongs

to Em,ξ or E1, M uses the formula of Proposition 2.9.iii: according to the signs of α
(i)
j and α

(i)
j+1,

M carries out the division of γm := β
(i)
0j + β

(i)
1j r1(ǫmξ)+ β

(i)
2j r2(ǫmξ)+ · · ·+ β

(i)
kjj
rkj

(ǫmξ)) by |m| or

divides γξ := β
(i)
1j + β

(i)
2j r1(ǫmξ) + β

(i)
2j r2(ǫmξ) + · · ·+ β

(i)
kjj
rkj

(ǫmξ) by |m| if moreover β
(i)
0j = 0. As

log2(1 + |γ|) ≤ |s(i+1)|, for γ = γm, γξ, this requires to scan at most C2n cells on Tape D, where

C2 > 0 is independent of n. In order to compute c(i), no more than |s(i+1)| cells need to be scanned
on Tape D. Hence the number of cells scanned by M on Tape D is linearly bounded. All in all, we
get WP (m, ξ) ∈ DSPACE(n+ f(n)). �

The first part of the proof of Lemma 7.5 is based on the following facts.

Lemma 7.6. Let m,n ∈ Z \ {0} with |m| > 1 and let ξ ∈ Zm. Let vk = [abka−1, b] for k ∈ Z.
Then we have: vk = 1 in BS(m, ξ) if and only if k ≡ 0 (modmZ).

Proof. Let |n| > 1. We deduce from Britton’s lemma the following claim: for every k ∈ Z, we have
vk = 1 in BS(m,n) if and only if k ≡ 0 (modmZ). As BS(m, ξn) tends to BS(m, ξ) as n goes
to infinity, vk is trivial in BS(m, ξ) if and only if it is trivial in BS(m, ξn) for all n large enough,
which completes the proof.

�

For h ≥ 1, t1, . . . , th ∈ {0, . . . , |m| − 1}, we set

v(|m|, t1, . . . , th) := w(|m|, t1, . . . , th)bw(−|m|,−t1, . . . ,−th)b
−1

where w(|m|, t1, . . . , th) is defined as in Lemma 5.5.

Lemma 7.5. By hypothesis, there is a deterministic f(n/6|m|) space-bounded Turing machine M
that solves the word problem for BS(m, ξ). We design a Turing machine M′ computing r(n) as
follows. The storage tapes of M′ consists of the tapes of M and two other tapes W, and O (output
tape). The tape W identifies with the input tape of M and M′ simulates M on every tape of M.

Computation of |m|. By Lemma 7.6, we have |m| = min{k ≥ 1 : vk = 1 in BS(m, ξ)} The
machine M′ first writes vk on tape W for k = 1 and runs M. While vk is not accepted by M, the
machine M′ writes vk+1 over vk, adds one to a counter storing k in tape O and clears the storage
tapes of M. If vk is accepted, which means k = |m|, then M′ clears tape W.

Computation of rn(ǫmξ). Using two counters that store i ≤ n and t ∈ {0, . . . , |m| − 1} in tape
O, the machine M′ lists recursively the words wi(t) = v(|m|, r1(ǫmξ), . . . , ri−1(ǫmξ), t) on tape W.
Once a word wi(t) is written on tape W, the machine M′ runs M. If wi(t) is not accepted by M,
then M′ writes wi(t + 1) over wi(t), clears the storage tapes of M and runs M again. If the word
written on W is accepted by M, which means ti = ri(ǫmξ) by Lemma 5.5, then M′ stores ri(ξ) in
tape O, increment i and restarts with wi+1(0) or halts if i = n.

Space bound. Obviously, the number of cells scanned by M′ to compute |m| is bounded by
some constant C(m) independent of n. The number of cells scanned by M′ while writing words
v(|m|, t1, . . . , tn) on tape W is bounded by |v(|m|, t1, . . . , tn)| ≤ 6n|m|, the number of cells used to
store r1(ξ), . . . , rn(ξ) is bounded by n log2(|m| + 1) and the number of cells scanned by M′ while
simulating M over its storage tapes is bounded by f(n). Hence WP (m, ξ) ∈ DSPACE(f). �
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Turing degree. Let E,F be languages. The language E is said to be Turing reducible to F if there
is Turing machine M with oracle F whose accepted language is E. The language E is said Turing
equivalent to F if E is Turing reducible to F and F is Turing reducible to E. The Turing degree of
E (also called the degree of unsolvability of E) is the class all languages that are Turing equivalent
to E. Let f : E −→ F be a function. We define the Turing degree of f as the Turing degree of the
graph of f . We denote by CP (m, ξ) the set of pairs (w,w′) ∈ {a±1, b±1}∗ × {a±1, b±1}∗ such that
w is conjugated to w′ in BS(m, ξ). We call the Turing degrees of WP (m, ξ), CP (m, ξ) the Turing
degrees of the word problem and the conjugacy problem for BS(m, ξ). These Turing degrees does
not depend on the choice of a generating set for BS(m, ξ).

Corollary 7.7. The following Turing degrees coincide:

• the Turing degree of the word problem for BS(m, ξ);
• the Turing degree of the conjugacy problem for BS(m, ξ);
• the Turing degree of r.

In particular, the word problem is solvable for BS(m, ξ), i.e WP (m, ξ) is a recursive language, if
and only if r is a recursive function.

In contrast, Britton has proved that the conjugacy problem for any HNN extension with base
a finitely generated abelian group is solvable, i.e. both Turing degrees are 0 [Bri79]. It is also
worth noting this optimal result of Miller: for every pair of recursively enumerable Turing degrees
a, b where a is Turing reducible to b, there is a finitely presented group whose word problem has
Turing degree a and whose conjugacy problem has Turing degree b [Mil71].

Observe that one can define recursivem-adic numbers in the very same way one defines recursive
(equivalently computable) real numbers (see [Wei00] for a definition of computable real numbers).
The Turing degree of an m-adic number is then defined by means of its Hensel expansion. If
ξ ∈ Z×

m, Corollary 7.7 then says that the word problem is solvable in BS(m, ξ) if and only if ξ
is a recursive number and that the Turing degree of the word problem coincides with the Turing
degree of ξ.

Proof. The last claim directly follows from Lemmas 7.4 and 7.5. From the proofs of these lemmas,
we can easily deduce that the Turing degree of WP (m, ξ) coincides with the Turing degree of r.

To complete the proof we design quite informally a Turing machine with oracle r that solves
the conjugacy problem in BS(m, ξ). We fix the set of reprensatives Tm,ξ = {0, e0, . . . , (m − 1)e0}
of the cosets of E1 in E and the set of representatives T1 = {0, e0, 2e0, . . . } of the cosets of Em,ξ

in E. If r can be computed by means of a Turing machine, Britton’s algorithm (see the proof of

Lemma 7.4) yields a reduced form in B̃S(m, ξ) of any w ∈ {a±1,±e0}∗. The process of working
from the right with the relations a(me0)a

−1 = e1 and a(ei − ri(ξ)e0)a
−1 = ei+1 yields a normal

form for w with respect to the sets of representatives Tm,ξ and T1. Thus we can design a Turing
machine with oracle r that computes normal forms ṽ, w̃ of cyclically reduced conjugates of v and
w for any v, w ∈ {a±1,±e0}∗. If |ṽ|a 6= |w̃|a, we deduce from Collin’s lemma [LS77, Th. 2.5] that

v is not a conjugate of w in B̃S(m, ξ). The machine can be designed in such a way that it halts in
this case in a non-accepting state. Hence we can assume that |ṽ|a = |w̃|a. Comparing the normal
form ṽ to the normal form of each cyclic permutation of w̃, the machine can decide wether or not
there exist, e ∈ E and some cyclic permutation (w̃)∗ of w̃ such that ṽ = e(w̃)∗(−e). By Collin’s
lemma, it is enough to decide wether v is a conjugate of w, provided either |ṽ|a or |w̃|a is not zero.
Hence we can assume that v, w have their images in E. We deduce from Lemma 4.5 that v is a

conjugate of w in B̃S(m, ξ) if and only if there is some n ∈ Z such that v = anwa−n in B̃S(m, ξ).
Identifying E with B in Proposition 2.9.i, we can consider n(v, w) = degPv(X)− degPw(X). By
means of a Turing machine with oracle r, we can compare the Laurent polynomials Pv(X) and
Xn(v,w)Pw(X) and hence decide wether or not v is a conjugate of w.

�
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Remark 7.8. We can construct a family of public-key cryptosystems based on the word problems
of limits of Baumslag-Solitar groups by adaptating the construction in [GZ91] based on Grigorchuk
groups. The attack conceived in [GHM+04] does not threaten these new cryptosystems since such
an attack would require in our case at least |m|N numbers of computations when the length of the
public-key is N , if we follow the cryptanalysis of the authors. However, another attack conceived
in [GHM+04], namely the reaction attack against the Magyarik-Wagner protocol, can be proved
to be successful.
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