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We introduce and discuss a nonlinear kinetic equation of Boltzmann type which describes the evolution of
wealth in a pure gambling process, where the entire sum of wealths of two agents is up for gambling, and ran-
domly shared between the agents. For this equation the analytical form of the steady states is found for various
realizations of the random fraction of the sum which is shared to the agents. Among others, Gibbs distribution
appears as steady state in case of a uniformly distributed random fraction, while Gamma distribution appears
for a random fraction which is Beta distributed. The case in which the gambling game is onlyconservative-in-
the-meanis shown to lead to an explicit heavy tailed distribution.

I. INTRODUCTION

Various concepts and techniques of statistical mechanics
have been fruitfully applied for years to a wide variety of com-
plex extended systems, physical and otherwise, in an effortto
understand the emergent properties appearing in them. Eco-
nomics is, by far, one of the complex extended systems to
which methods borrowed from statistical mechanics for parti-
cle systems have been applied [7, 8, 11, 13, 14, 23, 24, 29]. In
most of the models introduced so far, the trading mechanism
leaves the total mean wealth unchanged. Then, a substantial
difference on the final behavior of the model (presence or not
of tailed steady states) can be observed depending on the fact
that binary trades are pointwise conservative, or conservative
in the mean [15, 26]. The asymptotic distribution of wealth,
however, depends completely on the microscopic structure of
binary trades. Other kinetic models have been recently pro-
posed, which, while maintaining the kinetic description, in-
troduce more sophisticated rules for trading. For example,a
description of the behavior of a stock price has been developed
by Cordier, Pareschi and Piatecki in [12]. Further, there have
been efforts to include non-microscopic effects, like global
taxation (and subsequent redistribution), in recent worksof
Guala [22], Pianegonda, Iglesias, Abramson and Vega [28],
Garibaldi, Scalas and Viarengo [19] and Bisi, Spiga and the
present author [2, 31].

Despite the high number of studies devoted to the sub-
ject, well documented by various recent review papers [9, 21,
27, 32, 33], analytical solutions or explicit steady statesfor
wealth distribution densities are rarely present in the litera-
ture. The few exceptions are the self-similar solution with
Pareto tails found by Slanina [29] for a kinetic model of a
non-conservative (decreasing in the mean) economy, and the
steady state solution (Gibbs distribution) of a linear kinetic
equation modelling taxation and uniform redistribution [31].

The goal of this paper is to show that in a pure gambling
trade market explicit equilibrium solutions can be obtained by
suitably choosing the random fraction of money which gov-
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erns the microscopic interaction.
Wealth exchange processes in a discrete market are char-

acterized by binary trades. A fixed number ofN agents in a
system are allowed to interact (trade) stochastically and thus
wealth is exchanged between them. The basic steps of such a
wealth exchange model can be described as follows

wi(t +1) = wi(t)+∆w, wj (t +1) = wj (t)−∆w, (1.1)

wherewi(t) andwj (t) are wealths ofi-th and j-th agents at
time t andwi(t + 1) andwj(t + 1) are that at the next time
stept + 1. The amount∆w (to be won or to be lost by an
agent) is determined by the nature of interaction. If the agents
are allowed to interact for a long enough time, a steady state
equilibrium distribution for individual wealth is achieved. The
equilibrium distribution does not depend on the initial config-
uration (initial distribution of wealth among the agents).

In a pure gambling process [14], the entire sum of wealths
of two agents is up for gambling. Some random fraction of
this sum is shared by one agent and the rest goes to the other.
The randomness is introduced into the model through a pa-
rameterε which is a random number drawn from a probability
distribution in[0,1]. In general it is assumed thatε is indepen-
dent of a pair of agents, so that a pair of agents is not likely
to share the same fraction of aggregate wealth the same way
when they interact repeatedly. The interaction rule can be seen
through

wi(t +1) = ε[wi(t)+wj(t)],

wj(t +1) = (1− ε)[wi(t)+wj(t)],
(1.2)

where the pair of agents (indicated by i and j) are chosen
randomly. The amount of wealth that is exchanged is now
∆w = ε[wi(t) +wj (t)]−wi(t). Numerical experiments [21]
show that, ifε is a random number drawn from a uniform dis-
tribution in [0,1], the individual wealth distribution at equi-
librium emerges out to be Gibbs distribution like exponential.
It is strongly believed, and somewhat argued from numerical
experiments, that a slight variant of the previous model pro-
duces at equilibrium Gamma-like distributions [10], but, as
remarked by the authors, the form of the exact solution is still
an open question. The main feature of trade (1.2) is such the
amount of money which is restituted in a single trade coin-
cides with the amount of money the two agents use for gam-
bling (pointwise conservative trade). In this gambling market
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there is no rule of the (conserved) total amount of money ini-
tially in the hands of the agents. In other words, agents do
not take advantage from the amount of money available in the
market.

The idea of using this money as areservoir for trades can
be easily implemented allowing agents to trade with random
profit

wi(t +1) = ε1[wi(t)+wj(t)],

wj(t +1) = ε2[wi(t)+wj(t)],
(1.3)

where the parameters(ε1,ε2) are now random numbers drawn
from a joint probability distribution such that

〈ε1+ ε2〉= 1, (1.4)

where 〈·〉 denotes as usual the mathematical expectation.
Within this picture,wi(t + 1)+wj(t + 1) can be strictly less
thanwi(t)+wj (t), and in this case the lost money is achieved
by the market, or the reverse situation is verified, and the addi-
tional money is taken from the market. Condition (1.4), how-
ever, guarantees that in the mean the wealth present in the mar-
ket is left unchanged. Note that if one assumes thatεi ≥ γ > 0,
i = 1,2 then agents are prevented from loosing all their money
in a single trade. Note also that, choosing(ε1,ε2) = (ε,1− ε)
the collision rule (1.3) becomes (1.2).

In order to produce a fair game, it will be assumed that
the random numbersε1 andε2 are identically distributed. For
trades of type (1.2), this assumption simply forces the random
fractionε to be symmetric with respect to the value 1/2.

At a continuous level, the evolution of the wealth distribu-
tion can be described by means of a nonlinear kinetic model of
Boltzmann type, in which the wealth distribution of the mar-
ket is driven bycollisionsof type (1.2) [6]. Since the total
mean wealth is maintained constant in time, the wealth distri-
bution is known to converge exponentially towards a steady
profile [15, 26], which depends on the details of the trade
mechanism throughεi . It is well-known that the continuous
description takes advantage from the the possibility to make
use of the Laplace transform version of the kinetic equation
[3].

Owing to this representation, we will prove that various
cases are explicitly solvable, and lead to an analytic expres-
sion of the steady profile. In particular, choosingεi to be sym-
metric Beta distributions one obtains as equilibrium a Gamma
distribution with a parameter which depends on the parameter
of the Beta distribution. A special case emerges here, since
Gibbs distribution emerges forεi uniformly distributed. Also,
the case of thewinner takes allgame can be studied in details
as limit of Betaε, with parameter tending to zero. In all these
cases, however, the equilibria possess moments of any order.

Interestingly enough, the case of theconservative in the
meangambling trade (1.3) can be treated likewise, by choos-
ing the random variablesεi , i = 1,2 to be inverse Beta. In this
case, however, the steady state distribution is shown to be a
generalized Gamma distribution with fat tails, which contains
as a particular case the distribution found by Slanina [29] in
a different context. This founding clarifies through a simple
example the role of thesocialuse of the money present in the

market. The possibility to access to the money available in the
commonreservoirallows the formation of the rich class.

The paper is organized as follows. In the next section we
introduce the continuous model which is described by a non-
linear kinetic equation of Boltzmann type, and its main fea-
tures are discussed in some detail. The analytical solutions
in the case of the pure gambling trade (1.2) are described in
Section 3. Section 4 deals with the gambling rule (1.3).

II. A CONTINUOUS KINETIC MODEL

Given a fixed number ofN agents in a system, which are
allowed to trade, the interaction rules (1.3) describe a stochas-
tic process of the vector variable(v1(t), . . . ,vN(t)) in discrete
time t. Processes of this type are thoroughly studied e. g.
in the context of kinetic theory of ideal gases. Indeed, if the
variablesvi are interpreted as energies corresponding toi-th
particle, one can map the process to the mean-field limit of the
Maxwell model of elastic particles [5, 6]. The full information
about the process in timet is contained in theN-particle joint
probability distributionPN(t,v1,v2, . . . ,vN). However, one can
write a kinetic equation for one-marginal distribution function

P1(t,v) =
∫

PN(t,v,v2, . . . ,vN)dv2 · · ·dvN,

involving only one- and two-particle distribution functions [5,
6].

P1(t +1,v)−P1(t,v) =
〈 1

N

[

∫

P2(t,vi ,v j)
(

δ (v− ε1(vi + v j))

+ δ (v− ε2)(vi + v j))
)

dvi dvj −2P1(t,v)
]〉

,

which may be continued to give eventually an infinite hierar-
chy of equations of BBGKY type [5]. The standard approxi-
mation, which neglects the correlations between the wealthof
the agents induced by the trade gives the factorization

P2(t,vi ,v j) = P1(t,vi)P1(t,v j),

which implies a closure of the hierarchy at the lowest level.In
fact, this approximation becomes exact forN→∞. Therefore,
in thermodynamic limit the one-particle distribution function
bears all information. Rescaling the time asτ = 2t/N in the
thermodynamic limitN → ∞, one obtains for the one-particle
distribution functionf (v, t) = P1(v, t) the Boltzmann-like ki-
netic equation

∂ f (t,v)
∂ t

=
1
2

〈

∫

f (t,vi) f (t,v j)
(

δ (v− ε1(vi + v j))

+ δ (v− ε2)(vi + v j))
)

dvi dvj

〉

− f (t,v),
(2.1)

which describes the process (1.3) in the limitN → ∞.
Owing to equations of type (2.1), the study of the time-

evolution of the wealth distribution among individuals in a
simple economy, together with a reasonable explanation of
the formation of tails in this distribution has been recently



3

achieved in [26] (see also [15, 16]). The Boltzmann-like equa-
tion (2.1) can be fruitfully written in weak form. It corre-
sponds to say that the solutionf (v, t) satisfies, for all smooth
functionsφ(v)

d
dt

∫

R+

f (t,v)φ(v)dv=
1
2

〈

∫

R2
+

(

φ(v∗)+φ(w∗)

−φ(v)−φ(w)
)

f (t,v) f (t,w)dvdw
〉

,

(2.2)

where the post-trade wealths(v∗,w∗) obey to the rule (1.3)

v∗ = ε1(v+w), w∗ = ε2(v+w). (2.3)

Note that (2.2) implies thatf (v, t) remains a probability den-
sity if it so initially

∫

R+

f (t,v)dv=
∫

R+

f0(v)dv= 1. (2.4)

Moreover, on the basis of (1.4), the choiceφ(v) = v shows
that also the total mean wealth is preserved in time

m(t) =
∫

R+

v f(t,v)dv=
∫

R+

v f0(v)dv= m(0). (2.5)

Consequently, without loss of generality, in what follows,we
assign to the initial density a unit mean

∫

R+

v f0(v)dv= 1. (2.6)

Settingφ(v) = exp{−ξ v} in (2.2), [3], one gets the Boltz-
mann equation for the Laplace transform̂f of f , where

f̂ (t,ξ ) =
∫

R+
e−ξv f (t,v)dv.

Direct computations [26] show that̂f (t,ξ ) satisfies the equa-
tion

∂ f̂ (t,ξ )
∂ t

+ f̂ (t,ξ ) =
1
2

〈

f̂ (t,ξ ε1)
2+ f̂ (t,ξ ε2)

2〉 . (2.7)

As extensively discussed in [15, 26], explicitly computable
conditions on the gambling variablesεi , i = 1,2, guarantee
that the distributionf (t,v)dv converges weakly to auniversal
probability distribution whose Laplace transform is the unique
solution of

f̂∞(ξ ) =
1
2

〈

f̂∞(ξ ε1)
2+ f̂∞(ξ ε2)

2〉 (2.8)

with

f̂
′

∞(ξ )|ξ=0 =−1.

This fact follows from Thm. 3.3 in [26] (see also Thm. 2 in
[1]), which links both the convergence and the boundedness
of moments of the equilibrium solution to the sign of the key
functionG(s), defined as

G(s) := 〈εs
1+ εs

2〉−1

In particular the convergence result is valid without additional
assumption onf0 provided thatG ′(1)< 0.

By further requiring that the random variablesε1 andε2 are
distributed with the same law, the equilibrium solutionf̂∞ is
found to be the unique solution to

f̂∞(ξ ) =
〈

f̂∞(ξ ε)2〉 , (2.9)

where the random variableε is distributed according to the
common law ofε1 andε2. Equation (2.9) can be better under-
stood by saying that, ifZ is a random variable with lawf∞,
the law ofZ, defined in (2.9), is a distributional fixed point of
the equation

Z =d ε(Z1+Z2), (2.10)

where=d means identity in distribution and one assumes that
the random variablesZ1,Z2 and Z have the same probabil-
ity law, while the variablesZ1,Z2 and ε are assumed to be
stochastically independent. Equations of type (2.10) are well-
known and extensively studied, see e.g. [17, 25].

III. THE PURE GAMBLING TRADE MODEL

Let us start from the pure gambling case in which(ε1,ε2) =
(ε,1−ε). Having in mind that numerical experiments are usu-
ally done with a random number drawn from a uniform dis-
tribution in [0,1], which leads the discrete market to a Gibbs
distribution at equilibrium [21], we fix the random numberε
to be a symmetric Beta random variable of parameters(a,a),
with (a > 0). We recall that a random variable is Beta dis-
tributed with parameters(a,b) if its density is

βa,b(x) =
Γ(a+b)
Γ(a)Γ(b)

xa−1(1− x)b−1 x∈ (0,1),

see, for instance, [18].
The casea = 1, whereε is a random number uniformly

distributed on(0,1), confirms the numerical outcome. In this
case, in fact, (2.9) becomes

f̂∞(ξ ) =
∫ 1

0
f̂ 2
∞(ξ x)dx.

It is easy to see that

f̂∞(ξ ) = (1+ ξ )−1

is a solution of (2.9), such that̂f
′

∞(ξ )|ξ=0 = −1. Since(1+
ξ )−1 is the Laplace transform of the Gibbs distribution of unit
mean

f∞(v) = e−v (v≥ 0),

Gibbs distribution results as analytical steady solution to the
pure gambling trade market, in caseε is a uniform random
number in(0,1).



4

To treat the more general case it suffices to recall that, if
α1,α2,ξ > 0, then formula 3.197.4 in [20] gives

Γ(α1+α2)

Γ(α1)Γ(α2)

∫ 1

0

xα1−1(1− x)α2−1

(1+ ξ x)α1+α2
dx

= (1+ ξ )−α1.

(3.11)

Using identity (3.11) withα1 = α2 = a, one obtains that for a
generala> 0 the function

f̂∞(ξ ) =
(

1+ ξ
1
a

)−a
(3.12)

solves equation (2.9). Hence, the equilibrium solution results
in a Gamma distribution of unit mean, with shape parameter
a and scale parameter 1/a

f∞(v) =
aava−1e−av

Γ(a)
(v> 0). (3.13)

To verify that the results of [26] and [1], which guarantee
the convergence to the steady state together with its mo-
ment boundedness properties hold, one needs to show that
G ′(1)< 0 holds true for

G(s) := 2〈εs〉−1,

whereε is a symmetric Beta random variable of parameters
(a,a), with (a> 0). In this case, however,

G ′(1) = 〈ε logε〉< 0

is a simple consequence of the fact that 0< ε < 1 with prob-
ability one.

The uniform distribution (a= 1) appears like a natural sep-
aration between two different behaviors of the equilibriumso-
lutions. In casea< 1, Gamma distributions (3.13) are mono-
tonically decreasing, starting fromf∞(0) = +∞. In the oppo-
site casea> 1, there is appearance of a peakaroundthe unit
mean value. The average wealth is unchanged for everya but,
whena> 1, the number of agents with a wealth closer to the
average value increases or, in other words, the wealth distribu-
tion becomes more fair for largera. Analogously, fora< 1 the
distribution gives more weight to agents with a wealth close
to zero.

As a consequence, measures of the inequality of the wealth
distribution, such as the Gini coefficient, increase for decreas-
inga and tend to zero fora→+∞. Some insight can be gained
by the simple computation of the variance off∞. It holds

Var( f∞) =
∫

R+
v2 f∞(v)dv−1=

1
a
.

Hence the variance (the spreading) decreases asa increases.
There are two interesting limiting cases. The first one is

obtained by lettinga→ +∞. In this caseε converges in dis-
tribution to the constant value 1/2 and one can immediately
see that the steady state is a degenerate distribution concen-
trated on the value 1 of the mean wealth. This corresponds to
a perfectly fair distribution, in which all agents end up with

the same wealth. The other limit case is thewinner takes all
game, which can be obtained lettinga → 0. In this case the
steady state is concentrating on 0, while its variance is blow-
ing up. This corresponds to the discrete situation in which
a finite number of agents end up with no money, except one
which takes all. In the continuous case, the valuea = 0 can
not be assumed directly, since the exchange of the limitsa→ 0
andt → ∞ is not allowed by the lack of regularity of the equi-
librium solution fora= 0.

IV. ANALYTIC EQUILIBRIA WITH HEAVY TAILS

Let us now consider the gambling rule (1.3). In agreement
with the previous section, we assume that

εi =
1

4θi
, i = 1,2, (4.14)

where, for a givena> 1, θi i = 1,2 is a Beta random variable
of parameters(a+ 1/2,a− 1/2). It is immediate to reckon
that the random variablesεi are such that< εi >= 1/2 i = 1,2.
Consequently (2.5) holds and the model is conservative in the
mean. We can invoke again Thm. 3.3 in [26] to prove that
there is a unique equilibrium solution such that its Laplace
transform satisfies

f̂∞(ξ ) =
∫ 1

0
f̂∞(ξ/(4x))2βa+1/2,a−1/2(x)dx, (4.15)

with f̂
′

∞(ξ )|ξ=0 =−1. In this case to apply the results of [26]
and [1], which guarantee the convergence to the steady state
together with its moment boundedness properties, one needs
to show thatG ′(1)< 0 holds true for

G(s) := 〈εs
1+ εs

2〉−1

= 2
∫ 1

0

1
(4x)sβa+1/2,a−1/2(x)dx−1

=
21−2sΓ(2a)Γ(a− s+ 1

2)

Γ(2a− s)Γ(a+ 1
2)

−1.

(4.16)

The proof of this condition is not direct. For the sake of
brevity, we postpone the computations to the Appendix.

Now, we shall prove that the solution of (4.15) is obtained
by taking the Laplace transform of the so called Inverse-
Gamma distribution [30] of shape parametera and scale pa-
rametera−1, that is

f∞(v) =
(a−1)a

Γ(a)
e−

(a−1)
v

va+1 , (4.17)

which is peaked around the mean value 1 and has heavy tails,
in that it decays at infinity likev−(a+1). An analytical solu-
tion of type (4.17), with a polynomial decay corresponding to
a = 3/2 has been discovered by Slanina [29] as self-similar
solution of a kinetic model of a non-conservative (decreasing
in the mean) economy. Motivated by the analogy with a dis-
sipative Maxwell gas, in [29] a decreasing in the mean wealth
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model where

v∗ = pv+qw, w∗ = qv+ pw;

p≥ q> 0,
√

p+
√

q= 1
(4.18)

has been discussed. Note that, within condition (4.18) on the
mixing parametersp andq,

v∗+w∗ = (1−2
√

pq) (v+w)< v+w,

which implies that the mean valuem(t) at timet decays expo-
nentially to zero at the rate 2

√
pq. The standard way to look

for self–similarity is to scale the solution. More precisely, de-
fine the rescaled solutiong by

g(t,v) = m(t) f
(

t,m(t)v
)

, (4.19)

which implies that
∫

vg(t,v)dv= 1 for all t ≥ 0.
In terms of the Laplace transform ˆg of g, it is found that the

equation satisfied by ˆg reads [16]

∂ ĝ
∂ t

+ ξ (p+q−1)
∂ ĝ
∂ξ

= ĝ(pξ )ĝ(qξ )− ĝ(ξ ). (4.20)

Steady solutions to equation (4.20) satisfy

ξ (p+q−1)
∂ ĝ
∂ξ

= ĝ(pξ )ĝ(qξ )− ĝ(ξ ). (4.21)

Direct computations then show that the function

ĝ∞(ξ ) =
(

1+
√

2ξ
)

e−
√

2ξ (4.22)

solves (4.21) for all values ofp andq satisfying the constraint√
p+

√
q= 1. Note that (4.22) is the explicit Laplace trans-

form of

g∞(v) =
(1/2)3/2

Γ(3/2)
e−

1
2v

v5/2
. (4.23)

Let us setp = q = 1/4 in (4.21). Then the steady solution
(4.22) satisfies

− ξ
2

∂ ĝ
∂ξ

+ ĝ(ξ ) = ĝ

(

ξ
4

)2

. (4.24)

Following [4], Sect. 6, (4.24) can be equivalently written in
integral form as

ĝ(ξ ) =
∫ 1

0
ĝ

(

ξ
4

ρ−1/2
)2

dρ , (4.25)

or, settingρ1/2 = x

ĝ(ξ ) =
∫ 1

0
2ĝ

(

ξ
4x

)2

xdx, (4.26)

which is nothing but (4.15) witha = 3/2. Consequently the
distribution (4.23) solves (4.15) witha= 3/2. This argument
establishes a connection between the present problem and the

non-conservative one introduced by Slanina [29], which leads
to explicit computations.

In order to prove that the Laplace transform of (4.17) is
the solution of (4.15), since a direct prove seems not straight-
forward like in the previous case, we recast the problem in a
more probabilistic way. First of all, let us note that an Inverse–
Gamma random variableY of parameter(a,a−1) can be ob-
tained by takingY = 1/X whereX has Gamma distribution of
parameter(a,1/(a−1)). Recall thatX is a random variable
Gamma(a,1/(a−1)) if its density is

(a−1)ava−1e(a−1)v

Γ(a)
.

Recall also that its Laplace transform reads

(1+ ξ/(a−1))−a. (4.27)

As discussed in Section II, equation (4.15) can be rewrittenin
equivalent way as

Y =d 1
4θ

[Y1+Y2] (4.28)

whereY1,Y2,θ are independent random variables,Y,Y1,Y2
have densityf∞, while θ has densityβa+1/2,a−1/2. The script
=d has to be meant as an identity in distribution. To prove
(4.28) it suffices to show thatY−1 =d 4θ [Y1+Y2]

−1 or, equiv-
alently,

X =d 4θX1X2

X1+X2
(4.29)

whereX,X1,X2 are independentGamma(a,1/(a−1)) random
variables. The result follows if one is able to show that(X1+
X2)(4θX1X2)

−1 has Laplace transform (4.27). SettingG :=
X1+X2 andB := X1/(X1+X2) one rewrites (4.29) as

X =d 4θGB(1−B). (4.30)

It is a classical result of probability theory that, givenX1
and X2 which are independent and Gamma distributed, the
random variablesG and B are stochastically independent
and, moreover, thatG hasGamma(2a,1/(a− 1)) distribu-
tion, while B hasBeta(a,a) distribution. For the proof of
this property, we refer for instance to Chapter 10.4 in [18].
Moreover, using relation (3.11) one can reckon thatθG has
Gamma(a+1/2,1/(a−1)) distribution simply by computing
its Laplace transform. Using now the fact thatθG andB are
mutually independent, one can write the Laplace transform of
4θGB(1−B) in the pointξ as

L(ξ ) =
∫ 1

0

βa,a(x)
[

1+4(a−1)−1ξ x(1− x)
]a+ 1

2

dx

= 2
∫ 1

2

0

βa,a(x)
[

1+4(a−1)−1ξ x(1− x)
]a+ 1

2

dx.
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At this stage, a simple change of variable shows that

L(ξ ) =
Γ(2a)

22a−1Γ(a)2

∫ 1

0

za−1(1− z)
1
2−1

(1+ ξ z/(a−1)))a+ 1
2

dz

=

∫ 1

0

1

(1+ ξ z/(a−1)))a+ 1
2

βa,1/2(z)dz.

The last identity follows by the duplication formulaΓ(2a) =
22a−1Γ(a)Γ(a+1/2)/Γ(1/2) (see 8.335.1 in [20]). Using re-
lation (3.11) once again we getL(ξ ) = (1+ξ/(a−1))−a and
(4.29) is proved.

Some remarks are in order. Within the choice (4.14), the
conservative in the mean trade (1.3) is such that the two agents
maintain at least 1/4 of the total wealth used to trade. Thus,
trade (1.3) is in a sense less risky than the conservative trade
(1.2), where one of the two agents can exit from the trade
with almost no money. In addition, it follows that the number
of moments of the explicit equilibrium state which are finite
increase witha. On the other hand, whena increases, the area
described by the distribution of the random fractionε on the
interval [1,+∞) decreases, and the probability to use wealth
of the society is also decreasing. Hence a fat Pareto tail is
obtained through a big use of the common wealth.

V. CONCLUSIONS

In this paper, we introduced and discussed the equilibrium
solution of a nonlinear kinetic equation of Boltzmann type,
modelling redistribution of wealth in a simple market econ-
omy in which trades are described by a standard gambling
game. Due to the simplicity of the game trade, analytical so-
lutions can be obtained in the case in which the post-trade
wealths depend on the pre-trade ones through random vari-
ables which are Beta distributed. Previously known analytical
solutions are here shown to exit for particular values of the
underlying parameters. Despite its simplicity, the model en-
lightens the role of the interaction in producing Pareto tails.

Appendix A: Appendix

Let us prove thatG′(1)< 0 whenG is defined as in (4.16).
Starting from (4.16), differentiation shows that

G′(s) =−21−2sΓ(2a)Γ(a− s+ 1
2)

Γ(2a− s)Γ(a+ 1
2)
·

·
{

2log(2)+ψ(a− s+
1
2
)−ψ(2a− s)

}

whereψ(x) = Γ ′(x)/Γ(x) is the Digamma function [20]. Us-
ing the duplication formula 2ψ(2x) = ψ(x) +ψ(x+ 1/2)+
2log(2), see 8.365.6 [20], one obtains

G′(1) =−1
4

Γ(2a)Γ(a− s+ 1
2)

Γ(2a− s)Γ(a+ 1
2)

Q(a)

whereQ(a) := 2log(2)+ψ(a−1/2)+ψ(a).
Now ψ(1/2) = −γ − 2log2 andψ(1) = −γ (γ being the

Eulero-Mascheroni constant), see 8.366.1/2 [20], and then
Q(1) = 0.

The classical expansion formula (see 8.363.8 [20])

ψ ′(x) = ∑
k≥0

1
(x+ k)2

allows to conclude that, for everya> 1

Q′(a) = ∑
k≥0

1
(a−1/2+ k)2 − ∑

k≥0

1
(a+ k)2 > 0.

HenceQ(a) is strictly monotone in[1,+∞) and sinceQ(1) =
0 it follows thatQ(a) > 0 for everya > 1. This shows that
G′(1)< 0.
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