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We introduce and discuss a nonlinear kinetic equation ofZBwnn type which describes the evolution of
wealth in a pure gambling process, where the entire sum oltlvgeaf two agents is up for gambling, and ran-
domly shared between the agents. For this equation thetarzédfiprm of the steady states is found for various
realizations of the random fraction of the sum which is sthdeethe agents. Among others, Gibbs distribution
appears as steady state in case of a uniformly distributedbra fraction, while Gamma distribution appears
for a random fraction which is Beta distributed. The case liictv the gambling game is ontonservative-in-
the-mearis shown to lead to an explicit heavy tailed distribution.

I. INTRODUCTION erns the microscopic interaction.

Wealth exchange processes in a discrete market are char-
Various concepts and techniques of statistical mechanicaCterized by binary trades. A fixed numbermfggents in a
have been fruitfully applied for years to a wide variety ofio §ystem_are allowed to interact (trade) stocha_sucally ang t

lex extended svstems. phvsical and otherwise. in an défort wealth is exchanged between them. The basic steps of such a
P y  PNys . WISE, | wealth exchange model can be described as follows
understand the emergent properties appearing in them. Eco-
nomics is, by far, one of the complex extended systems to v, (t+1) =wi(t) +Aw, wi(t+1) =wj(t)—Aw, (1.1)
which methods borrowed from statistical mechanics foripart
cle systems have been applied [7, 8,11/ 1B/ 14, 23, 24, 29]. iwherew;(t) andw;(t) are wealths of-th andj-th agents at
most of the models introduced so far, the trading mechanisriime t andwi(t + 1) andw;j(t + 1) are that at the next time
leaves the total mean wealth unchanged. Then, a substant®EPt + 1. The amouniw (to be won or to be lost by an
difference on the final behavior of the model (presence or nogent) is determined by the nature of interaction. If thenege
of tailed steady states) can be observed depending on the fa€ allowed to interact for a long enough time, a steady state
that binary trades are pointwise conservative, or conseeva equilibrium distribution for individual wealth is achiesteThe
in the mean|[15, 26]. The asymptotic distribution of wealth, €quilibrium distribution does not depend on the initial fign
however, depends completely on the microscopic structiure giration (initial distribution of wealth among the agents).
binary trades. Other kinetic models have been recently pro- In @ pure gambling process [14], the entire sum of wealths
posed, which, while maintaining the kinetic descriptiam, i ©Of two agents is up for gambling. Some random fraction of
troduce more sophisticated rules for trading. For examle, this sum is shared by one agent and the rest goes to the other.
description of the behavior of a stock price has been deeelop The randomness is introduced into the model through a pa-
by Cordier, Pareschi and Piatecki in[12]. Further, thenesha rameter which is arandom number drawn from a probability
been efforts to include non-microscopic effects, like glob distributionin[0, 1]. In general itis assumed thats indepen-
taxation (and subsequent redistribution), in recent warks dent of a pair of agents, so that a pair of agents is not likely
Guala [22], Pianegonda, Iglesias, Abramson and Vega [28]0 share the same fraction of aggregate wealth the same way
Garibaldi, Scalas and Viarengo [19] and Bisi, Spiga and thavhen they interact repeatedly. The interaction rule careba s

present authof [2, 81]. through
Despite the high number of studies devoted to the sub- wi(t+ 1) = g[wi(t) +w;(t)],
ject, well documented by various recent review papers [9, 21 Wi (t+1) = (1— &)[wi(t) +w; (1), (1.2)

21,132, 33], analytical solutions or explicit steady stetms

wealth distribution densities are rarely present in therdit  where the pair of agents (indicated by i and j) are chosen
ture. The few exceptions are the self-similar solution withrandomly. The amount of wealth that is exchanged is now
Pareto tails found by Slanina [29] for a kinetic model of a Aw = &[wi(t) + w;(t)] —wi(t). Numerical experiments [21]
non-conservative (decreasing in the mean) economy, and ttehow that, ife is a random number drawn from a uniform dis-
steady state solution (Gibbs distribution) of a linear kime tribution in [0, 1], the individual wealth distribution at equi-
equation modelling taxation and uniform redistributiod][3  librium emerges out to be Gibbs distribution like exponainti

The goal of this paper is to show that in a pure gambling't i strongly believed, and somewhat argued from numerical
trade market explicit equilibrium solutions can be obteibg ~ €xperiments, that a slight variant of the previous modet pro

suitably choosing the random fraction of money which goV_duces at equilibrium Gamma-like distributions![10], bus, a
remarked by the authors, the form of the exact solutionlis sti

an open question. The main feature of trddel(1.2) is such the

amount of money which is restituted in a single trade coin-
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Te-mail address: giuseppe.toscani@unipv.it bling (pointwise conservative trajleln this gambling market


http://arxiv.org/abs/1002.3689v1
mailto:federico.bassetti@unipv.it
mailto:giuseppe.toscani@unipv.it

there is no rule of the (conserved) total amount of money iniimarket. The possibility to access to the money availableén t
tially in the hands of the agents. In other words, agents deommornreservoirallows the formation of the rich class.
not take advantage from the amount of money available in the The paper is organized as follows. In the next section we
market. introduce the continuous model which is described by a non-
The idea of using this money ageservoirfor trades can linear kinetic equation of Boltzmann type, and its main fea-
be easily implemented allowing agents to trade with randontures are discussed in some detail. The analytical sokition
profit in the case of the pure gambling trafle [1.2) are described in
Section 3. Section 4 deals with the gambling rilel(1.3).
Wi(t+ 1) = ea[wi(t) +wj(t)], (13)
Wi (t+1) = &2[wi(t) +w;(t)], '
1. A CONTINUOUSKINETIC MODEL
where the parametefs;, €,) are now random numbers drawn

from a joint probability distribution such that Given a fixed number ol agents in a system, which are

(14 8) =1 (1.2) allowed to trade, the interaction rulés(1.3) describe ehsts-
1T E2r =5 ' tic process of the vector variab{e(t),...,v(t)) in discrete

where (-) denotes as usual the mathematical expectatiorfMmet. Processes of this type are thoroughly studied e. g.
Within this picture,wi(t + 1) +w;(t + 1) can be strictly less I the context o_f kinetic theory of |de_al gases. Inde_eq, & th
thanw (t) 4+ w;(t), and in this case the lost money is achievegvariablesv; are interpreted as energies correspondingtto
by the market, or the reverse situation is verified, and tie-ad Particle, one can map the process to the mean-field limitef th
tional money is taken from the market. Conditibn{1.4), how-Maxwell model of elastic particlesl[5, 6]. The full informan
ever, guarantees that in the mean the wealth presentin the mabout the process in tintds contained in th&\-particle joint
ket is left unchanged. Note that if one assumesghaty > 0, probability distributiorPy (t, v, v2,...,wv). However, one can
i — 1,2 then agents are prevented from loosing all their mone)‘/"”te a kinetic equation for one-marginal distribution &tion
in a single trade. Note also that, choosisg &) = (¢,1—¢) :
the collision rule[(I.B) becomds{l.2). Pi(t,v) = / Pu(t,v,vo,...,un)dVe - - - dwy,

In order to produce a fair game, it will be assumed that )
the random numbers ande; are identically distributed. For  involving only one- and two-particle distribution funatis [5,
trades of type[(112), this assumption simply forces theeand [g],
fractione to be symmetric with respect to the valug2l

At a continuous level, the evolution of the wealth distribu-
tion can be described by means of a nonlinear kinetic model o
Boltzmann type, in which the wealth distribution of the mar-
ket is driven bycollisions of type [1.2) [6]. Since the total

mean wealth is maintained constant in time, the wealthidistr . . P
bution is known to converge exponentially towards a steadyVNich may be continued to give eventually an infinite hierar-
profile [15,[26], which depends on the details of the tradechY Of equations of BBGKY type [5]. The standard approxi-
mechanism througly. It is well-known that the continuous mation, Wh',Ch neglects the correla_mons between the_ wedlth
description takes advantage from the the possibility toenakthe agents induced by the trade gives the factorization

use of the Laplace transform version of the kinetic equation
[3].

Owing to this representation, we will prove that various
cases are explicitly solvable, and lead to an analytic expre
sion of the steady profile. In particular, choosggp be sym-
metric Beta distributions one obtains as equilibrium a Gamm
distribution with a parameter which depends on the paramet
of the Beta distribution. A special case emerges here, sin
Gibbs distribution emerges far uniformly distributed. Also,
the case of thevinner takes alpame can be studied in details

Pu(t+1,v)~Py(t,v) = <$ [/Pz(t,vi,vj)(a(v— eL(Vi V)

+O(V—&)(Vi +vj))) dvidvj — 2P1(t,v)} >,

Po(t,vi,Vj) = Po(t,vi)Pi(t,vj),

which implies a closure of the hierarchy at the lowest lelrel.
fact, this approximation becomes exactlfbr . Therefore,
in thermodynamic limit the one-patrticle distribution fuion
bears all information. Rescaling the timems- 2t/N in the
Eihermodynamic limiN — o, one obtains for the one-particle
“Kistribution functionf (v,t) = Py(v,t) the Boltzmann-like ki-
netic equation

as limit of Betag, with parameter tending to zero. In all these af(t,y) 1

cases, however, the equilibria possess moments of any. order —— = §</ f(t,vi)f(t,v) (5(V— &1(Vi +Vj))
Interestingly enough, the case of thenservative in the (2.1)

meangambling trade[(1]3) can be treated likewise, by choos- +0(V—&)(v +VJ)))dVi de> —f(t,v),

ing the random variables, i = 1,2 to be inverse Beta. In this

case, however, the steady state distribution is shown to bewhich describes the proce§s {|1.3) in the liMit- .

generalized Gamma distribution with fat tails, which camsa Owing to equations of typd (2.1), the study of the time-
as a particular case the distribution found by Slanina [#9] i evolution of the wealth distribution among individuals in a
a different context. This founding clarifies through a siempl simple economy, together with a reasonable explanation of
example the role of theocialuse of the money presentin the the formation of tails in this distribution has been recentl



achieved in[[26] (see alsp [15,/16]). The Boltzmann-likeaqu
tion (2.1) can be fruitfully written in weak form. It corre-
sponds to say that the solutidiiv,t) satisfies, for all smooth
functionsg(v)

d 1
ft,vev)dv=3 PV) + QW)
2</Ri( (2.2)

—@(v) — @(w)) f(t,v)f(t,w) dvdw>,

where the post-trade wealths', w*) obey to the rule[(1]3)

dt Jr.

V=g (v+w), W = & (V+w). (2.3)

Note that[(2.P) implies that(v,t) remains a probability den-
sity if it so initially

f(t,v)dv:/R fo(v)dv = 1. (2.4)

Ry

Moreover, on the basis of (1.4), the choip¢v) = v shows
that also the total mean wealth is preserved in time

Je.
Consequently, without loss of generality, in what follows
assign to the initial density a unit mean

m(t) = vio(v)dv=m(0).  (2.5)

— [ vit,vdv= /

JR4

/ vio(v)dv=1. (2.6)
Ry

Setting @(v) = exp{—&v} in (2.2), 3], one gets the Boltz-
mann equation for the Laplace transfofrof f, where

ft,€) :/ﬂ%+ e v (t,v)dv.

Direct computations [26] show thi(t, §) satisfies the equa-
tion

af(t,€)

ot

As extensively discussed in_[15,126], explicitly computabl
conditions on the gambling variables i = 1,2, guarantee
that the distributiorf (t,v)dv converges weakly to aniversal
probability distribution whose Laplace transform is théqure
solution of

+f(t,£):%<f(t,££1)2+f(t,E£2)2>. 2.7)

f(&) = 5 (fu(Ee1)? + fu(E£2)%) (2.8)

NI =

with
ful(&)lg—o=—1.

This fact follows from Thm. 3.3 in [26] (see also Thm. 2 in

[1]), which links both the convergence and the boundedness
of moments of the equilibrium solution to the sign of the key

functionG(s), defined as

G(s):=(e1+ &) -1

3

In particular the convergence result is valid without aiddial
assumption orfg provided thatG’(1) < 0.

By further requiring that the random variablgsande;, are
distributed with the same law, the equilibrium solutibnis
found to be the unique solution to

f (&) = (fu(&€)?),

where the random variable is distributed according to the
common law ofe; ande,. Equation[(Z.B) can be better under-
stood by saying that, iZ is a random variable with lawi.,
the law ofZ, defined in[(2.B), is a distributional fixed point of
the equation

(2.9)

Z=Y¢(21+2), (2.10)
where=Y means identity in distribution and one assumes that
the random variableg;,Z, and Z have the same probabil-
ity law, while the variable<Z;,Z, and € are assumed to be
stochastically independent. Equations of type (2.10) aié w
known and extensively studied, see e.g! [17, 25].

1. THE PURE GAMBLING TRADE MODEL

Let us start from the pure gambling case in whieh &) =
(g¢,1—¢). Having in mind that numerical experiments are usu-
ally done with a random number drawn from a uniform dis-
tribution in [0, 1], which leads the discrete market to a Gibbs
distribution at equilibrium/[21], we fix the random numkeer
to be a symmetric Beta random variable of paramei@ra),
with (a > 0). We recall that a random variable is Beta dis-
tributed with parameter@&, b) if its density is

r(a+ b) Xa—l

Far”

Ban(x) = xe (0,1),

see, for instance, [18].

The casea = 1, whereg is a random number uniformly
distributed on(0, 1), confirms the numerical outcome. In this
case, in fact[(2]9) becomes

~ 1
fol®) = [ f2(exax
Itis easy to see that
fu() = (1+ &)

is a solution of[(Z19), such tha&;(f)‘fzo = —1. Since(1+
&)~Lis the Laplace transform of the Gibbs distribution of unit
mean

fo(V) =€  (v>0),

Gibbs distribution results as analytical steady solutmthe

pure gambling trade market, in casds a uniform random
numberin(0,1).
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To treat the more general case it suffices to recall that, ithe same wealth. The other limit case is thiener takes all

o, 02,& > 0, then formula 3.197.4 in_[20] gives game, which can be obtained lettiag— 0. In this case the
steady state is concentrating on 0, while its variance ig/blo
Mop+ap) [Exari(1—x)%? « ing up. This corresponds to the discrete situation in which
I'(al)l'(az)/o (14 Ex)outaz (3.11)  afinite number of agents end up with no money, except one
= (1+&)m, which takes all In the continuous case, the valae- 0 can

not be assumed directly, since the exchange of the lenit0

Using identity [3.111) withor; = o, = a, one obtains that for a andt — o is not allowed by the lack of regularity of the equi-
generah > 0 the function librium solution fora = 0.

. 1\ -
fee(§) = (1+55) (3.12) IV. ANALYTIC EQUILIBRIA WITH HEAVY TAILS

solves equatiod (2.9). Hence, the equilibrium solutiomiitss . .
in a Gamma distribution of unit mean, with shape parameter Let us now consider the gambling rufe {1.3). In agreement

with the previous section, we assume that
aand scale parameteya

adA—le—av & ! i=12 (4.14)

fo(V) = @ (v>0). (3.13) 46

_ : _ where, for a givera > 1, 6 i = 1,2 is a Beta random variable
To verify that the results of [26] andI[1], which guaranteeof parameterga+ 1/2,a— 1/2). It is immediate to reckon
the convergence to the steady state together with its Mahat the random variablesare such that g >=1/2i =1,2.
ment boundedness properties hold, one needs to show thebnsequently{2]5) holds and the model is conservativesin th
G'(1) <0 holds true for mean. We can invoke again Thm. 3.3 in/[26] to prove that
there is a unique equilibrium solution such that its Laplace
transform satisfies

wheree¢ is a symmetric Beta random variable of parameters . 1, )
(a,a), with (a> 0). In this case, however, f () :/0 feo (8 /(4%))“Bat1/2,a-1/2(X)dX, (4.15)
!/ ~/ .
G'(1) = (eloge) <0 with f.,(&)|s—o = —1. In this case to apply the results of [26]
and [1], which guarantee the convergence to the steady state

is a simple consequence of the fact that @ < 1 with prob- together with its moment boundedness properties, one needs

ability one. ,
The uniform distributiongd = 1) appears like a natural sep- to show thatG (1) < 0 holds true for
aration between two different behaviors of the equilibrson G(s) 1= (545 — 1
lutions. In case < 1, Gamma distribution§ (3.1.3) are mono- RGARG
tonically decreasing, starting froffia,(0) = +o. In the oppo- —> /1 iﬁ (X)dx—
site case > 1, there is appearance of a pekundthe unit 0 (4x)s atl/2a-1/2 (4.16)
mean value. The average wealth is unchanged for eveuy, 21-25T (2a)l (a— s+ 1)

whena > 1, the number of agents with a wealth closer to the
average value increases or, in other words, the wealthtuistr
tion becomes more fair for largar Analogously, fola < 1 the
distribution gives more weight to agents with a wealth clos
to zero.

As a consequence, measures of the inequality of the Wealt&/
distribution, such as the Gini coefficient, increase forrdas-
ingaand tend to zero fax — 4. Some insight can be gained
by the simple computation of the variancefaf It holds

r2a—-9r(a+i)

The proof of this condition is not direct. For the sake of
Ehlorevity, we postpone the computations to the Appendix.
Now, we shall prove that the solution ¢f (4115) is obtained

taking the Laplace transform of the so called Inverse-
Gamma distribution [30] of shape parameaeand scale pa-
rametera— 1, that is

(a—1)2 e

Ma vatl’

var(fy) = / V2o (V)dv— 1= 1 feo (V) = (4.17)
R+ a
Hence the variance (the spreading) decreasasraseases.  which is peaked around the mean value 1 and has heavy tails,
There are two interesting limiting cases. The first one isin that it decays at infinity likes (@1, An analytical solu-

obtained by lettinga — +0. In this casee converges in dis- tion of type [4.1V), with a polynomial decay corresponding t
tribution to the constant value/2 and one can immediately a = 3/2 has been discovered by Slaninal [29] as self-similar
see that the steady state is a degenerate distribution woncesolution of a kinetic model of a non-conservative (decragsi
trated on the value 1 of the mean wealth. This corresponds tm the mean) economy. Motivated by the analogy with a dis-
a perfectly fair distribution, in which all agents end uplwit sipative Maxwell gas, in [29] a decreasing in the mean wealth
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model where non-conservative one introduced by Slanina [29], whickd$ea
to explicit computations.
Vi=pyEaw W=t pw, (4.18) In order to prove that the Laplace transform of (4.17) is
p=q>0, p+04=1 the solution of[(4.15), since a direct prove seems not sttaig

forward like in the previous case, we recast the problem in a
more probabilistic way. First of all, let us note that an Irse=-
Gamma random variab¥ of parametefa,a— 1) can be ob-
tained by takingy = 1/X whereX has Gamma distribution of
parametefa,1/(a—1)). Recall thatX is a random variable
Gammda,1/(a— 1)) if its density is

has been discussed. Note that, within condition (4.18) en th
mixing parameterpg andq,

VW = (1-2,/pq) (V+ W) <Vv+Ww,

which implies that the mean valug(t) at timet decays expo-
nentially to zero at the rate,2pg. The standard way to look

for self—similarity is to scale the solution. More precisele- (a— 1) tela v
fine the rescaled solutiamby NE))
g(t,v) = m(t) f (t, m(t)v), (4.19)  Recall also that its Laplace transform reads
which implies thatf vg(t,v)dv=1for allt > 0. (1+&/(a—1))"2 (4.27)

In terms of the Laplace transforgof g, it is found that the

equation satisfied by readsi[16] As discussed in Sectidd 11, equatidn (4.15) can be rewritten

2§ 9§ equivalent way as
ot TEPHa—1)5e =08(pE)a(as) — (&) (4.20)
_ _ _ y =¢ i[Y1+Y2] (4.28)
Steady solutions to equatidn (4120) satisfy 40
g . R R where Y1,Y,, 8 are independent random variablé§)Y:,Y,
&(p+q- 1)ﬁ =0(p¢)a(ag) —a(¢). (4.21)  have densityf., while 6 has density,1/2a-1/2- The script
=9 has to be meant as an identity in distribution. To prove
Direct computations then show that the function (@.28) it suffices to show that~1 =4 40[Y; +Y,] 1 or, equiv-
alently,
6s(&) = (1+ V28 e V& (4.22)

x o 20%1% (4.29)
solves[(4.211) for all values qf andq satisfying the constraint O Xi+Xo '
P+ /A= 1. Note that[(4.22) is the explicit Laplace trans-
form of whereX, X1, X, are independei@ammada, 1/(a— 1)) random

L variables. The result follows if one is able to show tpét+
_(1/2%2e w 4.93 X2)(46%1X%2) 1 has Laplace transforni (4127). SettiGy.=
Geo(V) = r(3/2) W2' (4.23) X1+ Xz andB := X; /(X1 + X2) one rewrites[(4.29) as
Let us setp =q = 1/4 in (4.21). Then the steady solution X =9 46GB(1— B). (4.30)
(4.22) satisfies

. 2 It is a classical result of probability theory that, giveha
_£99 +0(5)=§ (é) i (4.24) andX; which are independent and Gamma distributed, the
20¢ 4 random variablesG and B are stochastically independent

and, moreover, tha® has Gammd2a,1/(a— 1)) distribu-
tion, while B hasBetaa,a) distribution. For the proof of
this property, we refer for instance to Chapter 10.4Lin [18].
1 /f 2 Moreover, using relatiorf (3.11) one can reckon tB& has
§(&) = / g <_pl/2> dp, (4.25) Gammda+1/2,1/(a—1))distribution simply by computing
J0 4 its Laplace transform. Using now the fact tlé#® andB are
mutually independent, one can write the Laplace transfdrm o

Following [4], Sect. 6,[(4.24) can be equivalently written i
integral form as

or, settingo"/% = 46GB(1— B) in the point as
~ 1 ~ E 2 X
§(é) :/0 2§ <5() xdx, (4.26) L(E) = /1 Ba.a(x) _dx
70 [144(a—1)-1Ex(1—x)]*"?
which is nothing but[(4.75) witla = 3/2. Consequently the 1 Baa(X)
a,a

distribution [4.28) solve$ (4.15) with= 3/2. This argument = 2/
establishes a connection between the present problemand th 0

T dx
[1+4(a—1)~1Ex(1—x)]*"2



6

At this stage, a simple change of variable shows that wherey(x) =

ing the duplication formula @(2x) =

I’ (x)/T(x) is the Digamma function [20]. Us-
W)+ Y(x+1/2) +

_ T(2a) 1 ﬁ*l(l—z)%*l 2log(2), see 8.365.6 [20], one obtains
{8 = /0 (1+&z/(a—1))*2 "
1
- Bai/2(2)d2 o4l
0 (1+¢& —1)))at , :_:_LF(Za)F(a S—|—)
(1+¢&2z/(a-1)))*" G'(1) 4r(2a—s)r(a+§)Q(a)

The last identity follows by the duplication formulg2a) =

22211 (@)l (a+1/2)/T(1/2) (see 8.335.1 i [20]). Using re-

lation (3.11) once again we geté) = (1+&/(a—1)) 2 and

(@.29) is proved. whereQ(a) := 210g(2) + ¢(a—1/2) + Y(a).

Some remarks are in order. Within the choice (4.14), the Now (1/2) = —y—2log2 andy(1) = —y (y being the
conservative in the mean trade{1.3) is such that the twotagenEulero-Mascheroni constant), see 8.366.1/2 [20], and then
maintain at least M of the total wealth used to trade. Thus, Q(1) = 0.
trade [1.8) is in a sense less risky than the conservatide tra
(I.2), where one of the two agents can exit from the trade The classical expansion formula (see 8.363.8 [20])
with almost no money. In addition, it follows that the number
of moments of the explicit equilibrium state which are finite
increase witha. On the other hand, whexincreases, the area
described by the distribution of the random fractioon the Y'(x) = Z)
interval [1,+) decreases, and the probability to use wealth >
of the society is also decreasing. Hence a fat Pareto tail is
obtained through a big use of the common wealth.

allows to conclude that, for eveay> 1
V. CONCLUSIONS

In this paper, we introduced and discussed the equilibrium
solution of a nonlinear kinetic equation of Boltzmann type,
modelling redistribution of wealth in a simple market econ-
omy in which trades are described by a standard gambling
game. Due to the simplicity of the game trade, analytical so-
lutions can be obtained in the case in which the post-tradeélenceQ(a) is strictly monotone iff1,+) and sinceQ(1) =
wealths depend on the pre-trade ones through random var@-it follows thatQ(a) > O for everya > 1. This shows that
ables which are Beta distributed. Previously known anedyti G’(1) < 0.
solutions are here shown to exit for particular values of the
underlying parameters. Despite its simplicity, the model e
lightens the role of the interaction in producing Parettstai

Z) a— 1/2+k o
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Appendix A: Appendix

Let us prove thaG’(1) < 0 whenG is defined as in{4.16).
Starting from [[4.16), differentiation shows that

r(2a)r(a—s+1)
I'(2a—s)|'(a+%)'

: {2Iog(2) + l,U(a—s+%) - t,U(Za—s)}

G/(S) _ _2l-2s
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