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Abstract

Information entropy is applied to the state of knowledge of reaction amplitudes in pseudoscalar

meson photoproduction, and a scheme is developed that quantifies the information content of a

measured set of polarization observables. It is shown that this definition of information is a more

practical measure of the quality of a set of measured observables than whether the combination

is a mathematically complete set. It is also shown that when experimental uncertainty is intro-

duced, complete sets of measurements do not necessarily remove ambiguities, and that experi-

ments should strive to measure as many observables as practical in order to extract amplitudes.
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v2 I INTRODUCTION

I. INTRODUCTION

In pseudoscalar meson photoproduction, the reaction is completely described by four

amplitudes that are functions of hadronic mass W and center of mass scattering angle

θCM (or, equivalently s and t). If one were able to extract these amplitudes (allowing of

course for an overall phase) at {W, cos θCM} or {s, t} points, there is nothing else one

could measure that would alter how one could interpret the physics of the reaction.

This observation is especially important in the study of the spectrum of baryon reso-

nances. Despite several decades of investigation, it is still not clear whether certain states

that are predicted by quark models exist or not. The signatures of any hitherto undiscov-

ered states must be very subtle, to the extent that they are not readily apparent from cross

section measurements alone. If one could unpick the reaction amplitudes from suitable

observables, that would constitute the most comprehensive test for models. In the case

of establishing s-channel resonances, extraction of the four amplitudes may not even be

enough. Partial-wave analyses will be required, and these can lead to finite ambiguities

that require additional information to resolve. In any event, a potential new physical

effect would have to manifest itself clearly, or be declared unproven.

In order to extract the amplitudes, it is necessary to measure several polarization ob-

servables. In addition to the cross section, there are three single-spin observables [6]: B

(photon beam asymmetry), R (recoil polarization) and T (target polarization), which can

be labelled as S-type measurements. There are also four beam-recoil (BR-type), four

beam-target (BT -type) and four recoil-target (RT -type) observables. All these observ-

ables are bilinear combinations of the four reaction amplitudes, and are not independent.

In principle, therefore, it is not necessary to measure all of them to be able to infer the

amplitudes. As we have now entered an era in which single- and double-polarization

measurements can be made, there exists a real opportunity for progress in understand-

ing pseudoscalar meson photoproduction reactions, and for potential discovery of new

states.

The problem of finding a minimum set of measurements that allows the unambigu-

ous extraction of amplitudes was addressed by Barker, Donnachie and Storrow [1]). They

found that, in addition to the single polarization set, five more double polarization ob-

servables were needed to remove all ambiguities in the quadrants for each relative phase
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angle. More recently, Chiang and Tabakin [2] carried out a detailed analysis of the algebra

of observables using Fierz identities, and showed that the selection of just four suitably

chosen double polarization observables was sufficient to remove the ambiguities. Such

sets have been designated as “complete” sets.

The Fierz identity analysis led to a large number of identities among observables.

Work by Artru et al. [4, 5] extended this by using positivity constraints to derive many

inequalities. This means that the measurement of a subset of observables places limits on

the possible values of the undetermined observables, so the inequalities provide useful

guides to whether the values of experimental data are physical.

Labelling sets of observables as “complete”, implies somehow that one has reached

an ultimate state of knowledge. However, the reality is that all experimental measure-

ments of observables carry with them a finite uncertainty, so the concept of completeness

is not well defined. One might be tempted to regard this as an experimental failing, but

in practice any experiment has to be performed within constraints of time and techno-

logical feasibility; the experiment with zero uncertainty can only be accomplished in an

infinite time. The alternative is to embrace experimental uncertainty and include it in the

interpretation of results.

The problem of uncertainty due to noise in communication channels led Shannon to

develop the foundations of information theory [3]. In that seminal work, the concept of

entropy was used as a means of quantifying an amount of information. One can also

apply this to measurements. To introduce the idea with a concrete example, suppose one

measured a quantity X and obtained a measured value x with an uncertainty δx. The

reporting of this measurement would usually be in the form x ± δx, but this is really

shorthand for a Gaussian probability density function (PDF) p (x). The entropy is then

H = −
ˆ

p (x) log p (x) dx, (1)

which for a Gaussian PDF is H = log
√

2πe + log δx. If a more accurate measurement

were to be made, resulting in a reduced uncertainty δ′x, the gain in information can be

quantified as

I = H − H′ = log

(

δx

δ′x

)

.

By extending this idea to the uncertainty in the reaction amplitudes, it is possible to

quantify how much information is gained following the measurement of one or more ob-
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servables. This article represents a preliminary study of information entropy as applied

to pseudoscalar meson photoproduction. Section II develops the idea encapsulated by

Eq. (1) for the reaction amplitudes, and introduces a means of calculating it. In section

III examples of hypothetical measurements are given, which show how the magnitudes

and relative phases of the amplitudes can be determined. In addition to this, section IV

briefly considers how the information content of measured data can be used as a guide

to estimating whether the measurement could in principle reduce uncertainty in derived

physical quantities.

II. MEASURING INFORMATION

A. Reduced Amplitudes

A full analysis of reactions will involve measurements over all scattering angles and

cover the mass range of interest. To develop the concept of information content, however,

we restrict ourselves to considering one region (or “bin”) in {W, θCM} space. The ideas

can be straightforwardly extended to include many regions, since entropies are additive.

The issue of whether different experiments (measuring different observables) have cov-

ered the same {W, θCM} space has been avoided.

The choice of basis for amplitudes is arbitrary; information content is derived from the

measured observables, so it cannot depend on the choice. In this work, the transversity

basis is used, where the spin of the target nucleon and recoiling baryon is projected onto

the normal to the scattering plane, and the linear polarization of the photon is either

normal or parallel to the scattering plane.

It is assumed that differential cross section measurements have been performed to a

level of accuracy of, say, a few percent, so that further measurement would be unlikely

significantly to improve knowledge of the amplitudes. The information gain to be stud-

ied here is solely due to an increased accuracy in the knowledge of the polarization ob-

servables. Since all these observables are asymmetries, no generality is lost if we rescale

the amplitudes bi → ai such that

ai =
bi

√

|b1|2 + |b2|2 + |b3|2 + |b4|2
,
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so that the cross section provides an overall scale factor. Applying this rescaling, we have

|a1|2 + |a2|2 + |a3|2 + |a4|2 = 1. (2)

Since these reduced amplitudes ai are complex, this represents the equation of a unit 7-

sphere, i.e. the eight numbers that are the real and imaginary parts are constrained to be

on the surface of a unit hypersphere in 8 dimensions (a unit 8-ball).

The definitions of the observables in terms of the reduced amplitudes are given in

appendix A. One side-effect of choosing transversity amplitudes is that measurement of

the S-type observables leads to the extraction of the magnitudes, leaving just the relative

phases to be determined. There is often a tacit assumption that it is easier to perform

single-spin asymmetry measurements. For that reason many analyses [1, 2] start from a

point where values of the S-type observables have been determined.

B. Entropy

The entropy associated with the state of knowledge of the amplitudes is an multidi-

mensional extension of Eq. (1):

H = −
ˆ

p ({xi}) log p ({xi}) d {xi} , (3)

where {xi} represents the values of the real and imaginary parts of the amplitudes. Before

the measurement of any polarization observable, there is no knowledge of {xi}, other

than the constraint imposed by Eq. (2). To encode this as a PDF, we can spread the

probability uniformly over the surface area of the unit 7-sphere to give

p ({xi}) =
3

π4
,

which results in a pleasingly simple entropy of

H7−sphere = −
ˆ

3

π4
log

(

3

π4

)

d {xi} = 4 log π − log 3. (4)

The act of measurement can be viewed as a compression of this “uniform” PDF into as

small a region of {xi} space as possible. As a rough example, consider a set of measure-

ments that results in a multi-dimensional Gaussian PDF in amplitude space. The entropy

of an n-dimensional Gaussian is [3]

Hg =
n

2
log (2πe) +

1

2
log

(
∣

∣cij

∣

∣

)

, (5)
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where
∣

∣cij

∣

∣ is the determinant of the covariance matrix. While the four complex ampli-

tudes have eight numbers in total, representing real and imaginary parts, all observable

quantities are invariant to the choice on an overall phase angle, so the effective number of

numbers to extract is seven. In this case, a 7-dimensional Gaussian is used to estimate in-

formation gain. The projection of the Gaussian onto the 7-sphere will induce off-diagonal

correlations in cij, but for simplicity we ignore any correlations and take the standard de-

viation in each of the {xi} to be the same (σ, say). The resulting approximate expression

is

Hmeasured =
7

2
log (2πe) + 7 log σ. (6)

The gain in information is the difference between this and the initial uniform PDF over

the 7-sphere:

I = H7−sphere − Hmeasured = 4 log π − log 3 − 7

2
log (2πe)− 7 log σ. (7)

A plot of this quantity as function the size of standard deviation is shown in Fig. (1).

The choice of logarithm base is arbitrary, but for this work we select it to be 2. This

means that the unit of information is the “bit” (i.e. knowing whether a quantity is 1

or 0). This unit system is convenient for considering quantities related to polarization;

determining whether an asymmetry is positive or negative is equivalent to a gain of one

bit of information, whereas determining a phase angle quadrant is a gain of two bits.

From Fig. (1) it can be seen that if one wants to have a measured accuracy of the ampli-

tudes to a value σ = 0.05, the gain in information is roughly 21 bits (see dashed vertical

line on graph). Attempting to achieve much better accuracy than this from experiments

is not likely to be practical, so we should therefore regard the 21-bit information gain as

a target figure to aim for, if we want to be able to say that we have extracted amplitudes.

Furthermore, if two models differ by only a few percent in the values of their amplitudes,

it is not reasonable to expect that comparison with data would ever lead to being able to

differentiate them.

C. Numerical calculation of entropies.

While the calculation sketched out above is a useful rough guide, when an actual set

of observables have been measured, Eq. (3) will need to be evaluated numerically. The
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Figure 1: (Color online) Rough guide to information gain as a function of the standard deviation

σ in the real and imaginary parts of the amplitudes.

number of dimensions in this system indicates the use of Monte Carlo techniques, and a

simple implementation of this is as follows.

Sample points are generated randomly in amplitude space with uniform density on

the surface of the unit 7-sphere. The number of points N0 needs to be sufficiently large

to minimize Monte Carlo sampling uncertainty. For each point, the observables are eval-

uated according to the algebra of table III in the appendix. The use of random values of

amplitudes was described in [4] in order to establish, for combinations of observables,

the limits of regions in observable space that are allowed by postivity constraints, and

using this a a guide for deriving inequalities. The present work goes further by not only

taking into account these positivity constraints, but also estimating the PDFs of the com-

binations of observables. One can then simulate the process of measuring an observable

by weighting all the points by another PDF representing the measured observable.

In practice, the PDF of an asymmetry is likely to be something like a beta distribution

(or a Gaussian approximation thereof). For illustrative purposes, however, we can use

a simple top-hat function, which for a single observable is equivalent to reducing the

range of values from [−1, 1] to [r − δ, r + δ], where r is the measured result with some
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uncertainty ±δ. If the uniform probability density on a multi-dimensional surface S is

p (xi) d {xi} = d {xi} /S. The entropy of a uniform distribution in a volume S is then

H = −
ˆ

1

S
log

(

1

S

)

d {xi} = log S,

as illustrated by the value for the 7-sphere in Eq. (4).

If the surface is reduced by a cut, say from S0 to S1, the probability density will be

uniform in S1 and zero otherwise, so the gain in information is simply the log of the ratio

of the two surface areas:

I = log S0 − log S1

When cuts representing the measurement of a combination of observables are im-

posed, the number of remaining points N1 is an estimate of the remaining volume, so

I = log N0 − log N1.

So in order to gain the 21 bits of information, the surface area in amplitude space (and

hence the number of points) needs to be reduced by a factor of 221 ≈ 106.

This is best illustrated with a simple example, such as the measurement of one polar-

ization observable, recoil polarization, say. Figure 2 shows in the light shade the distribu-

tion of 106 points when sampling is done uniformly in amplitude space. The dark shaded

region shows 126045 points selected when a simulated measurement of R = −0.4 ± 0.1

is selected. The result is an information gain of 6 log2 10 − log2 126045 = 2.988 ± 0.003

bits, where the uncertainty is an estimate of the Monte Carlo error. So we can expect that

a measurement of one polarization observable to an accuracy of ±10% will give us about

3 bits of information.

Note that the “uncut” or prior distribution is quadratic in shape, not only for recoil po-

larization, but for all observables. This is a consequence of the observables being bilinear

combinations of the amplitudes.

III. SIMULATING COMBINATIONS OF MEASUREMENTS

A. Measuring all S-type observables

For the extraction of amplitudes, it is usually assumed that the S-type observables

(B, R and T) have to be measured. Let us examine how much information one gains by
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Figure 2: (Color online) Distribution of values of recoil polarization from the uniform PDF in

amplitude space. Shaded region represent the possible values remaining after a “measurement”.

making such measurements.

As shown in [4, 5], the constraints among observables

|T − R| ≤ 1 − B; |T + R| ≤ 1 + B (8)

carve out a tetrahedron inside a cube [−1,+1]3 in BRT-space. To approximate a measure-

ment of B, R and T, we define a spherical region, of radius r, i.e.

(B − x)2 + (R − y)2 + (T − z)2 ≤ r2,

where (x, y, z) are the coordinates of the sphere centre. This spherical cut can be moved to

various points within the tetrahedron, and the effect on the distributions of magnitudes

and phases studied.

A typical example is depicted in Fig. 3. The bottom left panel shows a projection of

the BRT distributions, which highlights the tetrahedral region. Recall that the points in

the light shaded region have been initially sampled over amplitude space, so this rep-

resents a projection into BRT-space, and affirms the constraints defined by Eq. (8). The

points in the dark sphere are those selected by the choice of cut region. The radius of
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Position in BRT tetrahedron Magnitude information

Center All magnitudes equal

Mid-point of face One magnitude small, others large and equal

Mid-point of edge Two magnitudes small and equal, other two large and equal

Vertex One magnitude large, others small and equal

Table I: Guide to relative size of magnitudes for various positions within the BRT tetrahedron

the spherical cut is 0.1, which is equivalent in information gain to a measured accuracy

in each observable of better that ±0.05 (see later). It is unlikely, when statistical and sys-

tematic uncertainties are taken into account, that experiments will be able to determine

observables to much greater accuracy than this.

In the example of Fig. 3, the spherical cut is just touching the midpoint of one of the

tetrahedron faces. The top row shows the magnitudes of the amplitudes, and it is clear

that values for each one can now be estimated. Note, however, that there is much greater

uncertainty in |a2| than in the other ones.

The relative phase angles are displayed in the remaining panels. While only three rela-

tive angles are independent, all six possibilities are shown. This is because, for situations

in which the magnitudes of two amplitudes ai and aj are almost equal (as in this case),

very small uncertainties in the relative phase of the two amplitudes with respect to a third

(θik and θjk) could lead to very large uncertainties in their relative phase θij. It is to be ex-

pected that there should be no relative phase information for transversity amplitudes if

only S-type measurements are made, and this is apparent from the distributions in Fig.

3. The observed increase towards θij = 0◦ is due to the fact that the relative angles are

formed from the difference of two uniform random variables.

By examining the variations in the distributions of magnitudes and phases for differ-

ent positions in the BRT tetrahedron, one can deduce some general heuristics governing

the relation between what we shall call a BRT measurement and the magnitudes |ai|.
These are listed in table I.

Returning to the information gain from a BRT measurement, if we assume that the

sampled points in amplitude space project into a uniformly dense BRT tetrahedron, the

10
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Figure 3: (Color online) Light shade - uniform sample of amplitude space; dark shade - region

surviving cut. Panel (a) is the projection of BRT tetrahedron, (b)-(e) show the magnitudes of the

amplitudes and the other panels are the distributions of relative phase angles (in degrees).

entropy before a measurement is

Htetra = log 8 − log 3,

i.e. the volume is a third of the cube [−1,+1]3. A 3D gaussian, with symmetric widths σ

has entropy

H3DGaussian =
3

2
log (2πe) + 3 log σ, (9)

from Eq. (5). To establish an equivalent spherical cut, one can use the entropy of a sphere

of radius r (inside tetrahedron),

Hsphere = log

(

4

3
πr3

)

, (10)
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and equate Eq. (9) and Eq. (10) to establish a relationship between r and σ:

log r − log σ =
1

2
log (2πe)− 1

3
log

(

4

3
π

)

,

from which we have r ≈ 2.564σ, so a spherical cut of radius 0.1 is equivalent to Gaussian

errors on B, R and T with σ = 0.039. Using these figures, the predicted information

gain is 9.31 bits for any position of the spherical cut within the tetrahedron. For the case

depicted in Fig. 3, the estimated information gain is 9.28 ± 0.02.

It can be readily demonstrated that the estimates of information gain are equal to the

predicted value of 9.31 (to within sampling errors) for all the classes of position listed in

table I, hence verifying the assumption that the BRT tetrahedron is uniformly sampled.

So for real experiments, knowing the uncertainties of the measured values of B, R and T

allows a calculation of information gain, irrespective of the size of the measured values.

B. Towards Extraction of Amplitudes

Compared to the original guideline of 21 bits, we can see that the measurement of just

S-type observables leaves a lot of information to be gained. With just under 10 bits, the

magnitudes can be determined to roughly 10% accuracy, but to determine relative phases

to better than, say, a 16th (= 2−4) of the full angular range will require an additional 4 bits

for each one. Adding this information together brings us to 22 bits, one greater than the

original estimate. One might imagine that measurement of an additional four double po-

larization observables would now be sufficient, given that individual measurements can

gain about 3 bits (see section II). However, the complicated relations among observables

now conspire against this.

Chiang and Tabakin [2] systematically listed the possible combinations of observables

that would lead to a “complete” set; there are a large number of them. They took one

example set which showed a counter-example to the claim in [1] that completeness could

only be attained if five observables are measured, of which four should not be from the

same BR-, BT - or RT -set. In that example, F, G and Lx were taken to be measured, and

whereas Ref. [1] claimed that E and Lz were needed, Ref. [2] asserted that only Tx was

necessary.

Using the scheme already outlined, we may examine what happens when simulated

12
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measurements are made of the same sets of observables. The BRT measurements are all

assumed to have been made, but to study whether the results for information gain de-

pend on the measure values, four possible cases of position in the measured BRT tetrahe-

dron have been used: center, mid-face, mid-edge and vertex. They give a representative

sample of all possible cases, and due to the tetrahedral symmetry only one mid-face,

mid-edge and vertex needs to be considered. For each of the four cases, 105 events were

generated within the defined spherical sub-region of the BRT tetrahedron. These were

selected by rejection from an intial uniform sample over amplitude space (the 7-sphere).

In order to simulate possible measurements of F, G and Lx, a ±0.1 cut on the generated

points around a central value of each observable was imposed. The central values are

shown for each case in table II. Relatively large values were chosen for clarity of illustra-

tion, and note that the same values of F, G and Lx could not be used for each case because

of the interdependency of these observables with the chosen BRT values.

For each set of BRT values, three cases were studied for combinations of further mea-

surements: Tx only (choice of Ref. [2]), E and Lz (choice of Ref. [1]) and Tx, E and Lz.

Again, a ±0.1 cut on the generated points around a central value of each observable is

applied. The results for information gain are shown in the penultimate column of table

II.

Several points are apparent from the results displayed. It is clear that the more mea-

surements that are made, the more information that is gained. It is also clear that the

information gain is dependent on the assumed measured BRT values. Recall that the in-

formation gain obtained when measuring only BRT values was independent of position

in the BRT tetrahedron; the difference is again due to the interdependency among ob-

servables. When the information gain is greater that 13, the number of points surviving

the cuts is 10 or less, so the estimates are of limited accuracy.

All the cases of combinations of observables that are listed in table II have previously

been proved to result in mathematically complete sets. With the introduction of simu-

lated experimental uncertainty, however, this can no longer be taken to be adequate. The

last column of the table (headed “Ambiguity?”) indicates whether there are identifiable,

unambiguous values of both magnitudes and relative phases of the amplitudes. The mid-

face case, where Tx only has been measured in addition to the common set of observables,

is illustrated in Fig. 4. Despite the few surviving points, it is fairly clear that there are no

13
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BRT position F G Lx E Lz Tx Information (bits) Ambiguity?

0.4 0.4 0.3 - - 0.7 11.4 ± 0.2 Y

Center 0.4 0.4 0.3 0.3 0.3 - 12.7 ± 0.3 N

0.4 0.4 0.3 0.3 0.3 0.7 13.2 ± 0.3 N

0.4 -0.4 0.4 - - 0.4 11.1 ± 0.1 Y

Mid-Face 0.4 -0.4 0.4 0.7 -0.7 - 12.0 ± 0.2 N

0.4 -0.4 0.4 0.7 -0.7 0.4 12.7 ± 0.3 N

0.4 0.4 0.4 - - -0.7 12.4 ± 0.2 N

Mid-Edge 0.4 0.4 0.4 0.2 -0.7 - 13.6 ± 0.4 N

0.4 0.4 0.4 0.2 -0.7 -0.7 13.6 ± 0.4 N

0.4 0.4 0.4 - - 0.3 8.8 ± 0.1 Y

Vertex 0.4 0.4 0.4 0.3 0.2 - 11.1 ± 0.1 N*

0.4 0.4 0.4 0.3 0.2 0.3 11.5 ± 0.2 N*

Table II: Results of simulated measurements for different combinations of observables. The values

of each observable are all defined with a ±0.1 cut.

three relative phase angles that have a single cluster of points, and so an unambiguous

extraction of amplitudes would not be possible.

For the cases listed in table II with N* for ambiguity, this indicates that while there is

just one identifiable cluster of points in the distributions of relative phases, the spread in

possible points is greater than 10% of the full angular range; i.e. there may be no quadrant

ambiguity, but there remains a considerable uncertainty.

It appears, from this very small sample of possible outcomes, that for measurement of

double polarization observables an information gain of about 12 bits is required. Com-

bining this number with that from the measurement of BRT (∼10 bits), this leads us to a

crude, but very helpful conclusion: only when the total information gain from polariza-

tion observables is greater than about 21 bits should it be possible to extract amplitudes

from experimental measurements. This condition will apply irrespective of which partic-

ular set of observables have been measured, since information gain is simply a measure

how of much one has compressed the original uniform PDF in amplitude space. This

number is also in line with the crude calculation given in Eq. (7), where the real and

14
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Figure 4: (Color online) Example of residual ambiguity in relative phases after measurement of

set F, G, Lx and Tx. Light shade - uniform sample of amplitude space; Dark shade - region within

BRT tetrahedron; Light shade - points surviving cuts in F, G, Lx and Tx. Labels (a)-(k) are as in

Fig. 3.

imaginary parts of the amplitudes were assumed to be extracted to an accuracy of 0.05.

The scheme outlined above uses “cuts” in the space of possible observables to sim-

ulate the act of measurement, and the reduced observable space is projected back into

amplitude space to calculate the associated entropy. This is a crude, but effective, means

of relating the observable-space PDF to the amplitude-space PDF. To apply the idea of in-

formation gain to the results of actual experiments, this scheme will have to be modified.

When the measurement of a set of observables is made, the result will be an approx-

imately multi-dimensional Gaussian PDF over the range of those observables. A PDF

in amplitude space can be constructed by sampling uniformly over all amplitude space,

15



v2 IV COMPARISON OF MODELS WITH DATA

calculating the value of the observables for each sample point then weighting them with

the values of the experimentally determined observable PDF. The resulting amplitude

PDF can be made arbitrarily accurate, depending on the number of sample points, but

for calculating information gains of 21 bits, O
(

107
)

points may be needed.

One final comment related to practical experiments is in order. It is clear that for ex-

traction of amplitudes, it is essential to be able to polarize photon beams and targets, and

to detect recoil polarization. Given that all three components of the reaction require this

technological effort, the most obvious strategy is to worry less about which combination

of observables to measure, and more about trying to measure as many as possible, with

as great an accuracy as possible. The theoretical work in Refs. [1, 2] is, however, still a

useful guide to selecting the combinations of observables that will most efficiently lead to

an information gain of 21 bits. The information measure (3) can be used in the design of

experiments to provide an estimate of the degree of accuracy (and hence the integrated

luminosity) required for amplitude extraction.

IV. COMPARISON OF MODELS WITH DATA

Having established how to estimate the quantity of information contained in mea-

sured data, can the measured data be used to extract information about the parameters

of an individual model?

An individual model will depend on some input parameters, ξ, say (e.g. coupling con-

stants). Quite often, the comparison of model calculations to data is used to extract “best

fit” values for the input parameters, ξ⋆. We can use the information gain for measured

data to tell whether a fit to the new data will yield an improved knowledge of input pa-

rameters, compared to prior information. Prior to a fit procedure, knowledge about the

possible values ξ will be encoded in a PDF p (ξ, M), where M is there as a reminder that

this quantity depends on a model. The amplitude PDF of the model, given a specified set

of input parameters is p (xi | ξ, M), where as before xi represents the real and imaginary

parts of the amplitudes. The total prior PDF of the model is an integral over the range of

input parameters

p (xi | M) =

ˆ

p (xi | ξ, M) p (ξ, M) dξ,

so a model entropy Hmodel can be evaluated by plugging the model prior PDF into Eq.
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(3). Then only if Hmeasured ≪ Hmodel is there likely to be a significant improvement in the

knowledge of the input parameters when the model is fitted to the data.

V. CONCLUSIONS

In this article a measure of information content, based on Shannon entropy, was intro-

duced and has been applied to measurement of polarization observables in pseudo-scalar

meson photoproduction. Using the uncertainties in the measurements, the information

entropy of the four amplitudes can be calculated. It is assumed that a suitably accurate

determination of the cross-section has been made, which gives an overall scale factor to

the amplitudes.

An important finding is that, when allowing for a realistic but small measurement

uncertainty, measuring only a mathematically complete set of observables is not enough

to guarantee the extraction of amplitudes. Instead, a rule of thumb, based on quantifying

information gain of about 21 bits for each point in {W, θCM}, is likely to be a more robust

guide.

An extension of the work presented here is likely to be applicable to other reactions

in which information content could determine whether measurements will be adequate

to extract physically meaningful results. Examples such as the extraction of generalized

parton distributions from DVCS-like asymmetries, or inferring the details of the nucleon-

nucleon interaction from the database of scattering observables may be fruitful areas of

investigation.
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Appendix A: Definitions of Observables

In this work, transversity amplitudes are used, although none of the results depend

on using this basis. The transversity basis refers to the projection of the recoil or target spin

along the normal to the scattering plane. The four amplitudes for pseudo-scalar meson

photoproduction are

b1 = 〈+ | M | + ⊥〉 ; b2 = 〈− | M | − ⊥〉 ;

b3 = 〈+ | M | − ‖〉 ; b4 = 〈− | M | + ‖〉 .

Here, The labels ‖ and ⊥ stand for the photon E-vector (linear polarisation) parallel to

and normal to the scattering plane respectively. In order to deal only with asymmetries

these amplitudes are divided by the cross-section to give

ai =
bi

√

|b1|2 + |b2|2 + |b3|2 + |b4|2

The experimentally measured observables are then related to the ai as shown in table III.

Whereas the double poalrization observables are denoted in a conventional way, R, B

and T have been chosen to represent Recoil, Beam and Target asymmetries.
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Observable Type Amplitude Combination

R Single |a1|2 − |a2|2 + |a3|2 − |a4|2

B |a1|2 + |a2|2 − |a3|2 − |a4|2

T |a1|2 − |a2|2 − |a3|2 + |a4|2

E Beam-Target 2ℜ (a1a⋆3 + a2a⋆4)

F 2ℑ (a1a⋆3 − a2a⋆4)

G 2ℑ (a1a⋆3 + a2a⋆4)

H −2ℜ (a1a⋆3 − a2a⋆4)

Cx Beam-Recoil −2ℑ (a1a⋆4 − a2a⋆3)

Cz 2ℜ (a1a⋆4 + a2a⋆3)

Ox 2ℜ (a1a⋆4 − a2a⋆3)

Oz 2ℑ (a1a⋆4 + a2a⋆3)

Tx Target-Recoil 2ℜ (a1a⋆2 − a3a⋆4)

Tz 2ℑ (a1a⋆2 − a3a⋆4)

Lx −2ℑ (a1a⋆2 + a3a⋆4)

Lz 2ℜ (a1a⋆2 + a3a⋆4)

Table III: Definition of observable quantities in terms of the (scaled) amplitudes.
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