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ADEQUATE MODULI SPACES AND

GEOMETRICALLY REDUCTIVE GROUP SCHEMES

JAROD ALPER

Abstract. We introduce the notion of an adequate moduli space. The theory of
adequate moduli spaces provides a framework for studying algebraic spaces which
geometrically approximate algebraic stacks with reductive stabilizers in character-
istic p. The definition of an adequate moduli space generalizes the existing notion
of a good moduli space to characteristic p (and mixed characteristic). The most
important examples of an adequate moduli space are: (1) the morphism from the
quotient stack [Xss/G] of the semistable locus to the GIT quotient Xss//G and (2)
the morphism from an algebraic stack with finite inertia to the Keel−Mori coarse
moduli space. It is shown that most of the fundamental properties of the GIT quo-
tient Xss//G follow from only the defining properties of an adequate moduli space.
We provide applications of adequate moduli spaces to the structure of geometri-
cally reductive and reductive group schemes. In particular, results of Seshadri and
Waterhouse are generalized. The theory of adequate moduli spaces provides the
possibility for intrinsic constructions of projective moduli spaces in characteristic p.
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1. Introduction

Background and motivation. In characteristic 0, any representation of a finite
group G is completely reducible. Therefore, the functor from G-representations to
vector spaces V 7→ V G given by taking invariants is exact. In particular, if G acts on
an affine scheme X and Z ⊆ X is an invariant closed subscheme, every G-invariant
function on Z lifts to a G-invariant function on X . In fact, for any algebraic group
G, these properties are equivalent and give rise to the notion of a linearly reductive
group.

In characteristic p, if p divides the order |G| = N of a finite group G, then the
above properties can fail. However, if f is a G-invariant function on an invariant

closed subscheme Z of an affine scheme X and f̃ is any (possibly non-invariant) lift

to X , then
∏

g∈G g · f̃ is a G-invariant function on X which is a lift of fN . This
motivates the definition of geometric reductivity for an algebraic group G: for every
action of G on an affine scheme X , every invariant closed subscheme Z ⊆ X and
every f ∈ Γ(Z,OZ)G, there exist an integer n > 0 and g ∈ Γ(X,OX)G extending fn.

In positive characteristic, linearly reductive groups are rare (as the connected compo-
nent is always a torus) while many algebraic groups (for example, GLn, SLn, PGLn)
are geometrically reductive. The notion of geometric reductivity of an algebraic group
G was introduced by Mumford in the preface of [Mum65]. Nagata showed in [Nag64]
that if a geometrically reductive group G acts on a finite type affine scheme Spec(A)
over a field k, then AG is finitely generated over k and Spec(AG) is a suitably nice
quotient. Mumford conjectured that the notions of geometric reductivity and re-
ductivity were equivalent for an algebraic group; this result was proved by Haboush
[Hab75]. Therefore, geometric invariant theory (GIT) for reductive group actions
could be developed in positive characteristic (see [MFK94, Appendix 1.C]) which in
turn was employed with great success to construct various moduli spaces in charac-
teristic p. Since the Hilbert-Mumford criterion holds in positive characteristic (see
[MFK94, Appendix 2.A]), most arguments using GIT to construct moduli spaces in
characteristic 0 extend to positive characteristic. For instance, one can use GIT to
construct moduli spaces of bundles and sheaves over projective varieties in positive
characteristic; [Mar77], [Gie77], and [Ses82].

If G is a geometrically reductive group acting on an affine scheme X = Spec(A) over
a field k, then we can consider the quotient stack X = [X/G]. There is a natural map

φ : X → Y := Spec(AG)

which is easily seen to have the following properties:

(1) For every surjection of quasi-coherent OX -algebras A → B and section t ∈
Γ(X ,B) there exist an integer N > 0 and a section s ∈ Γ(X ,A) such that s 7→ tN .
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(2) The homomorphism Γ(Y,OY )→ Γ(X ,OX ) is an isomorphism.

These properties motivate the following definition: for any algebraic stack X , we
say that a morphism φ : X → Y to an affine scheme is an adequate moduli space if
properties (1) and (2) are satisfied. Because Y is assumed to be affine, property (1)
is intrinsic to X and independent of the morphism φ. When Y is not affine, one has
to consider the local versions of properties (1) and (2); see the following definition.

The purpose of this paper is to develop the theory of adequate moduli spaces and
then consider applications to the structure of geometrically reductive group schemes
over an arbitrary base.

The definition and main properties. The main definition of this paper is the
following.

Definition. A quasi-compact and quasi-separated morphism φ : X → Y from an
algebraic stack to an algebraic space is an adequate moduli space if the following two
properties are satisfied:

(1) For every surjection of quasi-coherent OX -algebras A → B, étale morphism p :
U = Spec(A) → Y and section t ∈ Γ(U, p∗φ∗B) there exist N > 0 and a section
s ∈ Γ(U, p∗φ∗A) such that s 7→ tN .

(2) The morphism OY → φ∗OX is an isomorphism.

Before going further, we state now the two main examples of an adequate moduli
space that the reader should keep in mind. First, if G is a reductive group over a
field k acting on an affine k-scheme Spec(A), then [Spec(A)/G] → Spec(AG) is an
adequate moduli space (see Theorem 9.1.4). More generally, if G acts on a projective
scheme X and L is an ample G-linearization, then the quotient of the semistable locus

[Xss/G]→ Xss//G := Proj(
⊕

d≥0

Γ(X,L⊗d)G)

is an adequate moduli space. It turns out that many of the standard properties of the
GIT quotient Xss → Xss//G can be seen to follow directly from properties (1) and (2);
see the Main Theorem below. Second, for an algebraic stack X with finite inertia, the
morphism φ : X → Y to the Keel−Mori coarse moduli space is an adequate moduli
space (see Theorem 8.3.2).

One of the key insights in this paper is a generalization of Serre’s criterion providing
a characterization of affineness of an algebraic space in terms of the existence of lift-
ings of powers of sections along a surjective morphism of sheaves of quasi-coherent
algebras. More specifically, we define a morphism to be adequately affine if property
(1) in the above definition is satisfied (see Definition 4.1.1) and we provide various
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equivalent formulations (see Lemmas 4.1.7 and 4.1.8). We prove the following gener-
alization of Serre’s criterion: if f : X → Y is a quasi-compact and quasi-separated
morphism of algebraic spaces, then f is adequately affine if and only if f is affine (see
Theorem 4.3.1).

The notion of a good moduli space (see [Alp13]) is defined by replacing property (1)
with the requirement that the push-forward functor φ∗ be exact on quasi-coherent
sheaves (that is, φ is cohomologically affine). Any good moduli space is certainly an
adequate moduli space; the converse is true in characteristic 0 (see Proposition 5.1.4).

Section 3 is devoted to characterizing ring maps A → B with the property that for
all b ∈ B, there exist N > 0 and a ∈ A such that a 7→ bN ; such ring maps are called
adequate (see Definition 3.1.1) and play an essential role in this paper. This notion
is not stable under base change so we introduce universally adequate ring maps (see
Definition 3.2.1). The key fact here is that A → B is universally adequate with
locally nilpotent kernel if and only if Spec(B) → Spec(A) is an integral universal
homeomorphism which is an isomorphism in characteristic 0 (see Proposition 3.3.5);
we refer to this notion as an adequate homeomorphism (see Definition 3.3.1). In the
case of actions by finite groups (or more generally finite group schemes), the integer
N in the definition above can be chosen to be the size of the group. However, for
non-finite geometrically reductive groups (for example, SL2), Example 5.2.5 shows
that the integer N cannot be chosen universally over all quasi-coherent OX -algebras.

The following theorem summarizes the main geometric properties of adequate moduli
spaces:

Main Theorem. Let φ : X → Y be an adequate moduli space. Then

(1) The morphism φ is surjective, universally closed and universally submersive (The-
orem 5.3.1 (1, 2 and 3)).

(2) Two geometric points x1 and x2 ∈ X (k) are identified in Y if and only if their

closures {x1} and {x2} in X ×Z k intersect (Theorem 5.3.1 (4)).
(3) If Y ′ → Y is any morphism of algebraic spaces, then X ×Y Y ′ → Y ′ factors as an

adequate moduli space X ×Y Y ′ → Ỹ followed by an adequate homeomorphism
Ỹ → Y ′ (Proposition 5.2.9).

(4) Suppose that X is of finite type over a Noetherian scheme S. Then Y is of finite
type over S and for every coherent OX -module F , φ∗F is coherent. (Theorem
6.3.3).

(5) The morphism φ is universal for maps to algebraic spaces which are either locally
separated or Zariski-locally have affine diagonal (Theorem 7.2.1).

(6) Adequate moduli spaces are stable under flat base change and descend under
morphisms Y ′ → Y which are fpqc (that is, faithfully flat and every quasi-compact
open subset of Y is the image of a quasi-compact open subset of Y ′) (Proposition
5.2.9).
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Part (4) above can be considered as a generalization of Hilbert’s 14th problem and the
statement that if G is a reductive group over k and A is a finitely generated k-algebra,
then AG is finitely generated over k (see [Nag64] or [MFK94, Appendix 1.C]). It also
generalizes [Alp13, Theorem 4.16(xi)]) and Seshadri’s result [Ses77, Theorem 2]. See
the discussion in Section 6.1.

Part (5) implies that adequate moduli spaces are unique in a certain subcategory
of algebraic spaces with a mild separation hypothesis. This result implies that GIT
quotients by reductive groups over a field are also unique in this subcategory of
algebraic spaces.

We also prove the following characterization of algebraic stacks admitting Keel−Mori
coarse moduli spaces (Theorem 8.3.2):

Theorem. If X is an algebraic stack with quasi-finite and separated diagonal, the
following are equivalent:

(1) The inertia IX → X is finite.
(2) There exists a coarse moduli space φ : X → Y with φ separated.
(3) There exists an adequate moduli space φ : X → Y .

Applications to geometrically reductive group schemes. The theory of ad-
equate moduli spaces allows for several interesting applications to the structure of
geometrically reductive and reductive group schemes. Building off the work of Se-
shadri in [Ses77], we first systematically develop the theory of geometrically reductive
group schemes in Section 9 and we then deduce the foundational properties of quo-
tients by geometrically reductive group schemes (see Theorem 9.1.4). Our approach
differs from Seshadri’s [Ses77] where the main interest is only studying quotients by
reductive group schemes. We can also consider group schemes which may not be
smooth, affine or have connected fibers.

Definition. Let S be an algebraic space. A flat, finitely presented, separated group
algebraic space G → S is geometrically reductive if BG → S is an adequate moduli
space.

If S = Spec(R), then G → Spec(R) is geometrically reductive if for every surjection
A→ B of G-R-algebras and b ∈ BG, there exist N > 0 and a ∈ AG such that a 7→ bN .
The notion of geometric reductivity can be formulated in various ways (see Lemmas
9.2.1 and 9.2.5). When G → Spec(R) is smooth with R Noetherian and satisfies
the resolution property, this definition is equivalent to Seshadri’s notion (see [Ses77,
Theorem 1] and Remark 9.2.6). Furthermore, Seshadri’s generalization of Haboush’s
theorem can be extended as follows (see Theorem 9.7.6).

Theorem. Let G → S be a smooth group scheme. Then G → S is geometrically
reductive if and only if the geometric fibers are reductive and G/G◦ → S is finite.
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Generalizing the main result of [Wat94], we prove the following result (see Theorem
9.6.1).

Theorem. Let G→ S be a quasi-finite, separated, flat group algebraic space. Then
G→ S is geometrically reductive if and only if G→ S is finite.

We offer the following generalization of Matsushima’s theorem (see Section 9.4 for a
historical discussion, and Theorem 9.4.1 and Corollary 9.7.7 for a proof).

Theorem. Let G→ S be a geometrically reductive group algebraic space and H ⊆ G
a flat, finitely presented and separated subgroup algebraic space. If G/H → S is
affine, then H → S is geometrically reductive. If G → S is affine, the converse is
true. In particular, if G→ S is a reductive group scheme and H ⊆ G a flat, finitely
presented and separated subgroup scheme, then H → S is reductive if and only if
G/H → S is affine.

Potential applications. The theory of good moduli spaces (which is the analogous
notion in characteristic 0) has already had several interesting applications to the log
minimal model program for M g (see [AFS14] and [AFSvdW14]). The theory of ade-
quate moduli spaces is likely indispensable in extending these results to characteristic
p. In fact, adequate moduli spaces have already made a prominent appearance in
[MV13] and [BFMV13].

One might hope that the theory of adequate moduli spaces allows for intrinsic con-
structions of proper (or projective) moduli spaces in characteristic p. The general
strategy is:

(1) Show that the moduli problem is represented by an algebraic stack X .
(2) Use geometric properties of the moduli problem to show that there exists an

adequate moduli space X → Y where Y is an algebraic space.
(3) Use a valuative criterion on X to show that Y is proper. To show that Y is

projective, show that a certain tautological line bundle on X descends to Y
and then use intersection theory techniques to show that the descended line
bundle is ample.

Step (1) can often be accomplished by verifying deformation-theoretic properties of
the moduli problem [Art74]. It can be the case that X is not a global quotient stack
such as for the moduli stack of semistable curves (see [Kre13]). Moreover, it is often
the case that X is not known to be a global quotient stack such as for the mod-
uli stacks parameterizing Bridgeland semistable objects (see [AP06] and [Tod08]).
Therefore, to construct an adequate moduli space, one cannot rely on the machin-
ery of GIT. The construction of the adequate moduli space in step (2) is often the
most challenging ingredient in this procedure and can be viewed as a generalization
of the Keel−Mori theorem [KM97] which guarantees the existence of coarse moduli
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spaces for algebraic stacks with finite inertia. The verification of properness in step
(3) involves showing that the moduli stack satisfies a weak valuative criterion analo-
gous to Langton’s theorem [Lan75] for the moduli stack of torsion-free sheaves on a
smooth projective variety or [AP06, Theorem 4.1.1] for the moduli stack of Bridgeland
semistable objects. The strategy to establish projectivity in step (3) is analogous to
Kollár’s proof of the projectivity of M g [Kol90]. Although this three-step procedure
is ambitious, the analogous strategy has been successfully employed in characteristic
0 in [AFSvdW14] to construct the second flip of M g.

Acknowledgments. I am indebted to Johan de Jong for providing the motivation
to pursue this project and for offering many useful suggestions. I also thank David
Rydh and Ravi Vakil for helpful discussions.

2. Conventions

We use the terms algebraic stack and algebraic space in the sense of [LMB00]. In
particular, all algebraic stacks and algebraic spaces have a quasi-compact and sep-
arated diagonal (although we sometimes superfluously state this hypothesis). If X
is an algebraic stack, the lisse-étale site of X , denoted Lis-ét(X ), is the site where
objects are smooth morphisms U → X from schemes U , morphisms are arbitrary
X -morphism, and covering families are étale.

2.1. G-R-modules and algebras. Let G → S = Spec(R) be a flat, finitely pre-
sented and separated group scheme. Let ǫ : Γ(G,OG)→ R, ι : Γ(G,OG)→ Γ(G,OG)
and δ : Γ(G,OG) → Γ(G,OG) ⊗R Γ(G,OG) be the counit, coinverse and comul-
tiplication, respectively. A (left) G-R-module is an R-module M with a coaction
σM :M → Γ(G,OG)⊗RM satisfying the commutative diagrams:

M
σM

//

σM
��

Γ(G,OG)⊗RM
id⊗σM
��

Γ(G,OG)⊗RM δ⊗id
// Γ(G,OG)⊗R Γ(G,OG)⊗RM

M
σM

//

id

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆ Γ(G,OG)⊗R M

ǫ⊗id
��

M

A morphism of G-R-modules is a morphism of R-modules α : A → B such that
(id ⊗ α) ◦ σM = σN ◦ α. The operators of direct sum and tensor products extend
to G-R-modules. A (left) G-R-algebra is a G-R-module A with the structure of an
R-algebra such that R → A (where R has the trivial G-R-module structure) and
multiplication A ⊗R A → A are morphisms of G-R-modules. A morphism of G-R-
algebras is a morphism of G-R-modules α : A → B which is also a morphism of
R-algebras.

Let BG = [S/G] be the classifying stack of G → S. The category of G-R-modules
(of finite type) is equivalent to the category of quasi-coherent sheaves (of finite type,
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respectively) on BG. The category of G-R-algebras (of finite type) is equivalent
to the category of quasi-coherent OBG-algebras (of finite type, respectively). (One
defines a G-R-module or G-R-algebra to be finite type if the underlying R-module or
R-algebra, respectively, is of finite type.

2.2. Locally nilpotent ideals. Recall that an ideal I of a ring R is locally nilpotent
if for every x ∈ I there exists N > 0 such that xN = 0. Of course, if I is finitely
generated, this is equivalent to requiring the existence of N > 0 such that IN = 0.
An ideal I ⊆ A of a quasi-coherent OX -algebra A is locally nilpotent if for every
object (U → X ) ∈ Lis-ét(X ) and section x ∈ I(U → X ), there exists N > 0 such
that xN = 0.

2.3. Symmetric products. If X is an algebraic stack and F is a quasi-coherent
or finite type OX -module, then the symmetric algebra Sym∗F is a quasi-coherent
OX -algebra or a finite type OX -algebra, respectively. This construction is functorial:
a morphism of quasi-coherent OX -modules F → G induces a morphism of quasi-
coherent OX -algebras Sym

∗F → Sym∗ G. Note that ifM⊆ A is sub-OX -module of
a quasi-coherent OX -algebra F , then there is an induced morphism Sym∗M→A of
quasi-coherent OX -algebras.

Lemma 2.3.1. If X is a Noetherian algebraic stack, then every quasi-coherent OX -
algebra is a filtered inductive limit of finite type sub-OX -algebras. If A is a finite type
OX -algebra, then there exist a coherent sub-OX -moduleM⊆ A such that Sym∗M→
A is surjective.

Proof. This follows formally from [LMB00, 15.4] as in [Gro67, I.9.6.6]. Namely,
[LMB00, 15.4] implies that any quasi-coherent OX -algebra is a filtered inductive limit
of coherent sub-OX -modules and each sub-OX -module generates a finite type sub-OX -
algebra. �

3. Adequacy for rings

3.1. Adequate ring homomorphisms.

Definition 3.1.1. A homomorphism of rings A→ B is adequate if for every element
b ∈ B, there exists an integer N > 0 and a ∈ A such that a 7→ bN .

It is clear that the composition of adequate ring maps is again adequate.

Lemma 3.1.2. Let φ : A→ B be an adequate homomorphism. Then

(1) If S ⊆ A is a multiplicative set, then S−1A→ S−1A⊗A B is adequate.
(2) If I ⊆ A is an ideal, then A/I → B/IB is adequate.
(3) For every prime p ⊆ A, the homomorphism Ap →֒ Ap⊗AB and k(p) →֒ k(p)⊗AB

are adequate.
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(4) For every q ⊆ B with p = φ−1(q), the homomorphisms Ap → Bq and k(p)→ k(q)
are adequate.

(5) If A is local with maximal ideal mA, then B is local with maximal ideal
√
mAB.

Proof. Let b/g ∈ S−1B. For some integer N > 0, we have bN ∈ A and therefore
(b/g)N ∈ S−1A. Statements (2) − (4) are clear. For statement (5), for b /∈

√
mAB,

there exist N > 0 and a ∈ A with a 7→ bN but then a /∈ mA so b is a unit. �

Lemma 3.1.3. Let A→ B be a ring homomorphism and let A → A′ be a faithfully
flat ring homomorphism. If A′ → A′ ⊗A B is adequate, then so is A→ B.

Proof. We may assume that A→ B is injective. Since A→ A′ is faithfully flat, there
is a commutative diagram

A //

��

A′ //
//

��

A′ ⊗A A′

��

B // B ⊗A A′ //
// B ⊗A A′ ⊗A A′

where the rows are exact. If b ∈ B, there exist a′ ∈ A′ and N > 0 such that
a′ 7→ bN ⊗ 1. Since the elements a′ ⊗ 1 and 1 ⊗ a′ are equal in A′ ⊗A A′, we have
a′ ∈ A and a′ 7→ bN in B. �

Lemma 3.1.4. Let A →֒ B be an adequate inclusion of rings. Then Spec(B) →
Spec(A) is an integral homeomorphism.

Proof. It is clear that A→ B is integral. By Lemma 3.1.2, for every p ⊆ A, the fiber
k(p) → k(p) ⊗A B is adequate which implies that (k(p) ⊗A B)red is a field. Since
Spec(B)→ Spec(A) is integral, injective and dominant, it is a homeomorphism. �

.

Lemma 3.1.5. Let A →֒ B be an adequate inclusion of Q-algebras. Then A = B.

Proof. An element b ∈ B determines a ring homomorphism π : Q[x] → B and
π−1(A) →֒ Q[x] is adequate. It thus suffices to handle the case when A ⊆ B = Q[x].
There exists an n > 0 such that Q[xn] ⊆ A ⊆ Q[x] so that A → B = Q[x] is finite
and A is necessarily Noetherian. For a maximal ideal q ⊆ B with p = q∩A, the map
Ap →֒ Bq is adequate, where Bq is a discrete valuation ring. If I = ker(Ap[t] → Bq)
where t 7→ x, then for some N > 0 and a ∈ Ap, we have (t + 1)N − a ∈ I. It
follows that ΩBq/Ap

= 0 as N(t + 1)N−1dt = 0 and t + 1 ∈ Bq is a unit. Therefore,
Spec(B)→ Spec(A) is finite and étale. By Lemma 3.1.4, it is also a homeomorphism
and therefore an isomorphism. �

Lemma 3.1.6. Let k →֒ k′ be an adequate inclusion of fields of characteristic p.
Suppose that k is transcendental over Fp. Then k →֒ k′ is purely inseparable.
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Proof. There is a factorization k ⊆ k0 ⊆ k′ such that k ⊆ k0 is separable and k0 ⊆ k′

is purely inseparable. Since k →֒ k0 is adequate, it suffices to show that for every
adequate and separable field extension k →֒ k′ with k transcendental over Fp, we have
k = k′.

We may assume that k′ = k(α) with αq = a ∈ k where q 6= p is a prime and a ∈ k
is transcendental over Fp. Suppose that |k(α) : k| = q so that 1, α, . . . , αq−1 form a
basis of k′ over k. There exists N > 0 such that (α + a)N = b ∈ k. Write N = pkN ′

with p ∤ N ′. Then (α + a)N = (αp
k

+ ap
k

)N
′ ∈ k, k(αpk) = k(α) and (αp

k

)q = ap
k ∈ k

is transcendental. So we may assume p ∤ N . We can write

(α+ a)N =
N∑

i=0

(
N

i

)
αiaN−i =

q−1∑

j=0

( ⌊(N−j)/q⌋∑

i=0

(
N

j + qi

)
aN−j−qi+i

)
αj

By looking at the coefficient of α, since p does not divide N , we obtain a monic
relation for a over Fp, which is a contradiction. Suppose that |k(α) : k| < q so that
xq − a is reducible over k. Then a = bq for some b ∈ k (see [Lan02, Theorem 9.1]).
Then αb−1 = ξq is a qth root of unity and k′ = k(ξq). Let t ∈ k be a transcendental
element. There exists an integer N > 0 such that (t+ ξq)

N = b ∈ k. We may assume
that p ∤ N . In the expansion of (t+ξq)

N in terms of the basis 1, ξq, . . . , ξ
q−2
q of k′ over k,

the coefficient of ξq is a polynomial g(t) = NtN−1+ · · ·+(lower degree terms) ∈ Fp[t]
which must be 0. This contradicts the fact that t ∈ k is transcendental. �

Remark 3.1.7. The hypothesis that k be transcendental over Fp is necessary. An
inclusion of finite fields Fq →֒ Fqn is adequate as every element satisfies xq

n−1 = 1. In

fact, if k is algebraic over Fp, then k →֒ Fp is adequate.

3.2. Universally adequate ring homomorphisms. If A → B is an adequate
inclusion of rings, the base change A′ → A′⊗AB by an A-algebra A′ is not necessarily
adequate; similarly, Spec(B)→ Spec(A) is a homeomorphism (see Lemma 3.1.4) but
is not necessarily a universal homeomorphism. For instance,

Fq →֒ Fqn

is adequate but Fqn → Fqn ⊗Fq Fqn
∼= ×ni=1Fqn is not adequate. Furthermore, if B is

any Fp-algebra and m ⊆ B is a maximal ideal with residue field Fpn with n > 1, then
let A = π−1(Fp) where π : B → Fpn. Then A ⊆ B is adequate but this is not stable
under base change. This discussion motivates the following definition:

Definition 3.2.1. A ring homomorphism A→ B is universally adequate if for every
A-algebra A′ the ring homomorphism A′ → A′ ⊗A B is adequate.

Remark 3.2.2. A ring homomorphism A→ B is universally adequate if and only if for
every n the ring homomorphism A[x1, . . . , xn] → B[x1, . . . , xn] is adequate. Indeed,
any b′ ∈ A′⊗AB is the image of an element in B[x1, . . . , xn] for some n. Furthermore,
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by Lemma 3.1.3, the property of being universally adequate descends under faithfully
flat ring homomorphisms.

Lemma 3.2.3. Let A →֒ B be an inclusion of Fp-algebras. The following are equiv-
alent:

(1) The homomorphism A →֒ B is universally adequate.
(2) For every b ∈ B, there exists r > 0 such that b p

r ∈ A.
Furthermore, if A →֒ B is finite type, then the above conditions are also equivalent
to:

(3) There exists r > 0 such that for all b ∈ B, b p
r ∈ A.

In particular, an inclusion of fields is universally adequate if and only if it is purely
inseparable.

Proof. Since condition (2) is easily seen to be stable under arbitrary base change,
we have (2) =⇒ (1). For (1) =⇒ (2), we first show that a universally adequate
inclusion of fields k →֒ k′ is purely inseparable. Indeed, let k →֒ k′ be a separable
field extension which is universally adequate and let k denote an algebraic closure of
k. Then k →֒ k⊗k k′ is adequate which implies by Lemma 3.1.6 that k⊗k k′ = k and
that k = k′.

Now suppose that A and B are Artin rings. We can immediately reduce to the case
where A is local with maximal ideal mA. Then B is a local ring with maximal ideal√
mAB by Lemma 3.1.2. Since A/mA →֒ B/

√
mAB is universally adequate, it is a

purely inseparable field extension. Therefore, for b ∈ B, there exist a ∈ A and n > 0
such that b− a pn ∈

√
mAB but then for some m > 0, (b− a pn) pm = b p

m − a pn+m

= 0.

In the general case, an element b ∈ B determines an Fp-algebra homomorphism
Fp[x]→ B. If this map is not injective, the image B0 ⊆ B is an Artin ring and since
A0 →֒ B0 is an adequate inclusion, there exists a prime power of b in A. Otherwise,
denote A0 = Fp[x]∩A. Since Frac(A0) →֒ Fp(x) is a purely inseparable field extension
Frac(A0) = Fp(x

q) for a prime power q. Denote by A[xq] ⊆ Fp[x] the subring generated
by A0 and x

q. Then f : Spec(A0[x
q])→ Spec(A0) is an isomorphism over the generic

point. Let I = Supp(A0[x
q]/A0) ⊆ A0. Since A0/I → A0[x

q]/IA0[x
q] is an adequate

extension of Artin rings, there exists a prime power q′ such that (A0[x
q]/IA0[x

q])q
′ ⊆

A0/I. It follows that the inclusion A0 →֒ A0[x
qq′] is an isomorphism so xqq

′ ∈ A.

It is clear that (3) =⇒ (2). Conversely, if A→ B is of finite type, let b1, · · · , bn ∈ B
be generators for B as an A-algebra. Choose r > 0 such that b p

r

i ∈ A. Then b p
r ∈ A

for all b ∈ B. �

Remark 3.2.4. If A →֒ B is not of finite type, a universal r as in Lemma 3.2.3(3)

cannot be chosen. For instance, consider Fp[x
p
1, x

p2

2 , x
p3

2 , . . .] →֒ Fp[x1, x2, x3, . . .]
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3.3. Adequate homeomorphisms.

Definition 3.3.1. A morphism f : X → Y of algebraic spaces is an adequate homeo-
morphism if f is an integral, universal homeomorphism which is a local isomorphism
at all points with a residue field of characteristic 0. A ring homomorphism A → B
is an adequate homeomorphism if Spec(B) → Spec(A) is. If X is an algebraic stack,
a morphism A → B of quasi-coherent OX -algebras is an adequate homeomorphism if
SpecX (B)→ SpecX (A) is.
Remark 3.3.2. A morphism f : X → Y of algebraic spaces is a local isomorphism
at x ∈ X if there exists an open neighborhood U ⊆ X containing x such that f |U
is an open isomorphism. If f : X → Y is a locally of finite presentation morphism
of schemes, then f is a local isomorphism at x if and only if OY,f(x) → OX,x is an
isomorphism ([Gro67, I.6.5.4, IV.1.7.2]). The property of being an adequate homeo-
morphism is stable under base change and descends in the fpqc topology. Therefore
the property also extends to representable morphisms of algebraic stacks. We note
that by [Ryd10b, Corollary 4.20], any separated universal homeomorphism of alge-
braic spaces is necessarily integral.

We first consider the characteristic p case and offer a slight generalization of [Kol97,
Proposition 6.6].

Proposition 3.3.3. Let A → B be an homomorphism of Fp-algebras. Then the
following are equivalent:

(1) The morphism Spec(B)→ Spec(A) is an integral universal homeomorphism.
(2) The morphism Spec(B)→ Spec(A) is an adequate homeomorphism.
(3) The ideal ker(A→ B) is locally nilpotent and A→ B is universally adequate.
(4) The ideal ker(A → B) is locally nilpotent and for every b ∈ B, there exist r > 0

and a ∈ A such that a 7→ bp
r

.

If A→ B is finite type, then the above are also equivalent to:

(5) The ideal ker(A→ B) is locally nilpotent and there exists r > 0 such that for all
b ∈ B, there exists a ∈ A such that a 7→ b p

r

.

Proof. By definition, we have (1) ⇐⇒ (2). Lemma 3.1.4 shows that (3) =⇒ (1).
Lemma 3.2.3 shows that (3) ⇐⇒ (4) as well as (4) ⇐⇒ (5) if A → B is of
finite type.. We need to show that (1) =⇒ (4). We may assume that A →֒ B is
injective. For b ∈ B, there exists a finite type A-subalgebra A ⊆ B0 ⊆ B containing
b. Then Spec(B0) → Spec(A) is an integral universal homeomorphism. We may
assume that A →֒ B is finite. Suppose first that A is a local ring so B is also a
local ring (Lemma 3.1.2). Let mA and mB denote the maximal ideals. Let b1, . . . , bn
be generators for B as an A-module. Since A/mA → B/mB is a purely inseparable

field extension, there exists r > 0 such that for each i, the image of b p
r

i in B/mAB
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is contained in A/mA. Let Br be the A-subalgebra of B generated by b p
r

i giving

inclusions A ⊆ Br ⊆ B. For each i, the image of b p
r

i in (Br/A) ⊗A A/mA is 0.
Therefore (Br/A) ⊗A A/mA = 0 so by Nakayama’s lemma A = Br. For the general
case, let b ∈ B. For each p ∈ Spec(A), there exists r and a/g ∈ Ap such that
a
g
7→ b p

k

in Ap ⊗A B. Since Spec(A) is quasi-compact, there exists r > 0 and a
finite collection of functions g1, . . . , gs ∈ A generating the unit ideal such that for
each i, gib

pr ∈ A. We may write 1 = f1g1 + · · · + fsgs with fi ∈ A. Therefore
b p

r

= f1g1b
pr + · · ·+ fsgsb

pr ∈ A which establishes (4). �

Remark 3.3.4. Note that if condition (5) is satisfied with r > 0, then for any A-algebra
A′ and b′ ∈ A′⊗AB, there exists a′ ∈ A′ such that a′ 7→ b p

r

. If A is Noetherian, then
condition (5) above is equivalent to requiring the existence of a factorization

X = Spec(B)→ Spec(A)→ X(q)

where X → X(q) is the geometric Frobenius morphism for some q = pr.

We now adapt the proof of [Kol97, Lemma 8.7].

Proposition 3.3.5. Let A → B be a homomorphism of rings. Then the following
are equivalent:

(1) The morphism Spec(B)→ Spec(A) is an adequate homeomorphism.
(2) The ideal ker(A → B) is locally nilpotent, ker(A → B) ⊗ Q = 0 and A → B is

universally adequate.

If A→ B is of finite type, then the above conditions are also equivalent to:

(3) The ideal ker(A→ B) is locally nilpotent, ker(A→ B)⊗ Q = 0 and there exists
N > 0 such that for every A-algebra A′ and b′ ∈ A′ ⊗A B, there exists a′ ∈ A′

such that a′ 7→ b′N .

Proof. Let B′ = im(A → B) and consider the factorization A ։ B′ →֒ B. The
statement is clear for A։ B′. We may therefore reduce to the case where A →֒ B is
injective.

For (2) =⇒ (1), Spec(B)→ Spec(A) is a universal homeomorphism by Lemma 3.1.4
and an isomorphism at all points with characteristic 0 residue field by Lemma 3.1.5.
For (1) =⇒ (2), let b ∈ B. By taking a finitely generated A-subalgebra B0 ⊆ B
containing b, we can reduce to the case where A →֒ B is of finite type. In this case,
we will show that (1) =⇒ (3). Define Q = B/A. Since Spec(B) → Spec(A) is an
isomorphism in characteristic 0, we have Q⊗Z Q = 0. Since Q is a finite A-module,
there exists m > 0 such that mQ = 0.

We claim that there exists N > 0 such that for all A/mA-algebras A′ and b′ ∈
A′⊗A/mAB/mB, there exists a′ ∈ A′ with a′ 7→ b′N . Write m = pn1

1 · · · pnk

k . There are
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decompositions A/mA = A1⊕· · ·⊕Ak and B/mB = B1⊕· · ·⊕Bk with Spec(Bi)→
Spec(Ai) a finite universal homeomorphism of Z/pni

i -schemes. If for each i, there
exists Ni with the desired property for Ai → Bi, then N =

∏
iNi satisfies the claim.

Assume m = pn and that A →֒ B is an inclusion of Z/mZ-algebras. By Lemma 3.2.3
since Spec(A/pA) → Spec(B/pB) is a finite universal homeomorphism, there exists
r > 0 such that for all b ∈ B/pB, there exists a ∈ A/pA with a 7→ b p

r

. Therefore, for
any b ∈ B, we may write b p

r

= a + pb1 ∈ A + pB. Then

bp
r+n

= (a+ pb1)
pn = ap

n

+
∑

i>0

pi
(
pn

i

)
ap

n−ibi1 = ap
n ∈ A

since pn divides pi
(
pn

i

)
for i > 0. Furthermore, the same argument applied to A′ →

A′ ⊗A B for an A-algebra A′ shows that the property holds with the same choice of
r. This establishes the claim.

For any A-algebra A′, if Q′ = coker(A′ → A′ ⊗A B), then Q′ = Q⊗A A′ and mQ′ =
0. Therefore, for any b′ ∈ A′ ⊗A B, there exists a′ ∈ A′/mA′ with a′ 7→ b′N in
A′⊗AB/m(A′⊗AB) which shows that the image of b′N ∈ Q′ is contained in mQ′ = 0
and so there exists a′ ∈ A′ with a′ 7→ b′N . �

Remark 3.3.6. We note that since property (1), (2) or (3) implies that A → B is
integral, A→ B is of finite type if and only if A→ B is finite. If in addition A→ B
is injective, then A is Noetherian if and only if B is Noetherian.

Example 3.3.7. The condition that a morphism f : Spec(A) → Spec(B) be an
adequate homeomorphism is not equivalent to the ring homomorphism B → A being
universally adequate with locally nilpotent kernel. For instance, consider Spec(Q)→
Spec(Q[ǫ]/(ǫ2)).

3.4. Universally adequate OX -algebra homomorphisms.

Definition 3.4.1. Let X be an algebraic stack. A morphism A → B of quasi-coherent
OX -algebras is universally adequate if for every object (U → X ) ∈ Lis-ét(X ) and

section s ∈ B(U → X ), there are an étale cover {Ui gi→ U} and integers Ni > 0 and
ti ∈ A(Ui → X ) such that ti 7→ (g∗i s)

Ni.

Remark 3.4.2. It is clear that this is a Zariski-local condition on X and that the
composition of two universally adequate morphisms is again universally adequate. For
an object (U → X ) ∈ Lis-ét(X ) with U quasi-compact and section s ∈ B(U → X ), a
universal N can be chosen.

Lemma 3.4.3. A morphism A → B of quasi-coherent OX -algebras is universally ad-
equate if and only if for every smooth morphism Spec(A)→ X and s ∈ B(Spec(A)→
X ), there exist an étale surjective morphism g : Spec(A′) → Spec(A), an integer
N > 0 and t ∈ A(Spec(A′)→ X ) such that t 7→ (g∗s)n.



ADEQUATE MODULI SPACES 15

Proof. This is clear. �

Lemma 3.4.4. If X = Spec(R) is an affine scheme, a morphism of quasi-coherent
OX-algebras A → B is universally adequate if and only if Γ(X,A) → Γ(X,B) is
universally adequate.

Proof. Let A = Γ(X,A) and B = Γ(X,B). The “if” direction is clear since for any
smooth R-algebra R′, the ring homomorphism A ⊗R R′ → B ⊗R R′ is adequate.
Conversely, by Remark 3.2.2, it suffices to show that for each n, A[x1, . . . , xn] →
B[x1, . . . , xn] is adequate. For each b′ ∈ B[x1, . . . , xn], the hypotheses imply that
there exist a faithfully flat R[x1, . . . , xn]-algebra R

′, an integer N > 0 and a′ ∈ A⊗RR′

such that a′ 7→ bN ⊗1 in B⊗RR′. But this then implies as in Lemma 3.1.3 that there
exists a ∈ A[x1, . . . , xn] such that a 7→ bN . �

Lemma 3.4.5. Let X be a quasi-compact algebraic stack and let f : Spec(R) → X
be a smooth presentation. A morphism A → B of quasi-coherent OX -algebras is
universally adequate if and only if Γ(Spec(R), f ∗A)→ Γ(Spec(R), f ∗B) is universally
adequate.

Proof. The “if” direction is clear. The “only if” direction follows from the same proof
as that of Lemma 3.4.4. �

Lemma 3.4.6. Let f : X → Y be a morphism of algebraic stacks. Suppose that
A → B is a morphism of quasi-coherent OY-algebras. Then

(1) If A → B is universally adequate, then f ∗A → f ∗B is universally adequate.
(2) If f is fpqc and f ∗A → f ∗B is universally adequate, then A → B is universally

adequate.

Proof. We may assume that X and Y are quasi-compact. Let q : Spec(R) → X
and Spec(S)→ Spec(R)×Y X be smooth presentations. This gives a 2-commutative
diagram

Spec(S)
f ′

//

p

��

Spec(R)

q

��

X f
// Y

with f ′ : Spec(S) → Spec(R) faithfully flat. Then Lemma 3.4.5 implies that A →
B and f ∗A → f ∗B are universally adequate if and only if Γ(Spec(R), q∗A) →
Γ(Spec(R), q∗B) and Γ(Spec(S), p∗f ∗A) → Γ(Spec(S), p∗f ∗B) are universally ade-
quate, respectively. Part (1) is now clear and part (2) follows from Lemma 3.1.3. �

Lemma 3.4.7. Let X be an algebraic stack and let A → B be a homomorphism of
quasi-coherent OX -algebras. Then the following are equivalent:
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(1) The ideal sheaf ker(A → B) is locally nilpotent, ker(A → B)⊗Q = 0 and A → B
is universally adequate.

(2) The morphism A → B is an adequate homeomorphism.
(3) The morphism SpecX (B)→ SpecX (A) is an adequate homeomorphism.

Proof. This follows from the definitions and fpqc descent using Lemma 3.4.6 and
Proposition 3.3.5. �

4. Adequately affine morphisms

In this section, we introduce a notion characterizing affineness for non-representable
morphisms of algebraic stacks which is weaker than cohomological affineness and will
be an essential property of adequate moduli spaces. This notion was motivated by
and captures the properties of a morphism [Spec(A)/G] → Spec(AG) where G is a
reductive group.

4.1. The definition and equivalences.

Definition 4.1.1. A quasi-compact, quasi-separated morphism f : X → Y of al-
gebraic stacks is adequately affine if for every surjection A → B of quasi-coherent
OX -algebras, the push-forward f∗A → f∗B is universally adequate. A quasi-compact,
quasi-separated algebraic stack X is adequately affine if X → Spec(Z) is adequately
affine.

Remark 4.1.2. By Lemma 3.4.4, a quasi-compact, quasi-separated algebraic stack
X is adequately affine if and only if for every surjection A → B of quasi-coherent
OX -algebras, the ring homomorphism Γ(X ,A) → Γ(X ,B) is universally adequate.
Even though the notion of adequacy is not stable under base change, the above
notion is equivalent to the seemingly weaker requirement that for every surjection
A → B of quasi-coherent OX -algebras, the ring homomorphism Γ(X ,A) → Γ(X ,B)
be adequate; see Lemma 4.1.8(3).

Remark 4.1.3. A quasi-compact, quasi-separated morphism X → Spec(A) is ade-
quately affine if and only if X is adequately affine if and only if X → Spec(Γ(X ,OX ))
is adequately affine.

Remark 4.1.4. Recall from [Alp13, Section 3] that a quasi-compact, quasi-separated
morphism f : X → Y of algebraic stacks is said to be cohomologically affine if the
push-forward functor f∗ is exact on quasi-coherent OX -modules.

Lemma 4.1.5. Let f : X → Y be a quasi-compact, quasi-separated morphism of
algebraic stacks. Then f is cohomologically affine if and only if for every surjection
A → B of quasi-coherent OX -algebras, f∗A → f∗B is surjective.
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Proof. The “only if” direction is clear. Conversely, let F → G be a surjection of
quasi-coherent OX -modules. Then Sym∗F → Sym∗ G is a surjection of graded quasi-
coherent OX -algebras. As f∗ is exact on the category of quasi-coherent OX -modules,
f∗ Sym

∗F → f∗ Sym
∗ G is surjective and it follows that f∗F → f∗G is surjective. �

We now establish a key lemma which will be used to prove that adequate moduli
spaces and good moduli spaces are equivalent notions in characteristic 0 (see Propo-
sition 5.1.4).

Lemma 4.1.6. Let f : X → Y be a quasi-compact, quasi-separated morphism of
algebraic stacks defined over Spec(Q). Then f is adequately affine if and only if f is
cohomologically affine.

Proof. This follows from Lemmas 4.1.5 and 3.1.5. �

Lemma 4.1.7. Let f : X → Y be a quasi-compact, quasi-separated morphism of
algebraic stacks. The following are equivalent:

(1) For every universally adequate morphism A → B of quasi-coherent OX -algebras
with kernel I, the morphism f∗A/f∗I → f∗B is an adequate homeomorphism.

(2) The morphism f is adequately affine.
(3) For every surjection F → G of quasi-coherentOX -modules, the morphism f∗ Sym

∗F →
f∗ Sym

∗ G is universally adequate.

If in addition X is Noetherian, then the above are equivalent to:

(1′) For every universally adequate morphism A → B of finite type quasi-coherent
OX -algebras with kernel I, the mophism f∗A/f∗I → f∗B is an adequate homeo-
morphism.

(2′) For every surjection A → B of finite type quasi-coherent OX -algebras, the mor-
phism f∗A → f∗B is universally adequate.

(3′) For every surjection F → G of coherent OX -modules, the morphism f∗ Sym
∗F →

f∗ Sym
∗ G is universally adequate.

Proof. It is obvious that (1) =⇒ (2) =⇒ (3). We now show that (3) =⇒ (2) =⇒
(1). Suppose that property (3) holds and let A → B be a surjection of quasi-coherent
OX -algebras. The natural map Sym∗ B → B has a section so that f∗ Sym

∗ B → f∗B
is surjective. There is a commutative diagram

f∗ Sym
∗A //

��

f∗ Sym
∗ B

��

f∗A // f∗B
Since the composition f∗ Sym

∗A → f∗ Sym
∗ B → f∗B is universally adequate, so is

f∗A → f∗B, which establishes property (2). Suppose that property (2) holds. We
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may assume that X and Y are quasi-compact. Let A → B be a universally adequate
morphism of quasi-coherent OX -algebras. Let B′ = im(A → B). Then f∗A → f∗B
is universally adequate so we may assume that A → B is injective. Let V → Y and
U → XV := X ×Y V be smooth presentations with U and V affine. Let R = U×XV

U .
This gives a diagram

U ×XV
U //

// U // XV //

��

�

V

��

X // Y
We have a diagram of exact sequences

f∗A(V → Y) �
�

//
� _

��

A(U → X ) //
//

� _

��

A(U ×XV
U → X )
� _

��

f∗B(V → Y) �
�

// B(U → X ) //
// B(U ×XV

U → X )
Since A → B is universally adequate, Lemma 3.4.5 implies that the middle vertical
arrow is universally adequate. Therefore, for s ∈ f∗B(V → Y), there exist N > 0
and t ∈ A(U → X ) with t 7→ sN . By exactness, we must have t ∈ f∗A(V → Y).
Therefore f∗A(V → Y) → f∗B(V → Y) is universally adequate which establishes
that f∗A → f∗B is a universally adequate. Statement (1) follows.

In the locally Noetherian case, direct limit methods imply that for each i ∈ {1, 2, 3},
(i) ⇐⇒ (i′). We spell out the details only for (2) ⇐⇒ (2′). Given an arbitrary
surjective morphism of OX -algebras α : F → G, we apply Lemma 2.3.1 to write
G = lim

−→
Gα with each Gα ⊆ G a finite type OX -algebra. The inverse Fα = α−1(Gα)

is a quasi-coherent OX -algebra. If we knew the proposition for G finite type, then
each f∗Fα → f∗Gα is universally adequate. Given (Spec(B) → Y) ∈ Lis-ét(Y) and
s ∈ f∗G(Spec(B) → Y), then as f∗G(Spec(B) → Y) = lim

−→
f∗Gα(Spec(B) → Y),

there exists α such that s ∈ f∗Gα(Spec(B) → Y). But then there exist N > 0 and
t ∈ f∗Fα(Spec(B) → Y) with t 7→ sNα . We may now assume G is a finite type OX -
algebra. By apply Lemma 2.3.1 again, we may write F = lim

−→
Fα. Then there exists

α such that Fα → G is surjective and f∗Fα → f∗G is universally adequate which
implies that f∗F → f∗G is universally adequate. �

Lemma 4.1.8. Let X be a quasi-compact and quasi-separated algebraic stack. The
following are equivalent:

(1) For every universally adequate morphism A → B of quasi-coherent OX -algebras
with kernel K, the induced algebra homomorphism Γ(X ,A)/Γ(X ,K) → Γ(X ,B)
is an adequate homeomorphism.

(2) The algebraic stack X is adequately affine.



ADEQUATE MODULI SPACES 19

(3) For every surjection A → B of quasi-coherent OX -algebras, the homomorphism
Γ(X ,A)→ Γ(X ,B) is adequate.

(4) For every surjection F → G of quasi-coherent OX -modules, the homomorphism
Γ(X , Sym∗F)→ Γ(X , Sym∗ G) is adequate.

(5) For every surjection F → OX of quasi-coherent OX -modules, there exist N > 0
and f ∈ Γ(X , SymN F) such that f 7→ 1 under Γ(X , SymN F)→ Γ(X ,OX ).

If in addition X is Noetherian, then the above are equivalent to:

(1′) For every universally adequate morphism A → B of finite type quasi-coherent
OX -algebras with kernel K, the induced algebra homomorphism Γ(X ,A)/Γ(X ,K)→
Γ(X ,B) is universally adequate.

(2′) For every surjection A → B of finite type quasi-coherent OX -algebras, then
Γ(X ,A)→ Γ(X ,B) is universally adequate.

(3′) For every surjection A → B of finite type quasi-coherent OX -algebras, then
Γ(X ,A)→ Γ(X ,B) is adequate.

(4′) For every surjection F → G of coherentOX -modules, Γ(X , Sym∗F)→ Γ(X , Sym∗ G)
is adequate.

(5′) For every surjection F → OX of coherent OX -modules, there exist N > 0 and
f ∈ Γ(X , SymN F) such that f 7→ 1 under Γ(X , SymN F)→ Γ(X ,OX ).

If in addition X has the resolution property (that is, for every coherent OX -module
F , there exists a surjection V → F from a locally free OX -module of finite rank), then
the above are equivalent to

(5′) For every surjection V → OX from a locally free OX -module of finite rank, there
exist N > 0 and f ∈ Γ(X , SymN V) such that f 7→ 1 under Γ(X , SymN V) →
Γ(X ,OX ).

Proof. It is immediate that (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5). Lemma
4.1.7 shows that (2) =⇒ (1). For (3) =⇒ (2), let A → B be a surjection of
quasi-coherent OX -algebras. By Remark 3.2.2, it suffices to show that for each n,
the homomorphism Γ(X ,A)[x1, . . . , xn] → Γ(X ,B)[x1, . . . , xn] is adequate, but this
corresponds to

Γ(X ,A⊗OX
OX [x1, . . . , xn])→ Γ(X ,B ⊗OX

OX [x1, . . . , xn])

which is adequate by statement (3). The same argument of Lemma 4.1.7 shows that
(4) =⇒ (3). For (5) =⇒ (3), suppose that A → B is a surjection of quasi-coherent
OX -algebras. A section s ∈ Γ(X ,B) gives a morphism of OX -modules OX → B.
Consider the fiber product and the induced diagram

A×B OX
//

��

OX

s
��

A // B

Sym∗(A×B OX ) //

��

Sym∗OX
∼= OX [x]

��

x❴

��A // B s
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There exist N > 0 and t̃ ∈ Γ(X , Sym∗(F×GOX )) with t̃ 7→ xN under Γ(X , Sym∗(F×G

OX ))→ Γ(X , Sym∗OX ) ∼= Γ(X ,OX )[x]. If t is the image of t̃ under the composition

Γ(X , Sym∗(A×B OX ))→ Γ(X , Sym∗A),
then t 7→ sN which establishes statement (3). Direct limit methods show the equiv-
alences of (i) ⇐⇒ (i′) for i ∈ {1, . . . , 5}. The equivalence of (5′) ⇐⇒ (5′′) is
immediate. �

4.2. Properties of adequately affine morphisms.

Proposition 4.2.1.

(1) Adequately affine morphisms are stable under composition.
(2) A cohomologically affine morphism f : X → Y of algebraic stacks is adequately

affine. In particular, an affine morphism f : X → Y of algebraic stacks is
adequately affine.

(3) If f : X → Y is an adequately affine morphism of algebraic stacks over an
algebraic space S and S ′ → S is a morphism of algebraic spaces, then fS′ =
XS′ → YS′ is adequately affine.

Consider a 2-cartesian diagram of algebraic stacks:

X ′ f ′
//

g′

��

�

Y ′

g

��

X f
// Y

(4) If g is faithfully flat and f ′ is adequately affine, then f is adequately affine.
(5) If f is adequately affine and g is a quasi-affine morphism, then f ′ is adequately

affine.
(6) If f is adequately affine and Y has quasi-affine diagonal over S, then f ′ is ade-

quately affine. In particular, if Y is a Deligne−Mumford stack with quasi-compact
and separated diagonal, then f adequately affine implies that f ′ is adequately
affine.

Proof. Part (1) follows from Proposition 4.1.7. Part (2) is clear. For part (4), suppose
that α : A → B is a surjection of OX -algebras. Since g

′∗ is exact and f ′ is adequately
affine, f ′

∗g
′∗α is universally adequate. By flat base change, g∗f∗α is canonically iden-

tified with f ′
∗g

′∗α. By Lemma 3.4.6(2), f∗α is universally adequate. Therefore f is
adequately affine.

For part (5), let α : A′ → B′ be a surjection of OX ′-algebras. Suppose first that

g : Y ′ → Y is a quasi-compact open immersion. Let B̃ = im(g′∗A → g′∗B). Since

g′∗g′∗A′ ∼= A′ and g′∗g′∗B′ ∼= B′, there is a factorization A′ ։ g′∗B̃ →֒ B′ and we
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conclude that there is a canonical isomorphism g′∗B̃ ∼= B′. Since f is adequately affine,

f∗g
′
∗A′ → f∗B̃ is universally adequate. By Lemma 3.4.6(1), g∗f∗g

′
∗A′ → g∗f∗g

′
∗B̃

is universally adequate but this is identified with f ′
∗g

′∗g′∗A′ → f ′
∗g

′∗g′∗B̃ which is
identified with f ′

∗A′ → f ′
∗B′. Now suppose that g : Y ′ → Y is an affine morphism

so that the functors g∗ and g′∗ are faithfully exact on quasi-coherent sheaves. It is
also easy to see that a morphism C → D of quasi-coherent OY ′-algebras is universally
adequate if and only if g∗C → g∗D is. Since f is adequately affine, f∗g

′
∗α
∼= g∗f

′
∗α is

universally adequate and it follows that f ′
∗α is universally adequate. This establishes

part (5).

For part (6), the question is Zariski-local on Y and Y ′ so we may assume that they
are quasi-compact. Let Y → Y be a smooth presentation with Y affine. Since
∆Y/S is quasi-affine, Y → Y is a quasi-affine morphism. We may choose a smooth
presentation Z → Y ′

Y := Y ′ ×Y Y with Z an affine scheme. We have the 2-cartesian
diagram:

Z

��

// Z

��

X ′
Y

//

��

~~⑤⑤
⑤⑤
⑤⑤
⑤

Y ′
Y

��

~~⑥⑥
⑥⑥
⑥⑥
⑥

X ′ //

��

Y ′

��

XY //

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

Y

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

X // Y
Since X → Y is adequately affine and Y → Y is a quasi-affine morphism, by part
(5) XY → Y is adequately affine. The morphism Z → Y is affine which implies that
Z → Z is adequately affine. Since the composition Z → Y ′

Y → Y ′ is smooth and
surjective, by descent X ′ → Y ′ is adequately affine. For the final statement of part
(6), ∆Y/S : Y → Y×S Y is separated, quasi-finite and finite type so by Zariski’s Main
Theorem for algebraic spaces, ∆Y/S is quasi-affine. Finally, part (3) follows formally
from parts (4) and (5). �

Remark 4.2.2. Part (5) can fail if Y ′ → Y is not quasi-affine and part (6) can fail if
Y does not have quasi-affine diagonal. As in the example given in [Alp13, Remark
3.11], if A is an abelian variety over a field k, then Spec(k)→ BA is cohomologically
affine (and therefore adequately affine) but A = Spec(k) ×BA Spec(k) → Spec(k) is
not adequately affine.
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Lemma 4.2.3. Let f : X → Y, g : Y → Z be morphisms of algebraic stacks where
either g is quasi-affine or Z has quasi-affine diagonal over S. Suppose that g ◦ f is
adequately affine and that g has affine diagonal. Then f is adequately affine.

Proof. This is clear from the 2-cartesian diagram

X (id,f)
//

{{✇✇
✇✇
✇✇
✇✇
✇✇

X ×Z Y
p2

//

xxqq
qq
qq
qq
qq

##❍
❍❍

❍❍
❍❍

❍❍
❍

Y
g

��
❄❄

❄❄
❄❄

❄❄

Y ∆
// Y ×Z Y X // Z

and Proposition 4.2.1. �

4.3. Generalization of Serre’s criterion.

Theorem 4.3.1. A quasi-compact, quasi-separated morphism f : X → Y of algebraic
spaces is adequately affine if and only if it is affine.

Proof. By Proposition 4.2.1, we may assume that Y is an affine scheme. We first show
that the proof of [Gro67, II.5.2.1] generalizes when X is a scheme. Set R = Γ(X,OX).
For a closed point q ∈ X , let U be an open affine neighborhood of q with Y = XrU .
Consider the surjective morphism of quasi-coherent OX -algebras

Sym∗ IY → Sym∗ k(q) ∼= k(q)[x]

Since X is adequately affine, there exist an integer N and f ′ ∈ Γ(X, Sym∗ IY ) with
f ′ 7→ xN . Let f ∈ R be the image of f ′ under Γ(X, Sym∗ IY )→ Γ(X,OX) = R. We
have q ∈ Xf ⊆ U . Furthermore, Xf is an affine scheme since Xf = Uf .

Since X is quasi-compact, we may find functions f1, . . . , fn ∈ R such that the
affine schemes Xfi cover X . Since affineness is Zariski-local, it suffices to show that
f1, . . . , fn generate the unit ideal of R. There is a surjection of OX -algebras

α : OX [t1, . . . , tk]→ OX [x]
defined by sending ti to fix. Therefore

Γ(α) : R[t1, . . . , tk]→ R[x]

is adequate and there exist an integer N > 0 and g ∈ R[t1, . . . , tk] of degree N such
that g 7→ xN . But this implies that the monomials of

∏
i f

ni

i of degree N generate
the unit ideal and thus (fi) = R.

In general, if X is an algebraic space, by [Ryd10a, Theorem B], there exists a finite
surjective morphism X ′ → X from a scheme X ′. Since X ′ is adequately affine, X ′

is affine. By Chevalley’s criterion for algebraic spaces (see [Con07, Corollary A.2] or
[Ryd10a, Theorem 8.1]), X is affine. �
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Corollary 4.3.2. A quasi-compact, quasi-separated representable morphism f : X →
Y of algebraic stacks where Y has quasi-affine diagonal is adequately affine if and
only if it is affine.

Proof. This follows from Proposition 4.2.1 and Theorem 4.3.1. �

Remark 4.3.3. As in Remark 4.2.2, the corollary can fail if Y does not have quasi-affine
diagonal; if A is an abelian variety over a field k, then Spec(k) → BE is adequately
affine but not affine.

5. Adequate moduli spaces

We introduce the notion of an adequate moduli space and then prove its basic
properties.

5.1. The definition.

Definition 5.1.1. A quasi-compact, quasi-separated morphism φ : X → Y from an
algebraic stack X to an algebraic space Y is called an adequate moduli space if the
following properties are satisfied:

(1) The morphism φ is adequately affine,.

(2) The natural map OY ∼→ φ∗OX is an isomorphism.

Remark 5.1.2. A quasi-compact, quasi-separated morphism p : X → S from an
algebraic stack to an algebraic space S is adequately affine if and only if the natural
map X → Spec(p∗OX ) is an adequate moduli space.

Remark 5.1.3. As in [Alp13, Remark 4.4], one could also consider the relative notion
for an arbitrary quasi-compact, quasi-separated morphisms of algebraic stacks φ :
X → Y satisfying the two conditions in Definition 5.1.1.

In characteristic 0, the notions of good moduli spaces and adequate moduli spaces
agree.

Proposition 5.1.4. A quasi-compact, quasi-separated morphism φ : X → Y over
Spec(Q) from an algebraic stack X to an algebraic space Y is a good moduli space if
and only if it is an adequate moduli space.

Proof. This follows from Lemma 4.1.6. �
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5.2. First properties. We establish the basic properties of adequate moduli spaces
as well as provide examples where the correspondingly stronger property of good
moduli spaces does not hold.

Lemma 5.2.1. Suppose that φ : X → Y is an adequately affine morphism of algebraic
stacks where Y is an algebraic space. Let A be a quasi-coherent OX -algebra and let
I be a quasi-coherent sheaf of OY -ideals. Then
(5.2.1) φ∗A/I → φ∗(A/IA)
is an adequate homeomorphism.

Proof. The quasi-coherent sheaf IA is the image of φ∗I → A. The surjection A →
A/IA induces an adequate homeomorphism φ∗A/φ∗IA → φ∗(A/IA) since φ is
adequately affine. It suffices to show that the surjection φ∗A/I → φ∗A/φ∗(IA) is an
adequate homeomorphism. Since it is an isomorphism in characteristic 0, it suffices
to show that the kernel is locally nilpotent. Since the question is local in the fpqc
topology, we may assume that Y is an affine scheme; let A = Γ(Y,A) and I = Γ(Y, I).
A choice of generators fj for j ∈ J of I ⊆ A induces a surjection A[xj ; j ∈ J ] →⊕

n≥0 I
n where xj 7→ fj. This induces a surjection A[xj; j ∈ J ] →

⊕
n≥0 InA. Since

φ is adequately affine,

A[xj ; j ∈ J ]→
⊕

n≥0

Γ(X , InA)

is adequate which shows that for every f ∈ Γ(X , IA), there exists N > 0 such that
fN ∈ I. �

Remark 5.2.2. Let S be an affine scheme and let G be a geometrically reductive group
scheme over S (see Section 9) acting on an affine scheme Spec(R). Let I ⊆ RG be an
ideal. Then Lemma 5.2.1 implies that the map

RG/I → (R/IR)G

is an adequate homeomorphism.

Example 5.2.3. This example shows that the map (5.2.1) need not be surjective.
Consider the action of Z/pZ on A2 = Fp[x, y] over Fp where a generator acts by
(x, y) 7→ (x+ y, y). Let z = x(x+ y) · · · (x+ (p− 1)y). Then

φ : X = [A2/Z/pZ]→ Spec(Fp[y, z]) = Y

is an adequate moduli space (see Theorem 9.1.4) and the map (5.2.1) applied with
the ideal (y) corresponds to

Fp[x
p] ∼= Fp[y, z]/(y)→ (Fp[x, y]/(y)Fp[x, y])

G ∼= Fp[x]

which is not surjective.
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Example 5.2.4. This example shows that the map (5.2.1) need not be injective.
Consider the action of Z/pZ on X = Spec(R) = Fp[x1, x2, y]/(x1x2) over Fp where a
generator acts by (x1, x2, y) 7→ (x1, x2, x1 + y). Let I = (x1, x2). Then the invariant
x2y ∈ IR ∩ RG is not in I. That is, x2y is a non-zero element in the kernel of
RG/I → (R/IR)G.

Example 5.2.5. The following example due to Johan de Jong shows that in the
definition of an adequately affine morphism X → Y , the degree of the exponent
required to lift sections cannot be universally bounded over all quasi-coherent OX -
algebras. In particular, for a geometrically reductive group scheme (see Section 9),
the degree of the exponent required to lift invariant sections cannot be universally
bounded over all G-modules. However, for finite flat group schemes G → S, such a
universal bound can be chosen.

Consider the geometrically reductive group SL2 over F2. We show that there does
not exist N > 0 such that for every surjection V → F2 of SL2-representations, the map
(SymN V )SL2 → F2 is non-zero. Let W = F2x ⊕ F2y be the standard representation
of SL2. For each n > 0, consider the representation

Vn = Sym2(2n−1)(W )

which has basis elements Zi,j = xiyj where i+ j = 2(2n− 1) where i, j ≥ 0. Consider
the SL2-equivariant surjection

Vn → k, Zi,j 7→
{

1 if i = j = 2n − 1
0 otherwise.

If γ =

(
1 t
0 1

)
∈ SL2, one can check that

γ · Z2n−1,2n−1 = Z2n−1,2n−1 + tZ2n−2,2n + t2Z2n−3,2n+1 + · · ·+ t2
n−1Z0,2(2n−1).

Suppose that for some d > 0, there exists a non-zero invariant element

vn = (Z2n−1,2n−1)
d +

∑

a<d

(Z2n−1,2n−1)
aFa(Zi,j; i 6= j) ∈ (Symd Vn)

SL2

for some elements Fa ∈ Symd−a Vn. We claim that d ≥ 2n. The coefficient of
(Z2n−2,2n)

d in γ · (Z2n−1,2n−1)
d is td. By expanding γ · vn and by considering the

coefficient of td(Z2n−2,2n)
d in the equality vn = γ · vn, there must exist some a such

that the coefficient of td(Z2n−2,2n)
d in (Z2n−1,2n−1)

aFa(Zi,j; i 6= j) is non-zero. The
coefficient of Z2n−2,2n in γ · Zi,j is a non-zero only if i ≥ 2n − 2 in which case the
corresponding term is (

i

2n − 2

)
ti−2n+2Z2n−2,2n .
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One can check that this binomial coefficient is divisible by 2 for all i in the range 2n−
1 < i < 2(2n−1). When i = 2(2n−1), this term is a multiple of t2

n

Z2n−2,2n . If d < 2n,
there is thus never a non-zero coefficient of td(Z2n−2,2n)

d in (Z2n−1,2n−1)
aFa(Zi,j; i 6= j).

Lemma 5.2.6. Suppose X is an algebraic stack and φ : X → Y is an adequate
moduli space. Then for any quasi-coherent OY -algebra B, the adjunction morphism
B → φ∗φ

∗B is an adequate homeomorphism.

Proof. The question is local in the étale topology on Y so we may assume that Y
is affine. As φ∗ and φ∗ commute with arbitrary direct sums, the adjunction map
B → φ∗φ

∗B is an isomorphism if B is a polynomial algebra over Γ(Y,OY ). In general,
we can write B as a quotient of a polynomial algebra B′ over R and the statement
follows directly from Lemma 5.2.1. �

Remark 5.2.7. With the notation of Remark 5.2.2, Lemma 5.2.6 implies that for an
RG-algebra B, the adjunction map

B → (B ⊗RG R)G

is an adequate homeomorphism. If S = Spec(k) where k is a field of characteristic p
and G is a reductive group, this is [MFK94, Fact (1) on p. 195].

Example 5.2.8. With the notation of Example 5.2.3, the quasi-coherent OY -algebra
B associated with k[y, z]/y on Spec(k[y, z]) provides an example where φ∗φ∗B → B is
not surjective. With the notation of Example 5.2.4, the quasi-coherent OY -algebra B
associated with RG/(x1, x2) provides an example where φ∗φ∗B → B is not injective.

Proposition 5.2.9. Suppose that X and X ′ are algebraic stacks and that

X ′

φ′

��

g′
//

�

X
φ
��

Y ′ g
// Y

is a cartesian diagram with Y and Y ′ algebraic spaces. Then

(1) If g is flat and φ : X → Y is an adequate moduli space, then φ′ : X ′ → Y ′ is an
adequate moduli space.

(2) If g is fpqc and φ′ : X ′ → Y ′ is an adequate moduli space, then φ : X → Y is an
adequate moduli space.

(3) If φ is an adequate moduli space, then OY ′ → φ∗OX ′ is an adequate homeomor-
phism. The morphism φ′ factors as an adequate moduli space X ′ → SpecY ′(φ′

∗OX ′)
followed by an adequate homeomorphism SpecY ′(φ′

∗OX ′)→ Y ′.
(4) If A is quasi-coherent OX -algebra, the adjunction morphism g∗φ∗A → φ′

∗g
′∗A is

an adequate homeomorphism.
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Proof. For part (1), Proposition 4.2.1(6) implies that φ′ is adequately affine. If g is
flat, then flat base change implies OY ′ → φ′

∗OX ′ is an isomorphism. For part (2),
Proposition 4.2.1(4) implies that φ is adequately affine and fpqc descent implies that
OY → φ∗OX is an isomorphism.

For part (3), since φ′ is adequately affine X ′ → SpecY ′(φ′
∗OX ′) is an adequate moduli

space. Since the question is local in the fpqc topology, we may assume that Y ′ → Y
is affine and defined by a quasi-coherent OY -algebra B. By Lemma 5.2.6, B → φ∗φ

∗B
is an adequate homeomorphism but this maps corresponds canonically to g∗OY ′ →
g∗φ

′
∗OX ′ .

For part (4), the diagram

SpecX ′(g′∗A) //

��

�

SpecX (A)

��

SpecY (g∗φ∗A) // SpecY (φ∗A)
is cartesian so the statement follows from part (3). �

Example 5.2.10. With the notation of Example 5.2.3, we have a diagram

[Spec(k[x])/Zp]
� � //

φ′

��
ϕ

vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

�

[A2/Zp]

φ

��

Spec(k[x]) // Spec(k[xp]) �
� y=0

// Spec(k[y, z])

where the square is cartesian and φ and ϕ are adequate moduli spaces. The base
change φ′ is not an adequate moduli space but Spec(k[x]) → Spec(k[xp]) is an ade-
quate homeomorphism.

Lemma 5.2.11. Let X be an algebraic stack and let φ : X → Y be an adequate
moduli space. Let A be a quasi-coherent sheaf of OX -algebras. Then SpecX (A) →
SpecY (φ∗A) is an adequate moduli space. In particular, if Z ⊆ X is a closed substack,
then Z → Y ′ := Spec(φ∗OZ) is an adequate moduli space. The induced morphism
Y ′ → imZ to the scheme-theoretic image of Z in Y is an adequate homeomorphism.

Proof. Since SpecX (A)→ Y is adequately affine, it follows that SpecX (A)→ SpecY (φ∗A)
is an adequate moduli space. The final statement follows directly from Lemma
5.2.1. �

Lemma 5.2.12. (Analogue of Nagata’s fundamental lemmas) Let φ : X → Y be an
adequately affine morphism. Then:

(1) For any quasi-coherent sheaf of ideals I on X , the inclusion

φ∗OX /φ∗I → φ∗(OX /I)
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is an adequate homeomorphism.
(2) For any pair of quasi-coherent sheaves of ideals I1, I2 on X , the inclusion φ∗I1+

φ∗I2 → φ∗(I1 + I2) induces an adequate homeomorphism

OY /(φ∗I1 + φ∗I2)→ OY /φ∗(I1 + I2)
In other words, for every section s ∈ Γ(Spec(A) → Y, φ∗(I1 + I2)), there exists
N > 0 such that sN ∈ Γ(Spec(A)→ Y, φ∗I1 + φ∗I2).

Proof. Part (1) is obvious. For part (2), we may assume that Y is affine. The exact
sequence

0→ I1 → I1 + I2 → I2/I1 ∩ I2 → 0

induces a commutative diagram

Γ(X , I2)

�� ))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘

0 // Γ(X , I1) // Γ(X , I1 + I2) // Γ(X , I2/I1 ∩ I2)

where the bottom row is left exact. Let s ∈ Γ(X , I1+I2) with image s in Γ(X , I2/I1∩
I2). Since φ is adequately affine, there exist N > 0 and t2 ∈ Γ(X , I2) such that
t2 7→ sN . It follows that t2 − sN ∈ Γ(X , I2). �

Remark 5.2.13. Part (2) above implies that for any set of quasi-coherent sheaves of
ideals Iα

OY /
(∑

α

φ∗Iα
)
→ OY /

(
φ∗(

∑

α

Iα)
)

is an adequate homeomorphism.

Remark 5.2.14. With the notation of Remark 5.2.2, property (1) translates into the
statement that the natural inclusion AG/(I ∩AG) →֒ (A/I)G is universally adequate
for any invariant ideal I ⊆ A. Property (2) translates into the statement that for
any pair of invariant ideals I1, I2 ⊆ A, the induced inclusion (I1 ∩AG) + (I2 ∩AG) →֒
(I1+I2)∩AG has the property that for any s ∈ (I1+I2)∩AG, there exists N > 0 such
that sN ∈ (I1 ∩ AG) + (I2 ∩ AG). Note that if S is defined over Fp, then by Lemma
3.2.3, the integer N can be chosen to be a prime power. If S = Spec(k) where k is a
field of characteristic p and G is a reductive group, this is [Nag64, Lemma 5.1.B and
5.2.B] and [MFK94, Lemma A.1.2 and Fact (2), p.195].

Example 5.2.15. Example 5.2.3 illustrates that the map in part (1) is not always
surjective. For an example where the map in part (2) is not an isomorphism, con-
sider the dual action of G = Z2 on A = F2[x1, x2, y]/(x

2
1, x

2
2) given by (x1, x2, y) 7→

(x1, x2, y+ x1 + x2). Then the inclusion (x1)∩AG+ (x2)∩AG →֒ (x1, x2)∩AG is not
surjective as y(x1 + x2) ∈ (x1, x2) ∩AG is not in the image.
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5.3. Geometric properties.

Theorem 5.3.1. Let X be an algebraic stack and let φ : X → Y be an adequate
moduli space. Then

(1) The morphism φ is surjective.
(2) The morphism φ is universally closed.
(3) The morphism φ is universally submersive.
(4) If Z1, Z2 are closed substacks of X , then

imZ1 ∩ imZ2 = im(Z1 ∩ Z2)

where the intersections and images are set-theoretic.
(5) For an algebraically closed field k, there is an equivalence relation defined on

[X (k)] by x1 ∼ x2 ∈ [X (k)] if {x1}∩{x2} 6= ∅ in X ×Z k inducing a bijective map
[X (k)]/∼ → Y (k). That is, k-valued points of Y are k-valued points of X up to
orbit closure equivalence.

Proof. For part (1), if Spec(k) → Y is an arbitrary map from a field k, then Propo-
sition 5.2.9(3) implies that X ×Y Spec(k) is non-empty. For part (2), if Z ⊆ X is
a closed substack, then Lemma 5.2.11 implies that Z → Y ′ = SpecY (φ∗Z) is an
adequate moduli space and Y ′ → imZ is an adequate homeomorphism. Using part
(1), it follows that the composition Z → Y ′ → imZ is surjective so that φ(Z) is
closed. Proposition 5.2.9(3) then implies that φ is universally closed. Part (3) follows
from parts (1) and (2). Part (4) follows from Lemma 5.2.12(2). Part (5) follows from
(4) as in the argument of [Alp13, Theorem 4.16(iv)]. �

5.4. Preservation of properties.

Proposition 5.4.1. Let P ∈ {reduced, connected, irreducible, normal} be a property
of algebraic stacks. Let X be an algebraic stack and let φ : X → Y be an adequate
moduli space. If X has property P, then so does Y .

Proof. The first three are clear. For P = “normality”, we may assume that Y is
affine and integral and the statement follows since φ is universal for maps to affine
schemes. �

5.5. Flatness. If φ : X → Y is a good moduli space with both X and Y defined over
a base S and F is quasi-coherent OX -module flat over S, then φ∗F is also flat over S
(see [Alp13, Theorem 4.16(ix)]). The following example shows that the corresponding
property does not hold for adequate moduli spaces.

Example 5.5.1. Let R = F2[x, y]/xy and consider the dual action of G = Z/2Z on
A = R[z, w] given by (z, w) 7→ (z + x, w + y). Then R → A flat but we claim that
R → AG is not flat. Indeed, since the annihilator of y in R is the ideal (x), we have
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the injection R/x
y→֒ R. But AG/x→ AG is not injective. The element f = xw ∈ AG

satisfies fy = 0 but is not divisible by x.

5.6. Vector bundles. If φ : X → Y is a good moduli space with X locally Noe-
therian and F is a vector bundle on X such that at all points x : Spec(k) → X
with closed image, the Gx-representation F ⊗ k is trivial, then F is the pullback of a
vector bundle on Y (see [Alp13, Theorem 10.3]). This is not true for adequate moduli
spaces.

Example 5.6.1. Suppose char(k) = p. Let S = k[ǫ]/(ǫ2) be the dual numbers.
Consider the group scheme αp,S = Spec(k[x, ǫ]/(ǫ2, xp)). Then Bαp,S → S is an
adequate moduli space (see Theorem 9.6.1). Trivial representations of αp over the
closed point have non-trivial deformations. Consider the line bundle L on Bαp,S
corresponding to the character

αp → Gm,S = Spec(k[ǫ, t]t/(ǫ
2))

1 + ǫx← [ t

This restricts to the trivial line bundle under the closed immersion Bαp,k →֒ Bαp,S
but is not the pullback of a line bundle on S. One can construct similar examples for
Z/pZ.

6. Finiteness results

6.1. Historical context. In this section, we show that if X → Y is an adequate
moduli space defined over a Noetherian algebraic space S, then X → S of finite type
implies that Y → S is of finite type. This can be considered as a generalization of
Nagata’s result that if G is a geometrically reductive group over k and A is a finitely
generated k-algebra, then AG is finitely generated over k (see [Nag64] or [MFK94,
Appendix 1.C]). See [New78, Section 3.6] for a more complete discussion on the
finite generation of the invariant rings. Theorem 6.3.3 generalizes Seshadri’s result
[Ses77, Theorem 2] for actions by reductive group schemes G→ Spec(R) where R is
universally Japanese as well as Borsari and Ferrer Santos’s result [BFS92, Theorem
4.3] on actions by geometrically reductive commutative Hopf algebras over fields.
The theorem here also generalizes [Alp13, Theorem 4.16(xi)] where the analogous
statement is proved for good moduli spaces over an excellent base. In [AdJ13], a
categorical framework for the adequacy condition is considered and the main result
simultaneously generalizes Theorem 6.3.3 and the finiteness results in [BFS92] for
actions of geometrically reductive non-commutative Hopf algebras.

6.2. General result about finite generation of subrings. We will apply the
following result, which was discovered jointly with Johan de Jong.
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Theorem 6.2.1. Consider a commutative diagram of schemes

X

�� ��
❅❅

❅❅
❅❅

❅❅

Y // S

Assume that:

(a) The schemes Y and S are Noetherian.
(b) The morphism X → S is of finite type.
(c) The morphism X → Y is quasi-compact and universally submersive.

Then Y → S is of finite type.

Remark 6.2.2. This theorem generalizes several known special cases:

(1) If X → Y is faithfully flat, this is [Gro67, IV.2.7.1]. (This is true even without
the Noetherian hypothesis.)

(2) If X → Y is pure, this is [Has05, Theorem 1]. (Here Y does not need to be
assumed Noetherian as it is immediately implied by the Noetherianness of X
and purity.)

(3) IfX → Y is surjective and universally open, Y is reduced and S is a universally
catenary Nagata scheme, this is [Has04, Theorem 2.3]. (This is true without
assuming Y is Noetherian.)

(4) If X → Y is surjective and proper and S is excellent, this is [Has04, Theorem
4.2].

Proof. We may assume that S = Spec(R) and Y = Spec(B) are affine. Furthermore,
since a Noetherian scheme is of finite type over a ring R if and only if the reduced
subschemes of the irreducible components are finite type over R, we may assume that
Y is integral ([Fog83, p. 169]).

The morphism X → Spec(B) is flat over a non-empty open subscheme U ⊂ Spec(B).
By [RG71, Theorem 5.2.2], there exists a U -admissible blowup

b : Ỹ −→ Y = Spec(B)

such that the strict transform X ′ of X is flat over Ỹ . For every point y ∈ Ỹ we can

find a discrete valuation ring V and morphism Spec(V ) → Ỹ whose generic point
maps into U and whose special point maps to y. By assumption there exist a local
map of discrete valuation rings V → V ′ and a commutative diagram

X

��

Spec(V ′)oo

��

Y Ỹoo Spec(V )oo
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By definition of the strict transform we see that the product map Spec(V ′)→ Ỹ ×Y X
maps into the strict transform. Hence we conclude there exists a point on X ′ which

maps to y, that is, we see thatX ′ → Ỹ is surjective. By [Gro67, IV.2.7.1], we conclude

that Ỹ → Spec(R) is of finite type.

Let I ⊂ B be an ideal such that Ỹ is the blowup of Spec(B) in I. Choose generators
fi ∈ I, i = 1, . . . , n. For each I the affine ring

Bi = B[fj/fi; j = 1, . . . , î, . . . n] ⊂ f.f.(B)

in the blowup is of finite type over R. Write B = colimλ∈ΛBλ as the union of its
finitely generated R-subalgebras. After shrinking Λ we may assume that each Bλ

contains fi for all i. Set Iλ =
∑
fiBλ ⊂ Bλ and let

Bλ,i = Bλ[fj/fi; j = 1, . . . , î, . . . n] ⊂ f.f.(Bλ) ⊂ f.f.(B)

After shrinking Λ we may assume that the canonical maps Bλ,i → Bi are surjective
for each i (as Bi is finitely generated over R). Hence for such a λ we have Bλ,i = Bi!
So for such a λ the blowup of Spec(Bλ) in Iλ is equal to the blowup of Spec(B) in
I. Set Yλ = Spec(Bλ) Thus the composition

Ỹ −→ Y −→ Yλ

is a projective morphism and we see that

(Y → Yλ)∗OY ⊂ (Ỹ → Yλ)∗OỸ
and the last sheaf is a coherent OYλ-module ([Gro67, III.3.2.1]). Hence (Y → Yλ)∗OY
is also coherent so that Y → Yλ is finite and we win. �

Let φ : X → Y be an adequate moduli space where X is an algebraic stack of
finite type over a Noetherian base S. If we knew a priori that Y is Noetherian, then
the above theorem would immediately imply that Y → S is of finite type by using
property Theorem 5.3.1(3). However, it is not true in general that if X is Noetherian
then Y is Noetherian.

Example 6.2.3. We quickly recall Nagata’s example (see [Nag69] and [Kol97, Ex-
ample 6.5.1]) of a Noetherian affine scheme Spec(R) which is defined but not of
finite type over Fp such that RZ/pZ is not Noetherian. Let K = Fp(x1, x2, . . .). Let

D :=
∑

i x
p+1
i

∂
∂xi

be a derivation of K. Then R = K[ǫ]/(ǫ2) is a local Artin ring

(and thus Noetherian). There is a dual action of Z/pZ on R given on a generator by
f + ǫg 7→ f + ǫ(g+D(f)). One can show that the ring of invariants RZ/pZ = F + ǫK
is non-Noetherian, where F = {f ∈ K | D(f) = 0}.
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6.3. The main finiteness result. The proof of Theorem 6.3.3 will be by Noetherian
induction. Consider the following property of a Noetherian algebraic stack X defined
over a Noetherian ring R.

(⋆) The ring Γ(X ,OX ) is a finite type R-algebra and for every coherent OX -
module F , the Γ(X ,OX )-module Γ(X ,F) is of finite type.

Lemma 6.3.1. Let X be an adequate algebraic stack of finite type over a Noetherian
ring R. Let I be a coherent sheaf of ideals in OX such that Γ(X ,OX/I) is a finite type
R-algebra. Then Γ(X ,OX/I) is a finite type Γ(X ,OX )-module and im(Γ(X ,OX ) →
Γ(X ,OX/I)) is a finite type R-algebra.

Proof. Since X is adequate, Γ(X ,OX )→ Γ(X ,OX/I) is adequate and, in particular,
integral. Since Γ(X ,OX/I) is a finite type R-algebra, the subalgebra im(Γ(X ,OX )→
Γ(X ,OX/I)) also is. �

Lemma 6.3.2. Let X be an adequate algebraic stack finite type over a Noetherian
ring R. Suppose that I and J are quasi-coherent sheaves of ideals in OX such that
IJ = 0. If (⋆) holds for the closed substacks defined by I and J , then (⋆) holds for
X .

Proof. By Lemma 6.3.1, there exists a finite type R-subalgebra B ⊆ Γ(X ,OX ) such
that B → im(Γ(X ,OX ) → Γ(X ,OX/I)) and B → im(Γ(X ,OX ) → Γ(X ,OX/J ))
are surjective. Since (⋆) holds for the closed substack defined by J and I is an
OX/J -module, we may choose generators x1, . . . , xn of Γ(X , I) as an Γ(X ,OX/J )-
module. We claim that B[x1, . . . , xn] → Γ(X ,OX ) is surjective. Let f ∈ Γ(X ,OX ).
There exists g ∈ B such that f and g have the same image in Γ(X ,OX/I) so we
may assume f ∈ Γ(X , I). We can write f = a1x1 + · · ·+ anxn with ai ∈ Γ(X ,OX ).
But there exists a′i ∈ B such that ai and a′i have the same image in Γ(X ,OX/J )
so f = a′1x1 + · · · + a′nxn is in the image of B[x1, . . . , xn] → Γ(X ,OX ). Therefore,
Γ(X ,OX ) is a finite type R-algebra.

Let F be a coherent OX -module. Consider the exact sequence

0→ Γ(X , IF)→ Γ(X ,F)→ Γ(X ,F/IF)
Now IF is a OX /J -module and F/IF is a OX /I-module so by the hypotheses both
Γ(X , IF) and Γ(X ,F/IF) are finite type Γ(X ,OX )-modules. It follows that Γ(X ,F)
is a finite type Γ(X ,OX )-module. �

Theorem 6.3.3. Let X be a finite type algebraic stack over a locally Noetherian
algebraic space S. Let φ : X → Y be an adequate moduli space where Y is an algebraic
space over S. Then Y → S is of finite type and for every coherent OX -module F , the
OY -module φ∗F is coherent.
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Proof. We may assume that S = Spec(R). By Noetherian induction, we may assume
that (⋆) holds for any closed substack Z ⊆ X defined by a non-zero sheaf of ideals.

For f 6= 0 ∈ Γ(X ,OX ), if ker(OX
f−→ OX ) is non-zero, then by applying Lemma

6.3.2 with the ideals sheaves (f) and ker(OX
f−→ OX ), we see that (⋆) holds for X .

Therefore, we may assume that every f 6= 0 ∈ Γ(X ,OX ) is a non-zero divisor; that
is, Γ(X ,OX ) is an integral domain.

Let I ⊆ Γ(X ,OX ) be an ideal and let f 6= 0 ∈ I. Since f is a non-zero divisor, we
have an exact sequence

0→ Γ(X ,OX )
f−→ Γ(X ,OX )→ im(Γ(X ,OX )→ Γ(X ,OX/(f)))→ 0

By the induction hypothesis and Lemma 6.3.1, Γ(X ,OX )/(f) is a finite type R-
algebra. The image of I in Γ(X ,OX )/(f) is a finitely generated ideal. Therefore, I
is finitely generated and Γ(X ,OX ) is Noetherian.

If U → X is a smooth presentation, then the composition U → X → Y is universally
submersive by Theorem 5.3.1(3). It follows from Theorem 6.2.1 that Y → Spec(R)
is of finite type.

Let F be a coherent OX -module. We wish to show that Γ(X ,F) is a finite type
Γ(X ,OX )-module. By Noetherian induction again, we may assume that for every
proper quotient F ։ F ′, the Γ(X ,OX )-module Γ(X ,F ′) is of finite type. The state-
ment is true if Γ(X ,F) = 0; otherwise, let s 6= 0 ∈ Γ(X ,F). Denote by s · F the
image of s : OX → F so that s ·F ∼= OX/I where I = ker(s : OX → F). Consider
the exact sequence

0→ Γ(X , s · F)→ Γ(X ,F)→ Γ(X ,F/s · F)
By the induction hypothesis, Γ(X ,F/s · F) is a finite type Γ(X ,OX )-module. If
I = 0, then s · F = OX and as Γ(X ,OX ) is Noetherian, Γ(X ,F) is also a finite
type Γ(X ,OX )-module. If I 6= 0, then by the inductive hypothesis and Lemma 6.3.1,
Γ(X , s · F) is a finite type Γ(X ,OX )-module so that Γ(X ,F) is also. �

7. Uniqueness of adequate moduli spaces

In this section, we show that if φ : X → Y is an adequate moduli space, then φ is
universal for maps to algebraic spaces which are locally separated or Zariski-locally
have affine diagonal; that is, for any other morphism ψ : X → Z to an algebraic space
Z which is either locally separated or Zariski-locally has affine diagonal, there exists
a unique morphism χ : Y → Z such that ψ = χ ◦ φ. We believe that an adequate
moduli space should be universal for maps to arbitrary algebraic spaces.
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7.1. General result. It follows from general methods that an adequate moduli space
φ : X → Y is universal for maps to locally separated algebraic spaces. The following
technique was used by David Rydh in [Ryd13] to show that geometric quotients are
universal for such maps.

If an algebraic stack X admits an adequate moduli space, then the relation that
x ∼c y ∈ X (k) if {x} ∩ {y} 6= ∅ in |X ×Z k| defines an equivalence relation (see
5.3.1(5)). This is not true for an arbitrary stack; consider [P1/Gm]. However, by
using chains of orbit closures, we can define an equivalence relation as follows: two
geometric points x, y ∈ X (k), are said to be closure equivalent (denoted x ∼c y)
if there is a sequence of points x = x1, x2, · · · , xn−1, xn = y ∈ X (k) such that for

i = 1, · · ·n− 1, {xi} ∩ {xi+1} 6= ∅ in |X ×Z k|.
Proposition 7.1.1. Let X be an algebraic stack and let Y be an algebraic space.
Suppose that φ : X → Y is a morphism such that

(a) The map [X (k)]/∼c → Y (k) is bijective for all algebraically closed OS-fields k.
(b) The morphism φ is universally submersive.
(c) The morphism OY → φ∗OX is an isomorphism.

Then φ is universal for maps to locally separated algebraic spaces.

Remark 7.1.2. Condition (a) says that Y has the right points, condition (b) says
that Y has the right topology and condition (c) says that Y has the right functions.
Conditions (a) and (b) are stable under arbitrary base change while condition (c) is
stable under flat base change. Conditions (a)−(c) descend in the fpqc topology.

Proof. We need to show that for any locally separated algebraic space Z

Hom(Y, Z)→ Hom(X , Z)
is bijective. The injectivity is straightforward (see [Ryd10b, Proposition 7.2]). Con-
sider a morphism ψ : X → Z where Z is a locally separated algebraic space. Since
X → Y is universally submersive, it follows from [Ryd10b, Theorem 7.4] that

Hom(Y, Z)→ Hom(X , Z) ⇒ Hom((X ×Y X )red , Z)
is exact. Therefore, it suffices to show that ψ ◦ p1 = ψ ◦ p2 where p1 and p2 are the
projections (X ×Y X )red → X . We note that ψ ◦ p1 = ψ ◦ p2 if and only if there exists
a Λ : (X ×Y X )red → X ×Z X such that

(X ×Y X )red
Λ

//

��

X ×Z X

ww♦♦
♦♦
♦♦
♦♦
♦♦
♦♦

X ×X
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commutes. Consider the cartesian diagram

W //

��

�

(X ×Y X )red

��

X ×Z X //

��

�

X ×X

��

Z // Z × Z
The monomorphism W → (X ×Y X )red is surjective by property (1) and also an
immersion since Z is locally separated. It follows that W → (X ×Y X )red is an
isomorphism and that ψ ◦ p1 = ψ ◦ p2. �

Remark 7.1.3. It is not true that the conditions (a) − (c) imply that φ is universal for
maps to arbitrary algebraic spaces. Indeed, if X is the non-locally separated affine
line (that is, the bug-eyed cover), then X → A1 satisfies conditions (a) − (c) but is
not an isomorphism.

7.2. Universality for adequate moduli spaces.

Theorem 7.2.1. Let X be an algebraic stack and let φ : X → Y be an adequate
moduli space. Then φ is universal for maps to algebraic spaces which are either
locally separated or Zariski-locally have affine diagonal.

Proof. Let Z be an algebraic space. We need to show that the natural map

Hom(Y, Z)→ Hom(X , Z)
is bijective. The injectivity of the map is straightforward. Proposition 7.1.1 shows
that it is surjective if Z is locally separated. Let ψ : X → Z be a morphism where
Z is an algebraic space which Zariski-locally has affine diagonal. The argument of
[Mum65, Remark 0.5] (see also [Alp13, Theorem 4.16(vi)]) shows that the question is
Zariski-local on Z; in particular, the statement holds when Z is a scheme. Therefore
we may assume that Z is quasi-compact and has affine diagonal. The question is also
étale local on Y so we may assume Y = Spec(A) is an affine scheme. Furthermore, by
replacing Z with SpecZ(ψ∗OX ), we may assume that OZ → ψ∗OX is an isomorphism.
Since Y is affine, there exists a unique morphism η : Z → Y such that φ = η ◦ φ.
Since Z has affine diagonal, ψ : X → Z is an adequate moduli space (see Lemma
4.2.3). Let W → Z be a finite surjective map from a scheme W ([Ryd10a, Theorem
B]). Therefore, by Proposition 5.2.9 there exists a diagram

X ×Z W

��

//

zztt
tt
tt
tt
t

�

X
ψ
��

φ

��
❄❄

❄❄
❄❄

❄❄

W ′ // W // Z
η

// Y
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where X×ZW →W ′ is an adequate moduli space andW ′ → W is an adequate home-
omorphism (and in particular integral and surjective). Since X ×Z W is adequately
affine, X ×Z W → Spec(Γ(X ×Z W,OX×ZW )) is also an adequate moduli space. But
since W ′ is a scheme and since we know adequate moduli spaces are universal for
maps to schemes, it follows that W ′ is affine. The composition W ′ → W → Z is
integral and surjective. It follows from Chevalley’s criterion ([Ryd10a, Theorem 8.1])
that Z is affine and Z → Y is an isomorphism. �

8. Coarse moduli spaces

Recall that if X is an algebraic stack, a morphism φ : X → Y to an algebraic space
Y is a coarse moduli space if

(1) for any algebraically closed field k, the map [X (k)]/∼ → Y (k) from isomorphism
classes of k-valued points of X to k-valued points of Y is bijective, and

(2) the morphism φ is universal for maps to algebraic spaces; that is, for any morphism
ξ : X → Z to an algebraic space Z, there exists a unique map χ : Y → Z such
that ξ = χ ◦ φ.

8.1. Keel−Mori.

Theorem 8.1.1. ([KM97], [Con05], [Ryd13]) Suppose that X is an algebraic stack
with finite inertia IX → X . Then there exists a coarse moduli space φ : X → Y such
that:

(1) The morphism φ is separated.
(2) If X is locally of finite type over a locally Noetherian algebraic space S, then

Y → S is locally of finite type.

In [KM97], the theorem was proved when X was locally of finite presentation over
a locally Noetherian scheme S. The Noetherian hypothesis of S was removed in
[Con05]. The finiteness assumptions of X were removed in [Ryd13].

We also recall the following proposition which follows from the proof of the Keel−Mori
theorem in [KM97]. For the generality stated below, we need [Ryd13, Theorem 7.13].

Proposition 8.1.2. Let X be a quasi-compact algebraic stack with finite inertia IX →
X and φ : X → Y be its coarse moduli space. Then there exists an étale surjective
morphism Y ′ → Y such that X×Y Y ′ admits a finite, flat, finitely presented morphism
from an affine scheme.
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8.2. Keel−Mori coarse moduli spaces are adequate.

Proposition 8.2.1. Suppose that X is an algebraic stack with finite inertia IX → X .
Let φ : X → Y be its coarse moduli space. Then φ : X → Y is an adequate moduli
space.

Proof. By Proposition 8.1.2 and Proposition 5.2.9, it suffices to assume that there
exists a finite, flat morphism p : U = Spec(C) → X . We may assume that p is
locally free of rank N . Let s, t : R = Spec(D) ⇒ U be the groupoid presentation. If
CR = Eq(C ⇒ D), then φ : X → Y = Spec(C)R is the coarse moduli space.

Let α : A → B be a surjective morphism of quasi-coherent OX -algebras. Then A and
B correspond to a C-algebra A and B, and isomorphisms βA : A⊗C,s D ∼→ A⊗C,t D
and βB : B ⊗C,s D ∼→ B ⊗C,t D, respectively, satisfying the cocycle condition. We
have a commutative diagram

AR � � //

α
��

A
βA◦(id⊗1)

//

id⊗1
//

��

A⊗C,t D

��

BR � � // B
βB◦(id⊗1)

//

id⊗1
// B ⊗C,t D

of exact sequences with AR = Γ(X ,A) and BR = Γ(X ,B).

Let b ∈ BR and choose a ∈ A with a 7→ b. Then multiplication by βA(a⊗1) ∈ A⊗C,tD
is an A-module homomorphism (via id ⊗ 1 : A → A ⊗C,t D). The characteristic
polynomial is

P (λ, βA(a⊗ 1)) = λN − σN−1λ
N−1 + · · ·+ (−1)Nσ0 ∈ AR[λ]

which maps under α to the characteristic polynomial of βB(b⊗ 1) = b⊗ 1

P (λ, βB(b⊗ 1)) = (λ− b)N

By examining the constant term, we see that σ0 ∈ AR and σ0 7→ bN . �

8.3. Equivalences.

Lemma 8.3.1. Suppose that X and X ′ are algebraic stacks and that

X ′ f
//

φ′

��

X
φ
��

Y ′ g
// Y

is a commutative diagram with φ and φ′ adequate moduli spaces. Assume that the
following hold:
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(a) The morphism f is representable, quasi-finite and separated.
(b) The morphism g is integral.
(c) The morphism f maps closed points to closed points.

Then f is finite.

Proof. It suffices to show that X ′ → X ×Y Y ′ is integral so we may assume that Y =
Y ′. By Zariski’s Main Theorem ([LMB00, Theorem 16.5]), there exists a factorization

f : X ′ →֒ X̃ → X with i : X ′ →֒ X an open immersion and φ̃ : X̃ → X integral.
Since f maps closed points to closed points, so does i. It follows from Lemma 5.2.11

that X̃ → Y is an adequate moduli space. If x ∈ |X̃ | r |X ′| is a closed point, then

φ̃(x) ∈ Y is closed. Let x′ be the unique closed point in the fiber φ′−1(y). Then

i(x′) ∈ |X̃ | is the unique closed point in the fiber φ̃−1(y) by Theorem 5.3.1(5) so

i(x′) = x. It follows that X ′ = X̃ and X ′ → X is integral. �

Theorem 8.3.2. Suppose that X is an algebraic stack with quasi-finite and separated
diagonal. Then the following are equivalent:

(1) The inertia IX → X is finite.
(2) There exists a coarse moduli space φ : X → Y with φ separated.
(3) There exists an adequate moduli space φ : X → Y .

Proof. The Keel−Mori theorem (see Theorem 8.1.1) shows that (1) ⇐⇒ (2). Propo-
sition 8.2.1 shows that (2) =⇒ (3). Suppose that statement (3) holds. We may
assume that Y is separated. First note that X → X ×X maps closed points to closed
points. Since φ× φ : X × X → Y × Y is adequately affine, there exists a diagram

X //

φ
��

X ×X
ϕ

��

Y // Z

where ϕ : X × X → Z := SpecY×Y (φ × φ)∗OX×X is an adequate moduli space
and Y → Z is integral (by Proposition 5.2.9(3)). It follows from Lemma 8.3.1 that
X → X × X is finite. �

Example 8.3.3. Let X be the bug-eyed cover of the affine line over a field k with
char(k) 6= 2; that is, X is defined by the quotient of the étale equivalence relation

Z/2Z× A1 r {(−1, 0)}⇒ A1 = Spec(k[x])

where Z/2Z acts via x 7→ −x. Then X → A1 = Spec(k[x2]) is a universal homeo-
morphism such that Γ(X,OX) = k[x2]. However, X → A1 is not an adequate moduli
space. If char(k) = 0, then taking global sections of the surjection OX → OX/I2
where I is ideal sheaf of the origin yields k[x2] → k[x]/x2 which is not adequate.
If char(k) = p 6= 2, then consider the quasi-coherent OX-algebra OX [t] where the
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action is given by t 7→ −t Then taking global sections of the surjection OX [t] →
OX [t]/I2OX [t] yields k[x2, t2]→ k[x, t]/x2. But there is no power of x+ t ∈ k[x, t]/x2
which is in the image.

9. Geometrically reductive group schemes and GIT

In this section we introduce the notion of a geometrically reductive group algebraic
space G → S over an arbitrary algebraic space S. Our notion is equivalent to Se-
shadri’s notion in [Ses77] (see Lemma 9.2.5 and Remark 9.2.6) when G → Spec(R)
is a flat, separated, finite type group scheme over a Noetherian affine scheme which
satisfies the resolution property.

The following are the main examples of geometrically reductive group algebraic
spaces.

(1) Any linearly reductive group algebraic space is geometrically reductive (see
Remark 9.1.3).

(2) Any flat, finite, finitely presented group algebraic space is geometrically re-
ductive (see Theorem 9.6.1). In particular, any finite group is geometrically
reductive.

(3) Any smooth affine group scheme G → S such that G◦ → S is reductive
and G/G◦ → S is finite is geometrically reductive (see Theorem 9.7.6). In
particular, any reductive group scheme (for example, GLn,S → S, PGLn,S → S
or SLn,S → S) is geometrically reductive.

9.1. Definition and GIT.

Definition 9.1.1. Let S be an algebraic space. A flat, separated, finitely presented
group algebraic space G → S is geometrically reductive if the morphism BG → S is
adequately affine.

Remark 9.1.2. In other words, this definition is requiring that for every surjection
A → B of quasi-coherent G-OS-algebras, AG → BG is adequate.

Remark 9.1.3. This notion is weaker than the notion of linearly reductivity introduced
in [Alp13, Section 12]. Recall that a flat, separated, finitely presented group algebraic
space G→ S is linearly reductive if BG→ S is cohomologically affine; that is, if the
functor from quasi-coherent G-OS-modules to quasi-coherent OS-modules given by
taking invariants

QCohG(S)→ QCohG, F 7→ FG
is exact. If S is defined over Spec(Q), then it follows from Lemma 4.1.6 that G→ S is
linearly reductive if and only if G→ S is geometrically reductive. We emphasize that
it is in characteristic p where the notions are not equivalent. The group schemes Z/pZ
and GL2 are geometrically reductive but not linearly reductive. In fact, an algebraic
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group G over an algebraically closed field of characteristic p is linearly reductive if
and only if the connected component of the identity G◦ is a torus and G/G◦ has order
prime to p [Nag62].

Theorem 9.1.4. Let S be an algebraic space. Let G→ S be a geometrically reductive
group algebraic space acting on an algebraic space X with p : X → S affine. Then

φ : [X/G]→ SpecS(p∗OX)G

is an adequate moduli space.

Proof. Since [X/G]→ BG is affine, the composition [X/G]→ BG→ S is adequately
affine so the statement follows. �

Remark 9.1.5. With the notation of Theorem 9.1.4, if S is affine and X = Spec(A),
then the theorem implies that

φ : [Spec(A)/G]→ Spec(AG)

is an adequate moduli space.

9.2. Equivalences. We will give equivalent definitions of adequacy first in the gen-
eral case G → S of a group algebraic space, then in the case where S is affine, and
finally in the case where S is the spectrum of a field. We call a morphism A → B of
quasi-coherent G-OS-algebras universally adequate if the corresponding morphism of
OBG-algebras is.
Lemma 9.2.1. Let S be an algebraic space. Let G → S be a flat, separated, finitely
presented group algebraic space.

(1) For every universally adequate morphism A → B of G-OS-algebras with kernel
I, the morphism AG/IG → BG is an adequate homeomorphism.

(2) The morphism G→ S is geometrically reductive.
(3) For every surjection F → G of G-OS-modules, the morphism (Sym∗F)G →

(Sym∗ G)G is universally adequate.

If in addition S is Noetherian, then the above are equivalent to:

(1′) For every universally adequate morphism A → B of finite type G-OS-algebras
with kernel I, the morphism AG/IG → BG is an adequate homeomorphism.

(2′) For every surjection A → B of finite type G-OS-algebras, the morphism AG →
BG is universally adequate.

(3′) For every surjection F → G of finite type G-OS-modules, the morphism (Sym∗F)G →
(Sym∗ G)G is universally adequate.

Proof. This follows from Lemma 4.1.7. �

We recall the following notion.
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Definition 9.2.2. A flat, separated, finitely presented group algebraic space G→ S
satisfies the resolution property if for every finite type G-OS-module F , there exists
a surjection V → F from a locally free G-OS-module V of finite rank.

Remark 9.2.3. If S = Spec(R) is affine, then this is equivalent to requiring that for
every finite type G-R-module M , there exists a surjection V → M of G-R-modules
from a free finite type G-R-module V . Indeed, suppose that V → M is a surjection
of G-R-modules where V is a locally free G-R-module. We may choose a surjection
R⊕n → V as R-modules which then splits as R⊕n = V ⊕ V ′. If we give V ′ the
trivial G-R-module structure, we see that we have a surjection R⊕n → V → M of
G-R-modules.

Remark 9.2.4. In [Tho87], Thomason shows that a group scheme G→ S satisfies the
resolution property in the following cases:

(1) The scheme S is a separated, regular Noetherian scheme of dimension ≤ 1
and G→ S is affine.

(2) The scheme S is a separated, regular Noetherian scheme of dimension ≤ 2
and π : G → S is affine, flat and finitely presented such that π∗OG is locally
a projective module over OS (for example, G → S is smooth with connected
fibers).

(3) The scheme S has an ample family of line bundles (e.g., S is regular or affine),
G → S is a reductive group scheme such that either (i) G is split reductive,
(ii) G is semisimple, (iii) G has isotrivial radical and coradical or (iv) S is
normal.

Lemma 9.2.5. Let G → Spec(R) be a flat, separated, finitely presented group alge-
braic space. The following are equivalent:

(1) For every universally adequate morphism A→ B of G-R-algebras with kernel K,
the induced R-algebra homomorphism AG/KG → BG is an adequate homeomor-
phism.

(2) The morphism G→ S is geometrically reductive.
(3) For every surjection A → B of G-R-algebras, the homomorphism AG → BG is

adequate.
(4) For every surjection M → N of G-R-modules, the homomorphism (Sym∗M)G →

(Sym∗N)G is adequate.
(5) For every surjection M → R of G-R-modules where R has the trivial G-R-

module structure, there exist N > 0 and f ∈ (SymN M)G such that f 7→ 1
under (SymN M)G → R is adequate.

If in addition R is Noetherian, then the above are equivalent to:

(1′) For every universally adequate morphism A→ B of finite type G-R-algebras with
kernel K, the induced R-algebra homomorphism AG/KG → BG is an adequate
homeomorphism.
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(2′) For every surjection A → B of finite type G-R-algebras, the homomorphism
AG → BG is universally adequate.

(3′) For every surjection A → B of finite type G-R-algebras, the homomorphism
AG → BG is adequate.

(4′) For every surjection M → N of finite type G-R-modules, the homomorphism
(Sym∗M)G → (Sym∗N)G is adequate.

(5′) For every surjection M → R of finite type G-R-modules where R has the trivial
G-R-module structure, there exist N > 0 and f ∈ (SymNM)G such that f 7→ 1
under (SymN M)G → R is adequate.

(6′) For every finite type free G-R-module V , R-algebra k with k a field and non-zero
homomorphism of G-R-modules V → k, there exist n > 0 such that (Symn V )G →
k is non-zero.

If in addition G → Spec(R) satisfies the resolution property, then the above are
equivalent to

(1′′) For every universally adequate morphism R[x1, · · · , xn]→ B of finite type G-R-
algebras with kernelK, the induced R-algebra homomorphism R[x1, · · · , xn]G/KG →
BG is an adequate homeomorphism.

(2′′) For every surjection R[x1, · · · , xn] → B of finite type G-R-algebras, the homo-
morphism R[x1, · · · , xn]G → BG is universally adequate.

(3′′) For every surjection R[x1, · · · , xn] → B of finite type G-R-algebras, the homo-
morphism R[x1, · · · , xn]G → BG is adequate.

(4′′) For every surjection V → N of finite type G-R-modules where V is free as an
R-module, the homomorphism (Sym∗M)G → (Sym∗N)G is adequate.

(5′′) For every surjection V → R of finite type G-R-modules where V is free as an
R-module and R has the trivial G-R-module structure, there exist N > 0 and
f ∈ (SymN V )G such that f 7→ 1 under (SymN V )G → R is adequate.

(6′′) For every finite type G-R-module V which is free as an R-module, R-algebra k
with k a field and non-zero homomorphism of G-R-modules V → k, there exist
n > 0 such that (Symn V )G → k is non-zero.

(7′′) For every finite type G-R-module V which is free as an R-module and invariant

vector v ∈ V G such that R
v−→ V is injective, there exists a non-zero homogenous

invariant polynomial f ∈ (Symn V ∨)G with f(v) = 1.

Proof. The equivalences (1)−(5), (1’)−(5’) and (1”)−(5”) follow from Lemma 4.1.8.
It is clear that that (5′) =⇒ (6′). Conversely, suppose thatM → R is a surjection of
finite type G-R-modules. Let Q be the cokernel of the induced map α : (Sym∗M)G →
(Sym∗R) ∼= R[x]. We need to show that there exists N > 0 such that the image of xN

in Q is 0. For every p ∈ Spec(R), we know there exist n > 0 and f ∈ (Symn V )G such
that f(p) 6= 0; that is, α(f) = cxn with c ∈ Rr p. Therefore, for every p ∈ Spec(R),
there exists n > 0 such that xn is non-zero in Qp. Since R is Noetherian, there exists
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N > 0 such that xN = 0 ∈ Q. The equivalences (5′′) ⇐⇒ (6′′) ⇐⇒ (7′′) are
similar. �

Remark 9.2.6. Property (6′′) translates into the geometric condition that for every
linear action of G on X = An

R = Spec(SymV ∨) over R, where V is a finite type
G-R-module which is free as an R-module, and for every field-valued point x0 ∈
X(k) = V ⊗R k which is G ×R k-invariant, there exist n > 0 and a G-invariant
element f ∈ (Symn V ∨)G such that f(x0) 6= 0. This is precisely Seshadri’s condition
of geometric reductivity in [Ses77, Theorem 1] (see also [MFK94, Appendix G to Ch.
1]).

Remark 9.2.7. Property (5′′) translates into the geometric condition that for every
linear action of G on X = An

R = Spec(Sym V ∨) over R, where V is a finite type G-
R-module which is free as an R-module, and for every G-invariant x ∈ X(R) which
is given by an inclusion R →֒ V of G-R-modules, there exists f ∈ (Symn V ∨)G such
that f(x) = 1.

Lemma 9.2.8. Let G → Spec(k) be a finite type group scheme where k is a field.
The following are equivalent:

(1) The group scheme G is geometrically reductive.
(2) For every surjection V →W of G-representations and w ∈ WG, there exist N > 0

and v ∈ (SymN V )G with v 7→ wN .
(3) For every linear action of G on An, closed invariant subscheme Z and G-invariant

function f on Z , there exists N > 0 such that fN extends to a G-invariant
function on X.

(4) For every linear action of G on An and closed invariant k-valued point q ∈ An,
there exists a homogenous invariant non-constant polynomial f such that f(q) 6=
0.

(5) For every G-representation V and codimension one invariant subspace W ⊆ V ,
there exist r > 0 and a dimension one invariant subspace Q ⊆ Sympr V such that
Sympr V ∼= (W · Sympr−1 V )⊕Q.

If G→ Spec(k) is affine and smooth, then (1) − (5) are equivalent to:

(6) The group scheme G is reductive.
(7) For every action of G on a finite type k-scheme Spec(A), the ring of invariants

RG is finitely generated.

If char(k) = 0, then (1) − (5) are equivalent to:

(8) The group scheme G is linearly reductive.

If char(k) = p, then (1) - (5) are equivalent to:
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(9) For every linear action of G on An and closed invariant k-valued point q ∈ An,
there exists a homogenous invariant polynomial f of degree pr for some r > 0
such that f(q) 6= 0.

Proof. The equivalence (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4) is provided by Lemma
9.2.5. Statement (5) was Mumford’s original formulation of geometric reductivity in
[Mum65, Preface] and is easily seen to be equivalent to the others. The equivalence
(1) ⇐⇒ (6) is Haboush’s theorem [Hab75]. The equivalence (6) ⇐⇒ (7) is
provided by [MFK94, Lemma A.1.2]. The equivalence of (1) ⇐⇒ (8) follows from
Lemma 4.1.6 and (1) ⇐⇒ (9) follows from Lemma 3.2.3. �

9.3. Base change, descent and stabilizers.

Proposition 9.3.1. Let S be an algebraic space and let G → S be a flat, finitely
presented and separated group algebraic space. Let S ′ → S be a morphism of algebraic
spaces.

(i) If G→ S is geometrically reductive, so is G×S S ′ → S ′.
(ii) If S ′ → S is faithfully flat and G×S S ′ → S ′ is geometrically reductive, then so

is G→ S.

Proof. Since BG′ = BG×S S ′, this follows directly from Proposition 4.2.1. �

The following definition is justified by fpqc descent in Proposition 4.2.1(4).

Definition 9.3.2. If X is an algebraic stack, a point ξ ∈ |X | has a geometrically
reductive stabilizer if for some (equivalently any) representative x : Spec(k)→ X , the
stabilizer group scheme Gx → Spec(k) is geometrically reductive.

Remark 9.3.3. If X is locally Noetherian, then there exists a residual gerbe Gξ ⊆ X
and ξ ∈ |X | has geometrically reductive stabilizer if and only if Gξ is adequately affine.

The following is an easy but useful fact ensuring that closed points have geometrically
reductive stabilizers.

Proposition 9.3.4. Let X be a locally Noetherian algebraic stack and let φ : X → Y
be an adequate moduli space. Any closed point ξ ∈ |X | has a geometrically reductive
stabilizer. For any y ∈ Y , the unique closed point ξ ∈ |Xy| has a geometrically
reductive stabilizer .

Proof. The point ξ induces a closed immersion Gξ →֒ X . By Lemma 5.2.11, the mor-
phism from Gξ → Spec(k(ξ)) is an adequate moduli space so that ξ has geometrically
reductive stabilizer. �
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9.4. Matsushima’s theorem. In [Mat60, Theorem 3], Matsushima proved using
analytic methods that if G is a semisimple complex Lie group and H ⊆ G is a
closed, connected complex subgroup, then H is reductive if and only if G/H is
affine. Bialynicki-Birula gave an algebro-geometric proof in [BB63] using a result from
[BBHM63] that if G is a reductive group over a field of characteristic 0 and H ⊆ G is
a closed subgroup, then H is reductive if and only if G/H is affine. It was known that
the transcendental proof given in [BHC62, Theorem 3.5] works in arbitrary charac-
teristic but it relied on sophisticated étale cohomology methods. Richardson gave a
direct proof in [Ric77] that this holds for arbitrary algebraically closed fields k using
Haboush’s theorem equating reductive groups and geometrically reductive groups.
Haboush establishes in [Hab78, Proposition 3.2] that if G is a geometrically reductive
linear algebraic group over any field k and H ⊆ G is a closed subgroup, then H
is geometrically reductive if and only if G/H is affine; from Haboush’s theorem, he
therefore deduces the analogous statement for reductive groups. There is also a proof
by Ferrer Santos in [FS82], based on the techniques in [CPS77], of the statement for
geometrically reductive groups over an algebraically closed field.

We now give a generalization of Matsushima’s theorem. See also Corollary 9.7.7.

Theorem 9.4.1. Suppose that S is an algebraic space. Let G→ S be a geometrically
reductive group algebraic space and let H ⊆ G be a flat, finitely presented and sepa-
rated subgroup algebraic space. If G/H → S is affine, then H → S is geometrically
reductive. If G→ S is affine, the converse is true.

Proof. Consider the cartesian diagram

G/H //

��

�

S

��

BH // BG

IfG/H → S is affine, then by descent BH → BG is affine. Therefore, the composition
BH → BG → S is adequately affine, so H → S is geometrically reductive. Con-
versely, if G → S is affine and H → S is geometrically reductive, then G/H → BH
is affine and the composition G/H → BH → S is adequately affine. It follows from
the generalization of Serre’s criterion (Theorem 4.3.1) that G/H → S is affine. �

Corollary 9.4.2. Let S be an algebraic space. Suppose that G → S is a geometri-
cally reductive group algebraic space acting on an algebraic space X affine over S. Let
x : Spec(k)→ X. If the orbit o(x) ⊆ X ×S k is affine, then Gx → Spec(k) is geomet-
rically reductive. Conversely, if G → S is affine and Gx → Spec(k) is geometrically
reductive, then the orbit o(x) is affine. �
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9.5. Quotients and extensions.

Proposition 9.5.1. Consider an exact sequence of flat, finitely presented and sepa-
rated group algebraic spaces

1→ G′ → G→ G′′ → 1

(1) If G→ S is geometrically reductive, then G′′ → S is geometrically reductive.
(2) If G′ → S and G′′ → S are geometrically reductive, so is G→ S.

Proof. Consider the 2-commutative diagram

BG′ i
//

πG′

##❋
❋❋

❋❋
❋❋

❋❋
BG

j
//

πG
��

BG′′

πG′′

{{✇✇
✇✇
✇✇
✇✇
✇✇

S

BG′ i
//

πG′

��
�

BG

j
��

S
p

// BG′′

where the right square is cartesian and the functors i∗ and j∗ are exact (on quasi-
coherent sheaves). The natural adjunction morphism id → j∗j

∗ is an isomorphism;
indeed it suffices to check that p∗ → p∗j∗j

∗ is an isomorphism and there are canon-
ical isomorphisms p∗j∗j

∗ ∼= πG′∗i
∗j∗ ∼= πG′∗π

∗
G′p∗ such that the composition p∗ →

πG′∗π
∗
G′p∗ corresponds the composition of p∗ and the adjunction isomorphism id →

πG′∗π
∗
G′ .

To prove part (1), we have isomorphisms of functors

πG′′∗
∼→ πG′′∗j∗j

∗ ∼= πG∗j
∗

and since j∗ is exact and πG is adequately affine, πG′′ is adequately affine.

To prove part (2), j is adequately affine since p is faithfully flat and G′ → S is
geometrically reductive. As πG = πG′′ ◦ j is the composition of adequately affine
morphisms, G→ S is geometrically reductive. �

9.6. Flat, finite, finitely presented group schemes are geometrically reduc-

tive. It was shown in [Wat94, Theorem 1] than any finite group scheme G (possibly
non-reduced) over a field k is geometrically reductive. We show that this holds over
an arbitrary base:

Theorem 9.6.1. Let S be an algebraic space and let G → S be a quasi-finite, sepa-
rated, flat group algebraic space. Then G → S is geometrically reductive if and only
if G→ S is finite.

Proof. This follows directly from Theorem 8.3.2. �
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Example 9.6.2. Let k be a field and let G→ A1 = Spec(k[x]) be the group scheme
with fibers isomorphic to Z2 everywhere except over the origin where it is trivial. It
follows from Theorem 9.6.1 that since G→ A1 is quasi-finite but not finite, G→ A1

is not adequate. One can also see this directly. Suppose char(k) 6= 2. Consider the
action of G on X = Spec(k[x, y]) over A1 defined by the involution σ : k[x, y]x →
k[x, y]x given by σ(y) = −y. Then if X = [X/G] and Z is the closed substack defined
by x = 0, then

k[x, y2] ∼= Γ(X ,OX )→ Γ(X ,OZ) ∼= k[y]

is not adequate as there is no prime power of y + 1 which lifts. (One can show in a
similar way that G→ A1 is not adequate if char(k) = 2.).

9.7. Reductive group schemes are geometrically reductive. Following Seshadri
[Ses77], we generalize Haboush’s theorem [Hab75] to show that reductive group
schemes are geometrically reductive. Seshadri’s result [Ses77, Theorem 1] states
that any reductive group scheme G→ Spec(R) with R Noetherian satisfies property
9.2.5(6′′). We show that Seshadri’s method generalizes to establish that a reductive
group scheme is geometrically reductive according to Definition 9.1.1. We stress that
this is only a mild generalization of [Ses77, Theorem 1] as our notion is equivalent to
Seshadri’s notion for flat, finite type, separated group schemes G → S that satisfy
the resolution property with S Noetherian and affine .

The only improvement in our proof is that systematically developing the theory of
geometrically reductive group schemes (for example, properties of base change, de-
scent and extensions) simplifies the reductions to the case where G is a semisimple
group scheme over a discrete valuation ring (DVR) with algebraically closed residue
field. However, the heart of the argument is in the representation theory in [Ses77,
Property I and II on pg. 247] (see Lemmas 9.7.2 and 9.7.4).

Definition 9.7.1. A group scheme G→ S is reductive if G→ S is affine and smooth
such that the geometric fibers are connected and reductive.

Let G → Spec(R) be split reductive group scheme ([Gro64, Exp. XXII, Definition
1.13]). Fix a split maximal torus T ⊆ G and a Borel subgroup scheme B ⊇ T . Let
U ⊆ B be the unipotent subgroup scheme. Denote by X(T ) the group of characters
T → Gm. Let ρ ∈ X(T ) be the half sum of positive roots. Then ρ extends to a
homomorphism ρ̃ : B → Gm defined functorially by ρ̃(tu) = ρ(t) for t ∈ T and u ∈ U .
For a positive integer m, define

Wmρ = {f ∈ Γ(G,OG) | f(gb) = ρ̃(b)mf(g) for all b ∈ B}
If L is the line bundle on G/B associated with ρ, then one can identify Wmρ with the
R-module of sections Γ(G/B,Lm).
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Lemma 9.7.2. ([Ses77, Property I on pg. 247]) Let G be a split semisimple and
simply connected group scheme over a DVR R with algebraically closed residue field
κ. Fix a maximal torus T and a Borel B containing it. Then

(1) For m > 0, (Wmρ ⊗RWmρ)
G ∼= R.

(2) If V is a finite type free G-R-module and v ∈ V G, for m ≫ 0, there is a homo-
morphism of G-R-modules

ϕ : V →Wmρ ⊗R Wmρ

such that the image of ϕ(v) in Wmρ ⊗R Wmρ ⊗R κ is non-zero.

Remark 9.7.3. Statement (1) above differs from [Ses77, Property I(a)] which states
that

((Wmρ ⊗R k)⊗k (Wmρ ⊗R k))G×Rk ∼= k

but follows in the same way from [Ses77, Lemma 3].

Lemma 9.7.4. ([Ses77, Property II on pg. 247]) Let G be a split semisimple and
simply connected group scheme over a DVR R with algebraically closed residue field
κ. Fix a maximal torus T and a Borel B containing it. Then

(1) If char(κ) = 0, then for all m > 0 there is an isomorphism W∨
mρ

∼→ Wmρ.
(2) If char(κ) = 0, then for m = pν − 1 with ν a positive integer there is an isomor-

phism W∨
mρ

∼→Wmρ.

Theorem 9.7.5. Let G→ S be a smooth affine group scheme with connected fibers.
Then G→ S is geometrically reductive if and only if G→ S is reductive.

Proof. First, suppose that G → S is geometrically reductive. By Proposition 9.3.1,
for every s : Spec(k) → Spec(R), the base change Gs → Spec(k) is a geometrically
reductive, smooth and connected group scheme. Let Ru ⊆ Gs be the unipotent
radical. Since Gs/Ru is an affine group scheme, Theorem 9.4.1(1) shows that Ru is
geometrically reductive. It follows that Ru is trivial and that Gs is reductive.

Now suppose that G → S is reductive. By [Gro64, Exp. XXII, Corollary 2.3], there
exists an étale cover S ′ → S such that G′ = G×S S ′ → S ′ is a split reductive group
scheme. By Proposition 9.5.1(1), it suffices to prove that G′ → S ′ is geometrically
reductive. There exists a split reductive group scheme H → Spec(Z) such that
H ×Spec(Z) S

′ ∼= G′. By Theorem 9.4.1(1), it suffices to prove that H → Spec(Z) is
geometrically reductive. Furthermore, by Proposition 9.5.1(1), we may assume that
G is a reductive group scheme over a DVR R with algebraically closed residue field
κ.

The radical R(G) of G is a torus and thus geometrically reductive. By Proposition

9.5.1(2), it suffices to show that G/R(G) is geometrically reductive. If G̃→ G/R(G)

is the simply connected covering of G/R(G), then G̃ → Z is a split semisimple and
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simply connected group scheme. Furthermore, by Proposition 9.5.1(1), it suffices

to show that G̃ is geometrically reductive. Thus, we may assume that G is a split
semisimple and simply connected group scheme over a DVR R with algebraically
closed residue field κ.

Since dimR = 1, G satisfies the resolution property (see Remark 9.2.4). Using the
equivalence of Lemma 9.2.5 and Remark 9.2.7, we need to show that given a finite
type G-R-module V which is free as an R-module and x : R → V an inclusion of
G-R-modules, there exists f ∈ (Symn V ∨)G such that f(x) = 1. By Lemma 9.7.2(2)
and Lemma 9.7.4 there exist m > 0 and a homomorphism of G-R-modules

ϕ : V →Wmρ ⊗RW∨
mρ
∼= HomR(Wmρ,Wmρ)

such that the image of ϕ(v) inWmρ⊗RWmρ⊗Rκ is non-zero. Furthermore, by Lemma
9.7.2(1), HomR(Wmρ,Wmρ)

G is isomorphic to R and is generated by the identity
map idWmρ : Wmρ → Wmρ. It follows that ϕ(v) = λ · idWmρ where λ ∈ R is a
unit. By multiplying ϕ by λ−1, we may assume ϕ(v) = idWmρ . The determinant
function det : HomR(Wmρ,Wmρ)→ R is a non-zero homogenous invariant polynomial.
Therefore the composition

f : V
ϕ−→ HomR(Wmρ,Wmρ)

det−→ R

is a non-zero homogenous invariant polynomial; that is, f ∈ (Symn V ∨)G for some n >
0. Furthermore f(v) = detϕ(v) = 1 so we have constructed the desired invariant. �

If G→ S is a smooth group scheme, then [Gro64, Exp. V IB, Theorem 3.10] implies
that the functor

(Sch /S)→ Sets

(T → S) 7→ {g ∈ G(T ) | ∀s ∈ S, gs(Ts) ⊆ (Gs)
◦}

is representable by an open subgroup scheme G◦ ⊆ G which is smooth over S.

Theorem 9.7.6. Let G → S be a smooth affine group scheme such that G/G◦ → S
is separated. Then G→ S is geometrically reductive if and only if the geometric fibers
of G◦ → S are reductive and G/G◦ → S is finite.

Proof. If G → S is geometrically reductive, then Proposition 9.5.1 implies that
G/G◦ → S is geometrically reductive and Theorem 9.6.1 implies that G/G◦ → S is
finite. Furthermore, the geometric fibers are geometrically reductive by Proposition
9.3.1 and therefore reductive by Theorem 9.7.5. Conversely, Theorem 9.7.5 implies
that G◦ → S is geometrically reductive and Theorem 9.6.1 implies that G/G◦ → S is
geometrically reductive. It follows from Proposition 9.5.1(2) that G → S is geomet-
rically reductive. �
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Corollary 9.7.7. If G → S is a reductive group scheme and H ⊆ G is a smooth
closed subgroup scheme with geometrically connected fibers, then H → S is reductive
if and only if G/H → S is affine.

Proof. This follows from Theorems 9.4.1 and 9.7.5. �

We end with another immediate application of the theory of adequacy. This result is
well known to the experts but we are unaware of a reference.

Proposition 9.7.8. Let G → S be a geometrically reductive group scheme (for ex-
ample, a reductive group scheme). Let X → Y be a morphism of algebraic spaces
over S which is a principal homogenous space for G. If X is affine over S, then so
is Y .

Proof. Let p denote the structure morphism X → S. By Theorem 9.1.4, [X/G] =
Y → SpecS(p∗OX)G is an adequate moduli space. In particular, Y → SpecS(p∗OX)G
is an adequately affine morphism of algebraic spaces so by the generalization of Serre’s
criterion (Theorem 4.3.1), it is also affine; it follows that Y is affine over S. �
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