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A LINEARIZED KURAMOTO-SIVASHINSKY PDE VIA AN

IMAGINARY-BROWNIAN-TIME-BROWNIAN-ANGLE PROCESS

HASSAN ALLOUBA

Abstract. We introduce a new imaginary-Brownian-time-Brownian-angle pro-
cess, which we also call the linear-Kuramoto-Sivashinsky process (LKSP).
Building on our techniques in two recent articles involving the connection of
Brownian-time processes to fourth order PDEs, we give an explicit solution to a
linearized Kuramoto-Sivashinsky PDE in d-dimensional space: ut=−

1
8
∆

2
u−

1
2
∆u−

1
2
u.

The solution is given in terms of a functional of our LKSP.

1. Statements and discussions of results.

One of the prominent equations in modern applied mathematics is the celebrated
Kuramoto-Sivashinsky (KS) PDE. This nonlinear equation has generated a lot of
interest in the PDE literature (see e.g., [9, 10, 11, 12, 21] and many other papers).
In the field of stochastic processes, a great deal of interest is directed at the study of
processes in which time is replaced in one way or another by a Brownian motion, and
this interest has picked up considerably (see e.g., [1, 2, 6, 7, 8, 19, 20, 16, 17, 13, 14])
after the fundamental work of Burdzy on iterated Brownian motion ([7, 8]). In
[1, 2], we provided a unified framework for such iterated processes (including the
IBM of Burdzy) and introduced several interesting new ones, through a large class of
processes that we called Brownian-time processes. We then related them to different
fourth order PDEs. In this article, and as announced in [2], we modify our process
in Theorem 1.2 [2] and build on our methods in [2] to give an explicit solution
to a linear version of the KS PDE. One modification needed is the introduction
of i =

√
−1 in both the Brownian-time and the Brownian-exponential, and that

leads to a new process we call imaginary-Brownian-time-Brownian-angle process
IBTBAP, starting at f : Rd → R:

(1.1) A
f,X
B (t, x)

△
=

{

f(Xx(iB(t))) exp (iB(t)) , B(t) ≥ 0;

f(iX−ix(−iB(t))) exp (iB(t)) , B(t) < 0;

where Xx is an R
d-valued Brownian motion starting from x ∈ R

d, X−ix is an
independent iRd-valued BM starting at −ix (so that iX−ix starts at x), and both
are independent of the inner standard R-valued Brownian motion B starting from 0.
The time of the outer Brownian motions Xx and X−ix is replaced by an imaginary
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positive Brownian time; and, when f is real-valued as we will assume here, the angle

of Af,X
B (t, x) is the Brownian motion B. We think of the imaginary-time processes

{Xx(is), s ≥ 0} and {iX−ix(−is), s ≤ 0} as having the same complex Gaussian
distribution on R

d with the corresponding complex distributional density

p
(d)
is (x, y) =

1

(2πis)d/2
e−|x−y|2/2is.

We will also call the process given by (1.1) the d-dimensional Linear-Kuramoto-

Sivashinsky process (LKSP) starting at f (clearly A
f,X
B (0, x) = f(x)). The dimen-

sion in d-dimensional IBTBAP (or d-dimensional LKSP) refers to the dimension of
the BMs Xx and X−ix, which is also the dimension of the spatial variable in the
associated linearized KS PDE as we will see shortly.

Now, motivated by the definitions of vǫ and uǫ in the proof of Theorem 1.2 in
[2], we let

v(s, x)
△
= exp (is)

∫

Rd

f(y)
1

(2πis)
d/2

e−|x−y|2/2isdy

u(t, x)
△
=

∫ 0

−∞

v(s, x)pt(0, s)ds+

∫ ∞

0

v(s, x)pt(0, s)ds

(1.2)

where pt(0, s) is the transition density of the inner (one-dimensional) Brownian
motion B:

pt(0, s) =
1√
2πt

e−s2/2t.

We may think of v and u in terms of complex expectation by defining v(s, x)
△
=

E
C [f(Xx(is)) exp (is)] and u(t, x)

△
= E

C

[

A
f,X
B (t, x)

]

. A more detailed study of the

rich connection between our process and its complex distribution to the KS PDE
and its implications is the subject of an upcoming article [3]. We are now ready to
state our main result.

Theorem 1.1. Let f ∈ C2
c (R

d;R) with Dijf Hölder continuous with exponent

0 < α ≤ 1, for all 1 ≤ i, j ≤ d. If u(t, x) is given by (1.2) then u(t, x) solves the

linearized Kuramoto-Sivashinsky PDE

(1.3)







∂

∂t
u(t, x) = −1

8
∆2u(t, x)− 1

2
∆u(t, x)− 1

2
u(t, x), t > 0, x ∈ R

d;

u(0, x) = f(x), x ∈ R
d.

2. Proof of the main result

Proof of Theorem 1.1. Let u and v be as given in (1.2). Differentiating u(t, x)
with respect to t and putting the derivative under the integral, which is easily
justified by the dominated convergence theorem, then using the fact that pt(0, s)
satisfies the heat equation

∂

∂t
pt(0, s) =

1

2

∂2

∂s2
pt(0, s)
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and integrating by parts twice using the fact that the boundary terms vanish at
±∞ and that (∂/∂s)pt(0, s) = 0 at s = 0, we obtain

∂

∂t
u(t, x) =

∫ 0

−∞

v(s, x)
∂

∂t
pt(0, s)ds+

∫ ∞

0

v(s, x)
∂

∂t
pt(0, s)ds

=
1

2

[
∫ 0

−∞

v(s, x)
∂2

∂s2
pt(0, s)ds+

∫ ∞

0

v(s, x)
∂2

∂s2
pt(0, s)ds

]

=
1

2
pt(0, 0)

[(

∂

∂s
v(s, x)

)∣

∣

∣

∣

s=0−
+

(

∂

∂s
v(s, x)

)∣

∣

∣

∣

s=0+

]

+
1

2

∫ 0

−∞

pt(0, s)
∂2

∂s2
v(s, x)ds +

1

2

∫ ∞

0

pt(0, s)
∂2

∂s2
v(s, x)ds

=
1

2

∫ 0

−∞

pt(0, s)

[

−1

4
∆2v (s, x)−∆v (s, x)− v (s, x)

]

ds

+
1

2

∫ ∞

0

pt(0, s)

[

−1

4
∆2v (s, x)−∆v (s, x)− v (s, x)

]

ds

= −1

8
∆2u(t, x)− 1

2
∆u(t, x)− 1

2
u(t, x)

(2.1)

where for the last two equalities in (2.1) we have used the fact that

∂v

∂s
=

i

2
∆v (s, x) + iv (s, x)

∂2v

∂s2
= −1

4
∆2v (s, x)−∆v (s, x)− v (s, x) ,

(2.2)

and the conditions on f to take the applications of the derivatives outside the
integrals in (2.1) and (2.2) (the steps of Lemma 2.1 in [2] easily translates to our
setting here, see the discussion below). Clearly u(0, x) = f(x), and the proof is
complete.

As we indicated above, only minor changes to Lemma 2.1 in [2] are needed to justify
pulling the derivatives outside the integrals in (2.1) under the conditions on f of
Theorem 1.1. We now adapt Lemma 2.1 [2] to our setting here, and we point out
the necessary changes in its proof:

Lemma 2.1. Let v(s, x) be given by (1.2) and let f be as in Theorem 1.1. Let

u1(t, x)
△
=

∫ 0

−∞

v(s, x)pt(0, s)ds and u2(t, x)
△
=

∫ ∞

0

v(s, x)pt(0, s)ds,(2.3)

then ∆2u1(t, x) and ∆2u2(t, x) are finite and

∆2u1(t, x) =

∫ 0

−∞

∆2v(s, x)pt(0, s)ds and ∆2u2(t, x) =

∫ ∞

0

∆2v(s, x)pt(0, s)ds.

(2.4)

Proof. As in the proof of Lemma 2.1 [2], letting
◦

R+ = (0,∞) and
◦

R− =
(−∞, 0), it suffices to show

(2.5)
∂4

∂x4
j

∫

◦

R±

v(s, x)pt(0, s)ds =

∫

◦

R±

∂4

∂x4
j

v(s, x)pt(0, s)ds, j = 1, . . . , d.
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Letting p
(d)
is (x, y) = (2πis)−d/2e−|x−y|2/2is and using the conditions on f , we easily

get

∂4

∂x4
j

v(s, x)pt(0, s) = exp (is)

(

∫

Rd

f(y)
∂4

∂y4j
p
(d)
is (x, y)dy

)

pt(0, s)

= exp (is)

(

∫

Rd

∂2

∂y2j
f(y)

∂2

∂y2j
p
(d)
is (x, y)dy

)

pt(0, s).

(2.6)

Rewriting the last term in (2.6), and letting hj(y)
△
= ∂2f(y)/∂y2j , we have

∣

∣

∣

∣

∣

exp (is)

(
∫

Rd

(2πis)−d/2

(−(xj − yj)
2 + is

s2

)

e−|x−y|2/2ishj(y)dy

)

e−s2/2t

√
2πt

∣

∣

∣

∣

∣

=
e−s2/2t

√
2πt

∣

∣

∣

∣

(
∫

Rd

(2πis)−d/2

(−(xj − yj)
2 + is

s2

)

e−|x−y|2/2is(hj(y)− hj(x))dy

)∣

∣

∣

∣

≤ e−s2/2t

√
2πt

∫

Rd

(2π|s|)−d/2

∣

∣

∣

∣

−(x̃j − yj)
2 + |s|

s2

∣

∣

∣

∣

e−|x̃−y|2/2|s| |hj(y)− hj(x̃)| dy

=
e−s2/2t

√
2πt

EP

∣

∣

∣

∣

∣

(

(x̃j −W x̃
j (|s|))2 − |s|
s2

)

(

hj(W
x̃(|s|))− hj(x̃)

)

∣

∣

∣

∣

∣

,

(2.7)

for some x̃ ∈ R
d where x̃j = ±xj for j = 1 . . . , d; and where W x̃ : Ω×R+ → R

d is a
standard Brownian motion starting at x̃ ∈ R

d on a probability space (Ω,F,P), and
W x̃

j is its j-th component. The inequality in (2.7) follows easily if hj is a polynomial,

and standard approximation yields the inequality for hj ∈ Cc(R
d;R). Now, exactly

as in [2] (2.6) and (2.7); we use the Brownian motion scaling for W x̃, the Cauchy-
Shwarz inequality on the last term in (2.7), and the Hölder condition on hj to deduce

that the last term in (2.7) is bounded above by K exp (−s2/2t)/(
√
2πt|s|1−α/2) ∈

L1((−∞, 0), ds)∩ L1((0,∞), ds); hence
∣

∣∂4/∂x4
jv(s, x)pt(0, s)

∣

∣ ∈ L1((−∞, 0), ds)∩
L1((0,∞), ds), which completes the proof by standard analysis.
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