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A NORMAL FORM OF THE NON–LINEAR SCHRÖDINGER

EQUATION

M. PROCESI*, AND C. PROCESI**.

Abstract. In this note we discuss normal forms of the completely resonant non–
linear Schrödinger equation on a torus, with particular applications to quasi periodic
solutions.

1. Introduction

The aim of this paper is to study an approximate normal form for the completely
resonant cubic non–linear Schrödinger equation

(1) ivt −∆v = κ|v|2v,

NLS for short, on an n–dimensional torus (n > 1) whose coordinates we denote by ϕ (that
is with periodic boundary conditions), with the purpose of applying KAM Theory as for
instance in [8], [9],[10]. We shall perform a very detailed study in all dimensions with the
most precise results in dimensions 2 and 3.

The NLS in dimension 1 has a long history, it is completely integrable and several ex-
plicit solutions are known. Moreover it has a convergent normal form, see [13]. In higher
dimension we loose the complete integrability and all the techniques associated to it, but
we can start from the well known fact that the NLS (1) is an infinite dimensional Hamil-
tonian system (see Formula (8)) whose linear part consists of infinitely many independent
oscillators with rational frequencies and hence completely resonant (all the bounded so-
lutions are periodic). The presence of the non-linear term couples the oscillators and
modulates the frequencies so that one expects small quasi–periodic (and almost-periodic)
solutions to exist for appropriate choices of the initial data. To prove the existence of such
quasi–periodic solutions for Hamiltonian PDE’s there are two main approaches in the lit-
erature: one by KAM theory and the other by using Lyapunov-Schmidt decomposition
and then Nash–Moser implicit function theorems (the so–called Craig–Wayne–Bourgain
method). It is important to notice however that for both approaches it is necessary to
start from a suitably non degenerate normal form and the existence of such normal form
is not apparent for equation (1).
The object of this paper is to construct an appropriate normal form and show that it
satisfies the hypothesis of a KAM algorithm, we will also briefly discuss how our normal
form relates to the other main method of producing quasi–periodic solutions.

Before describing our results let us give an extremely sketchy overview of the existing
literature on quasi–periodic solutions for the NLS.
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1.1. Background. In the literature on the NLS in higher dimensions, most of the results
are restricted to simplified models such as

(2) ivt −∆v +Mσv = f(ϕ, |v|2)v
whereMσ is a “Fourier multiplier” i.e. a linear operator, depending on a finite number– say
m– of free parameters σ, which commutes with the Laplacian. The role of the “Fourier
multiplier” is to ensure that the equation (2), linearized at v = 0 has quasi–periodic
solutions with m frequencies which excite m Fourier modes (say v1, . . . , vm with vi ∈ Zn)
and leave the others at rest. The modes vi on which the linear motion takes place are
called the tangential sites, and one constructs quasi–periodic solutions of equation 2, which
are approximately confined to these Fourier modes.

The first proofs of existence of periodic and quasi–periodic solutions for equation (2)
were given by Bourgain, see [6] and [7]. Then Eliasson and Kuksin, in [8], proved both
existence and linear stability of quasi–periodic solutions for equations like (2), by using
KAM theory. In this setting the main difficulty is to prove measure estimates on the
set of initial data for which quasi–periodic solutions occur. More precisely one needs to
impose the second Melnikov condition, this was done by a subtle analysis of the “Toeplitz
Lipschitz” properties of the NLS Hamiltonian.

In the case of dimension n = 2 Geng, You and Xu proved the existence of quasi-periodic
solutions for equation (1) by a combination of non-integrable normal form, momentum
conservation (in the spirit of [9]) and the ideas of Kuksin and Eliasson.

The existence of wave packets of periodic solutions for equation (1) (as well as for the
beam equation) in any dimension is proved in [11] and [12]. In those papers the authors
were able to deal also with Dirichlet boundary conditions for which the normal form is
much more complicated.

1.2. Description of the methods and results. While trying to understand the con-
nections between the result of [10] and [11]–[12], the first author started to understand
that one could even attack the much more complicated case of quasi–periodic solutions
in case n > 2. In particular it became clear that, the challenging problem of completely
understanding the NLS Hamiltonian after one step of Birkhoff normal form, had subtle
combinatorial and geometric aspects which needed a very careful and non–trivial analysis
which is fully performed in this paper.

Resonant Birkhoff normal form is a well-known approach to resonant or degenerate
dynamical systems and works very well in the case of the one-dimensional NLS, see [5].
Roughly speaking, consider a Hamiltonian

H = H(2)(p, q) +H(4)(p, q) , H(2)(p, q) =
∑

k

λk(p
2
k + q2k)

where H(4) is a polynomial of degree 4 and the λk are all rational.
A step of “resonant Birkhoff normal form” is a sympletic change of variables which

reduces the Hamiltonian H to

HN = H(2)(p, q) +H(4)
res(p, q) +H(6)

where H(6) is an analytic function of degree at least 6 while H
(4)
res is of degree 4 and

Poisson commutes with H(2). Then one wishes to treat H(2)(p, q) +H
(4)
res(p, q) as the new

unperturbed Hamiltonian and H(6) as a small perturbation. This can work provided that
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H(2)(p, q) + H
(4)
res(p, q) is simple enough (possibly completely integrable) and has quasi-

periodic motions for large classes of initial data (which now play the role of the parameters
σ). An ideal situation is when the λk are non–resonant up to order 4 so that the normal
form is integrable, for example, in

H(2) +H(4)
res =

N
∑

k=1

λk(p
2
k + q2k) +

m
∑

k=1

(p2k + q2k)
2,

the quartic term produces an integrable twist on the firstm frequencies. Then one chooses
these as tangential sites and passes to action–angle variables p2k + q2k = ξk + yk for k =
1, . . .m. It is easily seen that the anisochronous twist implies that the linear frequencies
now depend on the initial datum ξ and hence for almost all ξ the motions are quasi-
periodic.

Our setting is quite far from being ideal and one has to start by dividing, in a very
careful way, the oscillators into two suitable subsets, the tangential and the normal sites.
This we shall do by imposing the condition that the tangential sites are generic (cf.
Definition 3.2 and §9.1 for a precise statement), with the strategy of analyzing the equation
near the solutions in which the normal sites are at rest and the tangential sites move quasi–
periodically on an m-torus.

This is done by doubling the action variables in the tangential sites, so each action
variable is written as ξi + yi where the ξi are treated as parameters (which are used to
parametrize the quasi–periodic or almost–periodic solutions obtained by the perturbative
method), the yi instead remain part of the actual symplectic dynamical variables. The
introduction of these parameters allows to treat the orbits which produce diffusive phe-
nomena as singularities of the perturbative algorithm (the problem of small denominators).
This technique was introduced by Pöschel to prove the existence of lower dimensional tori
in finite-dimensional systems and was extended to infinitely-many degrees of freedom in
various papers, see [14], [3].

In our case the normal form Hamiltonian H(2) + H
(4)
res is non–integrable and rather

complicated. The structure of this normal form was first discussed by Bourgain in [6]
and then revisited in [11] and[12] for the more complicated case of Dirichlet boundary
conditions.

The key point in [11] is that, for most of the choices of tangential sites, the leading
order of the normal form Hamiltonian is quadratic and block diagonal.

This is not explicit in [11], so let us reformulate the result using, as we shall do in this
paper, complex symplectic variables wk = (zk, z̄k) for the normal sites and action angle
variables (ξ + y, x) for the tangential sites.

(3) H(2) +H(4)
res = (ω(ξ), y) +

1

2
(y,Ay)− 1

2
wM(ξ, x)Jwt +O(w3)

where A is an invertible twist matrix, J is the standard symplectic matrix and M(ξ, x) is
a complex matrix such that the quadratic form Q = − 1

2wM(ξ, x)Jwt is real, semi-definite
and block diagonal with blocks of uniformly bounded dimension. The entries of M depend
analytically on the parameters ξ and on the angle variables x and the Hamilton equations
for the normal form decouple to (we represent w as a row vector):

ẏ = 0 , ẋ = ω(ξ) , ẇ = iwM(ξ, x0 + ω(ξ)t) .

In the present paper we largely improve this result by showing that, for generic choices of
the tangential sites, non only the quadratic form is block diagonal but that the dimension
of the blocks is bounded by n+ 1; in particular the fact that the dimension of the block
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does not depend on the number of tangential sites enables us to consider infinitely many
tangential sites, this is crucial if one wants to construct almost–periodic solutions.

1. By relating the normal form to appropriate combinatorial graphs we describe com-
pletely and efficiently the structure of the quadratic form; of particular relevance is the
fact that the infinite-dimensional quadratic form is described by a finite number of com-
binatorially defined graphs.

2. The next substantial result, Theorem 1, consists in proving that the normal form
Hamiltonian (3) is reducible to constant coefficients:

(ω(ξ), y)− 1

2
wM ′(ξ)Jwt,

where the quadratic form is still real but we loose information on the signature of the
single blocks. In general wether one may reduce a quadratic Hamiltonian to constant
coefficients is a difficult question even for finite dimensional systems. We are moreover in
an infinite-dimensional context so that there is also a convergence issue to be treated. Due
to our wise choice of the tangential sites however the change of variables which reduces
the normal form to constant coefficients is completely explicit and one can check easily
all the convergence issues. See [16] for similar results in the context of finite dimensional
systems.

3. The final step is to diagonalize the Hamiltonian (by a linear change of variables
U(ξ)) and obtain:

(4) (ω(ξ), y) +
∑

|k|>C

Ω̃k(ξ)|zk|2 + Q̃(ξ, w) + Perturbation,

where ω(ξ), Ω̃(ξ) are real and Q̃(ξ, w) is a finite dimensional quadratic form (i.e. it involves
only a finite number of normal sites wh = uh, ūh. The matrix U(ξ) and the functions

ω(ξ), Ω̃(ξ) are linearly homogeneous analytic functions of ξ for all ξ outside a real algebraic
hypersurface. See Theorem 2 for notations and details.

4. We show that in dimension n = 2 the non-elliptic terms in (4) vanish for appropri-
ate choices of the parameters ξi. As a consequence the non-integrable normal form used
in the paper [10] can be reduced to a standard one, Corollary 1. This allows us to identify
which of the solutions found in [10] are linearly stable (resp. unstable).

5. In dimension > 2 we then study the question of how to apply an abstract KAM
algorithm to our Hamiltonian. We follow [14] and [3]. A main point is to prove a “non-
degeneracy condition”, as stated in [14]. We obtain a complete result in dimension 3 and
produce a finite (but rather heavy) algorithm to check the property in any dimension. Let

us denote by Ω̃k all the eigenvalues of the matrix M ′ (as we have said it is possible that
a finite number is complex valued). We study the set of values ξ, where at least one of
Melnikov resonances

(5) (ω(ξ), ν) = 0 , (ω(ξ), ν) + Ω̃k(ξ) = 0 , (ω(ξ), ν) + Ω̃k(ξ) + σΩ̃h(ξ) = 0

occur. In the first equality we assume ν 6= 0 while in the third equality we assume
that (σ, ν, h, k) 6= (−, 0, h, h) because these give trivial resonances. Since equation (1)
has the total momentum as a preserved quantity we only need to consider those choices
of σ = +,−, ν ∈ Zm and of normal sites h, k which are compatible with momentum
conservation (see Proposition 6.2 item v)).

In Theorem 3 we prove in dimensions 2,3 that the set of ξ which satisfies a non-
trivial Melnikov resonance is of measure zero for all choices of (σ, ν, h, k) compatible with
momentum conservation.
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These Conditions are necessary in order to follow the KAM algorithm as in [14], and
sufficient at least at a formal level, since the expression in (5) appear as denominators
in the homological equation. Even if at the moment we are unable to prove the second
Melnikov condition in dimension > 3 we still show that a slightly weaker statement on
separation of eigenvalues, proved in Proposition 6.21 is sufficient to perform the KAM
algorithm in our case. Thus although in dimensions ≤ 3 our results are more precise, we
still have an answer to the original question in all dimensions. Finally we briefly discuss
how our Theorems lead to the convergence of an abstract KAM scheme for ξ in some
Cantor–like set defined iteratively. To conclude a KAM theorem one should prove that
this set is non–empty and of positive measure; we do not discuss here this last question
(which can be handled by following [8]). The explicit construction of a KAM iteration
scheme and the measure estimates will appear in a forthcoming paper.

If one is willing to give up linear stability results one can probably use the CWB
method. Then it is only necessary to check the first two Melnikov conditions and this we
do in complete generality (Theorem 3 item 1.).

In our setting, the singularities (i.e. the values for which one of the Melnikov de-
nominators is zero) appear at the loci where the eigenvalues of some matrices depending
parametrically (and polynomially) from the ξi coalesce or become 0. These loci are alge-
braic hypersurfaces, and then the full KAM algorithm producing the space of parameters
for quasi–periodic solutions converges outside countably many small neighborhoods of
these hypersurfaces.

The problem arises in the study of the second Melnikov equation where we have to
understand when it is that two eigenvalues become equal or opposite. This is essentially
equivalent to using the classical Theory of Sylvester. The condition for a polynomial to
have distinct roots is the non–vanishing of the discriminant while the condition for two
polynomials to have a root in common is the vanishing of the resultant. In our case
these resultants and discriminants are polynomials in the parameters ξi so, in order to
make sure that the singularities are only in measure 0 sets (in our case even an algebraic
hypersurface), it is necessary to show that these polynomials are formally non–zero. This
is a purely algebraic problem involving, in each dimension n, only finitely many explicit
polynomials (cf. §10) and so it can be checked by a finite algorithm.

The problem is that, even in dimension 3, the total number of these polynomials is
quite high (in the order of the hundreds or thousands) so that the algorithm becomes
quickly non practical.

In order to avoid this we have experimented with a conjecture which is stronger than
the mere non–vanishing of the desired polynomials. We expect our polynomials to be
irreducible and separated in a sense explained in §12.

This we prove in dimension 3 (in dimension 2 it is almost immediate), by a mixture of
theoretical arguments and a few direct algorithmic verifications. Then this strong result
immediately leads to the analyticity of the Ω̃k(ξ) in the parameters ξ and the verification
of the second Melnikov condition.

In order to prove irreducibility and separation for all dimensions it would be necessary
to eliminate the direct verification of some special cases and thus strengthen the theoretical
approach. For the moment this remains conjectural.

Another interesting point is that our reduction algorithm of item 2. cannot exclude
that a finite number of blocks in M may have complex eigenvalues Ω̃k(ξ) for positive ξ.

In general, again following Sylvester Theory, one can state the condition that the Ω̃k ∈ R

as a system of a finite number of explicit polynomial inequalities in the parameters, this
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determines an open possibly non–empty region and one has to show that it intersects the
positive sector. In dimension n = 2 this can be done trivially, but already the case of
dimension 3 seems very challenging from a computational point of view.

2. Notations

2.1. Symplectic formalism. Consider a Nonlinear Schrödinger equation on the torus
Tn (NLS for brevity):

(6) iut −∆u = κ|u|2u+ ∂ūG(u, ū)

where u := u(t, ϕ), ϕ ∈ Tn and G(a, b) is a real analytic function whose Taylor series starts
from degree 6; notice that we restrict to the case where there is no explicit dependence
on the spatial variable ϕ. It is well known that equation 6, the NLS, is a Hamiltonian
equation and has the momentum

∫

Tn ū(ϕ)∇u(ϕ) as integral of motion (notice that if

f(u, ū) = G(|u|2)u, then also the L2 norm
∫

Tn |u(ϕ)|2 is preserved).
We shall see that the essential part of the equation is the cubic term. As for the

constant κ it can be rescaled to ±1. In our paper se set it equal to 1 since the other case
is quite similar.

Passing to the Fourier representation

(7) u(t, ϕ) :=
∑

k∈Zn

uk(t)e
i(k,ϕ)

Eq. 6 can be written as an infinite dimensional Hamiltonian dynamical system u̇ = {H,u}
with Hamiltonian

(8) H :=
∑

k∈Zn

|k|2ukūk +
∑

ki∈Zn:k1+k3=k2+k4

uk1 ūk2uk3 ūk4 +G(u, ū)

on the scale of complex Hilbert spaces

(9) ℓ̄
(a,p)

:= {u = {uk}k∈Zn |
∑

k∈Zn

|uk|2e2a|k||k|2p := ||u||2a,p ≤ ∞},

a > 0, p > n/2.

with respect to the complex symplectic form i
∑

k duk ∧ dūk.
These choices are rather standard in the literature:

Remark 2.2. The condition imposed on u by (9) means that:

• We restrict our study to functions which extend to analytic functions in the domain
of the complex torus Cn/2πZn where (z1, . . . , zn) ∈ Cn, Im(zi) ≤ a.

• The functions on the boundary are in the Sobolev space Hp.
• The condition p > n/2 implies that the function space under consideration embeds
in L∞. In particular the following uniform bound holds for each u ∈ ℓ̄(a,p):

(10) |uk| ≤ C(s, a)
‖u‖a,pe−a|k|

〈k〉p−n/2
, 〈k〉 := max(1, |k|).

In fact this implies that ℓ̄(a,p) has a Hilbert algebra structure.
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2.3. Analytic Hamiltonians. We consider real Hamiltonians on the space ℓ̄(a,p) which
can be formally expanded in Taylor series

F =
∑

i

F (i)(u, ū) =
∑

i

∑

(α,β)∈N∞

|α+β|1=i

F (α,β)
∏

k∈Zn

uαk

k ūβk

k

where F (i) is a multilinear form of i variables (u, ū) ∈ ℓ̄(a,p) × ℓ̄(a,p).
We require that the series is totally convergent in some ball of positive radius, so that

by definition the function is analytic. Usually this will be verified, using Formula (10), by
determining a positive r so that if ‖u‖a,p < r

∑

i

∑

(α,β)∈N∞

|α+β|1=i

|F (α,β)|
∏

k

e−a(αk+βk)|k|

〈k〉(αk+βk)(p−n/2)
‖u‖ia,p <∞.

Clearly the NLS Hamiltonian belongs to this class and is convergent on any ball Br.
We will also be interested in Hamiltonian vector fields XF = {∂ūk

F}k∈Zn , where F is
an analytic Hamiltonian in the ball Br. With this notation the Hamilton equations are
u̇k = iXF . We will require that the vector field maps Br → ℓ̄a,p and we will use the norm

|XF |r := sup
u∈Br

‖XF‖a,p/r.

notice that if |XF |r < 1/2 then the Hamiltonian flow is well defined up to t = 1 and
depends analytically on the initial data so that the symplectic change of variables is well
defined and analytic say from Br/2 → Br. Notice that this condition is NOT verified by

H(2) but just by H(4).

2.4. Elliptic–action angle variables. As explained in the introduction we will be in-
terested in non symmetric domains D ⊂ Bǫ where some of the variables uk (the tangential
sites) are bounded away from zero and hence can be passed in action angle variables while
all the other variables are much smaller.

We first partition

Zn = S ∪ Sc, S := (v1, . . . , vm)

where: the set S are called tangential sites and Sc the normal sites. We then introduce the
elliptic action angle coordinates (ξ+y, x)×(z, z̄) ∈ Rm×Tm×ℓ(a,p) where Tm := Rm/2πZm

and we denote by ℓ(a,p) the subspace of ℓ̄(a,p) × ℓ̄(a,p) generated by the indices in Sc and
w = (z, z̄) (considered as row vectors) are the corresponding coordinates. As explained in
the introduction the ξ are positive parameters while the (y, x) are the conjugate dynamical
variables. The symplectic form is

dy ∧ dx+ diz ∧ dz̄.
We consider the domain

Aα ×D(s, r) :=

(11) {ξ :
1

2
rα ≤ ξi ≤ rα } × {x, y, w : x ∈ Tm

s , |y| ≤ r2 , |w|a,p ≤ r}

⊂ Rm × Tm
s × Cm × ℓ(a,p).

Here 0 < α < 2, 0 < r < 1, 0 < s are parameters. Tm
s denotes the open subset of the

complex torus Tm
C

:= Cm/2πZm where x ∈ Cm, |Im(x)| < s (cf. Remark 2.2).
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Remark 2.5. It is possible and useful to treat also the case m = ∞. In this case we use
in Formula (11) an exponentially decaying norm |y|a,p and for Aα a condition of the form
1
2r

α ≤ ξie
a|vi| ≤ rα.

Some comments on the choice of this domain are in order. The main point is the
inequality in the ξ which is required to determine a domain where the KAM algorithm
can be performed outside the singularities to be determined. The inequality on the y and
on the w are just auxiliary and only used to keep the computations inside the domains of
convergence. The use of the complex domain Tm

s is motivated by the need to insure that
the solutions that we shall find have some analytic behavior.

Given a Banach space E, a function F (ξ, y, x, w) : Aα × D(s, r) → E is said to be
analytic in x, y, w if its Taylor-Fourier series in these variables is totally convergent in the
domain Aα ×D(s, r). We use as norm the sup-norm

‖F‖s,r = sup
Aα×D(s,r)

|F |E .

As for the variables ξ we will require less regularity, namely we use weighted Lipschitz
norms

‖F‖λs,r = ‖F‖s,r + λ sup
ξ 6=η∈Aα , (y,w)∈D(s,r)

|F (η)− F (ξ)|
|η − ξ| .

In this new set of variables we are also interested in Hamiltonian vector fields

XF = {∂yF,−∂xF, JdwF}

which map D(s, r) → Tm
s × Cm × ℓ(a,p). For such vector fields we will use the norm

|XF |s,r := sup
Aα×D(s,r)

(|∂yF |+ r−2|∂xF |+ r−1‖dwF‖a,p)

and the corresponding weighted C1 norm. The Hamilton equations are then

ẋ = ∂yF , ẏ = −∂xF , iẇ = JdwF.

Of particular interest are the “real quadratic Hamiltonians” in the normal frequencies; we
will represent them by matrices with the notation

Q(w) := −1

2
wMJwt , J =

(

0 −I
I 0

)

so that the Hamiltonian vector field is XQ =M . The matrices M which may appear are
in the Lie algebra of the group of real symplectic transformations, see Remark 4.12 and
Proposition 4.14.

3. Main results

3.1. The Theorems. We are now ready to state our Theorems.
We shall find a finite list (say P1(y), . . . , PN (y), whereN depends only on n) of non–zero

polynomials with integer coefficients depending on 2n vector variables y = (y1, . . . , y2n)
with yi ∈ Cn. We call the Pi the resonances, see §9.1 .

Definition 3.2. We say that a list of tangential sites S = {v1, . . . , vm} ∈ Znm is generic
if for any subset A of S such that |A| = 2n, the evaluation of the resonance polynomials
at A is non–zero.
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If m is finite this condition is equivalent to requiring that S (considered as a point in
Znm) does not belong to the algebraic hyper–surface where at least one of the resonance
polynomials is zero.

We find also a finite list M of matrices of dimensions 2 ≤ k ≤ n + 1 with entries
polynomials in the elements

√
ζi for a list ζi, i = 1, . . . , 2n of auxiliary variables. We shall

denote by M(ξ) the list of matrices obtained by substituting to the variables ζi any 2n
elements of the list ξ1, . . . , ξm in all possible ways.

Given any m ∈ N, 0 < α < 2 and appropriately small s, r, the following holds (cf. 6.2):

Theorem 1. For all generic choices S = {v1, . . . , vm} ∈ Znm of the tangential sites, there
exists an analytic symplectic change of variables

Φ : (y, x)× (z, z̄) → (u, ū)

from Aα ×D(s, r) → Brα/2 with the following properties.
i) the Hamiltonian (8) in the new variables is analytic and has the form

H ◦ Φ = (ω(ξ), y) +
1

2
(y,A(ξ)y)− 1

2
wM ′(ξ)Jwt + P (ξ, y, x, w) ,

where
ii) ωi(ξ) = |vi|2 − 2ξi + 4

∑

j ξj and the matrix A(ξ) has 1 on the diagonal and 2 off
diagonal and hence it is invertible.

iii) The matrixM ′(ξ) is a block–diagonal matrix with the following properties: all except
a finite number of the blocks are self adjoint; all the blocks are sum of a scalar matrix plus
a term chosen from the finite list M(ξ).

iv) The perturbation P is of the form P (ξ, y, x, w) = P (3)(ξ, x, y, w) + P (6)(ξ, x, y, w),
where– setting λ = rα/maxi(|vi|2)– we have the bounds:

‖P (3)(ξ, x, y, w)‖λs,r ≤ Cr3+α/2 ‖P (6)(ξ, x, y, w)‖λs,r ≤ Crmax(5α,1+ 5
2α),

moreover P (3)(ξ, x, y, w) is at least cubic in w.

Completely explicit statements will appear in §6.
Outline of the proof. The symplectic change of variables Φ is the composition of

three steps: first we perform one step of Birkhoff normal form passing to the Hamiltonian
(21), then we pass to the elliptic action angle variables and obtain the Hamiltonian (25).
We study the block form of the quadratic part of this Hamiltonian, see (34), and produce
a list of constraints on the tangential sites so that (34) is as simple as possible, this is
the core of the proof. Then we perform a simple but non-perturbative symplectic change
of variables, see (44), so that the quadratic Hamiltonian (34) is reduced to constant
coefficients. �

When we apply the theory of normal forms for quadratic Hamiltonians toM ′ we obtain.

Theorem 2. There exists a real algebraic hypersurface A such that the following holds.
There exists a linear change of variables in the (z, z̄) depending analytically on ξ for all
ξ ∈ Aα \ A, such that in the new variables the Hamiltonian is

(12) Hfin = (ω(ξ), y) +
1

2
(y,Ay) +

∑

k∈Sc\H
Ω̃k|zk|2 −

1

2
wRJwt

+P (3)(ξ, x, y, w) + P (6)(ξ, x, y, w),

where:



10 M. PROCESI*, AND C. PROCESI**.

i) H is a finite subset of Sc and R is a matrix with only a finite number of non zero
entries.

ii) Let us call Ω̃k with k ∈ H the eigenvalues1 of R, we have

Ω̃k = |k|2 −
∑

i

A
(i)
k |vi|2 + λk(ξ) , ∀k ∈ Sc

The A
(i)
k are integers with

∑

i |A
(i)
k | < 2n and the correction λk(ξ) is chosen in a finite

list, say

(13) λk(ξ) ∈ {λ(1)(ξ), . . . , λ(K)(ξ)} , K := K(n,m),

of different analytic functions of ξ.
ii) The functions λ(i)(ξ) are homogeneous of degree one in ξ. This implies that for

ξ ∈ Aα \ Aε– where Aε is the spherical neighborhood of A of radius ε = rα/4– the λ(i)(ξ)
satisfy the bounds

(14) |λ(i)(ξ)| ≤ Crα , crα ≤ |λ(i)(ξ)± λ(j)(ξ)| ≤ Crα , |∇ξλ
(i)(ξ)| ≤ C.

iii) For ξ ∈ Aα \ Aε item v) of Theorem 1 holds.

Remark 3.3. Notice that we may further restrict the set H by requiring that all the
block matrices in R are either non–diagonalizable or have all complex eigenvalues. Indeed
all the other blocks may be put in the elliptic normal form by a symplectic change of
variables. In dimensions 2, 3 we show that also R is diagonalizable for generic values of ξ
over the complex numbers. This gives an hyperbolic normal form where for each complex
eigenvalue Ω̃k one has a two–by–two diagonal block with Re(Ω̃k)I+ Im(Ω̃k)J , where I is
the identity and J the symplectic matrix.

Corollary 1. For n = 2 and for appropriate choices of the tangential sites S there exists
a cone–like domain D, with meas(D ∩ Aα) ∼ rα, such that for all ξ ∈ D the set H in
Theorem 2 is empty. On Aα \ D the set H is non–empty and and such that R is in
hyperbolic normal form (see Remark 3.3).

Theorem 3. 1. The set of parameter values ξ for which the first two Melnikov resonances
in (5) occur has zero measure.

2. For n = 2, 3 the set of parameter values ξ such that the three Melnikov resonances (5)
occur is a zero measure set (and for each condition it is algebraic).

Remark 3.4. To prove this theorem it will be essential that the NLS equation (1) preserves
the total momentum, this implies that the (σ, ν, h, k) in (5) must satisfy a momentum
conservation relation, see Proposition 6.2.

The proof is based on a careful analysis of the characteristic polynomials of the matrices
in M (cf. theorem 1, iv)) and is carried out in sections 11 and 12.

Remark 3.5. In dimension > 3 we shall prove a weak form of the second Melnikov res-
onance condition (cf. Proposition 6.21). In this form the eigenvalues may have multi-
plicities but outside of a set of measure zero these multiplicities are finite and uniformly
bounded. Moreover the eigenspace for any given eigenvalue is isotropic, it pairs under
Poisson bracket only with the eigenspace for the opposite eigenvalue. This is enough to
perform a KAM algorithm by solving an appropriate homological equation, see §6.13

1naturally the matrix may not be diagonalizable
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The case m = ∞. There are infinitely many infinite sets S which satisfy the
non–resonance conditions (§9.1). For these choices of tangential sites most of the previous
statements hold verbatim. Some of the quantitative estimates need a more careful analysis.

3.6. Quasi–periodic solutions for the NLS equation (1). As we have stated in the
introduction there are two main methods for finding quasi–periodic solutions for non–
linear PDE’s near to an elliptic fixed point. Let us briefly review how our results on
normal form relate to these methods. The technical issues involved in applying these
methods for the completely resonant NLS will be analyzed in a separate paper.

1. The Craig–Wayne–Bourgain method
The CWB method is based on a Liapunov–Schmidt decomposition combined with

a generalized Newton method to overcome the small divisor problems. We follow the
approach in [4] which provides both an extension of these results and a clear exposition
using the Nash–Moser approach.

We look for a solution of (1) of the form v(t, ϕ) = u(ωt, ϕ) where u : Tm × Tn → C

lives in a Sobolev space of functions with a Hilbert algebra structure.
Our theorems 1, 2 imply that the bifurcation equation for (1) admits a solution of the

form u0(x, ϕ) +O(ξ3/2) where

u0 =
m
∑

i=1

√

ξie
i(xi+vi·ϕ) .

Consider the bifurcation equation linearized at u0 and written in the Fourier basis both
in the space variables ϕ and in the angles x, this equation is represented by an infinite
matrix say L. From theorems 1, 2 L is block diagonal and the blocks are very simply
associated to the blocks of M ′. Moreover the eigenvalues of L are ω(ξ) · ν ± Ω̃k(ξ) with
ν ∈ Zm, k ∈ Sc. By Theorem 3 item 1. the eigenvalues are not identically zero.

Notice finally that since the matrix is block diagonal (with blocks of dimension ≤ n+1)
its invertibility implies invertibility in any norm with the same bounds, and one may
impose that

||L−1u||s ≤ C||u||s+τ

where ||v||s is a Sobolev norm in the space and angle variables. From this point we expect
to be able to follow the same scheme as in [4], with only small technical variations.

2. KAM theory: let us first restrict to the case n = 2, 3 where, by Theorem 3 item
2, the second Melnikov conditions hold. The case n = 2 is essentially already covered by
[10]. Our analysis produces several improvements in their results, in particular for the
parameter values ξ ∈ D we show that the quasi–periodic solutions obtained in [10] are
linearly stable while for ξ ∈ Aα \D the solutions are unstable.

In the literature (see for instance [3]) abstract KAM schemes are based on three main
assumptions:

1. A smallness condition on the perturbation P , in our case this is Theorem 2 item
iii).

2. A regularity condition, namely ω(ξ) must be a diffeomorphism and Ω̃k(ξ)−|k|2 must
be a bounded Lipschitz function (we have analyticity and the bounds (14), by Theorem
2).

3. A non–degeneracy condition, that is the three Melnikov conditions 5 which in our
case are proved in Theorem 3, see also the discussion in §6.13.

As we already mentioned a full discussion of the KAM algorithm will appear elsewhere.
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The abstract KAM schemes produce an analytic change of variables, depending on ξ,
Φ = ead(F ) : D(s/4, r/4) → D(s, r) such that

ead(F ) ◦H = (ω∞(ξ), y∞) +
∑

k∈Sc\H
Ω∞

k (ξ)|z∞k |2 − 1

2
(w∞)tR∞w

∞ + P∞,

where ω∞ and Ω∞ are parameters to be determined and R∞ has the same structure and
is simultaneously diagonalizable with R′. Finally

P∞ =
∑

i,j: 2i+j>2

P∞
ij (x

∞)(y∞)i(w∞)j .

In the new variables one immediately shows the existence of the quasi–periodic solution

y∞ = 0 , w∞ = 0 , x∞ = x∞0 + ω∞t.

Φ will be defined for ξ in some complicated Cantor–like set. This part of the algorithms
can be performed in our case by following almost verbatim the KAM Theorem 5.1 of [3].

The final issue is to analyze this set, show that it is non–empty and give lower bounds
on its measure. To give a flavor of the type of computations required consider the Cantor
set C, which appears at the first step of the algorithm, defined by

|(ω(ξ), ν)| > γ(A+ rα)

|ν|τ0 , |(ω(ξ), ν) + Ω̃k(ξ)| >
γ(A+ rα)

|ν|τ0 ,

(15) |(ω(ξ), ν) + Ω̃k(ξ) + σΩ̃h(ξ)| >
γ(A+ rα)

|ν|τ0
for all non–trivial resonances which are compatible with momentum conservation, more-
over A = 1 if the corresponding function on the left hand side is zero at ξ = 0 and A = 0
otherwise.

Corollary 2 (Of Theorems 2, 3). For n = 2, 3 and for appropriate choices of τ0 and γ,
the set C has positive measure in Aα \ Aε.

For a sketch of the proof see §6.15.
This shows that the first step of the KAM algorithm produces a set of positive measure

where the desired symplectic change of variables is well defined. As shown by [8], in order
to give similar estimates at all steps of the KAM iteration one needs to use the Töplitz–
Lipschitz property of the NLS Hamiltonian. We do not discuss this last property in the
present paper. Notice however that in Theorem 1 and 2 even though the Hessian matrix
∂zk∂z̄h(P

(3) + P (6)), is not a Töplitz matrix it still satisfies Töplitz–Lipschitz properties
(as is discussed in detail in [10] for the case n = 2). We expect to obtain the measure
estimates by following [8] and [10].

The case n > 3 is discussed more in detail in subsection 6.18.

Part 1. The study of the dynamics

4. Preparation

4.1. Conservation laws. Recall the laws of Poisson brackets:

(16) {iuk, ūh} = δh,k , {uk, uh} = {ūk, ūh} = 0;

hence

(17) {uhūk, uj} = iδj,kuh, {uhūk, ūj} = −iδh,jūk
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in particular

(18) {|uk|2, uh} = iδh,kuh, {|uk|2, ūh} = −iδh,kūh

Definition 4.2. We set

(19) M :=
∑

k∈Zn

k|uk|2, momentum.

A Hamiltonian defined in ℓ̄(a,p) which Poisson-commutes with M =
∑

k∈Zn k|uk|2 sat-
isfies the constraint of conservation of momentum:

If F (α,β) 6= 0 , one has
∑

(αk − βk)k = 0;

A Hamiltonian defined in ℓ̄(a,p) is even if it is sum of monomials of even degree: Namely
if Fα,β 6= 0 then α+ β is even.

4.3. Normal form. The quadratic part H(2) :=
∑

k |k|2|uk|2 of 8 is an infinite string of
harmonic oscillators with all rational frequencies so that the system is completely resonant
(all the bounded solutions are periodic).

Using the conventions of Lie Theory we shall always denote by ad(F ) the operator of
Poisson bracket X 7→ {F,X}.

For small u ( i.e. ||u||a,p < ǫ ≪ 1) we perform a standard step of “resonant” Birkhoff
normal form removing all the terms of order four of H which do not Poisson-commute
with the quadratic part, see also Remark 4.7.

In fact, by (17), uk1 ūk2uk3 ūk4 is an eigenvector with respect to {H(2),−} with eigen-
value i(|k1|2 − |k2|2 + |k3|2 − |k4|2). Thus we perform the symplectic change of variables
H 7→ ead(F )(H), generated by the flow of

(20) F := −i
∑

ki: k1−k2+k3−k4=0

|k1|2−|k2|2+|k3|2−|k4|2 6=0

uk1 ūk2uk3 ūk4

|k1|2 − |k2|2 + |k3|2 − |k4|2
.

For ǫ sufficiently small, this is a well known analytic change of variables (cf. [7],[6],[2])
ℓ̄(a,p) ⊃ Bǫ → B2ǫ ⊂ ℓ̄(a,p) (where Bǫ denotes as usual the open ball of radius ǫ) which
brings (8) to the form:

(21) HN :=
∑

k∈Zn

|k|2ukūk +
∑

k1+k3=k2+k4
|k1|2+|k3|2=|k2|2+|k4|2

uk1 ūk2uk3 ūk4 + P (6)(u)

where P (6)(u) is analytic of degree at least 6 in u and on the ball Bǫ it is bounded by Cǫ6

with C a suitable constant. Since we will take ǫ small, P (6)(u) is small with respect to
the terms of degree 2, 4 which are bounded by C1ǫ

2, C2ǫ
4 respectively (cf. §4.8). Notice

that F commutes with M so that HN still satisfies momentum conservation, moreover F
is even and hence HN is still even.

Denote by P ′ := {(k1, k2, k3, k4) | k1 + k3 = k2 + k4, |k1|2 + |k3|2 = |k2|2 + |k4|2}.
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Trivial computations show that the condition

k1 + k3 = k2 + k4, |k1|2 + |k3|2 = |k2|2 + |k4|2

is equivalent to

(22) k1 + k3 = k2 + k4, (k1 − k2, k3 − k2) = 0

PSfrag replacements

k1

k2

k3

k4

In this set the integer vectors k1, k2, k3, k4 form the vertices of a rectangle. We want to
put in evidence the terms where the rectangle degenerates to a segment. Thus define P
to be the subset of P ′ where the rectangles are non degenerate. We obtain:

(23) HN =
∑

k∈Zn

|k|2ukūk +
∑

k

|uk|4 + 2
∑

k1 6=k2

|uk1 |2|uk2 |2 +
∑

(k1,k2,k3,k4)∈P
uk1 ūk2uk3 ūk4

+P (6)(u)

4.4. Choice of the tangential sites. Let us now partition

Zn = S ∪ Sc, S := (v1, . . . , vm),

where: The set S are called tangential sites and Sc the normal sites.

Constraint 1. S is a finite set (say |S| = m) such that, given any three distinct elements
v1, v2, v3 ∈ S, one has that (v1 − v2, v3 − v2) 6= 0.

Remark 4.5. We shall discuss later the extension to S infinite.

In the following we will consider various other constraints on S in order to obtain the
simplest possible expression for the Hamiltonian H , with respect to this choice.

Our aim is to study the NLS near the tori associated to the oscillators vi keeping the
other oscillators constant in time at uk = 0. The terms of order four in the normal form
introduce what is called a twist. That is an anisochronous term such that the frequency
depends on the initial datum |uvi |2 = ξi and uk = 0 for k ∈ Sc.

Let us now set

uk := zk for k ∈ Sc , uvi :=
√

ξi + yie
ixi for i = 1, . . .m;

this is a well known symplectic change of variables which puts the tangential sites in action
angle variables (y;x) = (y1, . . . , ym;x1, . . . , xm) close to the action ξ = ξ1, . . . , ξm, which
we now consider as parameters for the system. The symplectic form is now dy ∧ dx +
i
∑

k∈Sc dzk ∧ dz̄k.
It is convenient to think of the zk, z̄k as a vector w and denote, for a function of w by

∂F

∂w
the gradient vector (which we think of as a column). Further denote by J the infinite

skew symmetric matrix

∣

∣

∣

∣

0 −1
1 0

∣

∣

∣

∣

where the first block is over the basis zk and the second

over z̄k. Poisson bracket with respect to this form is

(24) {F,G} =
∂F

∂y
.
∂G

∂x
− ∂G

∂y
.
∂F

∂x
+ i(

∂F

∂w
, J
∂G

∂w
)

By constraint 1, the Hamiltonian 21 can be written as

(25) H = H0 + P (3)(z, y; ξ, x) + P (6)(z, y; ξ, x) , with



A NORMAL FORM OF THE NON–LINEAR SCHRÖDINGER EQUATION 15

H0 :=

m
∑

i=1

(|vi|2(ξi + yi) + (ξi + yi)
2) + 4

∑

i<j

(ξi + yi)(ξj + yj)

+4
∑

i;k∈Sc

(ξi + yi)|zk|2 +
∑

k∈Sc

|k|2|zk|2 + 4

∗
∑

i6=j;h,k∈Sc

√

(ξi + yi)(ξj + yj)e
i(xi−xj)zhz̄k

+2

∗∗
∑

i<j ;h,k∈Sc

√

(ξi + yi)(ξj + yj)e
−i(xi+xj)zhzk + 2

∗∗
∑

i<j ;h,k∈Sc

√

(ξi + yi)(ξj + yj)e
i(xi+xj)z̄hz̄k

Definition 4.6. Here
∑∗ denotes that (h, k, vi, vj) ∈ P :

{(h, k, vi, vj) |h+ vi = k + vj , |h|2 + |vi|2 = |k|2 + |vj |2}.
and

∑∗∗
, that (h, vi, k, vj) ∈ P :

{(h, vi, k, vj) |h+ k = vi + vj , |h|2 + |k|2 = |vi|2 + |vj |2}.

The term P (3) collects all terms in which at least 3 indices k are in Sc and it is of
degree at least three (and at most four) in z, z̄. Recall that we have assumed (constraint
1) that no non degenerate rectangles contain 3 elements of S.

Remark 4.7. Notice that, once we have fixed the tangential sites, we have some freedom in
the choice of the Birkhoff normal form transformation F in (20). Indeed one may choose
first the tangential sites and then choose F as follows:

F := −i
∑

ki: |{k1,k2,k3,k4}∩Sc|≤2

k1−k2+k3−k4=0 |k1|2−|k2|2+|k3|2−|k4|2 6=0

uk1 ūk2uk3 ūk4

|k1|2 − |k2|2 + |k3|2 − |k4|2
.

This normal form transformation (taken from [10]) does not change the results in any way
(it only changes in a trivial manner the definitions of P (3) and P (6)) and may simplify
the study of the Töplitz–Lipschitz properties.

Conservation laws. Momentum: The conservation ofM in the new variables implies
that the monomials appearing in H are of the form

(26) zαz̄βycei(x,ν),
∑

i

viνi +
∑

k∈Sc

(αk − βk)k = 0

where ν = (ν1, . . . , νm), νi ∈ Z and α, β are multi-indices in N.
Parity: In the new variables a Hamiltonian is even if

∑

i νi is even when the total degree
in w is even and odd otherwise.

Constraint 2. We may further choose the vi so that
∑

i νivi 6= 0 when
∑

i |νi| < 10, ν 6=
0.

This will imply that P (6) at z = 0 does not contain any term of degree 6 or 8 in the
elements uvi and non constant in x.

4.8. Analytic functions and weight decomposition. We want to assign weights to
all the variables, which keep track of their original definition.

Thus we give weight 2 to the variables y, weight 2 > α > 0 to ξ and weight 1 to the w.
We work in the domain

Aα ×D(s, r) :=

{ξ :
1

2
rα ≤ |ξ| ≤ rα } × {x, y, w : x ∈ Tm

s , |y| ≤ r2 , |w|a,p ≤ r}
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⊂ Rm × Tm
s × Cm × ℓ(a,p).

Here 0 < α < 2, 0 < r < 1, 0 < s are parameters. Tm
s has been defined in §2.4.

We denote by ℓ(a,p) the subspace of ℓ̄(a,p) × ℓ̄(a,p) generated by the indices in Sc and
w = (z, z̄) ≡ (z+, z−) are the corresponding coordinates.

Remark 4.9. We shall write zσk , σ = ± when we do not want to specify if we are using zk
or z̄k.

Remark 4.10. If rα < ǫ the domain Aα×D(s, r) is contained in Bǫ so that the Hamiltonian
is well defined and analytic.

Under this change of variables the total degree of a monomial is preserved, provided we
give to y degree (or weight) 2. In the estimates we also give to ξ weight α. This implies
(by Formula (11)) that |ξayiwj |s,r,C ≤ rd where the degree d equals the weight aα+2i+ j
of the monomial (notice that a can be a half–integer).

Given a Banach space E we consider analytic functions F : D(s, r) → E. By definition
F is analytic if its Taylor-Fourier series in x; y, w is totally convergent. We choose by
definition, as norm |F |s,r, of an analytic function on D(s, r) :

(27) |F |s,r,E := sup
Aα×D(s,r)

||F (ξ, x; y, w)||E .

4.11. Weight decomposition of formal polynomials. We call V∞ the space of formal
infinite polynomials in y, w with coefficients in L2(Tm,C) and F∞ the subspace formed
by the functions which satisfy 26. Here we use the weight only in these variables and keep
the ξ as parameters.

We call V (i,j) the subspace of functions of degree i in y and j in w (hence of weight
2i + j). We call V a the subspace of functions of weight a and V >a (resp. V <a) the
subspace of functions of weight > a (resp. < a):

V∞ = ⊕aV
a , V a = ⊕i,j: 2i+j=aV

i,j , V >a = ⊕b>aV
b.

We use the spaces of weight ≤ 2:

• V 0(x) := L2(Tm,C),
• V 1,0(x) the space of elements

∑m
i=1 fi(x, ξ)yi, thought of asm dimensional column

vectors with entries in L2(Tm,C) (and depending on parameters ξ),
• V 0,1(x) the space of linear forms

∑

i∈Zn(fi(x, ξ)zi + ei(x, ξ)z̄i), thought of as ∞-

dimensional column vectors with entries in L2(Tm,C) (and parameters ξ) and
finally

• V 0,2 the space of quadratic forms

1

2

(

∑

i,j∈Sc

q(i,+),(j,+)zizj + q(i,+),(j,−)ziz̄j + q(i,−),(j,+)z̄izj + q(i,−),(j,−)z̄iz̄j
)

.

It will be convenient to represent the elements Q(w) ∈ V 0,2 as associated to (symplectic)
matrices, where

(28) QM (w) := −1

2
(w,MJw)

and M has entries M(k,σ),(h,τ) = τq(k,σ),(h,−τ).



A NORMAL FORM OF THE NON–LINEAR SCHRÖDINGER EQUATION 17

Remark 4.12. By definition MJ is symmetric, if moreover QM (w) is real we have that
MΣ is self-adjoint, where

Σ =

∣

∣

∣

∣

−1 0
0 1

∣

∣

∣

∣

.

Remark 4.13. Notice that we have defined V∞ as complex functions. However our Hamil-
tonian is real, and clearly V∞ contains a subspace of real functions. Indeed all our ar-
guments and symplectic changes of variables will be real and hence preserve the real
subspace.

The dense subspace V 0,2
an of V 0,2 formed by analytic functions is closed under Poisson

bracket and we think of it as a smooth form of the Lie algebra of the infinite symplectic
group. The space V 0,1

an is then the standard symplectic space, under Poisson bracket, over
which V 0,2

an acts. In particular we have

Proposition 4.14. If f, g ∈ V 0,1
an and A,B are two elements of the Lie algebra of the

symplectic group of V 0,1
an

(29) {f, g} = i f tJg, {QA(w), f} = iAf, {QA(w), QB(w)} = i Q[A,B].

In particular the evolution of w, defined by QA is

(30) ẇ = iwA

We now require conservation of momentum and parity.
In order to stress this

Definition 4.15. We denote the subspaces of V 0, V (1,0), V (0,1), V (0,2) which satisfy
conservation of momentum and parity by F 0, F (1,0), F (0,1), F (0,2). The direct sum of
these spaces we denote by F≤2. In general we denote by F (i,j) the subspace of V (i,j)

which satisfies (26) and parity.

Remark 4.16. i) F (0,1) has as basis the elements

(ν,+) → ei
∑

j νjxjzk, (ν,−) → e−i
∑

j νjxj z̄k;

(31)
∑

j

νjvj + k = 0 ,
∑

i

νi = odd.

ii) In the same way F (0,2) has as basis the products of elements of F 0,1. That is we
have a surjective linear map b : F 0,1 ⊗ F 0,1 → F 0,2.

Under this map b[(ν, σ) × (µ, τ)] = b[(ν′, σ′) × (µ′, τ ′)] if and only if σπ(ν) = σ′π(ν′),
τπ(µ) = τ ′π(µ′) and σν + τµ = σ′ν′ + τ ′µ′. The image of these product form a basis of
F 0,2. Explicitly (cf. 4.9) the elements

ei
∑

j νjxjzσk z
τ
h,

∑

j

νjvj + σk + τh = 0.

4.17. Quadratic normal forms. In the space F≤2 we will be particularly interested in
the subspace of “normal forms” i.e. the Hamiltonians of the form

N := (ω, y)− 1

2
wQ(x)Jwt,

for some choice of the frequency ω ∈ Rm and of the matrix Q(x), both possibly depending
on the parameters ξ.

The core of the KAM algorithm is to study the action of the operator ad(N) on F≤2.
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Definition 4.18. Given R ∈ F≤2, the equation ad(N)F = R for F ∈ F≤2 is called the
homological equation.

Lemma 4.19. The operator ad(N) := x 7→ {N, x} acting on F≤2 can be represented as
the block matrix:

(32)









ω · ∂x 0 0 0
0 ω · ∂x 0 0
0 0 ω · ∂x + iQ 0
0 i∇xQ 0 ω · ∂x + i[Q, ·]









,

.

Here, by abuse of notations, ω · ∂x =
∑m

i=1 ωi
∂

∂xi
, is the operator on the entries of the

vector or matrix, i.e. the scalar operator times the corresponding identity matrix. We
have used the basis 4.16 for F 0,1 and the matrix representation for F 0,2.

Lemma 4.20. If for F 0,2 we use as basis the products of the elements of the basis in F 0,1,
then by the Leibniz rule then ad(N) on F 0,2 is induced, under the map b : F 0,1 ⊗ F 0,1 →
F 0,2 (cf. Remark 4.16) by the matrix

(33) ad(N)|F 0,1 ⊗ I + I ⊗ ad(N)|F 0,1 .

Proof of 4.19, 4.20. We just apply the rules of Poisson brackets discussed in Proposition
4.14. �

4.21. Final form for the Hamiltonian. By definition an analytic function on D(s, r)
can be Taylor expanded in y, w to obtain an element of V∞; given F ∈ V∞ we will denote
by F (i,j) the projection of F on V (i,j), same for all the other subspaces.

For r small enough, H : D(s, r) → R is analytic, so it is an element of V∞. We
obtain a formal polynomial whose monomials are of the form m(x)ξayiwj where a can
have half–integer coordinates (this corresponds to a term in u of degree 2(i+ a) + j).

We drop in formula (25) the constant part (depending only on the parameters ξ) and

separate H = N+P where N = H≤2
0 ∈ V 2 is a “normal form” and P = H>2

0 +P (3)+P (6)

is small with respect to N .
We obtain, with the notation of Formula (28)

(34) N := (ω(ξ), y) +
∑

k

Ωk|zk|2 +QM (w) := D +QM (w),

where D := (ω(ξ), y) +
∑

k Ωk(ξ)|zk|2 and

(35) ωi(ξ) := |vi|2 − 2ξi + 4
∑

j

ξj , Ωk(ξ) = |k|2 + 4
∑

i

ξi.

By (·, ·) we denote the real scalar product. Finally the quadratic form is

(36) QM (w) = 4
∗

∑

1≤i6=j≤m
h,k∈Sc

√

ξiξje
i(xi−xj)zhz̄k+

2

∗∗
∑

1≤i<j≤m
h,k∈Sc

√

ξiξje
−i(xi+xj)zhzk + 2

∗∗
∑

1≤i<j≤m
h,k∈Sc

√

ξiξje
i(xi+xj)z̄hz̄k.

Remark 4.22. The separation of the Hamiltonian in two parts is justified by the following
two facts.
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• QM (w) commutes with the variables x.
• D has a natural diagonal form. It can be useful to identify the term

∑

k Ωk(ξ)|zk|2
with its symplectic representation Ω = diag({Ωk}k∈Sc ,−{Ωk}k∈Sc)

Remark 4.23. We have grouped in the perturbation P all the terms of H>2
0 , this is just a

convention since such terms are explicit. In particular H0 contains a quadratic part in y
of the form (y,Ay)/2 where A is defined in Theorem 1.

Lemma 4.24. Fixing λ = rα/max(|vi|2) the perturbation P satisfies the following bounds:

‖ΠF 0P‖λs,r ≤ Cr5α , ‖ΠF 1,0P‖λs,r ≤ Cr2+4α , ‖ΠF 0,1P‖λs,r ≤ Cr1+5α/2 ,

‖ΠF 0,2P‖λs,r ≤ Cr2+2α , ‖ΠV >2P‖λs,r ≤ Cr3+α/2.

Proof. All the bounds are purely dimensional, notice only that we have used constrain 2
to impose that the first non–zero contribution to F 0 is from a polynomial of degree 10
and not 6. �

To further simplify the Hamiltonian we assume:

Constraint 3. Given any four different elements h1, h2, h3, h4 in S one has

• h1 ± h2 6= h3 ± h4.
• (h1 + h2 − h3 − h4, h3 − h4) 6= 0.

As for the the matrix M(x) we have

Lemma 4.25. Given h, k ∈ Sc there exist at most one couple vi 6= vj ∈ S such that one
and only one of the next two properties holds:

(1) h− k = vj − vi , |h|2 − |k|2 = |vj |2 − |vi|2.
In this case one hasM(h,σ),(k,σ) = M̄(k,σ),(h,σ) = 4σ

√

ξiξje
iσ(xi−xj) andM(h,σ),(h,−σ) =

0.

(2) i < j, h+ k = vi + vj , |h|2 + |k|2 = |vi|2 + |vj |2.
In this case one hasM(h,−σ),(k,σ) = −M̄(k,σ),(h,−σ) = 4σ

√

ξiξje
iσ(xi+xj) andM(h,σ),(k,σ) =

0.

(3) If there exists no couple vi 6= vj ∈ S satisfying either (1) or (2) then M(h,±),(k,±) = 0
(this includes naturally the case h = k).

Proof. With the notations of Formula (36) constraint 4.6 now means that
∑∗

denotes the
constraint given in Item (1) and

∑∗∗
, the constraint given in Item (2).

By Formula 16 we have

{4
√

ξiξje
i(xi−xj)zhz̄k, zk} = 4i

√

ξiξje
i(xi−xj)zh.

The terms 2
√

ξiξje
−i(xi+xj)zhzk repeat twice and

{
√

ξiξje
−i(xi+xj)zhzk, z̄k} = −i

√

ξiξje
−i(xi+xj)zh

while
{
√

ξiξje
i(xi+xj)z̄hz̄k, zk} = i

√

ξiξje
i(xi+xj)z̄h.

Item (3) is trivial by the definitions. The fact that the two different conditions cannot
hold contemporarily with the same vi, vj is again trivial. We only need to prove that (1)
and (2) cannot hold for two different pairs. Suppose now that item (1) holds for some h, k
and for two different pairs {vi, vj}, {vl, vm} then vi − vj = vl − vm contrary to hypothesis
3. The same if item (2) holds for some h, k and for two different pairs {vi, vj}, {vl, vm}.
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Suppose now that for some h, k item (1) holds with {vi, vj} and item (2) holds with
{vl, vm}, then by substituting we contradict the second item of 3. �

5. Graph representation

It will be convenient to associate to ad(N) or equivalently to the matrix M (associated
to (36) through Formula (29)) two graphs ΛS ,ΓS encoding the information of its non–zero
off diagonal entries. In fact in ad(N) the part associated to D is diagonal.

The two graphs arise from the following complementary points of view.

5.1. Geometric graph ΓS. The geometric point of view is to consider the action of
ad(N) on the space V (0,1). In fact by a simple inspection from Lemma 4.25 we have

Proposition 5.2. The operator ad(N) preserves the subspace V
(0,1)
f of V (0,1) of finite

linear combinations of the elements zk, z̄k, k ∈ Sc with coefficients in the algebra A of
finite Fourier series in the variables x.

We shall refer to zk, z̄k, k ∈ Sc as the geometric basis (of V
(0,1)
f as a free module over

the algebra A). 2

For the geometric graph we shall initially forget the difference between zk, z̄k and
remember only the vector k.

Definition 5.3. The graph ΓS has vertices Zn and edges corresponding to non zero
entries of M .

In order to keep track of complex conjugation it is convenient to decorate the edges of
the graph with two colors, black and red according to the rules that we presently explain,
and a marking or label.

1. If item (1) in 4.25 holds we connect h, k with a black edge oriented from k to h and
labeled by vj − vi;

2. If item (2) in 4.25 holds we connect h, k with a red non-oriented edge labeled by
vj + vi;

3. If item (3) holds we do not connect h and k.
These rules are purely geometric and can in fact be applied to all vectors in Rn or even

Cn and not just integral vectors. They define thus a colored geometric graph with vertices
points in space and edges given by the previous rules. To be specific:

Definition 5.4. Given two vectors vh, vk we set Sh,k = Sk,h to be the sphere having as
one of its diameters vh, vk. It has the equation

(37) (x− vh, x− vk) = 0, or (x, vh + vk) = (vh, vk) + (x)2.

We also define the hyperplane

Hh,k := {x | (x, vk − vk) = (vk, vk − vh)}.
Remark 5.5. The hyperplanes Hh,k and Hk,h are parallel and

Hh,k = vk − vh +Hk,h.

Observe that by definition vh ∈ Hh,k but if vh ∈ Hi,j , i 6= h we must have (vh, vj−vi) =
(vi, vj − vi). By Constraint 1. this is not satisfied, if i 6= h.

In other words, if i 6= h then vi /∈ Hh,k.



A NORMAL FORM OF THE NON–LINEAR SCHRÖDINGER EQUATION 21

PSfrag replacements

vk

vh

a2

b2

a1

b1

Hh,k

Sh,k

v k
−
v h

vk +
vh

Figure 1. The plane Hh,k and the sphere Sh,k. The points
a1, b1, vk , vh form the vertices of a rectangle. Same for the points
a2, vh, b2, vk

We construct now the colored graph ΓS with vertices in Rn. Consider two points
a, b ∈ Rn (sometimes even in Cn).

If there exists a pair h, k, h 6= k so that a ∈ Hh,k, b = a + vk − vh ∈ Hk,h we join
the two points by a black edge oriented form a to b and marked vk − vh. See the points
{a1, b1} in Figure 1. In other words:

(38) {a, b}
∣

∣

∣

∣

∣

{

|b1|2 − |a|2 = |vk|2 − |vh|2
b− a = vk − vh

.

or equivalently (a, vh − vk) = (vh, vh − vk).

If there exists a pair h, k, h 6= k so that a ∈ Sh,k, b = −a+ vk + vh ∈ Sk,h = Sh,k we
join the two points by a red edge marked by vh + vk. See the points {a2, b2} in Figure 1
(we represent red edges by a double line).

(39) {a, b}
∣

∣

∣

∣

∣

{

|a|2 + |b|2 = |vh|2 + |vk|2
a+ b = vh + vk

.

In other words (a− vh, a− vk) = (b− vh, b− vk) = 0.
The points a, vh, b, vk form the vertices of a rectangle. In other words,

Lemma 5.6. a, b are opposite points in the sphere Sh,k having as one of its diameters
vh, vk.

Remark 5.7. For each pair h, k there are finitely many points in Zn, in the sphere Sh,k .
Therefore there are only finitely many red edges with integral vertices.

Definition 5.8. We construct the graph ΓS with vertices all the points of Rn and edges
the black and red edges described.

2When the coefficients in a basis are in an algebra and not a field it is customary to use the word
module and not vector space.
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We want to understand the connected components of the graph ΓS .

By Constraint 1 if i 6= h, i 6= k then vi /∈ Sh,k. We immediately have.

Lemma 5.9. The vectors v1, . . . , vm are a component of the graph ΓS. In this component
every two vertices are joined by a red and by a black edge.

Proof. If vi is joined to another vector u by a black edge of type Hh,k we must have by
constraint 1 that h = i and u = vk. Similarly for a red edge of type Sh,k using constraint
1 we have i = h or i = k. �

Definition 5.10. The component v1, . . . , vm is called the special component of the graph
ΓS .

5.11. The combinatorial graph ΛS. Consider the space F (0,1) with its basis over C

given by Remark 4.16.
This basis is really indexed by Zm × Z/(2), that is an integral vector plus a sign, we

shall refer to it as the frequency basis.
From Lemma 4.25 the linear operator ad(N) has the property that it transforms every

element of this basis into a finite linear combination of the same basis.

Definition 5.12. The graph ΛS has vertices Zm×Z/(2) and edges corresponding to non
zero entries of ad(N).

5.13. Abstract colored marked graphs. It will be useful to also use completely ab-
stract graphs defined as follows

Definition 5.14. A abstract colored marked graph or M–graph for short, is

• A connected graph Γ (without repeated edges).
• A color red or black on each edge, displayed

a
black

b c
red

d

• A marking (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j on each oriented edge with the
convention that the opposite orientation corresponds to the exchanged marking
(j, i).

A geometric realization of the graph Γ is a graph isomorphism with a connected com-
ponent of ΓS such that each black edge of Γ marked (i, j) corresponds to a black edge of
A marked vj − vi. In the same way to each red edge of Γ marked (i, j) corresponds to a
red edge of A marked vi + vj .

5.15. Summary of results. In term of the frequency basis, denote by ei the basis of Z
m

and consider the map

(40) π : Zm → Zn, π(ν1, . . . , νm) :=

m
∑

i=1

νivi.

If k = −π(µ), the vector eiµ.xzk lies in F (0,1). The vectors zk ∈ V (0,1), eiµ.xzk map
under ad(N) to a linear combination in which respectively:

i) If h, k are connected with a black edge oriented from k to h and labeled by vj−vi:
• h = −π(µ+ ei − ej) = k + vj − vi
• In the geometric basis, zh has coefficient 4

√

ξiξje
i(xi−xj) in M(zk).

• In the frequency basis, ei(µ+ei−ej).xzh has coefficient 4i
√

ξiξj in ad(N)(ei(µ.x)zk).
ii) If h, k are connected with a red non-oriented edge labeled by vj + vi



A NORMAL FORM OF THE NON–LINEAR SCHRÖDINGER EQUATION 23

• h = π(µ+ ei + ej) = −k + vi + vj
• In the geometric basis, z̄h has coefficient 4

√

ξiξje
i(xi+xj) in M(zk).

• In the frequency basis, ei(µ+ei+ej).xz̄h has coefficient 4i
√

ξiξj in ad(N)(ei(µ.x)zk).

Remark 5.16. Under our convention on the indexing of the basis, (µ,+) corresponds to
ei(µ.x)zh while (−µ − ei − ej ,−) corresponds to ei(µ+ei+ej).xz̄h. In the frequency graph
ΛS therefore, the elements µ, µ + ei − ej are joined by an edge in case i). In case ii) if
ν = −µ− ei − ej , that is if µ+ ν + ei + ej = 0, we have that (µ,+), (ν,−) are connected
by an edge marked ei + ej.

We will show that, provided we choose the vectors vi generically, we shall have sev-
eral essential properties for these graphs which we will need in order to and prove the
reducibility Theorem 1, and study the Homological equation.

The generic assumption will be expressed by the fact that the coordinates of the vectors
vi do not satisfy some polynomial equation (a product of several equations which will be
constructed in the course of the proof). That is, we think of (v1, . . . , vm) ∈ Rnm and will
impose that this point does not lie in a certain algebraic hypersurface whose equation
will be at least implicitly given (in term of certain graphs). The precise statements are
contained in §9.1.

We now discuss the properties deduced from the generic assumption.
The first relates the two graphs ΛS ,ΓS. In fact, take a frequency µ, and let A be the

associated component in ΛS. Set k = −π(µ) and A be the associated component in ΓS .
We shall see

Theorem 4. The map −π establishes a graph isomorphism between A and A, compatible
with the markings.

Hence the space spanned by all transforms of eiµ.xzk applying the operator ad(M) has
a basis extracted from the frequency basis in correspondence, under π, with the vertices of
A.

Same statement for its conjugate generated by e−iµ.xz̄k.

Remark 5.17. We shall often refer to such a subspace as a block, for ad(N). For generic S
the symplectic form restricted to this block is identically 0 and if we add a block with its
conjugate we have a non degenerate symplectic space decomposed as sum of two ad(N)–
stable Lagrangian subspaces.

This is thus a block for ad(M) for the graph ΛS, and all other blocks in the set of
elements ν | −π(ν) ∈ A are obtained from this block by multiplying with all the elements
ν such that π(ν) = 0.

The entire space F (0,1) therefore decomposes into free submodules under the algebra C
of finite Fourier series in eiν.x |π(ν) = 0 corresponding to all the geometric blocks in ΓS .
For each such block A a basis of the corresponding space over C is obtained as follows.
We choose a specific element r ∈ A, a root and then a specific µ with π(µ) = −r. From
µ, and applying ad(N), we construct the basis for the submodule in correspondence with
the vertices of A.

Let us summarize the most important properties that we shall prove in §7 and §8.

Theorem 5. i) All connected components of the graph ΓS have as vertices points
which are affinely independent hence at most n+ 1 vertices.

ii) There are finitely many components containing red edges.
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iii) The connected components of ΓS consisting only of black edges are divided into a
finite number of families.

Each family is indexed by an abstract marked graph with k ≤ n edges, and it
depends on the elements of a n− k dimensional sub-lattice.

Given a connected component A with k + 1 vertices (k ≤ n) of ΓS we fix a vertex
x(A) ∈ A which we call the root. Then:

Corollary 5.18. For every other vertex xa (with a = 1, . . . , k) one has two functions on
A:

(41) σ(a) = ±1 , L(a) =
∑

A(i)
a ei , A

(i)
a ∈ Z;

|L(a)| < n,
∑

i

A(i)
a = 1− σ(a) ,

such that σ(a) is 1 if the path from x(A) to xa has an even number of red edges, −1
otherwise. We have from Formulas (71) and (72)

(42) xa = σ(a)x(A) + π(L(a)) = σ(a)x(A) +
∑

A(i)
a vi ,

|xa|2 = σ(a)|x(A)|2 +
∑

A(i)
a |vi|2 .

The matrix M is block diagonal with two blocks (denoted by A,±) in correspondence
with each connected components A of ΓS.

The matrix M restricted to A,+ is denoted by MA,+ and given by

Ma,b :=M(x(a),σ(a)),(x(b),σ(b)) = 0

if (a, b) is not an edge (in particular it is zero on the diagonal).

Ma,b :=M(x(a),σ(a)),(x(b),σ(b)) = 4σ(b)
√

ξiξje
i(σ(b)L(b)−σ(a)L(a)).x

if (a, b) = e is an edge marked (i, j).
MA,− = −MA,+ is minus the conjugate of MA,+.

Proof. We fix a root x on A and a sign σ(x) = +. We associate to each vertex in A a
corresponding vertex in A, by Theorem 4. This associates to each xa a sign σ(a). We

use the relations (38) and (39) to compute the A
(a)
i by choosing a path from x to each

vertex xa. Since π is a graph isomorphism, compatible with the two markings, it defines
L(a) uniquely. Notice that if say σ(b) = + then σ(b)L(b)− σ(a)L(a) = ej − ei if the edge
is black and σ(b)L(b)− σ(a)L(a) = ej + ei otherwise. To prove the second statement we
implement the matrix rules of Lemma 4.25. �

6. Proof of Theorems 1, 2 and 3

6.1. Theorem 1. We will prove Theorem 1 by exploiting the block structure discussed
in Corollary 5.18. For all k ∈ Sc set x(k) := x(A) to be the root of the component A of
ΓS to which it belongs. Set L(k) = 0 if k = x(A) is the root (this includes the connected
components made of one point). Otherwise k = xb for some index b = b(k). We then
set L(k) := L(b) and σ(k) = σb(cf. 5.18). Theorem 1 is contained in the following, more
precise, propositions:

Proposition 6.2. i) The equations

(43) zk = eiL(k).xz′k, y = y′ −
∑

k∈Sc

L(k)|z′k|2, x = x′.
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define a symplectic change of variables D(s, r/2) → D(s, r), which preserves the spaces
V i,j .

We denote by X = diag({eiL(k).x}k∈Sc , {e−iL(k).x}k∈Sc), the change of variables on w
and Ω′ = diag({Ωk − (ω,L(k))}k∈Sc ,−{Ωk − (ω,L(k))}k∈Sc).

ii) The Hamiltonian H in the new variables is

N + (y′, Ay′) + P (3) + P (6)

where N in the new variables is

(44) N := (ω(ξ), y′) +QM ′(w′), M ′ = Ω′ +XMX−1,

and the terms P (3), P (6) satisfy the bounds of Theorem 1, v).

Proof. i) Since

sup
D(s,r/2)

|w′|a,p ≤ eCs|w|a,p ≤ eCsr/2 ≤ r

for s small enough the transformation is well defined from D(s, r/2) to D(s, r). It is
symplectic because:

dy ∧ dx+ idz ∧ dz̄ = dy′ ∧ dx′ −
∑

k

L(k)d(|zk|2) ∧ dx′+

idz′ ∧ dz̄′ −
∑

k

L(k).dx′(z′k ∧ dz̄′k − z̄′k ∧ dz′k) = dy′ ∧ dx′ + idz′ ∧ dz̄′.

Finally it preserves the spaces F i,j since it is linear in the variables w.

ii) We substitute the new variables in the Hamiltonian and use the relation JX =
X−1J , i.e. the fact that X is symplectic. The bounds follow from Lemma 4.24, notice
that we have put all the terms in H>2

0 which are not quadratic in y in the perturbation

P (6) where they contribute to the terms of weight ≥ 3 with a term of order r4+α/2 which
is negligible with respect to P (3). �

From an algebraic point of view, we have performed a diagonal change of coordinates

using the matrix X on the free module V
(0,1)
f . Recall that this is the space of finite linear

combinations of the element zk, z̄k, k ∈ Sc with coefficients in the algebra A of finite
Fourier series in the variables x.

It is clear that the block structure is still preserved, the main fact is now that the
matrix has constant coefficients.

Proposition 6.3. i) M ′ has constant coefficients and is block diagonal with the same
block structure as M . On a block (A,+) with root x(A),

(45) M ′
A = (|x(A)|2 + 4

∑

j

ξj)I + 2CA,

where CA has the following entries in the vertices a, b.

(46) CA(a, b) =











0 if Ma,b = 0, a 6= b

4σ(b)
√

ξiξj if (a, b) = e is an edge marked (i, j).

σ(a)(ξ, L(a)) if a = b.

.

ii) CA is self-adjoint if A does not contain red edges. If A contains red edges there is
a diagonal matrix Σ with entries ±1 such that ΣCA is self adjoint.

iii) The matrix CA depends only from the abstract M–graph corresponding to A and
hence is chosen from a finite list.
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Proof. i) By definitionM ′ = Ω′+XMX−1 so let us analyze separately these two operators.
Since X is diagonal the matrix XMX−1 is 0 on the diagonal.

The off diagonal entry associated to the indices a, b of two vertices in the given block
is 0 unless they are joined by an edge marked (i, j). Then

(47) (XMX−1)a,b =

σ(b)4
√

ξiξje
σ(a)iL(a).xe−σ(b)iL(b).xei(σ(b)L(b)−σ(a)L(a)).x = 4σ(b)

√

ξiξj

On the diagonal of M ′ we have the contribution of Ω′. Applying Formulas (42) and

(35), since by (41) we have
∑

iA
(i)
a = 1− σ(a), we get:

(48) Ω′
a = σ(a)(|k(a)|2 + 4

∑

j

ξj − (ω,L(a))) =

|x(A)|2 + σ(a)
∑

A(i)
a |vi|2 + σ(a)(4

∑

j

ξj − (ω,L(a))) =

|x(A)|2 + σ(a)
∑

A(i)
a |vi|2 + σ(a)(4

∑

j

ξj −
∑

i

(|vi|2 − 2ξi + 4
∑

j

ξj)A
(i)
a ) =

|x(A)|2 + σ(a)(4
∑

j

ξj −
∑

i

(−2ξi + 4
∑

j

ξj)A
(i)
a ) =

|x(A)|2 + σ(a)[2(ξ, L(a)) + 4
∑

j

ξj − 4
∑

j

ξj(1− σ(a))] =

|x(A)|2 + σ(a)2(ξ, L(a)) + 4
∑

j

ξj .

We then define 2CA to have off-diagonal entries given by (47) and on the diagonal
2σ(a)(ξ, L(a)).

ii) Is immediate.

iii) In the matrix CA the off–diagonal entries depend only on which pairs a, b are
connected by a marked edge, which depends only on the abstract M–graph. In the same
way the diagonal entries depend on L(a) which depends only on the path from the root to
a (again this depends only on the abstract marked graph). Finally there are only a finite
number of abstract marked graphs with k ≤ n+ 1 vertices.

�

Remark 6.4. Notice that in the new variables the term H0 is independent of x.

6.5. Combinatorial blocks. We have described the matrix M ′ in the basis z′k. In par-

ticular, for a given geometric block A we have chosen the block in V (0,1) generated by the
element zx(A) = z′x(A). We have to understand in this formalism the elements in F (0,1)–

that is momentum conservation and parity in the new variables– and then compute the
matrices of the operator ad(N) on each combinatorial block of the graph ΛS (cf. Definition
5.12).

Lemma 6.6. Momentum conservation (26) and parity in the new variables give the con-
strain:

(49) eiν.xyi
∏

k

(z′k)
αk(z̄′k)

βk ∈ F i,j →
∑

i

νivi +
∑

k

σ(k)(αk − βk)x(k) = 0 ,
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∑

i

νi +
∑

k

(αk + βk) = even.

In particular eiσ(k)ν.xz′k ∈ F 0,1 if and only if x(k) = −π(ν) and
∑

i νi is odd.

Proof. The momentum conservation in the variables w′ can be derived directly from (26)
by substitution:

eiν·x
∏

k

(z′k)
α(z̄′k)

β = ei(ν·x−
∑

k(αk−βk)L(k)·x)
∏

k

(zk)
α(z̄k)

β

then, if L(k) =
∑

iA(k)
(i)ei (cf. Corollary 5.18), momentum conservation reads

(50)
∑

i

νivi −
∑

i

∑

k

(αk − βk)A(k)
(i)vi +

∑

k

(αk − βk)k.

Recalling that, by Corollary 5.18 with k = xa, k−π(L(k)) = σ(k)x(k) one obtains formula
(49). The parity condition is that

∑

i(νi −
∑

k(αk − βk)A(k)
(i)) +

∑

k(αk + βk) is even.

In Corollary 5.18 we have seen that
∑

iA(k)
(i) = 0, 2 and the parity follows. �

We have described the matrix M ′ on geometric blocks. From this description we can
deduce a description of the operator ad(N) on the combinatorial blocks, in particular
on F (0,1). A combinatorial block (A,+) over a given geometric block A is generated
by an arbitrary lift eiν.xzx(A) of the root x(A) in F (0,1) (i.e. by choosing a ν such that
x(A) = −π(ν)). By Lemma 6.6, the operator (ω(ξ), y′) contributes to ad(N)A the scalar
matrix −2i(ξ, ν)I.

Definition 6.7. Given a combinatorial block A generated by the lift eiν.xzx(A) we define
CA = CA − (ξ, ν)I. For the blocks A,− we apply sign change.

Proposition 6.8. let A be a geometric block with root x(A). On the combinatorial block
(A,+) generated by an element eiν.xzx(A) the operator ad(N) has matrix:

(51) − iad(N)A =
(

|x(A)|2 +
∑

νi|vi|2 + 4(
∑

i

νi + 1)
∑

j

ξj

)

I + 2CA.

Remark 6.9. Notice that, for any given block A, the two combinatorial blocks A,+ and
A,− form two Lagrangian subspaces of a non degenerate symplectic space and the full
space F (0,1) is the direct sum of these subspaces.

6.10. Theorem 2. The core of Theorem 2 is to put the normal formN in a canonical form
through a linear change of variables in the w′ which depends smoothly on the parameters
ξ.

Let Σ be a diagonal matrix with p entries equal to 1 and q = n − p entries equal to
−1. If p > 0, q > 0 the matrix Σ defines an indefinite scalar product preserved by a
non–compact form of the orthogonal group usually denoted O(p, q). If C is an n × n
matrix such that ΣC is symmetric then it can be brought into a suitable canonical Jordan
form by conjugation with elements of O(p, q). Is furthermore C is semisimple then this
normal form consists in decomposing the space Rn into orthogonal subspaces stable under
C and irreducible under C. These have either dimension 1 and correspond to the real
eigenvalues or dimension 2 and correspond to the pairs of complex conjugate eigenvalues
(one can also see that we have at most min(p, q) of such 2 dimensional subspaces. In
the case of our blocks containing red edges we have chosen a basis where the symplectic
products are of the form ±i associated to such a sign matrix Σ. For such a symplectic
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block sum of A,+ and A,− a matrix of the form

∣

∣

∣

∣

U 0
0 U

∣

∣

∣

∣

with U ∈ O(p, q) is symplectic

and brings

∣

∣

∣

∣

C 0
0 −C

∣

∣

∣

∣

in a diagonal normal form (of course some diagonal blocks are 2× 2

and are matrices associated to complex numbers.

We need to study matrices which depend algebraically on parameters, we have the
following proposition:

Proposition 6.11. If C(ξ) depends algebraically on parameters ξ ∈ Rm, one can define
globally and algebraically its eigenvalues provided we cut some real semialgebraic hyper-
surface (in an arbitrary way) so that the complement is simply–connected.

If C(ξ) is semisimple on an open set, one can define globally and algebraically the
change of coordinates which brings C(ξ) in the given diagonal form provided we cut some
real semialgebraic hypersurface (in an arbitrary way) so that the complement is simply–
connected.

This is a fairly standard fact and we leave out the proof.

Proof of Theorem 2. i) By formula (45), on the symplectic block (A,±) the quadratic
Hamiltonian N is given by the matrix

(52) MA = (|x(A)|2 + 4
∑

j

ξj)

∣

∣

∣

∣

I 0
0 −I

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

CA 0
0 −CA

∣

∣

∣

∣

,

where x(A) is the root of A while CA depends only on the combinatorial block A of which

A is a realization. and let λ1(ξ), . . . , λk(ξ) be its eigenvalues. We denote by Ω̃i = Ω̃i(ξ)
the corresponding eigenvalues of M+

A thus

(53) Ω̃i(ξ) = |x(A)|2 + 4
∑

j

ξj + λi(ξ).

Suppose that MA is semisimple, by Proposition 6.11 MA can be conjugated by a real
invertible matrix U in Ds,k. Moreover for ξ outside a semialgebraic set the matrix U(ξ)
is algebraic in the ξ. We proceed as described above for all the MA which are self–
adjoint, i.e. for all A that do not contain red edges. We apply w′ → wfin = UAw

′ so that
QMA(w

′) = QDA(w
fin) where

DA =

(

DA 0
0 −DA

)

, DA = diag(Ω̃k(a))

DA is the diagonal matrix of the (real) eigenvalues of MA. Now the total transformation
U is block diagonal. Since |k(a)|2 ≤ |x(a)|2 + C for some uniform C (depending only on
the size maxvi∈S |vi|2) we have that

|wfin|a,p ≤ C|w+|a,p.
Item i) follows by setting R′ to be the matrix of

∑

k,h∈H(wfin
h ,M ′

h,kJw
fin
k ).

ii) The Ω̃k are the eigenvalues of the matrices MA of Formula (52) as A varies of
the connected components of ΓS . Since by Proposition 6.2 iv) CA depends only on the
abstract M-graph, there is only a finite number of such matrices. Moreover the entries of
these matrices are homogeneous of degree one in ξ. We apply Proposition 6.11; we cut
away a semialgebraic set A such that the complement is simply connected. In Aα \ A we
obtain a list of eigenvalues λ(i)(ξ) and a list of matrices (with determinant equal to one)
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Ui(ξ) which diagonalize the CA which are semisimple (this set contains at least all the CA

which do not contain red edges). These are all algebraic functions.

Let Aǫ be a neighborhood of A of radius ǫ then in Ãα := Aα \Aǫ the λ
(j) are analytic

functions in x, the bounds (14) follow by Cauchy estimates by setting ǫ = rα/4.
iv) Follows directly from Lemma 4.24 since the linear change of variables (x, y, z) →

(x′, y′, zfin) does not modify the bounds. Indeed the only point is to prove that the
Lipschitz bounds are unchanged, this follows by the estimates of item iii) and the fact

that in Ãα also the eigenspaces are analytic in the parameters ξ. �

Remark 6.12. Suppose that CA for some A is semisimple for all ξ ∈ Aα. If the eigenvalues
of CA are real then one can proceed as above. In the case of hyperbolic blocks (with
eigenvalues a± ib) we obtain the Hamiltonian:

−a(z2z1 + z̄2z̄1)− b
z̄22 + z22

2
= −1

2
w

(

D 0
0 −D

)

Jwt , D =

(

a −b
b a

)

,

we have proved Remark 3.3.
In general however CA may not be semisimple and thus have Jordan blocks of size > 1.

A normal form classification of this quadratic Hamiltonian is feasible, see [1], but intricate
and not particularly useful.

6.13. The homological equation. The homological equation consists in the analysis of
the range and kernel of the operator ad(N) on F≤2. Using the block diagonal form (32)
this analysis can be split into 4 different equations. The crucial ones are the last two which
for historical (and confusing) reasons are called the first and second Melnikov equations.

In order to study the Homological equation it is not really necessary to perform the
reduction of Proposition 6.2, since we have seen that the change of variables leaves it
essentially unchanged. In the same way it is not necessary to diagonalize the Hamiltonian,
since this just conjugates the operator ad(N). The main point in the homological equation
is to study the Kernel of ad(N) on the real subspace of F≤2, and to show that the kernel
coincides with the subspace F int:

F int :=
{

F ∈ F≤2| F (λ,W ) = c+ (λ(ξ), y) +QW (ξ)(w)
}

where c is a constant, λ ∈ Rm and W is a block–diagonal matrix with the same blocks as
M ′ and (block by block) simultaneously diagonalizable with M ′.

Lemma 6.14. For any given ξ the condition ker(ad(N)) = F int is equivalent to the fact
that the non-trivial Melnikov resonances (5) do not occur.

Proof. By Lemma 4.19 ad(N) restricted to F 0,0 and F 1,0 is the operator ω(ξ) · ∂x which
has eigenvalues (ω(ξ), ν).

By Lemma 4.19 ad(N) restricted to F 0,1 has eigenvalues i
(

(ω(ξ), ν)± Ω̃k(a)

)

and hence
is invertible if they are non–zero.

For F 0,2 we use Lemma 4.20: for each combinatorial block consider a basis of eigenvec-
tors aAi for ad(N) on A,+ denote by bAi the dual basis in A,−. A basis for F 0,2 formed by
eigenvectors of ad(N) is obtained by making all the possible products of two eigenvectors
in the basis. The corresponding eigenvalue is the sum of the two eigenvalues.

Thus ad(N) restricted to F 0,2 is invertible on an eigenvector (say for example aAi b
B
j )

if the corresponding Melnikov resonance does not occur. Moreover the trivial Melnikov
resonances aAi b

A
i span F int ⊗ C ∩ F 0,2. �
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Proof of Theorem 3 item i). Given a block A with root x(A), let (A,+) be a correspond-
ing combinatorial block. By the previous Lemma we need to show that ad(N)A is invert-
ible. The operator −iad(N)A computed at ξ = 0 is the scalar matrix (ω(0), ν)± |x(A)|2,
if this number is non zero then ad(N)A is invertible for all ξ small. If ad(N)A(ξ = 0) = 0
then we study − i

2ad(N)A using (51). By definition CA has off-diagonal entries 2
√

ξiξj ,

thus i
2ad(N)A modulo 2 is diagonal. Moreover, since

∑

i νi is odd while
∑

iA(k)
(i) is

even (see the proof of the parity property), we have that 1
2ad(N)A modulo 2 is formally

invertible hence also ad(N)A is invertible for values of ξ outside some proper algebraic
hypersurface. �

6.15. Dimension 2 and 3. In order to prove Theorem 3 item ii) we need stronger condi-
tions, which we shall verify in dimension n = 2, 3. In all the statements of this paragraph
we assume that n = 2, 3.

Theorem 6. The characteristic polynomials of all the block matrices M ′
A are irreducible.

Proof. See §11 where we do a case analysis. �

Given a combinatorial block A,± set χA,±(t, ξ) to be the characteristic polynomial of
the operator ad(N) restricted to the given block

Corollary 6.16. i) For all combinatorial blocks χA,±(t, ξ) is irreducible.

ii) For all ξ outside a zero-measure set, the eigenvalues Ω̃k relative to the same block are
all distinct. Moreover the matrix R defined in Theorem 2 i) is formed of 2× 2 hyperbolic
blocks as in Remark 6.12.

iii) If two different combinatorial blocks A,±,A′,± associated to two geometric graphs
A,A′ have a common eigenvalue of ad(N) (as function of ξ) then χA,±(t, ξ) = χA,±(t, ξ).
In particular the roots are on the same sphere: |x(A)|2 = |x(A′)|2.
Proof. The characteristic polynomial of all the blocks are obtained by translating the
variable t from the polynomials of the previous Theorem so are irreducible. Since the
characteristic polynomial of all the blocks is irreducible then the eigenvalues of each block
are all distinct as algebraic functions. If we remove an arbitrary open set of parameters ξ
which contains the zero-set of the discriminant we have for each block all distinct eigen-
values (which implies that the blocks are all diagonalizable and that the eigenvalues and
eigenvectors depend smoothly on the parameters).

This follows from the fact that an irreducible polynomial is also the minimal polyno-
mial satisfied by any algebraic function giving one of its roots, over the field of rational
functions. Thus two irreducible polynomials have a root in common if and only if they
are equal. This implies in particular that |x(A)|2 = |x(A′)|2. �

In order to prove Theorem 3 item ii), it is enough to verify the conditions of Lemma
6.14. This follows from:

Theorem 7 (Separation). A basis for ker(ad(N)) on F 0,2 is given by the elements aAi b
A
i

(for two eigenvectors in conjugate blocks A,+;A,−).

The Theorem follows from a technical Lemma. Take a combinatorial block A,± and
denote by χA,±(t, ξ) the characteristic polynomial of the corresponding matrix CA or
−CA.

Lemma 6.17. The block A and its sign can be uniquely reconstructed by the polynomial
χA,±(t, ξ).
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Proof. See §12. �

In practice in order to prove this Lemma we shall inspect colored marked graphs with
a root so that, when we embed Ai in Λ̃ using Theorem 9 we have a complete list of
representatives under the group of translations and sign change.

Proof of Theorem 7. This follows immediately from Corollary 6.16 and Lemma 6.17. �

Proof of Corollary 2. The only difficulty comes from the study of the second Melnikov
condition i.e. the third inequality in (15). The main point is that the functions

(ω(ξ), ν) + Ω̃k(ξ) + σΩ̃h(ξ) = (ω(ξ), ν) + L+ λ(i)(ξ) + σλ(j)(ξ),

are algebraic and non trivial. Moreover L is an integer while the λ(i)(ξ) are defined in (13)
so that λ(i)(ξ)+σλ(j)(ξ) is a finite list of analytic functions, which respect the bounds (14)
in the domain Aα \Aε. Then for a given ν, we impose the second Melnikov condition for
all the infinite choices of h, k compatible with momentum conservation by removing from
Aα a finite number of “strips” of measure of order γ(A + rα)/(1 + |ν|τ0+1) (the number
of “strips” is given by the number of different functions λ(i)(ξ) + σλ(j)(ξ)) . Finally we

notice that if A = 1 then in order to have (ω(ξ), ν) + Ω̃k(ξ) + σΩ̃k(ξ) ≤ 1 we must have
|ν| > r−α. �

6.18. Dimension n > 3. In dimension n > 3 we have not been able to prove the validity
of the second Melnikov condition, although we suspect that it is true, according to our
Conjecture 1 in §10 and a conjectural separation Lemma. In this subsection we want to
sketch how one can still apply a KAM scheme by discussing the homological equation
in this more general setting. The reader should compare this discussion with the one
presented in §3.6 and again with the KAM scheme developed in [3].

The first step consists in performing the canonical Fitting decomposition of the operator
ad(N), namely we decompose the space so that each block corresponds to one (and only
one) of the generalized eigenvalues, as usual in our definitions we say that two eigenvalues
coincide if they do so identically as functions of ξ. We define the change of variables of
the Fitting decomposition on each abstract combinatorial block and then notice that the
same change of variables decomposes all the translations. Thus this change of variables is
analytic for all ξ outside some real semialgebraic hypersurface.

Proposition 6.19. In the Fitting decomposition of F 0,1 under ad(N) each eigenvalue
appears with a uniformly bounded multiplicity ≤ κ.

Proof. The eigenvalues of i ad(N) are µ = ±
(

(ω(ξ), ν) + Ω̃k

)

, hence two eigenvalues may
coincide only if they coincide at ξ = 0. Supposing that this is true we study the remaining
linearly homogeneous terms. The linear terms in an eigenvalue are a translation of the
finite list λ(i)(ξ), and

(ω(ξ)− ω(0), ν ± ν′) = λ(i) ± λ(j)

may hold only if ν ± ν′ is uniformly bounded. �

Notice that with each eigenvalue µ there is also the eigenvalue −µ with the same
multiplicity. Let us denote by F 0,1

µ the generalized eigenspace relative to µ. It is easy to
see that, from the first Melnikov condition, we have

Lemma 6.20.

{F 0,1
µ , F 0,1

µ′ } = 0 ⇐⇒ µ+ µ′ 6= 0

moreover F 0,1
µ and F 0,1

−µ are in duality under Poisson bracket.
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Proof. We start from the canonical decomposition into pairs of conjugate combinatorial
blocks. Two different pairs are orthogonal (under Poisson bracket) each block is isotropic
and in duality with the conjugate block. If we decompose a given block (identified by
the frequency ν) in generalized eigenspaces under ad(N) we have, a list of non zero

eigenvalues µ
(i)
ν and in the conjugate space the eigenvalues −µ(i)

ν . The duality pairing of

Poisson bracket puts in duality the eigenspace relative to µ
(i)
ν and in the conjugate space

the one relative to the eigenvalue −µ(i)
ν . It follows that the total generalized eigenspace

relative to a given eigenvalue (which is necessarily non–zero) appearing in the sum of two
conjugate blocks is isotropic and in duality with the generalized eigenspace relative to the
opposite eigenvalue in the same sum of two conjugate blocks. �

We decompose F 0,2 according to the pairs (µ, µ′) and denote by F 0,2
µ,µ′ = F 0,1

µ ·F 0,1
µ′ (the

product of functions). By Leibniz rule ad(N) on this space has generalized eigenvalue
µ+ µ′. As il §3.6, for the first step we consider the Cantor set C:

(54) |µ(i)
ν (ξ) + µ

(j)
ν′ (ξ)| ≥

γ(A+ rα)

1 + |ν + ν′|τ0

for all µ
(i)
ν (ξ) + µ

(j)
ν′ (ξ) 6≡ 0 where A = 1 if the integer µ

(i)
ν (0) + µ

(j)
ν′ (0) 6= 0 and A = 0

otherwise. The fact that this Cantor set has positive measure follows by the same reasoning
as in Corollary 2.

Proposition 6.21. For all ξ ∈ C the operator ad(N) is invertible on each F 0,2

µ
(i)
ν ,µ

(j)

ν′

such

that µ
(i)
ν + µ

(j)
ν′ 6≡ 0. For all x ∈ F 0,2

µ
(i)
ν ,µ

(j)

ν′

one has:

|ad(N)−1x|D(s,r) ≤ C
|ν + ν′|κ2τ0+1

A+ rα
|x|D(s,r),

with C some universal constant and A defined as in (54).

Proof. The operator ad(N) on F 0,2

µ
(i)
ν ,µ

(j)

ν′

has generalized eigenvalue µ
(i)
ν + µ

(j)
ν′ so that if

ad(N) is semi–simple the result is obvious with κ = 1. In general we notice that F 0,2

µ
(i)
ν ,µ

(j)

ν′

is a finite dimensional space with dimension ≤ κ2. The entries of ad(N) on F 0,2

µ
(i)
ν ,µ

(j)

ν′

are

all bounded by C|ν + ν′|. Then, if A = 1 the result follows by Cramer’s rule. If A = 0
ad(N) is homogeneous of degree one in ξ, hence the entries of ad(N)r−α are bounded by
C|ν + ν′| (recall that ξ ≤ rα), again we apply Cramer’s rule. �

Let [R] be the projection of R on the spaces F 0,2
µ,−µ.

Corollary 6.22. The operator ad([R]) on F (0,1) is block diagonal relative to the Fitting
decomposition of ad(N).

Proof. The result follows by the duality of F 0,1
µ and F 0,1

−µ by Poisson bracket. �

The purpose of a KAM algorithm will now be to construct a change of variables Φ =
ead(F ) : D(s/4, r/4) → D(s, r) such that ead(F ) ◦H = N∞ + P∞, where

N∞ = (ω∞, y∞)− 1

2
wtM(x∞)Jw , P∞ =

∑

i,j: 2i+j>2

P∞
ij (x

∞)(y∞)i(w∞)j

and M is represented on F 0,1 as a block–diagonal matrix on the blocks F 0,1
µ defined by

the Fitting decomposition of ad(N).
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From a purely formal point of view at each step of the KAM algorithm, we have the
Hamiltonian

Hk = Nk +Rk + Pk

where ad(Nk) is block diagonal with respect to the Fitting decomposition of ad(N), Rk

belongs to F≤2 and Pk ∈ F>2. Naturally one should prove appropriate estimates to show
that the sequence Rk tends to zero super-exponentially while Pk is bounded. To define
Hk+1 we solve the homological equation

(55) ad(Nk)Fk = Rk − [Rk],

where [·] is defined with respect to the Fitting decomposition of ad(N). We define Nk+1 :=
Nk + [Rk] which remains block diagonal with respect to the initial Fitting decomposition,
although it is possible that a given eigenspace may split into different eigenspaces. The
main point is that, due to the fact that the Rh are very small, the Fitting decomposition
of Nk may only be a refinement of the decomposition of ad(N). Indeed two different
eigenspaces of ad(N) are different for all the ad(Nk), since the correction to the eigenvalue
is small. Then formula (55) defines Fk ∈ F≤2 uniquely for ξ on an appropriate Cantor
set Ck where,

|ad(Nk)
−1x|D(s,r) ≤ r−α|ν + ν′|τ |x|D(s,r),

for all x ∈ F 0,2

µ
(i)
ν ,µ

(j)

ν′

.

By definition Hk+1 := exp(ad(Fk))Hk, we define Rk+1 := ΠF≤2 exp(ad(Fk))Hk−Nk+1

and Pk+1 consequently.

6.23. The issue of linear stability. As we have seen in the previous paragraph, in
dimension 2 and 3 the three Melnikov conditions enable us to solve the Homological
equation and hence put up a KAM iteration (as discussed in §3.6). For the linear stability
of the normal form we must verify weather the eigenvalues Ω̃ may be all real. Indeed it is
not true that for all small parameters the eigenvalues are real (as one can see even in the
case of a single red edge where the condition is that the discriminant (ξ1+ ξ2)

2−16ξ1ξ2 >
0). Nevertheless the condition on the parameters for the roots to be real is given by a
system of inequalities (still given by Sylvester’s theory).

The question is to verify that this open region intersects our domain Aα. Let us
recall briefly the Theory, (cf. [15] for a modern exposition). Given a monic polynomial
f(t) =

∏n
i=1(t − xi) its coefficients are up to sign the elementary symmetric functions

σh in the xi. Consider the Newton functions ψh :=
∑n

i=1 x
h
i . There are simple recursive

formulas expressing the ψh as polynomials in the σk, k ≤ h with integer coefficients.
Consider next the Bezoutiante matrix, that is the symmetric n× n matrix B with entries
ψi+j−2. Its determinant is the discriminant and equals ±

∏

i6=j(xi−xj). If the polynomial
has real coefficients then b is a real symmetric matrix and its signature is the number of
real roots of f(t).

In particular B is positive definite if and only if all the roots are real and distinct. The
condition on a symmetric matrix to be positive definite is given by the positivity of the
determinants of all the principal minors. In our setting thus, for every block containing
red edges we deduce a finite number of inequalities in the parameters ξi. The region where
all these inequalities are satisfied is thus the region where all the eigenvalues are real and
distinct. This region is a cone and the issue is to show that it is non–empty. This requires
again a very complicated case analysis which we do not perform. We refer to §13 for a
partial discussion.
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In dimension n = 2 however we may follow the approach by [10] to further simplify the
allowable blocks A and hence the matrix M ′ of Theorem 1.

Constraint 4 ([10]). We choose the tangential sites S so that there are no geometric
blocks in Theorem 5 with more than one edge.

The meaning of this constraint is as follows: a vector k ∈ Zn is the root of a geometric
block with k edges if k satisfies a system of k linear and quadratic equations (see Formula
(77), notice that the equations depend only on the abstract marked graph). The constrain
above can be verified by requiring that all the 2 × 2 systems which identify blocks with
two edges do not have any integer solution. Naturally such a strong constrain may hold
only in dimension n = 2.

Proof of Corollary 1. We impose Constrain 4. For all S such that Constrain 4 holds, the
matrices CA are 2 × 2 and quite simple (the possible tI − CA are written in Formula
(11.2)). Then all the eigenvalues can be computed explicitly. By inspection one sees that

all the Ω̃k are real in the domain:

D :=
{

ξ ∈ Rm| ∀i, j = 1, . . . ,m , i 6= j , ξ2i + ξ2j − 14ξiξj > 0
}

.

Clearly D is a cone and the intersection with Aα is non empty. �

Part 2. The algebraic combinatorial Theorems

7. A graph problem

7.1. A universal graph. We need to develop some combinatorics which is useful to
study the graph ΛS introduced in §5.11.

Let us thus choose m variables e1, . . . , em. Denote by

Λ := {
m
∑

i=1

aiei}, S2[Λ] := {
m
∑

i,j=1

ai,jeiej}, ai, ai,j ∈ Z

the lattices generated by these variables ei and that generated by the products eiej . Set
η : Λ → Z, η(ei) := 1 the augmentation.

We define a structure of colored marked graph on

Λ× Z/(2) := Λ+ ∪ Λ−; Z/(2) = ±1

as follows.
We take two elements (a, σ), a =

∑

imiei, (b, τ), b =
∑

i niei:

i) We join (a, σ), (b, τ) with an oriented black edge, marked (i, j) if

(56) σ = τ, b = a+ ei − ej , ⇐⇒ a = b+ ej − ei.

ii) We join (a, σ), (b, τ) with an unoriented red edge, marked (i, j) if

(57) σ = −τ, b+ a+ ej + ei = 0.

Remark 7.2. In case i) we have η(a) = η(b) in case ii) we have η(a) + η(b) = −2.

We will draw a black edge with its orientation either as horizontal or as vertical edge as

(58) b = a+ ei − ej a
(i,j)

b a c
(i,j)

d

c+ d+ ej + ei = 0 b

(i,j)
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Recall that

Definition 7.3. i) A path p of length ℓ(p) = k, from a vertex a to a vertex b in a graph
is a sequence of vertices p = {a = a0, a1, . . . , ak = b} such that ai−1, ai form an edge for
all i = 1, . . . , k.

The vertex a is called the source and b the target of the path.

ii) A circuit is a path from a vertex a to itself.

iii) A graph without circuits is called a tree.

It is sometimes useful to project the graph on the factor Λ and just follow the paths
here.

Let σ(p) be 1 if p has an even number of red edges and −1 if odd. We see that

Lemma 7.4. η(a) = η(b) if σ(p) = 1, η(a) + η(b) = −2 if σ(p) = −1.

Given an integer α set Λα := {a ∈ Λ | η(a) = α}.
Proposition 7.5. i) Each Λ+

α or Λ−
α is a connected component of the graph in which

we only use black edges.
ii) For each pair of integers α, β with α+ β = −2 we have that the set Λ+

α ∪Λ−
β is a

connected component of the graph.

Proof. By the previous identity each connected component of the graph is inside one of
these sets. It is clearly enough to prove i) which we easily see by induction.

�

The natural choice coming from conservation of mass is to take Λ+
−1 ∪ Λ−

−1.
There are symmetries in the graph. First the symmetric group Sm of the m! permu-

tations of the elements ei preserves the graph. Next the sign change map and, given any
element c ∈ Λ, the translation map:

(59) (a, σ) 7→ (a,−σ), τc : (b, σ) 7→ (b + σc, σ).

If we want to restrict to Λ−1 × Z/(2) we need to have η(c) = 0.
If A is any subgraph we set Ā to be the transform of A under sign change.
In particular we may shift and possibly change sign to the graph so that any element

(a, σ) is sent to (0,+).
The element (0,+) is called the root.

Definition 7.6. A complete marked graph, on a set V ⊂ Λ× Z/(2) is the full sub–graph
generated by the vertices in V .

We shall see that these are the combinatorial objects appearing in our context. By the
previous remarks given such a V and an element (a, σ) ∈ V we can apply translations
and sign change so that the root (0,+) is in the transformed graph. Thus we start by
studying the connected graphs containing the root.

It is very convenient to understand this picture as follows.

Remark 7.7. A connected graph containing (0,+) is completely determined by its projec-
tion in Λ. This lies in the set

(60) Λ̃ := {a ∈ Λ | η(a) = {0,−2}}.
Given a vector a ∈ Λ̃ we have either η(a) = 0 and then we assign to it the sign +

otherwise −. We shall then consider Λ̃ as a universal graph.
In particular the graphs that will appear are given by
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Definition 7.8. A non degenerate graph, is a complete graph in Λ̃ containing 0 and other
linearly independent vectors.

Remark 7.9. If we choose k linearly independent elements in Λ̃ in general the complete
graph generated by 0 and these elements is not connected. The possible connected ones
are easily seen to be a finite number.

We shall need in fact to consider equivalent two non degenerate graphs if we can
translate one into the other. Inside Λ̃ the translations by elements c with η(c) = 0
preserve the sign, the translations by elements c with η(c) = −2 exchange the sign. They
are used to change the root.

7.10. Geometric realization. Given a list S of m vectors vi ∈ Cn, we define a linear
map

πS = π : Λ → Cm, π(ei) := vi.

We consider Cm with the standard scalar product (NOT the Hilbert product). Set (u)2 :=
(u, u), u ∈ Cm. Extend the map π to a linear map of the polynomials S2(Λ) of degree 2
in the ei setting (cf. (40)):

π(ei) := vi, π(eiej) := (vi, vj),

We have π(AB) = (π(A), π(B)), ∀A,B ∈ Λ. We next define the linear map:

L(2) : Λ → S2(Λ), ei 7→ e2i .

Remark 7.11. Notice that we have L(2)(a) = a2 if and only if a equals 0 or one of the
variables ei.

Definition 7.12. Given an edge (a, σ), (b, τ) set h := −π(b), k := −π(a). We say that
the edge is compatible with S or π if

(61)

{

(h)2 − (k)2 = (vj)
2 − (vi)

2 if σ = τ, b− a = ei − ej

(h)2 + (k)2 = (vj)
2 + (vi)

2 if σ = −τ, b+ a+ ej + ei = 0
.

Proposition 7.13. The sub–graph of Λ×Z/(2) in which we keep only the edges compatible
with S, coincides with the graph ΛS defined in §5.
Proof. If the edge is black b = a+ ei − ej we have h = k + vj − vi for a red edge instead
we have h+ k = vi + vj . �

Remark 7.14. ΛS = Λ̄S is closed under sign change.

It is convenient to express in a unique form the previous identities as

(62) σ(k)2 − τ(h)2 = π[L(2)(τb − σa)]

⇐⇒ σ[(k)2 + π[L(2)(a)]] = τ [(h)2 + π[L(2)(b)]].

Theorem 8. If (a, σ), (b, τ) are in the same connected component of ΛS we have

(63) σπ
[

a2 + L(2)(a)
]

= τπ
[

b2 + L(2)(b)
]

.

Corollary 7.15. A component of ΛS is a complete subgraph (cf. 7.6) of the universal
graph.

Proof. Fix an element (a, σ) of which we want to find the component. Consider the set
of all elements (b, τ) such that (63) holds. They determine a complete subgraph and the
component passing through (a, σ) of this graph is the required one. �
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The construction we just made is such that:

Proposition 7.16. The map (a, σ) 7→ −π(a) maps to the graph ΓS and it is compatible
with the structure of the two graphs.

One of the first constraints we shall impose on the vi will make this map a graph
isomorphism on each component, although infinitely many components map to the same
geometric component. Given the geometric component A associated to an element r =
−π(µ) and a component A in ΛS mapping to A, all the other components mapping to A
are obtained as translates of A under the subgroup of Zm kernel of π and their conjugates.

7.17. The colored marked graphs. One can also start in an abstract way returning to
and expanding Definition 5.14.

Definition 7.18. A colored marked graph or M–graph for short, is

• A graph Γ (without repeated edges).
• A color red or black on each edge, displayed

a
black

b c
red

d

• A marking (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j on each oriented edge with the
convention that the opposite orientation corresponds to the exchanged marking
(j, i).

The red edges are assumed to be unoriented, so for them we do not distinguish between
the markings (i, j), (j, i).

Example 7.19.

c

2,1

==
==

==
==

e c

2,3
��

��
��

��

��
��

��
��

(I) a
3,4

b

2,1

2,5
d (II) a

5,4
b

2,1

2,3
d

Given a path p from a to b and another q from b to c we have the obvious:

• Opposite path po := {b = ak, ak−1, . . . , a1 = a} from b to a.
• concatenation q ◦ p, a path from a to c.

Observe that a circuit p = {a = a0, a1, . . . , ak = a} induces by rotation a circuit from
ai to itself for every i and also an opposite circuit po.

Given a path p we define

• A sign σ(p) = ±, where
i) σ(p) = + if the path has an even number of red edges, we also say that p is

even,
ii) σ(p) = − if the path has an odd number of red edges, we also say that p is

odd.
• A linear combination L(p) =

∑

i aiei, ai ∈ Z as follows:
i) If p is an oriented edge e, i.e. ℓ(p) = 1 marked (i, j) we set

(64) L(p) :=

{

ej − ei if e is black

ej + ei if e is red
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ii) If k > 1 let p′ := {a0, a1, . . . , ak−1} and e = (ak−1, ak). We set

(65) L(p) = L(e) + σ(e)L(p′).

The following Lemma follows from an easy induction.

Lemma 7.20.

(66) σ(po) = σ(p), L(po) = −σ(p)L(p).

(67) σ(q ◦ p) = σ(q)σ(p), L(q ◦ p) = L(q) + σ(q)L(p).

Example 7.21.

p := a
1,2 • 3,2

b; q := b
1,3 • 4,2 • 3,4

c

q ◦ p = a
1,2 • 3,2 • 1,3 • 4,2 • 3,4

c

σ(p) = σ(q) = −, L(p) = e3 + e1; L(q) = 2e4 + e1 − e2; L(q ◦ p) = 2e4 − e3 − e2.

7.22. Compatibility. We need to restrict to smaller and smaller classes of M–graphs
for our analysis thus we start setting

Definition 7.23. A connected M–graph A is compatible, if, given any two vertices a, b
and two paths p1, p2 from a to b we have:

(68) σ(p1) = σ(p2), L(p1) = L(p2).

Observe that the two conditions in (68) are equivalent to saying that, given a circuit p
we have

σ(p) = +, L(p) = 0, ∀ p a circuit.

For instance the graph (I) of example 7.19 is not compatible.

Assumption 1. All the graphs we consider are compatible

We apply this assumption as follows. Choose a vertex r of a compatible connected
graph A which we call the root. Given any vertex a and a path p from r to a we set

σr(a) := σ(p), Lr(a) := L(p).

Let us take as root another vertex s, and let q be a path from s to r. We clearly have
from Lemma 7.20:

(69) σs(a) = σr(a)σr(s), Ls(a) = Lr(a)− σr(a)σr(s)Lr(s)

Assumption 2. We restrict to those graphs for which the linear forms Lr(a) are all
different.

Observe that this assumption does not depend on the choice of the root. We have

(70) η(Lr(a)) =

{

0 if σ(a) = +

2 if σ(a) = −
Theorem 9. In a compatible graph A satisfying the previous assumption, the mapping λ :
a 7→ −Lr(a) embeds A as a subgraph of the universal graph Λ̃ = {a ∈ Λ | η(a) = {0,−2}}
(cf. 7.7).

Proof. By Assumption 2 we have an embedding at the level of vertices. We need to show
that this is compatible with the edges. Take an edge e = (a, b) in A, we know that we have
Lr(b) = Lr(e)+σ(e)Lr(a) hence if e is red marked (i, j) we have 0 = ei+ej−Lr(a)−Lr(b).
If e is black marked (i, j) we have 0 = ej−ei+Lr(a)−Lr(b) or−Lr(b) = ei−ej−Lr(a). �
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This embedding maps r to (0,+). We could have defined more general embeddings but
they can be obtained from this by translations and sign changes. From now on, unless it
is necessary, we shall drop the symbol r in σr(a), Lr(a).

Remark 7.24. Assume that, for a given root r of a graph A we have k vertices marked
+ and h marked −. If we change the root to a root s, and s is marked + we still have
k vertices marked + and h marked −, if s is marked − we have h− 1 vertices marked +
and k + 1 marked −.

The embedding changes by the translation by Lr(s) from (69) and (59)

The main reason of this paragraph is the following:

Remark 7.25. Let A be a component of the geometric graph, then to A is associated in
a natural way an abstract colored marked graph. If we choose a root and perform the
embedding given by Theorem 9 we see that we have lifted the geometric graph to the
graph ΛS inverting the map π.

We shall prove that, under the generic assumption, this lift is an isomorphism to a
connected component of ΛS over A. By abuse of notations we shall denote often by A
also this component. All other components over A are obtained from this by translations
with elements in Ker(π).

7.26. Realizing the graphs.

Definition 7.27. A realization of an M–graph is obtained by composition of the embed-
ding, a translation and a realization as in the previous section a 7→ −π(σ(a)r − Lr(a)) =
−σ(a)π(r) + π(Lr(a)).

A realization is called integral if all the vectors vi have integer coordinates and all the
xa lie in the lattice π(Zm) = Lv generated by the vi.

Remark 7.28. We have defined a realization by the choice of a root and a translation.
Taking a different root we may obtain the same realization by changing appropriately the
translation.

We suppose that our graphs are rooted and drop the subscript r.

Definition 7.29. Given a graph A we then set for a vertex a

(71) V (r) := 0, N(r) := 0, V (a) := π(L(a)),

L(2)(a) := L(2)(L(a)), N(a) := π(L(2)(a)).

Then a realization of the graph, given the vectors vi consists in assigning to each vertex
a a vector xa ∈ Cs so that, setting x := −π(r), the following constraints are verified:

(72) xa = σ(a)x + V (a), (xa)
2 = σ(a)(x)2 +N(a).

Observe that, if the vi are integral, the realization is integral if and only if x ∈ Lv.
The meaning of a realization is really a reformulation of the Properties used in Lemma

4.25.
In fact suppose that we have a path p from r to a and an edge e from a to b. We have

by definition (65)

L(b) =

{

ej − ei + L(a), if e is black marked ej − ei

ej + ei − L(a), if e is red marked ej + ei
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(73) V (b) = π(L(b)) =

{

vj − vi + V (a), if e is black marked ej − ei

vj + vi − V (a), if e is red marked ej + ei

(74) xa = σ(a)x+ V (a), xb = σ(b)x + V (b),

thus

xb = σ(b)x + vj − vi + V (a) = σ(a)x + vj − vi + V (a) = vj − vi + xa

if e is black marked ej − ei

xb = σ(b)x + vj + vi − V (a) = −σ(a)x+ vj + vi − V (a) = vj + vi − xa

if e is red marked ej + ei. For the scalar products

(75) (xa)
2 = σ(a)(x)2 +N(a), (xb)

2 = σ(b)(x)2 +N(b),

(76) N(b) =

{

(vj)
2 − (vi)

2 +N(a), if e is black marked ej − ei

(vj)
2 + (vi)

2 −N(a), if e is red marked ej + ei

thus finally we have

Theorem 10. The constraints (72) are equivalent to the recursive identities, (which cor-
respond to simple steps in the graph ΓS):

(77)































xb = vj − vi + xa, (vj)
2 − (vi)

2 = (xb)
2 − (xa)

2,

if e is black marked ej − ei

xb = vj + vi − xa, (vj)
2 + (vi)

2 = (xa)
2 + (xb)

2,

if e is red marked ej + ei

In particular the definition of realization does not depend on the choice of the root r.

It is convenient to reformulate the equations (72) as:

(78) σ(a)(x)2 +N(a) = (σ(a)x + V (a), σ(a)x + V (a))

= (x)2 + 2σ(a)(x, V (a)) + (V (a))2.

Let L(a) =
∑

h aheh so that V (a) =
∑

h ahvh.

We have: (V (a))2 −N(a) =
∑

h(a
2
h − ah)(vh)

2 + 2
∑

h<k ahak(vh, vk). Thus denote by

(79) C(a) :=
∑

h

(

ah
2

)

(vh)
2 +

∑

h<k

ahak(vh, vk) =
1

2
((V (a))2 −N(a)).

Formula (78) becomes, using (79)

Theorem 11.

(80) − C(a) =

{

(x, V (a)) if σ(a) = +

−(x, V (a)) + (x)2 if σ(a) = −

We need one further definition

Definition 7.30. A graph A is allowed if for generic choices of integral vectors vi it admits
an integral realization.
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The word generic is used as in algebraic geometry. It means that the property holds
outside the zeros of some polynomial equation in the coordinates of the vi.

One of our main tasks is to study such graphs.

7.31. Relations. Let us introduce a

Definition 7.32. • A graph A with k + 1 vertices is said to be of dimension k.
• The lattice Zm

r generated by the elements L(a) as a runs over the vertices for a
given choice of a root r is independent of the root. We call its dimension the rank,
rkA, of the graph A.

• If the rank of A is strictly less than the dimension of A we say that A is degenerate.

Proof of item 2. If we change the root from r to another a we have by Formulas (7.20)
that.

Ls(a) = Lr(a)− σ(s)σ(a)Lr(s).

This shows that Zm
s ⊂ Zm

r and of course also the converse is true by exchanging the two
roles.

�

If A is degenerate then there are non trivial relations
∑

a naσ(a)L(a) = 0, na ∈ Z

among the elements L(a).
It is also useful to choose a maximal tree T in A. There is a triangular change of

coordinates from the L(a) to the markings of T . Hence the relation can be also expressed
as a relation between these markings.

If we are given a realization π : ei → vi of the graph we must have, for every relation
∑

a naσ(a)L(a) = 0, na ∈ Z that
∑

a naσ(a)V (a) = 0 and, using Formula (70)

(81) 0 =
∑

a, |σ(a)=−
na.

Applying Formula (80) we deduce that we must have

(82)
∑

a

naC(a) = −(x,
∑

a

naσ(a)V (a))− [
∑

a, |σ(a)=−
na](x)

2

hence

(83)
∑

a

naC(a) = −(x,
∑

a

naσ(a)V (a)) = 0.

Let us thus set

(84) G(a) :=
∑

h

(

ah
2

)

e2h +
∑

h<k

ahakehek =
1

2
(L(a)2 − L(2)(a)).

We have C(a) = π(G(a)). Remark that also
∑

a naσ(a)L
(2)(a) = 0.

We have
∑

a

naG(a) =
1

2

∑

a

naL(a)
2 − 1

2

∑

a

naL
(2)(a)

∑

a

naL
(2)(a) = 2

∑

a, σ(a)=−
naL

(2)(a).

and

0 =
∑

a

naC(a) = π
(

∑

a

naG(a)
)

=
1

2
π
(

∑

a

naL(a)
2 −

∑

a |σ(a)=−
naL

(2)(a)
)

.
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Definition 7.33. If
∑

a naL(a)
2−∑

a |σ(a)=− L
(2)(a) 6= 0 then the equation (82) is a non

trivial constraint, and we say that the graph has an avoidable resonance.

Remark 7.34. If we have an avoidable resonance then for a generic choice of the S := {vi}
the graph is not realized by πS .

We arrive now at the main Theorem of the section:

Theorem 12. Given a compatible graph of rank k then either it has k + 1 vertices or it
produces an avoidable resonance.

Proof. Let q+1 be the number of vertices. By compatibility the rank of the graph equals
the rank of a maximal tree which has q edges, hence q ≥ k.

Assume by contradiction that q > k. Choose a root, we can choose k + 1 vertices
(a0, a1, . . . , ak) so that we have a non trivial relation

∑

a naσ(a)L(ai) = 0 and the elements
L(ai), i = 1, . . . , k are linearly independent.

We claim that
∑

a naL(a)
2 − ∑

σ(a)=− naL
(2)(a) 6= 0 and thus we have produced an

avoidable resonance. Suppose by contradiction that
∑

a naL(a)
2 −∑

σ(a)=− naL
(2)(a) =

0. Assume first that all these vertices are marked +, we have then
∑

a naL(a)
2 = 0.

Similarly, if they are all marked − we have −∑

a naL(a) =
∑

a naσ(a)L(a) = 0 and also
∑

a naL
(2)(a) = 0 so again

∑

a naL(a)
2 = 0.

We can consider thus the elements xi := L(ai), i = 1, . . . , k as new variables and then
we write the relation as

0 = L(ak+1) +

k
∑

i=1

pixi, =⇒ (

k
∑

i=1

pixi)
2 +

k
∑

i=1

pix
2
i = 0.

Now
∑k

i=1 pix
2
i does not contain any mixed terms xhxk, h 6= k therefore this equation

can be verified if and only if the sum
∑k

i=1 pixi is reduced to a single term pixi, and then
we have pi = −1 and L(a0) = L(ai), contrary to the second assumption.

Finally assume we have in the relation m vertices marked + and n marked − . We
think of the elements L(ai) as linear functions in some variables yi. Set y = e+ y′, where
e := (1, 1, . . . , 1). Assume

m
∑

i=1

aiui(y)−
n
∑

j=1

bjvj(y) = 0

ui(e) = 0, vj(e) = 2 =⇒
∑

j

bj = 0.

Now assume
m
∑

i=1

aiu
2
i −

n
∑

j=1

bj [v
(2)
j − v2j ] = 0

For any linear form L,

L(y) = L(y′) + L(e), L(2)(y) = L(e) + 2L(y′) + L(2)(y′),

in particular

ui(y
′) = ui(y), vj(y

′) = vj(y)− 2.

v
(2)
j (y)− vj(y)

2 = 2+2vj(y
′) + v

(2)
j (y′)− (2+ vj(y

′))2 = −2− 2vj(y
′) + v

(2)
j (y′)− vj(y

′)2.
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The relation becomes

0 =

m
∑

i=1

aiu
2
i (y

′)−
n
∑

j=1

bj [−2− 2vj(y
′) + v

(2)
j (y′)− vj(y

′)2]

=⇒
m
∑

i=1

aiu
2
i (y

′)−
n
∑

j=1

bj [v
(2)
j (y′)− vj(y

′)2]

=
n
∑

j=1

bj [−2− 2vj(y
′)] = −2

n
∑

j=1

bjvj(y
′).

The left hand side is homogeneous of degree 2 and the right of degree 1. This implies
∑n

j=1 bjvj(y
′) = 0 and we are back in the previous case.

�

8. Main Geometric Theorem

8.1. Determinantal varieties. In this section we think of a marking ±vi ± vj or more
generally of an expression

∑m
i=1 aivi as a map from V ⊕m to V . Here V is a vector space

where the vi belong. Thus a list of k markings is thought of as a map ρ : V ⊕m → V ⊕k.
Such a map is given by a k ×m matrix.

When dim(V ) = n we shall be interested in particular in n–tuples of markings. In this
case we have

Lemma 8.2. An n–tuples of markings mi :=
∑

j aijvj is formally linearly independent
– that is the n × m matrix of the aij has rank n– if and only if the associated map
ρ : V ⊕m → V ⊕n is surjective.

We may identify V ⊕n with n × n matrices and we have the determinantal variety
Dn of V ⊕n defined by the vanishing of the determinant and formed by all the n–tuples
of vectors v1, . . . , vn which are linearly dependent. The variety Dn defines a similar
irreducible variety Dρ := ρ−1(Dn) in V

⊕m which depends on the map ρ. We need to see
when different lists of markings give rise to different determinantal varieties in V ⊕m.

Lemma 8.3. Given ρ : V ⊕m → V ⊕n, a vector a ∈ V ⊕m is such that a+v ∈ Dρ, ∀v ∈ Dρ

if and only if ρ(a) = 0.

Proof. Clearly if ρ(a) = 0 then a satisfies the condition. Conversely if ρ(a) 6= 0, we think
of ρ(a) as a non zero matrix B and it is easily seen that there is a matrix X ∈ Dn such
that B +X /∈ Dn. �

Let ρ1, ρ2 : V ⊕m → V ⊕n be two surjective maps given by two n × m matrices A =
(ai,j), B = (bi,j); ai,j , bi,j ∈ C .

Theorem 13. ρ−1
1 (Dn) = ρ−1

2 (Dn) if and only if the two matrices A,B have the same
kernel.

Proof. First observe that the two matrices A,B have the same kernel if and only if ρ1, ρ2
have the same kernel.

By Lemma 8.3, if ρ−1
1 (Dn) = ρ−1

2 (Dn) then the two matrices A,B have the same kernel.
Conversely if the two matrices A,B have the same kernel we can write B = CA with C
invertible. Clearly CDn = Dn and the claim follows. �

We shall also need the following well known fact:
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Lemma 8.4. Consider the determinantal variety D given by d(X) = 0 of n× n complex
matrices of determinant zero. The real points of D are are Zariski dense in D.3

Proof. Consider in D the set of matrices of rank exactly n− 1. This set is dense in D and
obtained from a fixed matrix (for instance the diagonal matrix In−1 with all 1 except one
0) by multiplying AIn−1B with A,B invertible matrices. If a polynomial f vanishes on
the real points of D then F (A,B) := f(AIn−1B) vanishes for all A,B invertible matrices

and real. This set is the set of points in R2n2

where a polynomial (the product of the two
determinants) is non zero. But a polynomial which vanishes in all the points of Rm where
another polynomial is non zero is necessarily the zero polynomial. So f vanishes also on
complex points. This is the meaning of Zariski dense. �

8.5. Special graphs. Let V := Cn so V ⊕m = Cmn. Take a connected M–graph with
n + 2 vertices, assume that for generic vi this graph is realizable. By Theorem 12 this
implies that the rank of this graph is n+1. Choose in this graph a root, then the variety
RA of realizations is given by the solutions of equations (80), which we think as equations
in both the variables of the vector x (corresponding to the root) and also of the parameters
vi.

The variety RA maps to the space Cmn of m–tuples of vectors vi, call θ : RA → Cmn

the projection map. For a given choice of the vi the fiber of this map θ is the set of
realizations.

Proposition 8.6. Under the previous hypotheses there is an irreducible hypersurface W
of Cmn such that the map θ is invertible on Cmn \W with inverse a polynomial map.

Assume for a moment the validity of Proposition 8.6.

Theorem 14. Consider a graph A which contains at least n + 1 edges such that the
markings are linearly independent, and assume A is allowable.

Then for generic vi’s it has a unique realization in the special component.

Proof. Consider the system on n+ 1 linear and quadratic equations in the variables x, vi
defining the variety RA. We are assuming that we have a solution x = F (v) which is
a polynomial in v1, . . . , vm. A degree consideration shows that F is homogeneous and
linear in these variables. In fact we have since the right hand side of the equations 80 are
quadratic, we have F (λv) = λF (v).

Now the equations 80 are invariant under the action of orthogonal matrices, i.e. if A
is orthogonal F (Av1, . . . , Avm) = AF (v1, . . . , vm). Since the space V of the vi (which we
may take as complex) is irreducible under the orthogonal group, a linear map V → V
commuting with the orthogonal group is a scalar so it follows that any linear map V ⊕m →
V commuting with the orthogonal group is of the form F (v1, . . . , vm) =

∑m
a=1 cava for

some constants ca.
Now x =

∑m
a=1 cava is the point of the realization corresponding to the root and so it

satisfies either (x, vj − vi) = (vi, vj − vi) for some i, j so x = vi or the quadratic equation
(x− vi, x− vj) = 0 from which x = vi or vj .

Once we know that one point in the realization is in the special component we have
proved (see 5.9) that the whole tree is special and realized in this component. �

3this means that a polynomial vanishing on the real points of D vanishes also on the complex points.
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8.7. Proof of Proposition 8.6, black edges. Let us first study the case of all black
edges. The next is standard and follows immediately from the unique factorization prop-
erty of polynomial algebras:

Theorem LetW be a subvariety of CN of codimension ≥ 2, let F be a rational function
on CN which is holomorphic on CN \W , then F is a polynomial.

We have a list of n + 1–linear equations (x, ai) = bi with the markings ai =
∑

j aijvj
formally linearly independent. The hypotheses made imply that any n of these equations
are generically linearly independent. Call C the matrix with rows the vectors ai.

Therefore on the open set where n of these are linearly independent the solution to the
system is unique and given by Cramer’s rule.

In order to complete our statement it is enough to show that the subvariety W where
any n of these equations are linearly dependent has codimension ≥ 2. The condition to
be in W is that all the determinants of all the maximal minors should vanish.

Each one of these determinants is an irreducible polynomial so it defines an irreducible
hypersurface. It is thus enough to see that these hypersurfaces are not all equal. This
follows from Theorem 13, indeed by hypothesis the matrix B = (aij) has rank n+ 1. All
the matrices obtained by B dropping one row define the various determinantal varieties,
the fact that these varieties are not equal depends on the fact that the matrices cannot
have all the same kernel (otherwise the rank of B is ≤ n).

8.8. Proof of Proposition 8.6, red edges. When we also have red edges we see that
the equations(80) are clearly equivalent to a system on n linear equations associated
to formally linearly independent markings, plus a quadratic equation chosen arbitrarily
among the ones appearing in (80). We then put as constraint the non vanishing of the
determinant of the linear system we have found. Thus a realization is obtained by solving
this system and, by hypothesis, such solution satisfies also the quadratic equation.

Let P be the space of functions
∑m

i=1 civi, ci ∈ R and (P, P ) their scalar products. As-
sume we have a list of n equations

∑m
j=1 aij(x, vj) = (x, ti) = bi with the ti =

∑m
j=1 aijvj

linearly independent in the space P and bi =
∑

h,k a
i
h,k(vh, vk) ∈ (P, P ).

Solve these equations by Cramer’s rule considering the vi as parameters. Write xi =
fi/d, where d(v) := det(A(v)) is the determinant of the matrix A(v) with rows ti, fi(v)
is also a determinant of another matrix B(v) both depending polynomially on the vi.
We have thus expressed the coordinates xi as rational functions of the coordinates of the
vi. The denominator is an irreducible polynomial vanishing exactly on the determinantal
variety of the vi for which the matrix of rows tj , j = 1, . . . , n is degenerate.

Lemma 8.9. Assume there are two elements a ∈ P, b ∈ (P, P ) such that (x)2+(x, a)+b =
0 holds identically (in the parameters vi); then x is a polynomial in the vi.

Proof. Substitute xi = fi/d in the quadratic equation and get

d−2(
∑

i

f2
i ) + d−1

∑

i

fiai + b = 0, =⇒
∑

i

f2
i + d

∑

i

fiai + d2b = 0.

Since d = d(v) = det(A(v)) is irreducible this implies that d divides
∑

i f
2
i .

For those vi ∈ Rn for which d(A(v)) = 0, since the fi are real we have fi(v) = 0, ∀i,
so fi vanishes on all real solutions of d(A(v)) = 0. These solutions are Zariski dense, by
Lemma 8.4, so fi(v) vanishes on all the vi solutions of d(A(v)) = 0 and d(v) divides fi(v),
hence x is a polynomial.

�
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9. Proof of Theorems 4 and 5

9.1. The resonance inequalities. We are now ready to explain which restrictions we
impose on the vectors vi in order to say that the vectors have been chosen in a generic
way.

1) We impose Constraint 1.
2) We require that any n of the vi are linearly independent.
3) We want that any linear combination of the vi arising from an odd circuit of length

≤ n is non–zero.
4) We list all degenerate graphs with k + 1, k ≤ n + 1 vertices, we list all the avoid-

able resonance equations and impose that the vectors vi do not satisfy any of these
equations, this is a set of quadratic inequalities.

5) Finally for each graph with n+ 1 formally linearly independent markings, we impose
the following relations. From equations 80 we select n linear equations and impose
that the corresponding determinant is non–zero. This allows us to apply Theorem 6.

We are now ready to prove Theorems 4 and 5. The first four constraints control the
components with at most n linearly independent edges.

The fifth constraint handles graphs with n+ 2 vertices.
Let us consider a connected component A of the graph ΓX . If we choose an element

r ∈ A and a µ ∈ Zm with r = −π(µ) we see that

Lemma 9.2. The connected component B of the graph ΛS containing µ maps surjectively
to A.

Proof. Clearly any edge in A can be lifted to an edge in B. �

Theorem 4 follows from the more precise

Proposition 9.3. If A is different from the special component, then B has rank ≤ n and
is non degenerate and −π maps B isomorphically to A.

Proof. Assume first that B has rank ≤ n, we have that B has to be non–degenerate since
we have imposed that the vi do not satisfy the resonance equations. In particular B has
at most n+ 1 vertices. Then the constraints that we have required imply first that −π is
bijective on the vertices, in fact if we had to vertices in B which map to the same vertex
k in A we consider a path connecting them we have that either 2k =

∑

i aivi if the path
is odd and then we can exclude this by imposing that the quadratic equation satisfied
by k is not satisfied by the vi, or we get

∑

i aivi = 0 and again we may exclude this, in
fact since B varies on graphs with at most n+ 1 vertices all these are a finite number of
inequalities. The isomorphism at the level of edges follows from Corollary 7.15.

So it only remains to show that for generic vi we cannot have B of rank ≥ n+ 1. This
follows from Theorem 14. �

Proof of Theorem 5. i) Let A be a connected component of the graph ΓS , let B be a
corresponding component in ΛS so that A = −π(B). By proposition 9.3 B has at most
n+ 1 vertices.

ii) Two points are connected by a red edge if they belong to a sphere Sij with diameter
vi, vj and there are finitely many integral points on such a sphere.

iii) Each component of ΓS is a realization of an abstract marked graph, which encodes
the equations that the root xr should satisfy. In the case of black edges the equations
are all linear and the general solution is given by adding the solutions of the associated
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homogeneous system. Finally, there are only a finite number of abstract marked graphs
with at most n+ 1 vertices.

�

Remark 9.4. In this general discussion we have restricted the possible types of components
that we can have in the geometric graph ΓX . In fact it may very well be that some of the
possible components which are allowed do not appear.

This depends upon the fact that our conditions are algebraic and we only claim that
a certain system of equations has a solution. But, for contributing a component to the
graph ΓX , this solution must lie in the lattice spanned by the vi. This we have not tried
to discuss. In fact in dimension 2, in the paper [10], Geng, You and Xu use arithmetic
conditions to exclude all graphs with 3 vertices.

9.5. m = ∞. It is easy to see that we can also construct infinite sequences of integral
vectors vi satisfying all constraints. For this recall the known, fact. Let f(x1, . . . , xp)
be a polynomial with integer coefficients. Assume that all coefficients of the polynomial
are < C in absolute value, and all exponents are < D, with C,D two positive integers.

Consider the sequence L := ai := CDi

< i = 1, 2, . . .. Then

Lemma 9.6. For every choice of p distinct elements ai1 , . . . , aip in this list we have

f(ai1 , . . . , aip) 6= 0.

Proof. Consider the monomials appearing in f .

xh1
1 xh2

2 . . . xhp
p 7→ C

∑p
j=1 hjD

aj
.

Since all indices hi < D we have that different monomials of f give rise to a different
exponent

∑p
j=1 hjD

aj .

Now the polynomial gives a linear combination of integers ai with |ai| < C (the coef-
ficients) times distinct elements Cdi . By the uniqueness of the expression of a number in
a given basis we deduce the claim. �

We now apply this to our setting, we take C,D bigger than the coefficients of all
constraints in dimension n, similar bigger than the exponents in these constraints.

If we now partition in any desired way the list L into disjoint sublists each made of n
elements they form an allowable infinite list.

10. The Matrices

In this and the following sections we discuss the combinatorial and algebraic features of

the matrices appearing in the blocks of ad(N) in order to complete the proof of Theorems

6, 7 and Lemma 6.17.

10.1. Combinatorial matrices. We now discuss the matrices CA introduced in Defini-
tion 6.7. The vertices of A index a basis of this block. Given a vertex (a, σ) if a =

∑

imiei
we set

a(ξ) :=
∑

i

miξi.

Lemma 10.2. The entries of the matrix CA, over the indexing set of the vertices of A,
are:

• In the diagonal at the vertex (a, σ) equals −σa(ξ).
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• At the position (a, σ), (b, τ) we put 0 unless they are connected by an oriented edge
e = ((a, σ), (b, τ)) marked with (i, j). In this case we place

(85) C(e) := 2τ
√

ξiξj .

Proof. Let (ν,+) ∈ A correspond to the root x(A) = −π(ν). Take another element
a = (µ, σ) ∈ A such that −π(µ) = xa ∈ A and σ(a) = σ. From Formula 71 and 72 and
Proposition 9.3 we have µ = σν − L(a) hence −σa(ξ) = −σ(ξ, µ) = −(ξ, ν) + σ(ξ, L(a))
which is the diagonal entry of CA by Formula (46) and Definition 6.7. �

We need to see the behavior under the symmetric group, translation and sign change.
Under the symmetric group we just permute the variables ξi.

Theorem 15.

(86) Cτc(A) = c(ξ)I + CA, CĀ = −CA.

Proof. If we translate A, to τc(A) the edge e = ((a, σ), (b, τ)) becomes τc(e) = ((a +
σc, σ), (b + τc, τ)) so

C(τc(e)) = C(e), σ(a+ σc)(ξ) = σ(a)(ξ) + c(ξ).

Similarly for sign change. �

We denote by
χA(t) := det(t− CA)

the characteristic polynomial of CA.

Remark 10.3. Notice that, if e is red, in position (b, a) we have σ(a)2
√

ξiξj = −σ(b)2
√

ξiξj .
If we change the root s the matrix is changed as Cs

A = L(s)(ξ) + σ(a)Cr
A.

In particular CA is symmetric if and only if there are no red edges.
These are the matrices appearing in our Hamiltonian, but we can immediately change

them as follows. Choose a maximal tree in the graph and a root, then every vertex is
connected by a unique minimal path. Given a vertex a and the minimal path p = (r =
a0, a1, . . . , ak = a from the root r to a and we set k = ℓ(a). We next set

(87) D(r) := 1, D(a) :=

k−1
∏

i=0

C(ai, ai+1)

This defines a diagonal matrix D.

Proposition 10.4. Set C̃A := DCAD−1:

i) If (a, b) is an edge in the tree we have

(88) C̃A(a, b) =

{

σ(b) if ℓ(b) = ℓ(a) + 1

C(a, b)2 = 4ξiξj if ℓ(b) = ℓ(a)− 1

ii) If e = (a, b) is not an edge in the tree (but it is an edge in the graph), we have

that C̃A(a, b) is a constant times a monomial in the variables ξ±1
i .

Proof. (i) This is from the definition.
(ii) This comes from the circuit that shows that modulo 2 the two elements L(a) = L(b)

which takes away the squares. �

Corollary 10.5. For every allowable A the characteristic polynomial of CA has as coef-
ficients polynomials in the variables ξi.
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By the previous Theorem the square roots disappear.

Conjecture 1 For every allowable A the characteristic polynomial χA(t) of CA is
irreducible as polynomial with coefficients in C[ξ1, . . . , ξm].

It is clear that the irreducibility property is invariant under all the symmetries, the
symmetric group, translation and sign change, so the statement needs to be checked only
for finitely many A. In the next section we discuss dimension 3. We take as A always a
graph containing 0 and we assume that 0 has sign +, (cf. Definition 7.8).

10.6. The method. We have seen in Theorem 5 that the graphs we need to consider are
complete subgraphsA of the graph ΛS , constructed as follows. Take a linearly independent
list of k vectors νi where k is the rank. Consider the complete graph A generated by
0, ν1, . . . , νk.

We need to study those A which are connected. In Theorem 5 we have seen that
the connected components of ΛS are obtained from such a graph by translation and sign
change.

The goal of the rest of the paper is to prove the two Conjectures which allow us to
deduce the separation of eigenvalues and thus the second Melnikov equation. We have at
our disposal several theoretical tools which at the moment are not sufficient to treat all
cases. This is why the possible obvious inductions are not available at the moment and we
need to perform a rather tedious detailed case analysis. In principle this can be checked
by a finite algorithm in all dimensions but we have not tried to write the necessary code.

The main ingredient of a possible induction is:

Theorem 16. Take an allowed graph A and compute its characteristic polynomial χA(t).
When we set a variable ξi = 0 we obtain the product of the polynomials χAi(t) where the
Ai are the connected components of the graph obtained from A by deleting all the edges in
which i appears as index, with the induced markings (with ξi = 0).

Proof. This is immediate from the form of the matrices. �

10.7. Some tests. Let us make several remarks on Conjecture 1, which we are going to
prove in dimension 3 by a case analysis.

First we analyze trees, and for each marked tree we complete it according to Theorem
5. We use systematically Theorem 16 and also we may sometimes use the following simple

Remark 10.8 (Minimality). If setting two or more of the variables ξi equal we have an
irreducible polynomial then the one we started with is irreducible.

Lemma 10.9 (Parity test). i) If we compute t at an odd number g, the determinant
χA(g) 6= 0.

ii) If a linear form t+
∑

i aiξi, ai ∈ Z divides χA(t) we must have
∑

i ai is even.

Proof. i) We compute modulo 2 and set all ξi = 1, recalling that La(ξ)|ξi=1 = 0, 2. We
get χA(t) = tm.

ii) A linear form t+
∑

i aiξi, ai ∈ Z divides χA(t) if and only if we have χA(−
∑

i aiξi) =
0, then set ξi = 1 and use the first part. �

We shall use the parity test as follows.
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Theorem 17. Suppose we have a graph A, in which we find a vertex a and an index, say
1, so that

c

. . . d a
1,h1,h

1,k

1,j

1,i

b . . . . . .

e

we have:

• 1 appears in all and only the edges having a as vertex.
• When we remove a (and the edges meeting a) we have a connected graph A with
at least 2 vertices.

• When we remove the edges associated to any index, the factors described in The-
orem 16 are irreducible.

Then the polynomial associated to A is irreducible.

Proof. We take a as root, setting ξ1 = 0 we have by Theorem 16 and the hypotheses, that
χA(t) = t P (t) with P = χA(t) irreducible of degree > 1. Thus, if the polynomial χA(t)
factors, then it must factor into a linear t− ℓ(ξ) times an irreducible polynomial of degree
> 1.

Moreover modulo ξ1 = 0 we have that 0 and ℓ coincide, thus ℓ is a multiple of ξ1.
Take another index i 6= 1, h if a is an end and the only edge from a is marked (1, h)

otherwise just different from 1 and set ξi = 0. Now the polynomial χA(t) specializes to
the product

∏

j χAj (t) where the Aj are the connected component of the graph obtained

from A by removing all edges in which i appears as marking. By hypothesis {a} is not
one of the Aj .

If no factor is linear we are done. Otherwise there is an isolated vertex d 6= a so that {d}
is one of the connected components Aj . The linear factor associated is t−σ(d)Ld(ξ)|ξi=0.
Clearly we have that the coefficient of ξ1 in Ld(ξ) is ±1 (since the marking 1 appears only
once). This implies that ℓ = t± ξ1 and this is not possible by the parity test. �

This Theorem can be used as the basis of a possible, induction. Let us analyze this.
Take a graph A of dimension and rank n. Thus it has n+ 1 vertices. Assume that, by

some inductive procedure, we know that, if we remove the edges associated to any index,
the factors described in Theorem 16 are irreducible. If there is an index i such that, when
we remove the edges containing i the graph remains connected, we are done. Similarly if
we can find an index satisfying the conditions of Theorem 17.

11. Dimension 3

11.1. Bases and encoding graphs. We first classify the graphs by rank and up to the
symmetry induced by permuting the variables ei (that is the action of the symmetric
group Sm).

Thus in order to classify these graphs, the first step is to understand the possible lists
νi which produce a connected complete graph.

A choice of a maximal tree in each such graph determines, through its edges, a linearly
independent list extracted from the vectors E := {ei ± ej}. Thus we may start by first
classify up to symmetry such lists of rank k. In dimension n will appear lists of rank
k ≤ n.
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Since we are trying to classify the graphs up to equivalence we have some freedom in
choosing the root. In a tree with n vertices we can always choose a vertex r as root so
that every other vertex is at distance at most [n/2], thus each possible νh is obtained by
adding up at most [n/2] elements in the list ei ± ej .

This gives a finite algorithm which is still computationally very heavy even in dimension
3.

Let us start by explaining how to classify the lists of independent edges for dimension
3.

Observe first that E := {ei± ej} decomposes under the symmetric group into 2 orbits,
the black and red edges.

In a list it is first convenient to count the two numbers e, f of black and red edges,
and we may have for a list with 3 elements 4 possibilities (3, 0), (2, 1), (1, 2), (0, 3). It is
convenient to display the list by its encoding graph. This is the subgraph of the full graph
with vertices the numbers 1, . . . ,m formed by the edges (i, j) which appear as markings
in the graph A. We can also color and orient these edges.

When we take 3 linearly independent markings, their encoding graph up to permutation
of the variables can have the following different combinatorial structure

Type 0 : 2 4 6

1 3 5

, (1, 2), (3, 4), (5, 6)

Type 1 : 1 5

3 2 4

, (1, 2), (2, 3), (4, 5)

Type 2 : 1

3 2 4

, (1, 2), (2, 3), (1, 4)

Type 3 : 1 2 3 4 , (1, 2), (2, 3), (3, 4)

In all these cases we may have any choice of red edges.

We now discuss two special cases.
Type A : We may have at the same time an edge, which we may assume to

be (1, 2) black and red, plus another edge, in general disjoint (3, 4) but after specialization
it can be assumed to be (2, 3) black or red.
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Finally we may have an odd circuit (notice that an even circuit gives linearly dependent
markings)
(89)

Type B : 3

I 1

{{{{{{{{
2

>>>>>>>

3 (1, 2), (2, 3), (3, 1)

II 1

zzzzzzzzz

zzzzzzzzz
2

NNNNNNNNNNNNNN

NNNNNNNNNNNNNN

Type BII cannot occur since, if we have tow adjacent red edges with a common index
in the label, this configuration has to be completed with a black edge.

In case BI the encoding graph is completely described by the choice of orientation for
the black edges (and again we have some symmetries to consider).

It is clear that specializing some variables one can pass from more general types to
others. When we pass to analyzing the possible allowable graphs, the 3 markings come
from a maximal tree and the actual graph may need to be completed with further edges.

11.2. Irreducibility tests.

There are standard algorithms that check if a polynomial with integer coefficients is

irreducible. In our analysis we try to avoid them as much as possible in order to give

a possible general approach, nevertheless for a few cases we could not find a theoretical

explanation so we just verified the irreducibility with these algorithms.

If A has s vertices the characteristic polynomial is of degree s. For the markings, we
restrict to the case of rank s− 1 (by Theorem 12). Let us start by considering:

s = 2. In this case A is a single edge that we may assume marked by (1, 2) or
equivalently (2, 1). The corresponding matrix is, in the black and red case:

∣

∣

∣

∣

∣

∣

t −2
√
ξ1ξ2

−2
√
ξ1ξ2 t+ ξ1 − ξ2

∣

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

t 2
√
ξ1ξ2

−2
√
ξ1ξ2 t+ ξ1 + ξ2

∣

∣

∣

∣

∣

∣

with determinants

(90) t2 + t(ξ1 − ξ2)− 4ξ1ξ2, t
2 + t(ξ1 + ξ2) + 4ξ1ξ2

it is easily seen that these polynomials in t, ξ1, ξ2 are irreducible. s = 3.

Lemma 11.3. Unless we are in the special component we cannot have in the graph adja-

cent a
1,2

b
1,2

c or a
1,2

b
2,1

c .
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Proof. We use the fact that (H1,2 ∪H2,1) ∩ S1,2 = {v1, v2}. �

s = 3. For a graphA with 3 vertices χA(t) has degree 3, we only have two possibilities,
up to coloring the edges.

a b c

c

a

��������
b

>>>>>>>

.

We may have, once we specialize the variables, only the case (1, 2), (2, 3) on the tree
with various colors and orientations. Some of these choices do not give a complete graph.
We complete it (this determines uniquely the oriented edges to be added) we have the
circuit which must be even by the rank assumption and up to symmetry

(91) c

a
��

3,1
��������

1,2
// b

2,3
^^>>>>>>>

, c

a
��

3,1
��������

1,2
b

2,3
>>>>>>>

>>>>>>>

.

All these cases fall under the requirements of Theorem 17 and thus give irreducible
polynomials.

s = 4 The possible colored trees with 4 vertices are

• Star types

a : c b : c

a b d a b d

c : c

a b d

d : c

a b d

• Linear types

e : a b c d f : a b c d

g : a b c d h : a b c d

i : a b c d j : a b c d

For each of these trees we must analyze the markings which can be classified according to
their encoding graphs. We easily see that, for the encoding graphs of types 0,1,2,3 there
is always an index of a marking which appears only once and in an end edge. Thus all
these cases fall under Theorem 17.

Type A cannot occur in the star type and in cases e, h,i,j by Lemma 11.3.
The analysis is still quite long. We can simplify it a bit if we weaken our requirements

and try to prove only that the polynomials are irreducible over Z. This is in any case
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sufficient for the applications we have in mind. We can set all variables ξi = y√
2
. In

fact when we do this for types a through d we always have a linear by an irreducible
cubic polynomial. This is not a useful information but for the other cases we have some
reductions. For the graphs of type e the matrix becomes

∣

∣

∣

∣

∣

∣

∣

∣

t −y 0 0
−y t −y 0
0 −y t −y
0 0 −y t

∣

∣

∣

∣

∣

∣

∣

∣

with determinant

t4 − 3 t2 y2 + y4 =
(

t2 − t y − y2
) (

t2 + t y − y2
)

For colored case we set ξi = y and we have as possible matrices

f a b c d− ,

∣

∣

∣

∣

∣

∣

∣

∣

t −2y 0 0
−2y t −2y 0
0 −2y t 2y
0 0 −2y t+ 2y

∣

∣

∣

∣

∣

∣

∣

∣

with determinant

t4 + 2 t3 y − 4 t2 y2 − 16 t y3 − 16 y4 = (t+ 2 y)
(

t3 − 4 t y2 − 8 y3
)

g a b c− d+ ,

∣

∣

∣

∣

∣

∣

∣

∣

t −2y 0 0
−2y t 2y 0
0 −2y t+ 2y −2y
0 0 2y t

∣

∣

∣

∣

∣

∣

∣

∣

with determinant the irreducible polynomial

t4 + 2t3y + 4t2y2 − 8ty3 − 16y4

h a b− c− d+ ,

∣

∣

∣

∣

∣

∣

∣

∣

t 2y 0 0
−2y t+ 2y 2y 0
0 2y t+ 2y −2y
0 0 2y t

∣

∣

∣

∣

∣

∣

∣

∣

with determinant the irreducible polynomial

t4 + 2 t3 y + 4 t2 y2 + 8 t y3 + 16 y4

i a b+ c− d− ,

∣

∣

∣

∣

∣

∣

∣

∣

t −2y 0 0
−2y t 2y 0
0 −2y t+ 2y 2y
0 0 2y t+ 2y

∣

∣

∣

∣

∣

∣

∣

∣

with determinant the polynomial

t4 + 4 t3 y − 8 t y3 = t (t+ 2 y)
(

t2 + 2 t y − 4 y2
)

j a b− c+ d− ,

∣

∣

∣

∣

∣

∣

∣

∣

t 2y 0 0
−2y t+ 2y −2y 0
0 2y t 2y
0 0 −2y t+ 2y

∣

∣

∣

∣

∣

∣

∣

∣

with determinant the irreducible polynomial

t4 + 4 t3 y + 16 t2 y2 + 24 t y3 + 16 y4

this shows that,
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Lemma 11.4. • If for a given marking of the tree of type e the polynomial factors
it must be into two irreducible quadratic polynomials.

• If for a given marking of the tree of type f the polynomial factors it must be into
a linear and an irreducible cubic polynomials.

• Types g, j, h are always irreducible.
• For type i we have no useful information.

Recall the classification of §11.1. So we are left with Linear types of type A in case f,g.
Type BI for trees of linear and star type.

Linear types Type A. In the linear graphs 3 must be in the middle so if the polynomial
factors it must be into 2 irreducible quadratics. We have already seen that we only need to
treat cases f,g and for these the previous factorization is incompatible with the restrictions
given by Lemma 11.4.

We still need to treat Type B I which can appear only in the two cases f, i. Some
orientations give rise to a graph in the special component so we may ignore them. We are
left with (up to exchanging 1, 2)

f1 a
3,1

b+
2,3

c+
1,2

d− , f2 a
3,1

b+
3,2

c+
1,2

d− ,

f3 a
1,3

b+
2,3

c+
1,2

d− , f4 a
1,3

b+
3,2

c+
1,2

d− ,

Now, f1, f4 do not arise in the applications, since they are not complete (although
they also give rise to irreducible polynomials). We are left with f2, f4:

f2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t −2
√
ξ1ξ3 0 0

−2
√
ξ1ξ3 t− ξ1 + ξ3 −2

√
ξ2ξ3 0

0 −2
√
ξ2ξ3 t− ξ1 − ξ2 + 2ξ3 2

√
ξ2ξ1

0 0 −2
√
ξ2ξ1 t+ 2ξ3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t −2
√
ξ1ξ3 0 0

−2
√
ξ1ξ3 t− ξ3 + ξ1 −2

√
ξ2ξ3 0

0 −2
√
ξ2ξ3 t− 2ξ3 + ξ1 + ξ2 2

√
ξ2ξ1

0 0 −2
√
ξ2ξ1 t+ 2ξ3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Markings

0, ξ1 − ξ3, ξ1 + ξ2 − 2ξ3, 2ξ3; 0, ξ3 − ξ1, 2ξ3 − ξ1 − ξ2, 2ξ3.
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In this table we show the possible linear factors setting one of the variables to 0.

f2 f3

ξ1 = 0 : 0, 2ξ3 0, 2ξ3

ξ2 = 0 : −ξ1 + 2ξ3, 2ξ3 ξ1 − 2ξ3, 2ξ3

ξ3 = 0 : 0,−ξ1 0, ξ1

So a possible linear factor could be t−ξ1+2ξ3, t+2ξ3 in the first case, t+2ξ3, t+ξ1−2ξ3
in the second. The odd cases can be excluded by parity so we may have t + 2ξ3 in both
cases. At t = −2ξ3 the two determinants are

−8 ξ1 ξ2 (ξ1 − ξ3) ξ3, −24 ξ1 ξ2 (ξ1 − ξ3) ξ3.

Finally Type i, observe that

a
3,1

b
1,2

c
2,3

d , a
1,3

b+
1,2

c−
2,3

d−

a
3,1

b
1,2

c
3,2

d ,

do not arise since they are not complete. It remains up to symmetry

a
1,3

b+
1,2

c−
3,2

d− ,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t −2
√
ξ1ξ3 0 0

2
√
ξ1ξ3 t− ξ3 + ξ1 2

√
ξ2ξ1 0

0 −2
√
ξ2ξ1 t+ 2ξ1 + ξ2 − ξ3 2

√
ξ2ξ3

0 0 2
√
ξ2ξ3 t+ 2ξ1 + 2ξ2 − 2ξ3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

This case has passed a standard factorization algorithm which shows that it is irreducible.

Star types

Type B I For only one orientation the tree is complete. Take b as root

c+

a− 1,2
b

3,2

3,1
d+

markings ξ3 − ξ2

ξ2 + ξ1 ξ3 − ξ1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t+ ξ2 + ξ1 −2
√
ξ1ξ2 0 0

2
√
ξ1ξ2 t −2

√
ξ2ξ3 −2

√
ξ1ξ3

0 −2
√
ξ2ξ3 t− ξ2 + ξ3 0

0 −2
√
ξ1ξ3 0 t+ ξ3 − ξ1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

passes standard tests of irreducibility.
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In fact in this case even the determinant is irreducible (over Q):

4
(

ξ21 ξ
2
2 + ξ21 ξ2 ξ3 + ξ1 ξ

2
2 ξ3 − ξ21 ξ

2
3 − ξ1 ξ2 ξ

2
3 − ξ22 ξ

2
3

)

,

Circuits

We first start from the Formulas (91) of a basic circuit

C c

a
��

3,1
��������

1,2
// b

2,3
^^>>>>>>>

D c

, a
��

3,1
��������

1,2
b

2,3
>>>>>>>

>>>>>>>

and add a linearly independent edge in all possible ways and then close it as necessary. If
this edge has two indices disjoint from 1, 2, 3 we are under the hypotheses of Theorem 17.
Otherwise, up to symmetry we may have several cases, but we can always assume that 1
appears in the marking of the edge. It can be (1, 4), black or red, in this case, we complete
if necessary the graph but then we may apply Theorem 17. The other possibility is that
it does not involve an index different from 1, 2, 3 but then it must have a color different
from the one appearing in the graph in order to be linearly independent.

Type C We may assume we add the edge
1,2

, according to Lemma 11.3 the only
possible position is at c.

C1 c
1,2

d

a
��

3,1
��������

1,2
// b

2,3

^^========

Type D We may assume we add the edge
1,3

or
1,2

, according to Lemma 11.3
the only possible positions are

c

d

a
��

3,1

��������������

1,2
b

2,3

..............

..............1,3

=======

=======

c

2,1

d

, a
��

3,1

��������������

1,2
b

2,3

..............

..............

D1 c

1,2

d

, a
��

3,1

��������������

1,2
b

2,3

..............

..............

the first 2 should be completed to the same

D2 cOO

2,1

d

a

3,2

@@����������

3,1

��������������

1,2
b

2,3

..............

..............1,3

=======

=======

So our final computation is with these 3 cases. The matrices are:
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C1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t −2
√
ξ1ξ2 −2

√
ξ1ξ3 0

−2
√
ξ1ξ2 t+ ξ1 − ξ2 −2

√
ξ2ξ3 0

−2
√
ξ1ξ3 −2

√
ξ2ξ3 t+ ξ1 − ξ3 2

√
ξ1ξ2

0 0 −2
√
ξ1ξ2 t+ 2ξ1 + ξ2 − ξ3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

passes a standard test of irreducibility. The determinant is ξ1 times an irreducible cubic.
Take a as root.

D1 c+

1,2

d+

, a
��

3,1

���������������

1,2
b−

2,3

000000000000000

000000000000000

D2 c+OO

2,1

d+

a

3,2

??����������

3,1

���������������

1,2
b−

2,3

000000000000000

0000000000000001,3

BBBBBBBB

BBBBBBBB

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t 2
√
ξ1ξ2 −2

√
ξ1ξ3 0

−2
√
ξ1ξ2 t+ ξ1 + ξ2 −2

√
ξ2ξ3 0

−2
√
ξ1ξ3 2

√
ξ2ξ3 t+ ξ1 − ξ3 −2

√
ξ1ξ2

0 0 −2
√
ξ1ξ2 t+ 2ξ1 − ξ3 + ξ2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t 2
√
ξ1ξ2 −2

√
ξ1ξ3 −2

√
ξ2ξ3

−2
√
ξ1ξ2 t+ ξ1 + ξ2 −2

√
ξ2ξ3 −2

√
ξ1ξ3

−2
√
ξ1ξ3 2

√
ξ2ξ3 t+ ξ1 − ξ3 −2

√
ξ1ξ2

−2
√
ξ2ξ3 2

√
ξ1ξ3 −2

√
ξ1ξ2 t+ ξ3 − ξ2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

In the first the characteristic polynomial is irreducible while the determinant is 4ξ1 times
an irreducible cubic. In the second they are both irreducible.

We finally have circuits with 4 edges but not 3. In this case the circuit has 4 markings
linearly dependent of rank 3, which satisfy a very special linear relation. One easily sees
that they must have as encoding graph a standard circuit with an even number of red
edges and suitably oriented black edges:

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2
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One easily sees that they fall under theorem 17. E.g.:

d

4,1

��

oo 3,2
c

a
1,2 // b

3,4

OO d

3,4

��

oo 3,2
c

a
1,2 // b

4,1

OO

The other cases are similar or not complete.

12. Separation

12.1. Translations. We want to prove here the separation Lemma 6.17 in dimension 3.
We have constructed the polynomials which appear in the formulas for ad(N) as follows.
We take a set A = {(a0, σ0), (a1, σ1), . . . , (ak, σk)} ⊂ Zm ×Z/(2) so that the vectors ai

are independent in the sense of affine geometry (they span an affine space of dimension
k).

We only consider those such that the complete graph generated by them is connected
and we call k the rank of A. Let us call these sets allowable.

To such a set we have associated (Definition 10.2) a k + 1 × k + 1 matrix CA and its
characteristic polynomial χA, a polynomial of degree k+1 in t and the variables ξi which
is monic in t. We Conjecture that

Conjecture 2 If A 6= B have at least 2 elements then χA 6= χB.
For one element (a,+) and (−a,−) give t− La(ξ).

We start from a standard edge [(0,+), (e1 − e2,+)]; [(0,+), (−e1 − e2,−)].
Under translations and sign change we have 4 possibilities:

[(a,+), (a+ e1 − e2,+)]; [(b,+), (−b− e1 − e2,−)].

[(c,−), (c+ e1 − e2,−)]; [(d,−), (−d− e1 − e2,+)].

The matrices are
∣

∣

∣

∣

∣

∣

−a(ξ) 2
√
ξ1ξ2

2
√
ξ1ξ2 −a(ξ)− ξ1 + ξ2

∣

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

−b(ξ) −2
√
ξ1ξ2

2
√
ξ1ξ2 −b(ξ)− ξ1 − ξ2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c(ξ) −2
√
ξ1ξ2

−2
√
ξ1ξ2 c(ξ) + ξ1 − ξ2

∣

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

d(ξ) 2
√
ξ1ξ2

−2
√
ξ1ξ2 d(ξ) + ξ1 + ξ2

∣

∣

∣

∣

∣

∣

Lemma 12.2. These blocks can be reconstructed from the characteristic polynomial.

Proof. First, passing modulo 2 we identify from the trace τ the two variables ξ1, ξ2. We
can deduce the elements a, b, c, d in the 4 cases from τ .

−τ = 2(a− ξ2) + ξ1 + ξ2 = 2b+ ξ1 + ξ2 = 2c+ ξ2 − ξ1 = 2d− ξ1 − ξ2.

So let us write τ = −2a+ ξ2 − ξ1 and the possible 4 matrices with trace τ are
∣

∣

∣

∣

∣

∣

−a 2
√
ξ1ξ2

2
√
ξ1ξ2 −a− ξ1 + ξ2

∣

∣

∣

∣

∣

∣

, or

∣

∣

∣

∣

∣

∣

−a+ ξ2 −2
√
ξ1ξ2

2
√
ξ1ξ2 −a− ξ1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a+ ξ1 − ξ2 −2
√
ξ1ξ2

−2
√
ξ1ξ2 a+ 2ξ1 − 2ξ2

∣

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

a+ ξ1 2
√
ξ1ξ2

−2
√
ξ1ξ2 a+ 2ξ1 + ξ2

∣

∣

∣

∣

∣

∣
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we compute the 4 determinants

a(a+ ξ1 − ξ2)− 4ξ1ξ2, (a− ξ2)(a+ ξ1) + 4ξ1ξ2,

(a+ ξ1 − ξ2)(a+ 2ξ1 − 2ξ2)− 4ξ1ξ2, (a+ ξ1)(a+ 2ξ1 + ξ2) + 4ξ1ξ2.

We leave to the reader to verify that, when they are equal, the edge is the same.4

�

Proof In dimension 2,3. We have already proved in Lemma 12.2, that this statement is
true for blocks with two elements. In dimension 3 we know that all polynomials χC with
C of rank < 4 are irreducible.

Consider thus the m linear mappings λi : Z
m → Zm−1 each dropping the ith coordinate

or in more intuitive terms, setting ei = 0.
We extend this map to λi : Z

m ×Z/(2) → Zm−1 ×Z/(2) and notice that, if we remove
from the graph Zm×Z/(2) all edges in which ei appears, this is a map of graphs. Moreover
take A allowable of rank k and remove all the edges in which ei appears, we obtain in
general several connected components Ai

1, . . . , A
i
s of the restricted graph. It is easily seen

that every connected component B of the induced graph maps injectively under λi to
Zm−1 × Z/(2), since the index i does not appear in the markings of the edges of B.
Theorem 16 tells us that

(92) χA(t, ξ)ξi=0 =

s
∏

j=1

χAi
j
(t, ξ).

This is again the basis of an induction. We can in fact by induction reconstruct the entire
graph once we forget the ith coordinate, except for the isolated vertices for which we have
no information on the sign. By convention we describe their known coordinates as if the
sign were +.

In particular by setting all variables equal to 0 except two of them we see that if
χA = χB the two graphs must have the same colored encoding graphs. In fact we recover
not only the edges but also the coordinates of the vertices relative to the two indices of
the edge and their sign.

Now in dimension 3 we treat first the case of a block with 3 vertices. Thus we know
the encoding graph. This has either two or three edges. Let us treat the case of 3 edges
(the other case is simpler). In this case the graph is as in (91), we need to compute the
coordinates. In this case set for instance e1 = 0 we see

c

a b

2,3
^^>>>>>>>

, c

a b

2,3
>>>>>>>

>>>>>>>

.

In the first case we know the sign of a and hence the second and third coordinate of all the
vertices. This is enough to reconstruct all edges since b, c have different third coordinate.

In the second case, assume for instance c has sign +. We see immediately to which of
b, c the point a is connected by the black edge (1, 3) since we must have one and only one
a2 = c2 or a2 = −b2 = c2 + 1.

Next the most degenerate cases with 4 vertices.
This, up to symmetry is when the encoding graph is of type A,B (cf. 11.1).

4of course the matrix depends on ordering the vertices of the edge, in particular one vertex appears
as root
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In Type A when we put e3 = 0 we must see the graph

a
1,2

b c
1,2

d

together with the first two coordinates and the sign of all the vertices.
Set a = (a1, a2, x), c = (c1, c2, y) so that

(93) b = (−1− a1,−1− a2,−x), d = (c1 + 1, c2 − 1, y).

When we set e2 = 0 we have two possible cases:

1) u
1,3

v z w

or

2) u
1,3

v z w .

Possibly we may have z = w. Let us treat the first case.
We need to determine which vertices match coordinates and are thus joined by this edge.

If say a = (a1, a2, x) is joined with c = (c1, c2, y) then we must have that a+c = (−1, 0,−1)
so

a1 + c1 = −1, a2 + c2 = 0, x+ y = −1.

Similarly for the other 3 possible ways in which the edge may appear. We need to show
that only one possible choice is available, so we may assume that the choice a, c is available
and then prove that the others are not possible. Let us first exclude the possibility b, c.
By (93) b2+ c2 = −1− a2+ c2 by assumption. If a, c is available we have also a2+ c2 = 0,
if also b, c is available then 0 = b2 + c2 = −1− a2 + c2. This implies c2 = 1/2 which is not
possible.

Now the possibility b, d or a, d. We have that d = (c1 +1, c2 − 1, y) so for a, d again we
should have a2 + d2 = 0 that is a2 + c2 − 1 = 0 incompatible. For b, d we would have

b1 + d1 = −1, b2 + d2 = 0,−x+ y = −1.

We have y = −1, x = 0 and b1+d1 = a1+c1 = −1. Next b1+d1 = −1−a1+c1+1 which
implies a1 = 0, c1 = −1 −a1 + c1 = 1 hence c1 = −1, a1 = 0 then b2 + d2 = a2 + c2 = 0
implies −1− a2 + c2 − 1 = 0 that is a2 = −1, c2 = 1. Finally we must have

(0,−1, 0)
1,2

1,3

(−1, 0, 0)

1,3

(−1, 1,−1)
1,2

(0, 0,−1)

.

This is possible only if we ignore the signs. With signs this is incompatible (the odd

circuits do not lift from Λ̃ to Λ and hence we have excluded them with the resonance
hypothesis 3) 9.1).

Now the second case.
When we put e3 = 0 we must see the graph

a
1,2

b c
1,2

d .

When we set e2 = 0 we have a graph

u
1,3

v z w
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We need to determine which vertices are joined by this edge. If say a = (a1, a2, x) is
joined with c = (c1, c2, y), we have still two possibilities for the orientation. In have have
either a− c = (−1, 0, 1), a− c = (1, 0,−1) so

i) a1 − c1 = −1, a2 = c2, x− y = 1 or ii) c1 − a1 = −1, a2 = c2, y − x = 1.

Either u or v correspond to a, that is either u1 = a1 or v1 = a1 moreover we need to
have that b, d correspond to z, w in some order. Similarly for the other 3 possible ways in
which the edge may appear. We need to show that only one possible choice is available,
so we may assume that the choice a, c is available and then prove that the others are
not possible. Let us first exclude the possibility b, c. This implies, b2 = c2 = a2 since
b = (−1− a1,−1− a2,−x) we have a2 = −1/2 impossible.

We have d1 = c1 + 1, d2 = c2 − 1, d3 = y. Assume we have the edge b, d marked (1, 3).

j) b1 − d1 = 1, b2 = d2,−x− y = −1 or jj) d1 − b1 = 1, d2 = b2, y + x = −1.

Assume case i, j. Then b2 = d2 = c2 − 1 so −1− a2 = a2 − 1 implies a2 = 0. We get

a = (−2, 0, 1), b = (1,−1,−1), c = (−1, 0, 0), d = (0,−1, 0).

(0,−1, 0)
2,1

(−1, 0, 0)

(1,−1,−1)

3,1

1,2
(−2, 0, 1)

1,3

.

This is possible only if we ignore the signs. The other cases are symmetric due to the
symmetry in the red edge (1, 2).

A priori there is a possible further degeneracy, this occurs when the two edges

a
1,2

b c
1,2

d

coincide in the projection. This means that

a+ b = −e1 − e2, a− b = ±(e2 − e1) =⇒ a = d = −e1, b = c = −e2 or conversely.

Then the original points can be

a = (−1, 0, x), b = (0,−1,−x); c = (0,−1, y), d = (−1, 0, y).

But we cannot have two of them joined by (1, 3) so this case does not occur.

In Type BI (89), when we put e3 = 0 we must see the graph

a
1,2

b c d .

We have then a = (a1, a2, x), b = (−1− a1,−1− a2,−x) and we know the sign of both.
When we set e2 = 0 we have a graph

u
1,3

v z w

When we set e1 = 0

p
2,3

q t s

We need to determine which vertices are joined by these edges. What we know are the
first two coordinates and sign of a, b, the last two coordinates and sign of the vertices p, q
the first and last of u, v.
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If the signs of u, v and p, q are different then we see immediately that the graph is
uniquely reconstructed. Let us give some detail, for instance assume that u, v have the
same sign of a and p, q the sign of b. Then necessarily either u = a or v = a and which
one is the case we see by the first coordinate. Similarly for p, q.

If u, v, p, q have the same sign then the two edges (u, v) and (p, q) form a segment. This
a priori can occur in 4 ways, but two of them are not complete. The only possibilities are

u
1,3

v = p
2,3

q p
2,3

q = u
1,3

v

Which one occurs is determined inspecting the coordinates (the two end points have
different third coordinate).

Next we need to identify in this segment the point a or b depending from the sign, and
this is clear again by the coordinates.

Next cases C1, D1, D2 are distinguished by their encoding graphs. In case C1 we set
e3 = 0 and see the two edges (1, 2). How to complete the graph is clear by inspecting the
second coordinate since we know all the signs.

Cases D1, D2 are treated in a very similar way.
The less degenerate cases are easier since we have more coordinates available that

change and follow the same line of reasoning. �

13. Real roots

In this section we want to touch on the issue of when the eigenvalues of the combinatorial
matrices are all real. We know that, for black edges and positive ξ the quadratic form
is positive definite so the corresponding matrix has real eigenvalues. When we have red
edges we do not have always real eigenvalues and we need to isolate the regions in the
parameters where this occurs.

First of all in dimension 2 we have seen that for a 2 block corresponding to a red edge
marked (i, j) we have the inequality (ξi + ξj)

2 > 16ξiξj determining the region where the
eigenvalues are real.

If one follows the choice of [10] no further blocks appear and these inequalities suffice
and determine a non empty open sector in the parameters ξ.

Otherwise we have to analyze the 3 dimensional blocks.
Similarly in dimension 3. The polynomial inequalities that one obtains are explicit but

rather formidable, so we can discuss just the qualitative aspects. One can remark that
when we set one variable equal to 0 we are in position to apply Theorem 16. When we
have linear or quadratic terms we deduce that either all roots are real for all positive
values of the remaining parameters if the quadratic terms come from black edges, or in
case of red edges we have the simple explicit inequality (ξi+ ξj)

2 > 16ξiξj . Moreover if all
the roots are different as it happens in most cases we have that in an open neighborhood
of this set the roots are still real and distinct. So we have to make sure that all these
neighborhoods have a non–empty intersection.
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