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0 A NEW INVARIANT OF QUADRATIC LIE ALGEBRAS

DUONG MINH THANH, GEORGES PINCZON, ROSANE USHIROBIRA

ABSTRACT. We define a new invariant of quadratic Lie algebras and give acom-
plete study and classification of singular quadratic Lie algebras, i.e. those for
which the invariant does not vanish. The classification is related to O(n)-adjoint
orbits ino(n).

0. INTRODUCTION

Let g be a non-Abelian quadratic Lie algebra equipped with a bilinear formB.
We can associate to(g,B) a canonical non-zero 3-formI ∈

∧3(g)g defined by

I(X,Y,Z) := B([X,Y],Z), ∀ X,Y,Z ∈ g.

Let{·, ·} be the super-Poisson bracket on
∧
(g). The 3-formI satisfies (see [PU07]):

{I , I}= 0.

Conversely, given a quadratic vector space(g,B) and a non-zero 3-formI ∈∧3(g) such that{I , I} = 0, there is a non-Abelian quadratic Lie algebra structure
ong such thatI is the canonical 3-form associated tog ([PU07]).

Let Q(n) be the set of non-Abelian quadratic Lie algebra structures on the qua-
dratic vector spaceCn. We identify

Q(n)↔
{

I ∈
∧

3(Cn) | {I , I}= 0
}

andQ(n) is an affine variety in
∧3(Cn) (Proposition 2.8).

The dup-numberof a non-Abelian quadratic Lie algebrag is defined by

dup(g) := dim({α ∈ g∗ | α ∧ I = 0}) ,

whereI is the 3-form associated tog. It measures the decomposability of the 3-
form I and its range is{0,1,3} (Proposition 1.1). For instance,I is decomposable
if, and only if, dup(g) = 3 and the corresponding quadratic Lie algebras are clas-
sified in [PU07], up to i-isomorphism (i.e. isometric isomorphism). It is easy
to check that the dup-number ofg is invariant by i-isomorphism, that is, two i-
isomorphic quadratic Lie algebras have the same dup-number(Lemma 2.1). We
shall prove in this paper, a much stronger result:

thedup-number ofg is invariant by isomorphism.
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To prove this result, we need to fully understand the structure of some particular
Lie algebras. This study is interesting by itself and we shall describe it in the
sequel.

We say that a non-Abelian quadratic Lie algebrag is ordinary if dup(g) = 0.
Otherwise,g is calledsingular. Singular quadratic Lie algebras are oftypeS1 if
their dup-number is 1 and oftypeS3 if their dup-number is 3.

Forn≥ 1, letO(n) be the set ofordinaryandS(n) be the set ofsingularquadratic
Lie algebra structures onCn. We prove the following Theorem (Propositions 2.8,
2.10 and Appendix 2):

THEOREM 1:

(1) O(n) is a Zariski-open subset ofQ(n).

(2) S(n) is a Zariski-closed subset ofQ(n).

(3) Q(n) 6= /0 if, and only if, n≥ 3.

(4) O(n) 6= /0 if, and only if, n≥ 6.

As a consequence, non-Abelian quadratic Lie algebras with dimension higher
than 6 are generically ordinary. In this work, we shall give acomplete classification
of singular quadratic Lie algebras, up to i-isomorphism andup to isomorphism.

Let us give some details of the main results of the paper. Section 3 contains
a preparatory study of quadratic Lie algebras of typeS1. It allow us to describe
solvable singular Lie algebras in terms of double extensions, a useful method in-
troduced by V. Kac and developed in [MR85] and [FS87]. First,we obtain (Propo-
sitions 4.3 and 4.4):

THEOREM 2:

(1) Any quadratic Lie algebra of typeS1 is solvable and it is a double exten-
sion.

(2) A quadratic Lie algebra is singular and solvable if, and onlyif, it is a
double extension.

What aboutnon-solvablesingular Lie algebras? Such a Lie algebrag can be
written as

g= s
⊥
⊕ z

wherez is a central ideal ofg ands
i
≃ o(3) equipped with a bilinear formλκ for

some non-zeroλ ∈ C, whereκ is the Killing form of o(3) (Proposition 4.4).
In the remainder of the paper, we focus on the study ofsolvable singular Lie

algebras. We denote bySs(n+2) the set of these structures onCn+2, by Ŝs(n+2)

the set of isomorphism classes of elements inSs(n+2) and byŜs
i
(n+2) the set of

i-isomorphism classes. Also, we denote byP1(o(n)) the projective space ofo(n)

and by ˜P1(o(n)) the set of orbits of elements inP1(o(n)) under the action induced
by the O(n)-adjoint action ono(n). GivenC ∈ o(n), there is an associated double
extensiongC ∈ Ss(n+2).
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In Proposition 4.5 and Corollary 4.6, we characterize i-isomorphisms and iso-
morphisms. As a consequence, we prove the following result,conjectured and
partially proved in [FS87] (Proposition 4.10):

THEOREM 3:
The mapC→ gC induces a bijection from˜P1(o(n)) onto Ŝs

i
(n+2).

Theorem 3 gives a remarkable relation between solvable singular quadratic Lie
algebra structures onCn+2 and O(n)-adjoint orbits ino(n). A strong improvement
to Theorem 3 will be given in Theorem 6.

Next, we detail some particular cases. LetD(n+ 2) be the set ofdiagonaliz-
able singular structures onCn+2 (i.e. C is a semi-simple element ofo(n)) and
D̂i(n+2) be the set of i-isomorphism classes inD(n+2). It is clear by Theorem
3 thatD̂i(n+2) is in bijection with the well-known set of semi-simple O(n)-orbits
in P1(o(n)) (see [CM93] for more details on this set). A description of the corre-
sponding Lie algebra structures is given in Proposition 5.7, Corollary 5.8, Lemma
5.9 and Proposition 5.11.

Let N(n+2) be the set ofnilpotent singular structures onCn+2, N̂i(n+2) be
the set of i-isomorphism classes andN̂(n+2) be the set of isomorphism classes of
elements inN(n+2).

In the nilpotent case, we prove (Proposition 5.2):

THEOREM 4:

(1) Letg andg′ ∈N(n+2). Then

g
i
≃ g′ if, and only if, g≃ g′.

ThusN̂i(n+2) = N̂(n+2).

(2) LetÑ (n) be the set of nilpotentO(n)-orbits ino(n). Then the mapC 7→ gC

induces a bijection fromÑ (n) ontoN̂i(n+2) = N̂(n+2).

(3) The set̂N(n+2) is finite.

The classification of nilpotent O(n)-orbits in o(n) is known [CM93]. It uses
deep results by Jacobson-Morosov and Kostant onsl(2)-triples in semi-simple Lie
algebras. Using this classification, we obtain a classification of N̂i(n+2) = N̂(n+
2) in terms ofspecialpartitions ofn and a characterization of the corresponding Lie
algebras by means of amalgamated products of nilpotent Jordan-type Lie algebras
(Proposition 5.5).

Before working on the general case, we define the notion of aninvertible sin-
gular Lie algebra(i.e. C is invertible). LetSinv(2p+ 2) be the set of such struc-
tures onC2p+2 and Ŝinv(2p+ 2) be the set of isomorphism classes of elements
in Sinv(2p+ 2). The notions of i-isomorphism and isomorphism coincide in the
invertible case as we show in Lemma 5.9.
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Given a solvable singular Lie algebrag, realized as a double extension ofCn by
C∈ o(n), we consider the Fitting componentsCI andCN of C and the correspond-
ing double extensionsgI = gCI

andgN = gCN
that we call theFitting components

of g. We havegI invertible,gN nilpotent and we prove (Proposition 6.4):
THEOREM 5:
Let g and g′ be solvable singular Lie algebras and letgN, gI , g′N, g′I be their

Fitting components. Then

g
i
≃ g′ if, and only if




gN

i
≃ g′N

gI
i
≃ g′I

The result remains valid if we replace
i
≃ by≃ .

Since i-isomorphism and isomorphism are equivalent notions in the case of
nilpotent or invertible singular Lie algebras, we deduce asan immediate Corol-
lary:

THEOREM 6:
Letg andg′ be solvable singular Lie algebras. Then

g≃ g′ if, and only if g
i
≃ g′.

ThereforeŜs(n+2) = Ŝs
i
(n+2).

Theorem 6 is a really interesting and unexpected property ofsolvable singular
quadratic Lie algebras.

Using Theorem 5, since the study of the nilpotent case is complete, we are left
with the invertible case. First, we achieve the descriptionof these structures in
terms of amalgamated products of Jordan-type Lie algebras in Proposition 6.7.
Then, we give a classification of invertible O(n)-orbits ino(n) (i.e. O(n)-orbits of
invertible elements). LetI (n) be the set of invertible elements ino(n) andĨ (n)
be the set of O(n)-adjoint orbits of elements inI (n). Notice thatI (2p+1) = /0
(Appendix 1). Next, we consider

D =
⋃

r∈N∗

{(d1, . . . ,dr ) ∈ Nr | d1 ≥ d2 ≥ ·· · ≥ dr ≥ 1}

and the mapΦ : D → N defined byΦ(d1, . . . ,dr ) = ∑r
i=1di . We introduce the set

Jp of all triples(Λ,m,d) such that:

(1) Λ is a subset ofC\{0} with ♯Λ ≤ 2p andλ ∈ Λ if, and only if,−λ ∈ Λ.

(2) m : Λ → N∗ satisfiesm(λ ) = m(−λ ), for all λ ∈ Λ and∑λ∈Λ m(λ ) = 2p.

(3) d : Λ → D satisfiesd(λ ) = d(−λ ), for all λ ∈ Λ andΦ◦d = m.

To everyC ∈ I (2p), we can associate an element(Λ,m,d) of Jp as follows:
writeC=S+N as a sum of its semi-simple and nilpotent parts. ThenΛ is the spec-
trum of S, m is the multiplicity map onΛ andd gives the size of the Jordan blocks
of N. Therefore, we obtain a mapi : I (2p) → Jp and we prove (Proposition
6.10):
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THEOREM 7:
The map i: I (2p)→ Jp induces a bijection fromĨ (2p) ontoJp.

As a Corollary, we deduce a bijection from̂Sinv(2p+2) ontoJp/C
∗ (Proposi-

tion 6.11) where the action ofµ ∈ C∗ = C\{0} onJp is defined by

µ · (Λ,m,d) := (µΛ,m′,d′), with m′(µλ ) = m(λ ) and d′(µλ ) = d(λ ), ∀ λ ∈ Λ

Combine Theorems 5, 4 and 7 to obtain a complete classification of Ŝs
i
(n) =

Ŝs(n). As a by-product, we also obtain a complete classification ofO(n)-orbits
in o(n), a result which is certainly known, but for which we have no available
reference.

Finally, as a consequence of the preceding results, we provein Section 7 (Propo-
sition 7.3):

THEOREM 8:
Thedup-number is invariant under isomorphism, i.e. if

g≃ g′ then dup(g) = dup(g′).

This result is rather unexpected. It is obtained through a computation of centro-
morphisms in the reduced singular case (Proposition 7.2).

We also obtain the quadratic dimension ofg [BB07] in this case:

dimq(g) = 1+
dim(Z(g))(1+dim(Z(g))

2
,

whereZ(g) is the center ofg.
There are two Appendix. In the first one, we collect some well-known useful

properties of elements ofo(n), shorts proofs are given for the sake of completeness.
In Appendix 2, we show thatO(5) = /0 and describeQ(5) up to i-isomorphism.

1. PRELIMINARIES

1.1. All vector spaces considered in the paper are finite-dimensional complex
vector spaces.

Given a vector spaceV, we denote byV∗ its dual space. Given a subsetX of V,
X ⊥∗ denotes theorthogonal subspaceof X in V∗.

We denote byL (V) thealgebra of linear operatorsof V, by GL(V) thegroup
of invertible operatorsin L (V), by tA thetransposeof an operatorA∈ L (V) and
by
∧
(V) the (Z-graded)Grassmann algebraof skew-symmetric multilinear forms

onV, i.e.
∧
(V) is the exterior algebra ofV∗. Recall that given an isomorphismA

between two vector spacesV andV ′, there is an algebra isomorphism from
∧
(V ′)

onto
∧
(V) that extends the transposetA : V ′∗ →V∗ and that we also denote bytA.
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1.2. LetI ∈
∧k(V), for k≥ 1. We introduce two subspaces ofV∗:

VI := {α ∈V∗ | α ∧ I = 0}

WI := {v∈V | ιv(I) = 0} ⊥∗ = {ιv∧v′(I) | v,v′ ∈V}

whereιv is the derivation of
∧
(V) defined by:

ιv(Ω)(v1, . . . ,vr−1) = Ω(v,v1, . . . ,vr−1),∀ Ω ∈
∧

r(V),v1, . . . ,vr−1 ∈V.

The following result is well known, see for instance [Bou58].

Proposition 1.1. Let I ∈
∧k(V), I 6= 0. Then:

(1) VI ⊂WI , dim(VI )≤ k anddim(WI )≥ k.
(2) If {α1, . . . ,αr} is a basis ofVI , thenα1 ∧ ·· · ∧αr divides I. Moreover, I

belongs to the k-th exterior power ofWI , also denoted by
∧k(WI ).

(3) I is decomposable if, and only if,dim(VI )= k or dim(WI )= k. In this case,
VI = WI and if {α1, . . . ,αk} is a basis ofVI , one has for some non-zero
λ ∈ C,

I = λα1∧ ·· ·∧αk.

1.3. A vector spaceV equipped with a non-degenerate symmetric bilinear form
B is called aquadratic vector space. In this case, there is an isomorphismφ from
V ontoV∗ defined by

φ(v)(v′) := B(v,v′), ∀ v,v′ ∈V.

Given a subspaceW of V, we denote byW⊥ the orthogonal subspaceof W in
V with respect to the bilinear formB. One hasV = W⊕W⊥ if, and only if, the
restrictionB|W×W is non degenerate and in this case, we use the notation

V =W
⊥
⊕W⊥.

1.4. Let (V,B) and (V ′,B′) be two quadratic vector spaces. Anisometry is a
bijective mapA : V →V ′ that satisfies

B′(A(v),A(w)) = B(v,w), ∀ v,w∈V.

We denote byA∗ ∈ L (V) theadjoint mapof an elementA∈ L (V). Remark that
A is an isometry ofV if, and only if, A−1 = A∗.

Thegroup of isometriesof V is denoted by O(V,B) (or simply O(V)) and its Lie
algebra is denoted byo(V,B) (or simply o(V)). An elementA of o(V) ⊂ L (V)
satisfiesA∗ =−A (that meansA is skew-symmetric with respect toB). Notice that
Tr(A) = 0, for all A∈ o(V). Theadjoint actionAd of O(V) ono(V) is given by

AdU(C) :=UCU−1, ∀U ∈ O(V),C ∈ o(V).

We denote byOC, theorbit of an elementC∈ o(V).
Let V = Cn. Consider the canonical basisB = {E1, . . . ,En} of V. If n even,

n= 2p, write B = {E1, . . . ,Ep,F1, . . . ,Fp} and if n is odd,n= 2p+1, writeB =
{E1, . . . ,Ep,G,F1, . . . ,Fp}. Thecanonical bilinear form BonV is defined by:



A NEW INVARIANT OF QUADRATIC LIE ALGEBRAS 7

• if n= 2p:

B(Ei,Fj) = δi j ,B(Ei ,E j) = B(Fi,Fj) = 0, ∀ 1≤ i, j ≤ p

• if n= 2p+1:




B(Ei,Fj) = δi j ,B(Ei ,E j) = B(Fi,Fj) = 0, ∀ 1≤ i, j ≤ p

B(Ei,G) = B(Fj ,G) = 0,

B(G,G) = 1

In that case, O(n) stands for O(Cn,B) ando(n) stands foro(Cn,B).
Finally, if V is ann-dimensional quadratic vector space, thenV is isometrically

isomorphic (i-isomorphic) to the quadratic spaceCn [Bou59].

1.5. Let(V,B) be a quadratic vector space. We define the super-Poisson bracket
on
∧
(V) as follows (see [PU07] for details): fix an orthonormal basis{v1, . . . ,vn}

of V. Then

{Ω,Ω′} := (−1)k+1
n

∑
j=1

ιvj (Ω)∧ ιvj (Ω
′), ∀ Ω ∈

∧
k(V),Ω′ ∈

∧
(V).

For instance, ifα ∈V∗, one has

{α ,Ω}= ιφ−1(α)(Ω), ∀ Ω ∈
∧

(V),

and ifα ′ ∈V∗, {α ,α ′}= B(φ−1(α),φ−1(α ′)). This definition does not depend on
the choice of the basis.

For anyΩ ∈
∧k(V), define adP(Ω) by

adP(Ω)
(
Ω′
)

:= {Ω,Ω′}, ∀ Ω′ ∈
∧
(V).

Then adP(Ω) is a super-derivation of degreek − 2 of the exterior algebra∧
(V). One has:

adP(Ω)
(
{Ω′,Ω′′}

)
= {adP(Ω)(Ω′),Ω′′}+(−1)kk′{Ω′,adP(Ω)(Ω′′)},

for all Ω′ ∈
∧k′(V), Ω′′ ∈

∧
(V). That implies that

∧
(V) is a graded Lie algebra for

the super-Poisson bracket.

1.6. Aquadratic Lie algebra(g,B) is a quadratic vector spaceg equipped with a
bilinear formB and a Lie algebra structure ong such thatB is invariant (that means,
B([X,Y],Z) = B(X, [Y,Z]), for all X, Y, Z ∈ g).

If (g,B) is a quadratic Lie algebra, recall that

[g,g] = Z(g)⊥

whereZ(g) is the center ofg. There is a canonical invariantI ∈
∧3(g) defined by

I(X,Y,Z) := B([X,Y],Z), ∀ X,Y,Z ∈ g.

This invariant satisfies{I , I}= 0 (see [PU07]) and it is easy to check that

WI = φ ([g,g]) .

We say thatI is the 3-form associated tog.
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On the other hand, given a quadratic vector space(g,B) andI ∈
∧3(g), define

[X,Y] := φ−1 (ιX∧Y(I)) , ∀ X,Y ∈ g.

This bracket satisfies the Jacobi identity if, and only if,{I , I} = 0 [PU07]. In this
case,g becomes a quadratic Lie algebra with invariant bilinear form B.

Definition 1.2. Let (g,B) and(g′,B′) be two quadratic Lie algebras. We say that
(g,B) and(g′,B′) are isometrically isomorphic(or i-isomorphic) if there exists a
Lie algebra isomorphismA from g ontog′ satisfying

B′(A(X),A(Y)) = B(X,Y), ∀ X,Y ∈ g.

In other words,A is an i-isomorphism if it is a Lie algebra isomorphism and an

isometry. We writeg
i
≃ g′.

Consider two quadratic Lie algebras(g,B) and(g,B′) (same Lie algebra) with
B′ = λB, λ ∈ C, λ 6= 0. They are not necessarily i-isomorphic, as shown by the
example below:

Example 1.3.Letg= o(3) andB its Killing form. ThenA is a Lie algebra automor-
phism ofg if, and only if, A∈ O(g). So(g,B) and(g,λB) cannot be i-isomorphic
if λ 6= 1.

2. THE DUP NUMBER OF A QUADRATICL IE ALGEBRA

2.1. Letg andg′ be quadratic Lie algebras with associated invariantsI andI ′ (see
(1.6)). The following Lemma is straightforward:

Lemma 2.1. Let A be an i-isomorphism fromg onto g′. Then I= tA(I ′), VI =
tA(VI ′) andWI =

tA(WI ′).

It results from the previous Lemma that dim(VI ) and dim(WI ) are invariant
under i-isomorphisms. This is not new for dim(WI ), since dim(WI ) = dim([g,g]).

For dim(VI ), to our knowledge this fact was not remarked up to now, so we
introduce the following definition:

Definition 2.2. Letg be a quadratic Lie algebra. The dupnumberdup(g) is defined
by

dup(g) := dim(VI ).

Remark2.3. By Proposition 1.1, wheng is non-Abelian, one has dup(g)≤ 3. Actu-
ally dup(g) ∈ {0,1,3}. Notice that dim(WI )≥ 3, so dim([g,g])≥ 3 (see [PU07]),
a simple but rather interesting remark.

2.2. We shall use the decomposition result below:

Proposition 2.4. [PU07]
Let (g,B) be a non-Abelian quadratic Lie algebra. Then there exists a central

ideal z and an ideall 6= {0} such that:

(1) g= z
⊥
⊕ l
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(2) (z,B|z×z) and (l,B|l×l) are quadratic Lie algebras. Moreover,l is non-
Abelian.

(3) The centerZ(l) is totally isotropic, i.e.Z(l)⊂ [l, l].
(4) Let g′ be a quadratic Lie algebra and A: g→ g′ be a Lie algebra isomor-

phism. Then

g′ = z′
⊥
⊕ l′

wherez′ = A(z) is central, l′ = A(z)⊥, Z(l′) is totally isotropic andl and
l′ are isomorphic. Moreover if A is an i-isomorphism, thenl and l′ are
i-isomorphic.

Proof. We prove (4) : recall thatz is any complementary subspace ofZ(g)∩ [g,g]
in Z(g) (see [PU07]) and thatl is defined as the orthogonal subspace ofz, l= z⊥.

One hasA(Z(g)∩ [g,g]) = Z(g′) ∩ [g′,g′] and Z(g′) = z′ ⊕ (Z(g′) ∩ [g′,g′]).

Thereforel′ satisfiesg′ = z′
⊥
⊕ l′ andZ(l′) is totally isotropic. SinceA is an iso-

morphism fromz onto z′, A induces an isomorphism fromg/z onto g′/z′, and it
results thatl and l′ are isomorphic Lie algebras. Same reasoning works forA i-
isomorphism. �

It is clear thatz= {0} if, and only if,Z(g) is totally isotropic and that

dup(g) = dup(l).

Definition 2.5. A quadratic Lie algebrag is reducedif:

(1) g 6= {0}
(2) Z(g) is totally isotropic.

Notice that a reduced quadratic Lie algebra is necessarily non-Abelian.

2.3. We separate non-Abelian quadratic Lie algebras as follows:

Definition 2.6.
Let g be a non-Abelian quadratic Lie algebra.

(1) g is anordinary quadratic Lie algebra if dup(g) = 0.
(2) g is asingularquadratic Lie algebra if dup(g)≥ 1.

(i) g is asingularquadratic Lie algebra oftypeS1 if dup(g) = 1.
(i) g is asingularquadratic Lie algebra oftypeS3 if dup(g) = 3.

Now, given a non-Abeliann-dimensional quadratic Lie algebrag, we can as-
sume, up to i-isomorphism, thatg = Cn equipped with its canonical bilinear form
B (as a quadratic space) (1.4). So we introduce the following sets:

Definition 2.7. For n≥ 1:

(1) Q(n) is the set of non-Abelian quadratic Lie algebra structures on Cn.
(2) O(n) is the set ofordinary quadratic Lie algebra structures onCn.
(3) S(n) is the set ofsingularquadratic Lie algebra structures onCn.
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By (1.6), there is a one to one map fromQ(n) onto the subset
{

I ∈
∧

3(Cn) | I 6= 0,{I , I} = 0
}
⊂
∧

3(Cn).

In the sequel, we identify these two sets, so thatQ(n)⊂
∧3(Cn).

Proposition 2.8. One has:

(1) Q(n) is an affine variety in
∧3(Cn).

(2) O(n) is a Zariski-open subset ofQ(n).
(3) S(n) is a Zariski-closed subset ofQ(n).

Proof. The mapI 7→ {I , I} is a polynomial map from
∧3(Cn) into

∧4(Cn), so the
first claim follows.

Fix I ∈
∧3(Cn) such that{I , I} = 0. Consider the mapm : (Cn)∗ →

∧4(Cn)
defined bym(α) = α ∧ I , for all α ∈ (Cn)∗. Then, ifg is the quadratic Lie algebra
associated toI , one has dup(g) = 0 if, and only if, rank(m) = n. This can never
happen forn≤ 4. Assumen ≥ 5. Let M be a matrix ofm and∆i be the minors
of ordern, for 1≤ i ≤

(n
4

)
. Theng ∈ O(n) if, and only if, there existsi such that

∆i 6= 0. But ∆i is a polynomial function and from that the second and the third
claims follow. �

Lemma 2.9. Let g1 andg2 be non-Abelian quadratic Lie algebras. Theng1
⊥
⊕ g2

is an ordinary quadratic Lie algebra.

Proof. Setg = g1
⊥
⊕ g2. Denote byI , I1 and I2 the non-trivial 3-forms associated

to g, g1 andg2 respectively.
One has

∧
(g)=

∧
(g1)⊗

∧
(g2),

∧k(g)=⊕r+s=k
∧r(g1)⊗

∧s(g2) andI = I1+ I2,
with I1 ∈

∧3(g1) and I2 ∈
∧3(g2). It immediately results that forα = α1+α2 ∈

g∗1⊕g∗2, one hasα ∧ I = 0 if, and only if,α1 = α2 = 0. �

Proposition 2.10. One has:

(1) Q(n) 6= /0 if, and only if, n≥ 3.
(2) O3 = O4 = /0 andO(n) 6= /0 if n ≥ 6.

Proof. If g is a non-Abelian quadratic Lie algebra, using Remark 2.3, one has
dim([g,g])≥ 3, soQ(n) = /0 if n< 3.

We shall now use some elementary quadratic Lie algebras given in Section 6
of [PU07]. We denote these algebras bygi , according to their dimension, so that
dim(gi) = i, for 3 ≤ i ≤ 6. Note thatg3 = o(3), g4, g5 andg6 are examples of
elements ofQ(3), Q(4), Q(5) andQ(6), respectively.

Consider

g :=
⊥⊕

3≤i≤6

(

ki times︷ ︸︸ ︷
gi

⊥
⊕ . . .

⊥
⊕ gi).

Then dim(g) = ∑6
i=3 iki and by Lemma 2.9, dup(g) = 0, so we obtainO(n) 6= /0 if

n≥ 6.
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Finally, let g be a non-Abelian quadratic Lie algebra of dimension 3 or 4 with
associated 3-formI . Then I is decomposable, sog is singular. ThereforeO3 =
O4 = /0.

�

Remark2.11. We shall prove in Appendix 2 thatO5 = /0. So, generically a non-
Abelian quadratic Lie algebra is ordinary ifn≥ 6.

Definition 2.12. A quadratic Lie algebrag is indecomposableif g= g1
⊥
⊕ g2, with

g1 andg2 ideals ofg, imply g1 or g2 = {0}.

The Proposition below gives another characterization of reduced singular qua-
dratic Lie algebras.

Proposition 2.13. Letg be a singular quadratic Lie algebra. Theng is reduced if,
and only if,g is indecomposable.

Proof. If g is indecomposable, by Proposition 2.4,g is reduced. Ifg is reduced and

g = g1
⊥
⊕ g2, with g1 andg2 ideals ofg, thenZ(gi) ⊂ [gi,gi ] for i = 1,2. Sogi is

reduced orgi = {0}. But if g1 andg2 are both reduced, by Lemma 2.9, one has
dup(g) = 0. Henceg1 or g2 = {0}. �

3. QUADRATIC L IE ALGEBRAS OF TYPES1

3.1. Let(g,B) be a quadratic vector space andI be a non-zero 3-form in
∧3(g).

As in (1.6), we define a Lie bracket ong by:

[X,Y] := φ−1(ιX∧Y(I)), ∀ X,Y ∈ g.

Theng becomes a quadratic Lie algebra with an invariant bilinear form B if, and
only if, {I , I}= 0 [PU07].

In the sequel, we assume that dim(VI ) = 1. Fix α ∈ VI and chooseΩ ∈
∧2(g)

such thatI = α ∧Ω as follows: let{α ,α1, . . . ,αr} be a basis ofWI . Then, I ∈∧3(WI ) by Proposition 1.1. We set:

X0 := φ−1(α) andXi := φ−1(αi), 1≤ i ≤ r.

So, we can chooseΩ ∈
∧2(V) whereV = span{X1, . . . ,Xr}. Note thatΩ is an

indecomposable bilinear form, so dim(V)> 3.
We defineC : g→ g by

B(C(X),Y) := Ω(X,Y).

ThereforeC is skew-symmetric with respect toB.

Lemma 3.1. The following are equivalent:

(1) {I , I}= 0
(2) {α ,α}= 0 and{α ,Ω}= 0
(3) B(X0,X0) = 0 and C(X0) = 0

In this case, one hasdim([g,g]) > 4, Z(g) ⊂ ker(C), Im(C) ⊂ [g,g] and X0 ∈
Z(g)∩ [g,g].
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Proof. It is easy to see that:

{I , I}= 0⇔{α ,α}∧Ω∧Ω = 2I ∧{α ,Ω}.

If Ω∧Ω= 0, thenΩ is decomposable and that is a contradiction since dim(VI )= 1.
SoΩ∧Ω 6= 0.

If {α ,α} 6= 0, thenα dividesΩ∧Ω ∈
∧4(V), another contradiction. That im-

plies{α ,α} = 0= B(X0,X0). It results that{α ,Ω} ∈ VI = Cα , hence{α ,Ω} =
λα for someλ ∈ C. But {α ,Ω} is an element of

∧1(V), soλ must be zero and
by (1.5), ιX0(Ω) = 0, thereforeC(X0) = 0. Moreover, since{α ,α} = {α ,Ω} =
0, using I = α ∧Ω, we deduce that{α , I} = 0. Again by (1.5), it results that
B(X0, [X,Y]) = {α , I}(X∧Y) = 0, for all X, Y ∈ g. SoX0 ∈ [g,g]⊥ = Z(g). Also,
VI ⊂WI , soX0 = φ−1(α) ∈ φ−1(WI ) = [g,g].

Write Ω = ∑i< j ai j αi ∧α j , with ai j ∈ C. SinceWI = φ([g,g]) andX1, . . . ,Xr ∈
[g,g], we deduce that

C= ∑
i< j

ai j (αi ⊗Xj −α j ⊗Xi)

Hence Im(C) ⊂ [g,g]. SinceC is skew-symmetric, one has ker(C) = Im(C)⊥ and
it follows Z(g) = [g,g]⊥ ⊂ ker(C).

Finally, [g,g] = CX0⊕V and since dim(V)> 3, we conclude that dim([g,g]) >
4. �

Remark3.2. It is important to notice that our choice ofΩ such thatI = α ∧Ω is
not unique, it depends on the choice ofV, soC is not uniquely defined. Assume
we consider another vector spaceV ′ and I = α ∧Ω′. ThenΩ′ = Ω+α ∧ β for
someβ ∈ g∗. Let X1 = φ−1(β ) and letC′ be the map associated toΩ′. By a
straightforward computation,C′ = C+α ⊗X1 − β ⊗X0. SinceC′(X0) = 0, we
must haveB(X0,X1) = 0.

3.2. We keep the notation as in the previous subsection. Assume that{I , I} = 0.
Henceg is a quadratic Lie algebra of typeS1.

Lemma 3.3. There exists Y0 ∈V⊥ such that

V⊥ = Z(g)⊕CY0, B(Y0,Y0) = 0 and B(X0,Y0) = 1.

Moreover
C(Y0) = 0.

Proof. One hasφ−1(WI )= [g,g] =CX0⊕V, thereforeZ(g)⊂V⊥ and dim(Z(g))=
dim(g)− dim([g,g]) = dim(V⊥)− 1. So there existsY ∈ V⊥ such thatV⊥ =
Z(g)⊕CY. Now, Y cannot be orthogonal toX0, since it would be orthogonal
to [g,g] and therefore an element ofZ(g). So we can assume thatB(X0,Y) = 1.

ReplaceY by Y0 =Y−
1
2

B(Y,Y)X0 to obtainB(Y0,Y0) = 0 (recallB(X0,X0) = 0).

By Lemma 3.1, Im(C) ⊂ V and that impliesB(Y0,C(X)) = −B(C(Y0),X) = 0,
for all X ∈ g. ThenC(Y0) = 0. �

Proposition 3.4. We keep the previous notation and assumptions. Then:

(1) [X,Y] = B(X0,X)C(Y)−B(X0,Y)C(X)+B(C(X),Y)X0, for all X, Y∈ g.
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(2) C= ad(Y0) andrank(C) is even.

(3) ker(C) = Z(g)⊕CY0, Im(C) =V and[g,g] = CX0⊕ Im(C).

(4) the Lie algebrag is solvable. Moreover,g is nilpotent if, and only if, C is
nilpotent.

(5) the dimension of[g,g] is greater or equal to 5 and it is odd.

Proof.

(1) This is a straightforward computation, useB([X,Y],Z) = (α ∧Ω)(X,Y,Z),
α(X) = B(X0,X) andΩ(X,Y) = B(C(X),Y), for all X,Y,Z ∈ g.

(2) SetX =Y0 in (1) and use Lemma 3.3 to showC = ad(Y0). SinceC(g) =
ad(Y0)(g) = φ−1

(
ǎd(g)(φ(Y0))

)
, the rank ofC is the dimension of the

coadjoint orbit throughφ(Y0), so it is even (see also Appendix 1).
(3) We may assume thatg is reduced. ThenZ(g) is totally isotropic and

Z(g) ⊂ X⊥
0 . Write X⊥

0 = Z(g)⊕ h with h a complementary subspace of
Z(g). Thereforeg=Z(g)⊕h⊕CY0 and for an elementX = Z+H+λY0 ∈
ker(C), we deduceH ∈ ker(C) by Lemmas 3.1 and 3.3.

But B(X0,H) = 0, so using (1),H ∈ Z(g). It results thatH = 0. Then
ker(C) = Z(g)⊕CY0. In addition,

dim(Im(C)) = dim(h) = dim(X⊥
0 )−dim(Z(g)) = dim([g,g])−1.

Our choice ofV implies that[g,g] = φ−1(WI ) =CX0⊕V and Im(C)⊂
V (see the proof of Lemma 3.1). Therefore Im(C) =V and[g,g] = CX0⊕
Im(C).

(4) SinceB(X0, Im(C)) = 0, then[[g,g], [g,g]] = [Im(C), Im(C)] ⊂ CX0. We
conclude thatg is solvable. Ifg is nilpotent, thenC = ad(Y0) is nilpo-
tent. If C is nilpotent, using Im(C) ⊂ X⊥

0 , we obtain by induction that
(ad(X))k(g) ⊂ CX0⊕ Im(Ck) for anyk∈ N. So ad(X) is nilpotent, for all
X ∈ g and that impliesg nilpotent.

(5) Notice that[g,g] =CX0⊕ Im(C) and rank(C) is even, so dim([g,g]) is odd.
By (3.1), dim([g,g])≥ 5.

�

3.3. Recall thatC is not unique (see Remark 3.2) and it depends on the choice of
V. Let

a := X⊥
0 /CX0.

We denote bŷX the class of an elementX ∈ g.

Proposition 3.5.
Keep the notation above. One has:

(1) the Lie algebraa is Abelian.
(2) Define

B̂(X̂,Ŷ) := B(X,Y), ∀ X,Y ∈ g.

ThenB̂ is a non degenerate symmetric bilinear form ona.
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(3) Define
Ĉ(X̂) :=C(X), ∀ X ∈ g.

ThenĈ∈L (a) is a skew-symmetric map withrank(Ĉ)= rank(C) even and
rank(Ĉ)≥ 4.

(4) Ĉ does not depend on the choice of V . More precisely, ifWI =Cα ⊕φ(V ′)

and C′ is the associated map to V′ (see Remark 3.2), then̂C′ = Ĉ.

(5) the Lie algebrag is reduced if, and only if,ker(Ĉ)⊂ Im(Ĉ).

Proof.

(1) It follows from Proposition 3.4 (1).
(2) It is clear thatB̂ is well-defined. Now, sinceB(X0,Y0) = 1, B(X0,X0) =

B(Y0,Y0) = 0, the restriction ofB to span{X0,Y0} is non degenerate. So

g= span{X0,Y0}
⊥
⊕ span{X0,Y0}

⊥,

X⊥
0 = CX0 ⊕ span{X0,Y0}

⊥ and X⊥
0
⊥ = X⊥

0 ∩ span{X0,Y0} = CX0. We
conclude that̂B is non degenerate.

(3) We haveC(X⊥
0 ) = ad(Y0)(X⊥

0 ) ⊂ X⊥
0 sinceX⊥

0 is an ideal ofg. More-
over, C(X0) = 0, soĈ is well-defined. The image ofC is contained in
X⊥

0 and Im(C)∩CX0 = {0}, therefore dim(Im(C)/CX0) = dim(Im(Ĉ)) =
dim(Im(C)). Now it is enough to apply Proposition 3.4.

(4) By Remark 3.2, we haveC′ = C+α ⊗X1− β ⊗X0. But α(X0) = 0, so
Ĉ′ = Ĉ.

(5) By Proposition 3.4, we have ker(C) = Z(g)⊕CY0 and by Lemma 3.1, we
haveZ(g) ⊂ X⊥

0 . Again by Proposition 3.4, we conclude that ker(Ĉ) =
Z(g)/CX0. Applying Proposition 3.4 once more, we have[g,g] = CX0⊕

Im(C), so Im(Ĉ) = [g,g]/CX0. Then ker(Ĉ) ⊂ Im(Ĉ) if, and only if,
Z(g) ⊂ [g,g] +CX0. But X0 ∈ [g,g] (see Lemma 3.1), so the result fol-
lows.

�

We should notice that̂C still depends on the choice ofα (see Remark 3.2): if

we replaceα by λα , for a non-zeroλ ∈ C, that will changeĈ into
1
λ

Ĉ. So there

is not auniquemapĈ associated tog but rather afamily {λĈ | λ ∈ C \ {0}} of
associated maps. In other words, there is a line

[Ĉ] := {λĈ | λ ∈ C} ∈ P1(o(a))

whereP1(o(a)) is the projective space associated to the spaceo(a).

Definition 3.6. We call[Ĉ] the line of skew-symmetric mapsassociated to the qua-
dratic Lie algebrag of typeS1.

Remark3.7. The unicity of [Ĉ] is valuable, but the fact that̂C acts on a quotient
space and not on a subspace ofg could be a problem. Hence it is convenient to
use the following decomposition ofg: the restriction ofB to CX0 ⊕CY0 is non
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degenerate, so we can writeg= (CX0⊕CY0)
⊥
⊕ q whereq= (CX0⊕CY0)

⊥. Since
C(X0) = C(Y0) = 0 andC ∈ o(g), C mapsq into q. Let π : X⊥

0 → X⊥
0 /CX0 be

the canonical surjection andC =C|q. Then the restrictionπq : q→ X⊥
0 /CX0 is an

isometry and̂C= πq C π−1
q .

Remark thatY0 is not unique, but ifY′
0 satisfies Lemma 3.3, considerC′ = ad(Y′

0)

andq′ such thatg = (CX0⊕CY′
0)

⊥
⊕ q′, thereforeĈ = π ′

q C′ π ′−1
q with the obvious

notation. It results thatπ ′−1
q πq is an isometry fromq to q′ and that

C′ =
(
π ′−1
q πq

)
C
(
π ′−1
q πq

)−1
.

We shall develop this aspect in the next Section.

4. SOLVABLE SINGULAR QUADRATIC L IE ALGEBRAS AND DOUBLE

EXTENSIONS

4.1. Double extensions are a very effective method initiated by V. Kac to con-
struct quadratic Lie algebras (see [Kac85, FS87, MR85]). Here, we only need a
particular case that we shall recall:

Definition 4.1.

(1) Let (q,Bq) be a quadratic vector space andC : q→ q be a skew-symmetric
map. Let(t= span{X1,Y1},Bt) be a 2-dimensional quadratic vector space
with Bt defined by

Bt(X1,X1) = Bt(Y1,Y1) = 0, Bt(X1,Y1) = 1.

Consider

g= q
⊥
⊕ t

equipped with a bilinear formB := Bq+Bt and define a bracket ong by

[X+λX1+µY1,Y+λ ′X1+µ ′Y1] := µC(Y)−µ ′C(X)+B(C(X),Y)X1,

for all X,Y ∈ q,λ ,µ ,λ ′,µ ′ ∈ C. Then(g,B) is a quadratic solvable Lie
algebra. We say thatg is thedouble extensionof q by C.

(2) Let gi be double extensions of quadratic vector spaces(qi ,Bi) by skew-
symmetric mapsCi ∈ L (qi), for 1≤ i ≤ k. Theamalgamated product

g= g1 ×
a
g2 ×

a
. . . ×

a
gk

is defined as follows:
• consider(q,B) be the quadratic vector space withq= q1⊕q2⊕·· ·⊕qk

and the bilinear formB such thatB(∑k
i=I Xi,∑k

i=I Yi) = ∑k
i=I Bi(Xi,Yi),

for Xi,Yi ∈ qi , 1≤ i ≤ k.
• the skew-symmetric mapC ∈ L (q) is defined byC(∑k

i=I Xi) =

∑k
i=I Ci(Xi), for Xi ∈ qi , 1≤ i ≤ k.

Theng is the double extension ofq byC.



16 DUONG MINH THANH, GEORGES PINCZON, ROSANE USHIROBIRA

In this Section, we will show that double extensions are highly related to singular
quadratic Lie algebras. Amalgamated products will be used in Sections 5 and 6 to
decomposedouble extensions.

We notice that ifg1
i
≃ g′1 andg2

i
≃ g′2, it may happen thatg1 ×

a
g2 andg′1 ×a

g′2 are

not even isomorphic. So, amalgamated products have a bad behavior with respect
to i-isomorphisms. An example will be given in Section 5, Remark 5.12.

Lemma 4.2. We keep the notation above.

(1) Letg be the double extension ofq byC. Then

[X,Y] = B(X1,X)C(Y)−B(X1,Y)C(X)+B(C(X),Y)X1, ∀ X,Y ∈ g,

where C= ad(Y1). Moreover, X1 ∈ Z(g) and C|q =C.
(2) Letg′ be the double extension ofq byC′ = λC, λ ∈ C, λ 6= 0. Theng and

g′ are i-isomorphic.

Proof.

(1) This is a straightforward computation.

(2) Writeg= q
⊥
⊕ t= g′. Denote by[·, ·]′ the Lie bracket ong′. DefineA : g→

g′ by A(X1) = λX1, A(Y1) =
1
λ

Y1 andA|q = Idq. ThenA([Y1,X]) =C(X) =

[A(Y1),A(X)]′ andA([X,Y]) = [A(X),A(Y)]′, for all X,Y ∈ q. SoA is an
i-isomorphism.

�

4.2. A natural consequence of formulas in Lemma 4.2 and Proposition 3.4 (1) is
given by the Proposition below:

Proposition 4.3.

(1) Consider the notation in Section 3, Remark 3.7. Letg be quadratic Lie
algebra of typeS1 (that is,dup(g) = 1). Theng is the double extension of
q= (CX0⊕CY0)

⊥ byC= ad(Y0)|q.

(2) Let (g,B) be a quadratic Lie algebra. Letg′ be a double extension of a
quadratic vector space(q′,B′) by a mapC′. Let A be an i-isomorphism of
g′ ontog and writeq= A(q′). Theng is a double extension of(q,B|q×q) by

the mapC = A C′ A
−1

whereA= A|q′ .

(3) Letg be the double extension of a quadratic vector spaceq by a mapC 6= 0.
Theng is a singular solvable quadratic Lie algebra. Moreover:
(a) g is of typeS3 if, and only if,rank(C) = 2.

(b) g is of typeS1 if, and only if,rank(C)≥ 4.

(c) g is reduced if, and only if,ker(C)⊂ Im(C).

(d) g is nilpotent if, and only if,C is nilpotent.

Proof.
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(1) Let b = CX0⊕CY0. ThenB|b×b is non degenerate andg = b⊕ q. Since
ad(Y0)(b) ⊂ b and ad(Y0) is skew-symmetric, we have ad(Y0)(q) ⊂ q. By
Proposition 3.4 (1), we have

[X,X′] = B(C(X),X′)X0, ∀ X,X′ ∈ q.

SetX1 := X0 andY1 :=Y0 to obtain the result.

(2) Write g′ = (CX′
1⊕CY′

1)
⊥
⊕ q′. Let X1 = A(X′

1) andY1 = A(Y′
1). Theng =

(CX1⊕CY1)
⊥
⊕ q and

[Y1,X] = (AC′A−1)(X), ∀ X ∈ q, and

[X,Y] = B((AC′A−1)(X),Y)X′
1, ∀ X,Y ∈ q.

and this proves the result.

(3) Letg= (CX1⊕CY1)
⊥
⊕ q, C= ad(Y1), α = φ(X1), Ω(X,Y) = B(C(X),Y),

for all X, Y ∈ g and I be the 3-form associated tog. Then the formula
for the Lie bracket in Lemma 4.2(1) can be translated asI = α ∧Ω, hence
dup(g)≥ 1 andg is singular.

LetWΩ be the setWΩ = {ιX(Ω),X ∈ g}. ThenWΩ = φ(Im(C)). There-
fore rank(C)≥ 2 by Proposition 1.1 andΩ is decomposable if, and only if,
rank(C) = 2.

If rank(C) > 2, theng is of typeS1 and by Proposition 3.5, we have
rank(C)≥ 4.

Finally,Z(g) =CX1⊕ker(C) and[g,g] =CX1⊕ Im(C), sog is reduced
if, and only if, ker(C)⊂ Im(C).

The proof of the last claim is exactly the same as in Proposition 3.4 (4).

�

4.3. A complete classification (up to i-isomorphism) of quadratic Lie algebras of
typeS3 is given in [PU07]. We shall recall the characterization of these algebras
here:

Proposition 4.4. Letg be a quadratic Lie algebra of typeS3. Theng is i-isomorphic

to an algebral
⊥
⊕ z wherez is a central ideal ofg and l is one of the following al-

gebras:

(1) g3(λ ) = o(3) equipped with the bilinear form B= λκ where κ is the
Killing form andλ ∈ C, λ 6= 0.

(2) g4, a 4-dimensional Lie algebra: considerq = C2, {E1,E2} its canonical
basis and the bilinear form B defined by B(E1,E1) = B(E2,E2) = 0 and
B(E1,E2) = 1. Theng4 is the double extension ofq by the skew-symmetric
map

C=

(
1 0
0 −1

)
.

Moreover,g4 is solvable, but it is not nilpotent.



18 DUONG MINH THANH, GEORGES PINCZON, ROSANE USHIROBIRA

(3) g5, a 5-dimensional Lie algebra: considerq= C3, {E1,E2,E3} its canon-
ical basis and the bilinear form B defined by B(E1,E1) = B(E2,E2) =
B(E1,E2) = B(E2,E3) = 0 and B(E1,E3) = B(E2,E2) = 1. Theng5 is the
double extension ofq by the skew-symmetric map

C=




0 1 0
0 0 −1
0 0 0


 .

Moreover,g5 is nilpotent.

(4) g6, a 6-dimensional Lie algebra: considerq = C4, {E1,E2,E3,E4} its
canonical basis and the bilinear form B defined by B(E1,E3)=B(E2,E4)=
1 and B(Ei,E j) = 0 otherwise. Theng6 is the double extension ofq by the
skew-symmetric map

C =




0 1 0 0
0 0 0 0
0 0 0 0
0 0 −1 0


 .

Moreover,g6 is nilpotent.

All solvable quadratic Lie algebras of type S3 are double extensions of a qua-
dratic vector space by a skew-symmetric map.

4.4. Let(q,B) be a quadratic vector space. We recall that O(q) is the group of
orthogonal maps ando(q) is its Lie algebra, i.e. the Lie algebra of skew-symmetric
maps. Recall that theadjoint actionis the action of O(q) ono(q) by conjugation.

Proposition 4.5. Let (q,B) be a quadratic vector space. Letg= (CX1⊕CY1)
⊥
⊕ q

andg′ = (CX′
1⊕CY′

1)
⊥
⊕ q be double extensions ofq, by skew-symmetric mapsC

andC′ respectively. Then:

(1) there exists a Lie algebra isomorphism betweeng and g′ if, and only if,
there exists an invertible map P∈ L (q) and a non-zeroλ ∈ C such that
C′ = λ PCP−1 and P∗PC=C, where P∗ is the adjoint map of P with respect
to B.

(2) there exists an i-isomorphism betweeng andg′ if, and only if,C′ is in the
O(q)-adjoint orbit throughλC for some non-zeroλ ∈ C.

Proof.

(1) Let A : g → g′ be a Lie algebra isomorphism. We know by Proposition
4.3 thatg and g′ are singular. Assume thatg is of type S3. Then 3=
dim([g,g]) = dim([g′,g′]). Sog′ is also of typeS3 ([PU07]). Therefore,g
andg′ are either both of typeS1 or both of typeS3. Let us study these two
cases.
(i) First, assume thatg andg′ are both of typeS1. We start by proving

thatA(CX1⊕ q) = CX′
1⊕ q. If this is not the case, there isX ∈ q such
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thatA(X) = βX′
1+ γY′

1+Y with Y ∈ q andγ 6= 0. Then

[A(X),CX′
1⊕ q]′ = γC′(q)+ [Y,q]′.

Sinceg′ is of type S1, we have rank(C
′
) ≥ 4 (see Proposition 4.3)

and it follows that dim([A(X),CX′
1⊕ q]′) ≥ 4. On the other hand,

[A(X),CX′
1⊕ q]′ is contained inA([X,g]) and dim([X,g]) ≤ 2, so we

obtain a contradiction.
Next, we prove thatA(X1) ∈ CX′

1. SinceX1 ∈ [g,g], then there exists
X, Y ∈ q such thatX1 = [X,Y]. ThenA(X1) = [A(X),A(Y)]′ ∈ [CX′

1⊕
q,CX′

1⊕ q]′ = CX′
1. HenceA(X1) = µX′

1 for some non-zeroµ ∈ C.
Now, writeA|q =P+β ⊗X′

1 with P : q→ q andβ ∈ q∗. If X ∈ ker(P),

thenA

(
X−

1
µ

β (X)X1

)
= 0, soX = 0 and therefore,P is invertible.

For allX, Y ∈ q, we haveA([X,Y]) = µB(C(X),Y)X′
1. Also,

A([X,Y]) = [P(X)+β (X)X′
1,P(Y)+β (Y)X′

1]
′

= B(C′P(X),P(Y))X′
1.

So it results thatP∗C′P= µC.
Moreover,A([Y1,X])=P(C(X)+β (C(X))X′

1, for all X ∈ q. LetA(Y1)=
γY′

1+Y+δX′
1, with Y ∈ q. Therefore

A([Y1,X]) = γC′P(X)+B(C′(Y),P(X))X′
1

and we conclude thatP C P−1 = γC′ and sinceP∗C′P = µC, then
P∗PC= γµC.

SetQ=
1

(µγ) 1
2

P. It follows thatQCQ−1 = γC′ andQ∗QC =C. This

finishes the proof in the caseg andg′ of typeS1.
(ii) We proceed to the case wheng and g′ of type S3: the proof is a

straightforward case-by-case verification. By Proposition 2.4, we can
assume thatg andg′ are reduced. Then dim(q) = 2,3 or 4 by Propo-
sition 4.4.
Recall thatg is nilpotent if, and only if,C is nilpotent (see Proposition
4.3 (3)). The same is valid forg′.
If dim(q) = 2, theng is not nilpotent, soC is not nilpotent, Tr(C) = 0
andC must be semi-simple. Therefore we can find a basis{e1,e2} of
q such thatB(e1,e2) = 1, B(e1,e1) = B(e2,e2) = 0 and the matrix of

C is

(
µ 0
0 −µ

)
. The same holds forC′: there exists a basis{e′1,e

′
2}

of q such thatB(e′1,e
′
2) = 1 andB(e′1,e1)

′ = B(e′2,e
′
2) = 0 such that

the matrix ofC′ is

(
µ ′ 0
0 −µ ′

)
. It results thatC′ and

µ ′

µ
C are O(q)-

conjugate and we are done.
If dim(q) = 3 or 4, theng andg′ are nilpotent. We use the classifica-
tion of nilpotent orbits given for instance in [CM93]: thereis only one
orbit in dimension 3 or 4, soC andC′ are conjugate by O(q).
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This finishes the proof of the necessary condition. To prove the suffi-
ciency, we replaceC′ by λPCP−1 to obtainP∗C′P= λC. Then we define

A : g→ g′ by A(X1) = λX′
1, A(Y1) =

1
λ

Y′
1 andA(X) = P(X), for all X ∈ q.

By a direct computation, we have for allX andY ∈ q:

A([X,Y]) = [A(X),A(Y)]′ and A([Y1,X]) = [A(Y1),A(X)]′,

soA is a Lie algebra isomorphism betweeng andg′.

(2) If g andg′ are i-isomorphic, then the isomorphismA in the proof of (1) is
an isometry. HenceP∈ O(q) andP∗C′P= µC gives the result.

Conversely, defineA as above (sufficiency of (1)). ThenA is an isometry
and it is easy to check thatA is an i-isomorphism.

�

Corollary 4.6. Let (g,B) and (g′,B′) be double extensions of(q,B) and (q′,B′)

respectively, whereB= B|q×q and B′ = B′|q′×q′ . Write g = (CX1⊕CY1)
⊥
⊕ q and

g′ = (CX′
1⊕CY′

1)
⊥
⊕ q′. Then:

(1) there exists an i-isomorphism betweeng andg′ if, and only if, there exists
an isometryA : q→ q′ such thatC′ = λ AC A

−1
, for some non-zeroλ ∈C.

(2) there exists a Lie algebra isomorphism betweeng and g′ if, and only if,
there exist invertible mapsQ : q→ q′ andP∈ L (q) such that

(i) C′ = λ Q C Q
−1

for some non-zeroλ ∈ C,
(ii) P

∗
PC=C and

(iii) Q P
−1

is an isometry fromq ontoq′.

Proof.

(1) We can assume that dim(g)= dim(g′). Define a mapF : g′ → g by F(X′
1)=

X1, F(Y′
1) =Y1 andF = F |q′ is an isometry fromq′ ontoq. Then define a

new Lie bracket ong by

[X,Y]′′ = F
(
[F−1(X),F−1(Y)]′

)
, ∀X,Y ∈ g.

Denote by(g′′, [·, ·]′′) this new Lie algebra. SoF is an i-isomorphism from
g′ ontog′′.

Moreoverg′′ = (CX1⊕CY1)
⊥
⊕ q is the double extension ofq byC

′′
with

C
′′
= F C

′
F
−1

. Theng andg′ are i-isomorphic if, and only if,g andg′′ are
i-isomorphism. Applying Proposition 4.5, this is the case if, and only if,
there existsA∈O(q) such thatC

′′
= λ AC A

−1
for some non-zero complex

λ . That implies

C
′
= λ (F

−1
A) C (F

−1
A)−1

and proves (1).
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(2) We keep the notation in (1). We have thatg andg′ are isomorphic if, and
only if, g andg′′ are isomorphic. Applying Proposition 4.5,g andg′′ are
isomorphic if, and only if, there exists an invertible mapP∈ L (q) and a

non-zeroλ ∈C such thatC
′′
= λ PC P

−1
andP

∗
PC=C and we conclude

thatC
′
= λ QC Q

−1
with Q= F

−1
P. Finally,F

−1
=Q P

−1
is an isometry

from q to q′.
On the other hand, ifC

′
= λ Q C Q

−1
andP

∗
P C = C with P = F Q

for some isometryF : q′ → q, then constructg′′ as in (1). We deduce
C
′′
= λ P C P

−1
andP

∗
P C = C. So, by Proposition 4.5,g andg′′ are

isomorphic and therefore,g andg′ are isomorphic.

�

Remark4.7. Let g be a solvable singular quadratic Lie algebra. Considerg as a
double extension of two quadratic vectors spacesq andq′:

g= (CX1⊕CY1)
⊥
⊕ q and g= (CX′

1⊕CY′
1)

⊥
⊕ q′.

LetC= ad(Y1)|q andC
′
= ad(Y′

1)|q′ Since Idg is obviously an i-isomorphism, there
exists an isometryA : q→ q′ and a non-zeroλ ∈ C such that

C
′
= λ A C A

−1
.

Remark4.8. A weak form of Corollary 4.6 (1) was stated in [FS87], in the case of i-
isomorphisms satisfying some (dispensable) conditions. So (1) is an improvement.
To our knowledge, (2) is completely new. Corollary 4.6 and Remark 4.7 can be
applied directly to solvable singular Lie algebras: by Propositions 4.3 and 4.4, they
are double extensions of quadratic vector spaces by skew-symmetric maps.

4.5. We shall now classify solvable singular Lie algebra structures onCn+2 up to
i-isomorphism in terms of O(n)-orbits inP1(o(n)). We need the Lemma below:

Lemma 4.9. Let V be a quadratic vector space such that V= (CX1⊕CY1)
⊥
⊕ q′

with X1, Y1 isotropic elements and B(X1,Y1) = 1. Let g be a solvable singular
quadratic Lie algebra withdim(g) = dim(V). Then, there exists a skew-symmetric
mapC′ : q′ → q′ such that V considered as the the double extension ofq′ byC′ is
i-isomorphic tog.

Proof. By Propositions 4.3 and 4.4,g is a double extension. Let us writeg =

(CX0⊕CY0)
⊥
⊕ q andC = ad(Y0)|q. DefineA : g→V by A(X0) = X1, A(Y0) =Y1

andA= A|q any isometry fromq→ q′. It is clear thatA is an isometry fromg to
V. Now, define the Lie bracket onV by:

[X,Y] = A
(
[A−1(X),A−1(Y)]

)
, ∀ X,Y ∈V.

ThenV is a quadratic Lie algebra, that is i-isomorphic tog, by definition. More-
over,V is obviously a double extension ofq′ by C′ = AC A

−1
. �
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We can now apply our results to the classification (up to i-isomorphism) of solv-
able elements ofS(n+2) (the set of singular Lie algebras structures onCn+2), for
n ≥ 2. We denote bySs(n+ 2) the set of solvable elements ofS(n+ 2). Given

g ∈ S(n+ 2), we denote by[g]i its i-isomorphism class and bŷSs
i
(n+ 2) the set

of classes. For[C] ∈ P1(o(n)), we denote byO[C] its O(n)-adjoint orbit and by

˜P1(o(n)) the set of orbits.

Proposition 4.10. There exists a bijectionθ : ˜P1(o(n)) → Ŝs
i
(n+2).

Proof. We consider O[C] ∈
˜P1(o(n)). There is a double extensiong of

q = span{E2, . . . ,En+1} by C realized onCn+2 = (CE1⊕CEn+2)
⊥
⊕ q. Then, by

Corollary 4.6,g ∈ Ss(n+2) and[g]i does not depend on the choice ofC. We define
θ(O[C]) = [g]i . If g′ ∈ Ss(n+ 2) then by Lemma 4.9,g′ can be realized (up to i-

isomorphism) as a double extension onCn+2 = (CE1⊕CEn+2)
⊥
⊕ q. Soθ is onto.

Finally, θ is one-to-one by Corollary 4.6. �

5. NILPOTENT AND DIAGONALIZABLE CASES

5.1. Let us denote byN(n+ 2) the set of nilpotent elements ofS(n+ 2), for
n≥ 1. Giveng ∈ N(n+2), we denote by[g] its isomorphism class and by[g]i its
i-isomorphism class. The set̂N(n+ 2) is the set of all isomorphism classes and
N̂i(n+2) is the set of all i-isomorphism classes of elements inN(n+2).

Let N (n) be the set of non-zero nilpotent elements ofo(n). GivenC ∈ N (n),
we denote byOC its O(n)-adjoint orbit. The set of nilpotent orbits is denoted by

Ñ (n).

Lemma 5.1. LetC andC
′
∈ N (n). ThenC is conjugate toλC

′
moduloO(n) for

some non-zeroλ ∈ C if, and only if,C is conjugate toC
′
.

Proof. It is enough to show thatC andλC are conjugate, for any non-zeroλ ∈ C.
By [CM93], there exists asl(2)-triple {X,H,C} in o(n) such that[H,C] = 2C, so
et ad(H)(C) = e2t C, ∀t ∈ C. We chooset such that e2t = λ , then etH Ce−tH = λC
and etH ∈ O(n). �

Proposition 5.2. One has:

(1) Letg andg′ ∈N(n+2). Theng andg′ are isomorphic if, and only if, they
are i-isomorphic, so[g]i = [g] andN̂i(n+2) = N̂(n+2).

(2) There is a bijectionτ : Ñ (n)→ N̂(n+2).

(3) N̂(n+2) is finite.

Proof.

(1) Using Lemma 4.9, Proposition 4.3(3) and Corollary 4.6, it is enough to
show that forC andC

′
∈ N (n+ 2), if there existsP ∈ GL(n) such that

C
′
= λPCP−1, for some non-zeroλ ∈C, thenC andC

′
are conjugate under
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O(n). By Lemma 5.1, we can assume thatλ = 1, and then the result is well
known (see e.g. [CM93]).

(2) As in the proof of Proposition 4.10, for a givenOC ∈ Ñ (n), we construct
the double extensiong of q = span{E2, . . . ,En+1} by C realized onCn+2.
Then, by Proposition 4.3 (3),g ∈N(n+2) and[g] does not depend on the
choice ofC. We defineτ(OC) = [g]. Then by (1) and Corollary 4.6,τ is
one-to-one and onto.

(3) N̂(n+2) is finite since the set of nilpotent orbits̃N (n) is finite (see e.g.
[CM93]).

�

Definition 5.3. Let p∈N\{0}. We denote theJordan block of size pby J1 := (0)
and forp≥ 2,

Jp :=




0 1 0 . . . 0
0 0 1 . . . 0
...

... . . .
. . .

...
0 0 . . . 0 1
0 0 0 . . . 0



.

Next, we define nilpotent Jordan-type Lie algebras. There are two types:

• for p≥ 2, we considerq = C2p equipped with its canonical bilinear form
B and the mapC

J
2p with matrix

(
Jp 0
0 −tJp

)

in the canonical basis. ThenC
J
2p ∈ o(2p) and we denote byj2p the double

extension ofq byC
J
2p. Soj2p ∈N(2p+2).

• for p≥ 1, we considerq=C2p+1 equipped with its canonical bilinear form
B and the mapC

J
2p+1 with matrix

(
Jp+1 M

0 −tJp

)

in the canonical basis, whereM = (mi j ) denotes the(p+ 1)× p-matrix

with mp+1,p =−1 andmi j = 0 otherwise. ThenC
J
2p+1 ∈ o(2p+1) and we

denote byj2p+1 the double extension ofq byC
J
2p+1. Soj2p+1 ∈N(2p+3).

Lie algebrasj2p or j2p+1 will be callednilpotent Jordan-type Lie algebras.

Let n∈N, n 6= 0. We consider partitions[d] := (d1, . . . ,dr) of n of a special type:

• each evendi must occur with even multiplicity.
• [d] can be written as(p1, p1, p2, p2, . . . , pk, pk,2q1+1, . . .2qℓ+1) with all

pi even,p1 ≥ p2 ≥ ·· · ≥ pk andq1 ≥ q2 ≥ ·· · ≥ qℓ.
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We denote byP ′(n) the set of partitions satisfying the above conditions. To ev-
ery [d] ∈ P ′(n), we associate a map C[d] ∈ o(n): write
[d] = (p1, p1, p2, p2, . . . , pk, pk,2q1+1, . . .2qℓ+1). ThenC[d] is the map with ma-
trix

diag2k+ℓ(C
J
2p1

,C
J
2p2

, . . . ,C
J
2pk

,C
J
2q1+1, . . . ,C

J
2qℓ+1).

in the canonical basis ofCn.
Moreover, we denote byg[d] the double extension ofCn by C[d]. Theng[d] ∈

N(n+2) andg[d] is an amalgamated product of nilpotent Jordan-type Lie algebras,
more precisely,

g[d] = j2p1 ×
a
j2p2 ×

a
. . . ×

a
j2pk ×a

j2q1+1 ×
a
. . . ×

a
j2qℓ+1.

The following fundamental result classifies all nilpotent O(n)-orbits in o(n) (see
[CM93]).

Lemma 5.4. The map[d] 7→ C[d] from P ′(n) to o(n) induces a bijection from

P ′(n) ontoÑ (n).

Using Propositions 5.2 and 5.4, we deduce:

Proposition 5.5.
(1) The map[d] 7→ g[d] fromP ′(n) toN(n+2) induces a bijection fromP ′(n)

ontoN̂(n+2).

(2) Each nilpotent singular n+ 2-dimensional Lie algebra is i-isomorphic to
a unique amalgamated productg[d], [d] ∈ P ′(n) of nilpotent Jordan-type
Lie algebras.

5.2. We introduce some notation:

Definition 5.6. Let g be a solvable singular quadratic Lie algebra and writeg =

(CX0⊕CY0)
⊥
⊕ q a decomposition ofg as a double extension (Proposition 4.3 and

Lemma 4.4). LetC = ad(Y0)|q. We say thatg is adiagonalizableif C is diagonal-
izable.

We denote byD(n+2) the set of such structures on the quadratic spaceCn+2,
byDred(n+2) the reduced ones, bŷD(n+2), D̂i(n+2), D̂red(n+2), D̂i

red(n+2)
the corresponding sets of isomorphism and i-isomorphism classes of elements in
D(n+2) andDred(n+2).

Remark that the property of being diagonalizable does not depend on the chosen
decomposition ofg (see Remark 4.7). By Corollary 4.6 and a proof completely
similar to Proposition 4.10 or Proposition 5.2, we conclude:

Proposition 5.7. There is a bijection between̂Di(n+2) and the set of semi-simple
O(n)-orbits in P1(o(n)). The same result holds for̂Di

red(n+ 2) and semi-simple
invertible orbits inP1(o(n)).

Proof. Proceed exactly as in Proposition 4.10 or Proposition 5.2, but notice that a
a diagonalizableC satisfies ker(C)⊂ Im(C) if, and only if, ker(C) = {0}. �
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5.3. The classification of semi-simple adjoint orbits of a semi-simple Lie algebra
g is fully known (see e.g. [CM93]). Given a Cartan subalgebrah of g, there is a
bijection between the set of semi-simple adjoint orbits andh/W, whereW is the
Weyl group.

Here, we deal with O(n)-adjoint and not SO(n)-adjoint orbits. Hence, slight
changes must be done. Let us recall the result: writen = 2p if n is even and
n = 2p+ 1 if n is odd. Leth be a Cartan subalgebra given by the vector space
of diagonal matrices of type diag2p(λ1, . . . ,λp,λ1, . . . ,λp) if n is even and of type
diag2p+1(λ1, . . . ,λp,0,−λ1, . . . ,−λp) if n is odd. Any diagonalizableC ∈ o(n) is
conjugate to an element ofh (see Appendix 1 for a direct proof). IfC is invertible,
thenn is even (see Appendix 1).

If n is even, the Weyl group consists of all permutations and evensign changes
of (λ1, . . . ,λp). Thus, to describe O(n)-orbits we must admit any number of sign
changes. We denote byGp the corresponding group. Ifn is odd, the Weyl group is
Gp and there is nothing to add.

However, we are interested in O(n)-orbits inP1(o(n)). So, we must add maps
(λ1, . . . ,λp) 7→ λ (λ1, . . . ,λp), ∀λ ∈ C, λ 6= 0 to the groupGp. We obtain a group
denoted byHp. Now, let Λp = {(λ1, . . . ,λp) | λ1, . . . ,λp ∈ C,λi 6= 0 for some i}
andΛ+

p = {(λ1, . . . ,λp) | λ1, . . . ,λp ∈ C,λi 6= 0,∀ i}.
By Proposition 5.7, we obtain the Corollary:

Corollary 5.8. There is a bijection between̂Di(n+ 2) and Λp/Hp. Moreover, if

n= 2p+1, D̂red(n+2) = /0 and if n= 2p, thenD̂red(2p+2) is in bijection with
Λ+

p /Hp.

5.4. To go further in the study of diagonalizable reduced case, we need the fol-
lowing Lemma that will also be used in Section 6:

Lemma 5.9.

Letg′ andg′′ be solvable singular quadratic Lie algebras,g′ =(CX′
1⊕CY′

1)
⊥
⊕ q′

a decomposition ofg′ as a double extension andC
′
= ad(Y′

1)|q′ . We assume thatC
′

is invertible. Theng′ andg′′ are isomorphic if, and only if, they are i-isomorphic.

Proof. Write g′′ = (CX′′
1 ⊕CY′′

1 )
⊥
⊕ q′′ a decomposition ofg′′ as a double extension

andC
′′
= ad(Y′′

1 )|q′′ .
Assume thatg′ andg′′ are isomorphic. By Corollary 4.6, there existQ : q′ → q′′

andP∈ L (q′) such thatQ P
−1

is an isometry,P
∗

PC
′
=C

′
andC

′′
= λ QC

′
Q
−1

for some non-zeroλ ∈ C. But C
′
is invertible, soP

∗
P= Idq′ . Therefore,P is an

isometry ofq′ and thenQ is an isometry fromq′ to q′′. The conditions of Corollary
4.6 (1) are satisfied, sog′ andg′′ are i-isomorphic. �

Corollary 5.10. One has:

D̂red(2p+2) = D̂
i
red(2p+2), ∀ p≥ 1.
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Next, we describe diagonalizable reduced singular Lie algebras using amal-
gamated products. First, letg4(λ ) be the double extension ofq = C2 by C =(

λ 0
0 −λ

)
. By Lemma 4.2,g4(λ ) is i-isomorphic tog4(1), call it g4.

Proposition 5.11. Let (g,B) be a diagonalizable reduced singular Lie algebra.
Theng is an amalgamated product of singular Lie algebras all i-isomorphic tog4.

Proof. We writeg = (CX0⊕CY0)
⊥
⊕ q, C = ad(Y0), C =C|q andB= Bq×q. Then

C is a diagonalizable invertible element ofo(q,B). Apply Appendix 1 to ob-
tain a basis{e1, . . . ,ep, f1, . . . , fp} of q andλ1, . . . ,λp ∈ C, all non-zero, such that
B(ei,ej) = B( fi; f j) = 0, B(ei , f j) = δi j andC(ei) = λiei , C( fi) = −λi fi , for all
1≤ i, j ≤ p. Let qi = span{ei , fi}, 1≤ i ≤ p. Then

q=
⊥
⊕

p

i=1qi .

Furthermore,hi = (CX0⊕CY0)
⊥
⊕ qi is a Lie subalgebra ofg for all 1≤ i ≤ p and

g= h1 ×
a
h2 ×

a
. . . ×

a
hp with hi

i
≃ g4(λi)

i
≃ g4.

�

Remark5.12. For non-zeroλ , µ ∈ C, consider the amalgamated product:

g(λ ,µ) = g4(λ ) ×
a
g4(µ).

Theng(λ ,µ) is the double extension ofC4 by



λ 0 0 0
0 µ 0 0
0 0 −λ 0
0 0 0 −µ


 .

Thereforeg(λ ,µ) is isomorphic tog(1,1) if, and only if, µ = ±λ (Lemma 5.9
and (5.3)). So, thoughg4(λ ) andg4(µ) are i-isomorphic tog4, the amalgamated
productg(λ ,µ) is not even isomorphic tog(1,1) = g4 ×

a
g4 if µ 6=±λ . This illus-

trates that amalgamated products may have a rather bad behavior with respect to
isomorphisms.

6. THE GENERAL CASE

6.1. Letg be a solvable singular quadratic Lie algebra. We fix a realization of

g as a double extension,g = (CX0 ⊕CY0)
⊥
⊕ q (Propositions 4.3 and 4.5). Let

C= ad(Y0) andC=C|q. We consider the Fitting decomposition ofC:

q= qN ⊕ qI ,

whereqN ansqI areC-stable,CN =C|qN is nilpotent andCI =C|qI is invertible.
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SinceC is skew-symmetric, one hasqI = q⊥N . Therefore, the restrictionsBN =
B|qN×qN andBI = B|qI×qI of B = B|q×q are non degenerate,CN andCI are skew-

symmetric and[qI ,qN] = 0. LetgN =(CX0⊕CY0)
⊥
⊕ qN andgI =(CX0⊕CY0)

⊥
⊕ qI .

ThengN andgI are Lie subalgebras ofg, gN is the double extension ofqN by CN,
gI is the double extension ofqI by CI andgN is a nilpotent singular quadratic Lie
algebra. To studygI , we introduce the following definition:

Definition 6.1. A double extension is called aninvertible quadratic Lie algebraif
the corresponding skew-symmetric map is invertible.

Remark6.2.

• By Remark 4.7, the property of being an invertible quadraticLie algebra
does not depend on the chosen decomposition.

• By Appendix 1, the dimension of an invertible quadratic Lie algebra is
even.

• By Lemma 5.9, two invertible quadratic Lie algebras are isomorphic if, and
only if, they are i-isomorphic.

With the above definition,gI is an invertible quadratic Lie algebra and we have

g= gN ×
a
gI .

Definition 6.3. The Lie subalgebrasgN andgI are respectively thenilpotentand
invertible Fitting componentsof g.

This definition is justified by:

Proposition 6.4. Letg andg′ be solvable singular quadratic Lie algebras andgN,
gI , g′N, g′I be their Fitting components. Then

(1) g
i
≃ g′ if, and only if,gN

i
≃ g′N andgI

i
≃ g′I . The result remains valid if we

replace
i
≃ by≃.

(2) g≃ g′ if, and only of,g
i
≃ g′.

Proof. We assume thatg ≃ g′. Then by Corollary 4.6, there exists an invertible
P : q → q′ and a non-zeroλ ∈ C such thatC

′
= λ P C P

−1
, soq′N = P(qN) and

q′I = P(qI ), then dim(q′N) = dim(qN) and dim(q′I ) = dim(qI ). Thus, there exist
isometriesFN : q′N → qN andFI : q′I → qI and we can define an isometryF : q′ → q

by F(X′
N+X′

I ) =FN(X′
N)+FI(X′

I ), ∀X′
N ∈ q′N andX′

I ∈ q′I . We now defineF : g′ → g

by F(X′
1) = X1, F(Y′

1) =Y1, F|q′ = F and a new Lie bracket ong :

[X,Y]′′ = F
(
[F−1(X),F−1(Y)]′

)
, ∀X,Y ∈ g.

Call g′′ this new quadratic Lie algebra. We haveg′′ = (CX1⊕CY1)
⊥
⊕ q, i.e.,

q′′ = q andC
′′
= F C

′
F
−1

. Soq′′N = F(q′N) = qN andq′′I = F(q′I ) = qI . Butg≃ g′′,

so there exists an invertibleQ : q→ q such thatC
′′
= λ QC Q

−1
for some non-zero

λ ∈ C (Corollary 4.6). It follows thatq′′N = Q(qN) andqI = Q(qI ), soQ(qN) = qN

andQ(qI ) = qI .
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Moreover, we haveQ∗ Q C = C (Corollary 4.6), soQ∗ Q C
k
= C

k
for all k.

There existsk such thatqI = Im(Ck) and(Q∗ QC
k
)(X) =C

k
(X), for all X ∈ g. So

Q∗Q|qI = IdqI andQI = Q|qI is an isometry. SinceC
′′
I = λ QI CI Q

−1
I , thengI

i
≃ g′′I

(Corollary 4.6).
Let QN = Q|qN . ThenC

′′
N = λ QN CN Q

−1
N andQ∗

N QN CN =CN, so by Corollary

4.6,gN ≃ g′′N. SincegN andg′′N are nilpotent, theng′′N
i
≃ gN by Proposition 5.2.

Conversely, assume thatgN ≃ g′N andgI ≃ g′I . ThengN
i
≃ g′N andgI

i
≃ g′I by

Proposition 5.2 and Lemma 5.9.
So, there exist isometriesPN : gN → g′N, PI : gI → g′I and non-zeroλN andλI ∈C

such thatC
′
N = λN PN CN P

−1
N andC

′
I = λI PI CI P

−1
I . By Lemma 5.1, since

gN andg′N are nilpotent, we can assume thatλN = λI = λ . Now we defineP :
q→ q′ by P(XN +XI) = PN(XN)+PI (XI), ∀XN ∈ qN, XI ∈ qI , soP is an isometry.
Moreover, sinceC(XN +XI) =CN(XN)+CI(XI), ∀XN ∈ qN, XI ∈ qI andC

′
(X′

N +

X′
I ) =C

′
N(X

′
N)+C

′
I (X

′
I ), for all X′

N ∈ qN, X′
I ∈ qI , we concludeC

′
= λ PCP−1 and

finally, g
i
≃ g′, by Corollary 4.6. �

Remark6.5. The class of solvable singular quadratic Lie algebras has the remark-
able property that two Lie algebras in this class are isomorphic if, and only if, they
are i-isomorphic. In addition, the Fitting components do not depend on the realiza-
tions of the Lie algebra as a double extension and they completely characterize the
Lie algebra (up to isomorphism).

6.2. To classify all solvable singular Lie algebras (up to isomorphism), we have
to classify nilpotent and invertible ones (see Proposition6.4). The nilpotent case is
completely achieved in Proposition 5.5, so we are left with the invertible case.

For p≥ 1 andλ ∈C, let Jp(λ ) = diagp(λ , . . . ,λ )+Jp and

C
J
2p(λ ) =

(
Jp(λ ) 0

0 −tJp(λ )

)
.

ThenC
J
2p(λ ) ∈ o(2p).

Definition 6.6. For λ ∈ C, let j2p(λ ) be the double extension ofC2p by C
J
2p(λ ).

We say thatj2p(λ ) is aJordan-type quadratic Lie algebra.
Whenλ = 0 andp ≥ 2, we recover the nilpotent Jordan-type Lie algebrasj2p

from Definition 5.3.
Whenλ 6= 0, j2p(λ ) is an invertible singular quadratic lie algebra and

j2p(−λ )≃ j2p(λ ).

Proposition 6.7. Letg be a solvable singular quadratic Lie algebra. Theng is an
invertible Lie algebra if, and only if,g is an amalgamated product of Lie algebras
all i-isomorphic to Jordan-type Lie algebrasj2p(λ ), with λ 6= 0.
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Proof. Letg= (CX0⊕CY0)
⊥
⊕ q, Bbe the bilinear form ofg, B=B|q×q,C= ad(Y0)

andC =C|q ∈ o(q,B). We decomposeC into its semi-simple and nilpotent parts,
C= S+N. It is well known thatSandN ∈ o(q,B).

Let Λ⊂C\{0} be the spectrum ofS. We have thatλ ∈Λ if, and only if,−λ ∈Λ
(see Appendix 1). LetVλ be the eigenspace corresponding to the eigenvalueλ . We
have dim(Vλ ) = dim(V−λ ). Denote byq(λ ) the direct sumq(λ ) = Vλ ⊕V−λ . If
µ ∈ Λ, µ 6= ±λ , thenq(λ ) andq(µ) are orthogonal (Appendix 1). ChooseΛ+

such thatΛ = Λ+∪ (−Λ+) andΛ+∩ (−Λ+) = /0. We have (see Appendix 1):

q=
⊥
⊕ λ∈Λ+

q(λ ).

So the restrictionBλ = B|q(λ)×q(λ) is non degenerate. Moreover,Vλ andV−λ are
maximal isotropic subspaces inq(λ ).

Now, consider the mapΨ : V−λ →V∗
λ defined byΨ(u)(v) = Bλ (u,v), ∀u∈V−λ ,

v∈Vλ . ThenΨ is an isomorphism. Given any basisB(λ ) = {e1(λ ), . . . ,enλ (λ )}
of Vλ , there is a basisB(−λ ) = {e1(−λ ), . . . ,enλ (−λ )} of V−λ such that
Bλ (ei(λ ),ej (−λ )) = δi j , ∀1 ≤ i, j ≤ nλ : simply defineei(−λ ) = ψ−1(ei(λ )∗),
for all 1≤ i ≤ nλ .

Remark thatN andS commute, soN(Vλ ) ⊂ Vλ , ∀λ ∈ Λ. DefineNλ = N|q(λ),
thenNλ ∈ o(q(λ ),Bλ ). Hence, ifNλ |Vλ has a matrixMλ with respect toB(λ ),
then Nλ |V−λ has a matrix−tMλ with respect toB(−λ ). We choose the basis
B(λ ) such thatMλ is of Jordan type, i.e.

B(λ ) = B(λ ,1)∪ ·· ·∪B(λ , rλ ),

the multiplicity mλ of λ is mλ = ∑rλ
i=1dλ (i) wheredλ (i) = ♯B(λ , i) and

Mλ = diagnλ

(
Jdλ (1), . . . ,Jdλ (rλ )

)
.

The matrix ofC|q(λ) written on the basisB(λ )∪B(−λ ) is:

diagnλ

(
Jdλ (1)(λ ), . . . ,Jdλ (rλ )(λ ),−

tJdλ (1)(λ ), . . . ,−
tJdλ (rλ )(λ )

)
.

Let q(λ , i) be the subspace generated byB(λ , i)∪B(−λ , i), for all 1≤ i ≤ rλ
and letC(λ , i) =C|q(λ ,i). We have

q(λ ) =
⊥
⊕ 1≤i≤rλ q(λ , i).

The matrix ofC(λ , i) written on the basis ofq(λ , i) is CJ
2dλ (i)

(λ ). Let g(λ , i),
λ ∈ Λ+, 1≤ i ≤ rλ be the double extension ofq(λ , i) by C(λ , i). Theng(λ , i) is
i-isomorphic toj2dλ (i)(λ ). But

q=
⊥
⊕

λ∈Λ+
1≤i≤rλ

q(λ , i) and C|q(λ ,i) =C(λ , i).

Therefore,g is the amalgamated product

g= ×
a

λ∈Λ+
1≤i≤rλ

g(λ , i).
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�

6.3. Denote bySinv(2p+ 2) the set of invertible singular Lie algebra structures
on C2p+2, by Ŝinv(2p+ 2) the set of isomorphism (or i-isomorphism) classes of
Sinv(2p+2). Next, we will give a classification ofSinv(2p+2). Using Propositions
6.4 and 5.5, a classification of̂Ss(n+2) can finally be achieved.

We shall need the following Lemma;

Lemma 6.8. Let (V,B) be a quadratic vector space. We assume that V=V+⊕V−

with V± totally isotropic vector subspaces.

(1) Let N∈L (V) such that N(V±)⊂V±. We define maps N± by N+|V+ =N|V+,
N+|V− = 0, N−|V− = N|V− and N−|V+ = 0. Then N∈ o(V) if, and only if,
N− =−N∗

+ and, in this case, N= N+−N∗
+.

(2) Let U+ ∈L (V) such that U+ is invertible, U+(V+) =V+ and U+|V− = IdV−.
We define U∈ L (V) by U|V+ =U+ and U|V− =

(
U−1
+

)∗
. Then U∈ O(V).

(3) Let N′ ∈ o(V) such that N′ satisfies the assumptions of (1). Define N± as
in (1). Moreover, we assume that there exists U+ ∈ L (V+), U+ invertible
such that

N′
+|V+ =

(
U+ N+ U−1

+

)
|V+.

We extend U+ to V by U+|V− = IdV− and define U∈ O(V) as in (2). Then

N′ =U N U−1.

Proof. The proof is a straightforward computation. �

Let us now considerC ∈ o(n), C invertible. Then,n is even,n = 2p (see Ap-
pendix 1). We decomposeC = S+N into semi-simple and nilpotent parts,S,
N ∈ o(2p). We haveλ ∈ Λ if, and only if, −λ ∈ Λ (Appendix 1), whereΛ is
the spectrum ofC. Also m(λ ) = m(−λ ), for all λ ∈ Λ with multiplicity m(λ ).
SinceN andScommute, we haveN(V(±λ ))⊂V(±λ ) whereVλ is the eigenspace
of Scorresponding toλ ∈ Λ. Denote byW(λ ) the direct sum

W(λ ) =Vλ ⊕V−λ .

Define the equivalence relationR on Λ by:

λRµ if, and only if, λ =±µ .

Then

C2p =
⊥
⊕ λ∈Λ/RW(λ ),

and each(W(λ ),Bλ ) is a quadratic vector space withBλ = B|W(λ)×W(λ).
Fix λ ∈ Λ. We writeW(λ ) =V+⊕V− with V± =V±λ . Then, with the notation

in Lemma 6.8, defineN±λ = N±. SinceN|V− = −N∗
λ , it is easy to verify that the

matrices ofN|V+ andN|V− have the same Jordan form. Let(d1(λ ), . . . ,drλ (λ )) be
the size of the Jordan blocks in the Jordan decomposition ofN|V+. This does not
depend on a possible choice betweenN|V+ or N|V− since both maps have the same
Jordan type.
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Next, we consider

D =
⋃

r∈N∗

{(d1, . . . ,dr ) ∈ Nr | d1 ≥ d2 ≥ ·· · ≥ dr ≥ 1}

Defined : Λ → D by d(λ ) = (d1(λ ), . . . ,drλ (λ )). It is clear thatΦ◦d = m, where
Φ : D → N is the map defined byΦ(d1, . . . ,dr) = ∑r

i=1di .
Finally, we can associate toC ∈ o(n) a triple(Λ,m,d) defined as above.

Definition 6.9. Let Jp be the set of all triples(Λ,m,d) such that:

(1) Λ is a subset ofC\{0} with ♯Λ ≤ 2p andλ ∈ Λ if, and only if,−λ ∈ Λ.
(2) m : Λ → N∗ satisfiesm(λ ) = m(−λ ), for all λ ∈ Λ and∑α∈Λ m(λ ) = 2p.
(3) d : Λ → D satisfiesd(λ ) = d(−λ ), for all λ ∈ Λ andΦ◦d = m.

Let I (2p) be the set of invertible elements ino(2p) andĨ (2p) be the set of
O(2p)-adjoint orbits of elements inI (2p). By the preceding remarks, there is a
mapi : I (2p)→ Jp. The following Proposition classifies̃I (2p):

Proposition 6.10.
The map i: I (2p)→ Jp induces a bijectioñi : Ĩ (2p)→ Jp.

Proof. Let C andC′ ∈ I (2p) such thatC′ = U C U−1 with U ∈ O(2p). Let S,
S′, N, N′ be respectively the semi-simple and nilpotent parts ofC andC′. Write
i(C) = (Λ,m,λ ) andi(C′) = (Λ′,m′,λ ′).

ThenS′ =U S U−1. SoΛ′ = Λ andm′ = m. Also,U(Vλ ) =V ′
λ , for all λ ∈ Λ.

SinceN′ =U N U−1, thenN′|V ′
λ
=U |Vλ N|Vλ U−1|Vλ . Hence,N|Vλ andN′|Vλ have

the same Jordan decomposition, sod = d′ and ĩ is well defined.
To prove that̃i is onto, we start withΛ = {λ1,−λ1, . . . ,λk,−λk}, m andd as in

Definition 6.9. Define on the canonical basis:

S= diag2p(

m(λ1)︷ ︸︸ ︷
λ1, . . . ,λ1, . . . ,

m(λk)︷ ︸︸ ︷
λk, . . . ,λk,

m(λ1)︷ ︸︸ ︷
−λ1, . . . ,−λ1, . . . ,

m(λk)︷ ︸︸ ︷
−λk, . . . ,−λk).

For all 1≤ i ≤ k, let d(λi) = (d1(λi)≥ . . .drλi
(λi)≥ 1) and define

N+(λ ) = diagd(λi )

(
Jd1(λi),Jd2(λi), . . . ,Jdrλi

(λi)

)

on the eigenspaceVλi
and 0 on the eigenspaceV−λi

whereJd is the Jordan block of
sized.

By Lemma 6.8,N(λi) := N+(λi)−N+(λi)
∗ is skew-symmetric onVλi

⊕V−λi
.

Finally,

C2p =
⊥
⊕

k

i=1

(
Vλi

⊕V−λi

)
.

DefineN ∈ o(2p) by N
(
∑k

i=1vi
)
= ∑k

i=1 N(λi)(vi), vi ∈Vλi
⊕V−λi

andC= S+N ∈

o(2p). By construction,i(C) = (Λ,m,d), so ĩ is onto.
To prove that̃i is one-to-one, assume thatC, C′ ∈I (2p) and thati(C) = i(C′) =

(Λ,m,d). Using the previous notation, since their respective semi-simple partsS
andS′ have the same spectrum and same multiplicities, there existU ∈ O(2p) such
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thatS′ =USU−1. Forλ ∈ Λ, we haveU(Vλ ) =V ′
λ for eigenspacesVλ andV ′

λ of S
andS′.

Also, for λ ∈ Λ, if N andN′ are the nilpotent parts ofC andC′, thenN′′(Vλ ) ⊂
Vλ , with N′′ = U−1N′U . Sincei(C) = i(C′), thenN|Vλ andN′|V ′

λ
have the same

Jordan type. SinceN′′ =U−1N′U , thenN′′|Vλ andN′|V ′
λ

have the same Jordan type.
SoN|Vλ andN′′|Vλ have the same Jordan type. Therefore, there existsD+ ∈L (Vλ )

such thatN′′|Vλ = D+N|Vλ D−1
+ . By Lemma 6.8, there existsD(λ ) ∈ O(Vλ ⊕V−λ )

such that
N′′|Vλ⊕V−λ = D+(λ )N|Vλ⊕V−λ D+(λ )−1.

We defineD ∈ O(2p) by D|Vλ⊕V−λ = D(λ ), for all λ ∈ Λ. ThenN′′ = DND−1 and
D commutes withS. ThenS′ = (UD)S(UD)−1 andN′ = (UD)N(UD)−1 and we
conclude

C′ = (UD)C(UD)−1.

�

The classification of̂Sinv(2p+2) can be deduced from the classification of the
set of orbitsĨ (2p) by Jp as follows: introduce an action of the multiplicative
groupC∗ =C\{0} onJp by

for all µ ∈ C∗, µ · (Λ,m,d) = (µΛ,m′,d′), ∀ (Λ,m,d) ∈ Jp,λ ∈ Λ,

wherem′(µλ ) = m(λ ),d′(µλ ) = d(λ ), ∀ λ ∈ Λ. We havei(µC) = µ i(C), for all
C∈I (2p) andµ ∈C∗. Hence, there is a bijection̂i : P1(Ĩ (2p))→Jp/C

∗ given
by î([C]) = [i(C)], if [C] is the class ofC ∈ I (2p) and [(Λ,m,d)] is the class of
(Λ,m,d) ∈ Jp.

Proposition 6.11. The set̂Sinv(2p+2) is in bijection withJp/C
∗.

Proof. By Proposition 4.10, there is a bijection betweenŜs
i
(2p+2) and ˜P1(o(2p)).

By restriction, that induces a bijection between̂Sinv
i
(2p+2) and ˜P1(I (2p)). By

Lemma 5.9, we havêSinv
i
(2p+2) = Ŝinv(2p+2). Then, the result follows: given

g∈ Sinv(2p+2) and an associatedC∈I (2p), the bijection maps̃g to [i(C)] where
g̃ is the isomorphism class ofg. �

Remark6.12. Any g ∈ S(n+2) can be decomposed as an amalgamated product of
its Fitting components,g= gN ×

a
gI (Remark 6.2). Also,g≃ g′ if, and only if,gN ≃

g′N andgI ≃ g′I . Remark thatgN ∈ N(k+2) for somek ≤ n andgI ∈ Sinv(2ℓ+2)
for someℓ with 2ℓ ≤ n and k+ 2ℓ = n. Up to isomorphism (or the equivalent
notion of i-isomorphism, see Proposition 6.4), the classification ofN(k+ 2) is
known (Proposition 5.5) and the classification ofSinv(2ℓ+ 2) is known as well
(Proposition 6.11). The decomposition ofgN andgI as amalgamated products of
Jordan-type Lie algebras is obtained in Propositions 5.5 and 6.7 and that allows us
to write explicitly the commutation rules ofg. So, the complete description and
classification (up to isomorphism or i-isomorphism) ofSs(n+2) is achieved.



A NEW INVARIANT OF QUADRATIC LIE ALGEBRAS 33

Remark that aside the singular quadratic Lie algebras context, we can com-
pletely solve the problem of the classification of O(n)-adjoint orbits ino(n) as
follows: for C ∈ o(n), consider its Fitting componentsCN andCI . They belong
respectively toN (k), k≤ n and toI (2ℓ), ℓ≤ n with k+2ℓ= n. Moreover,C and
C′ are conjugate if, and only if,CN, C′

N andCI , C′
I are conjugate (it results from

the proof of Proposition 6.4). ButCN is nilpotent and the classification of nilpo-
tent orbits is known (see Lemma 5.4). For the invertibleCI , the classification is
given in Proposition 6.10. A Jordan-type decomposition ofC can be then deduced
(see (5.2) and the proof of Proposition 6.7). This gives an explicit description and
classification of O(n)-adjoint orbits ino(n).

7. QUADRATIC DIMENSION OF REDUCED SINGULAR QUADRATICL IE

ALGEBRAS AND INVARIANCE OF dup(g)

7.1. Let(g,B) be a quadratic Lie algebra. It is shown in [BB07] that the space of
invariant symmetric bilinear forms ong and the space generated by non-degenerated
ones are the same. Let us call itB(g). The dimension ofB(g) is thequadratic di-
mensionof g, denote it bydq(g). Obviously, dq(g) = 1 if g is simple. If g is
reductive, but neither simple, nor one-dimensional, then

dq(g) = s(g)+
dim(Z(g))(1+dim(Z(g))

2
,

whereZ(g) is the center ofg ands(g) is the number of simple ideals of a Levi
factor of g [BB07]. A general formula fordq(g) is not known. Here, we give a
formula for reduced singular quadratic Lie algebras. To anysymmetric bilinear
form B′ ong, there is an associated symmetric mapD : g→ g satisfying

B′(X,Y) = B(D(X),Y),∀ X,Y ∈ g.

The following Lemma is straightforward.

Lemma 7.1. Let (g,B) be a quadratic Lie algebra, B′ be a bilinear form ong and
D ∈ L (g) its associated symmetric map. Then:

(1) B′ is invariant if, and only if, D satisfies

(I) D([X,Y]) = [D(X),Y] = [X,D(Y)], ∀ X,Y ∈ g.

(2) B′ is non-degenerate if, and only if, D is invertible.

A symmetric mapD satisfying I is called acentromorphismof g. The space of
centromorphisms and the space generated by invertible centromorphisms are the
same, denote it byC(g). We havedq(g) = dim(C(g)).

Proposition 7.2. Letg be a reduced singular quadratic Lie algebra and D∈L (g)
be a symmetric map. Then:

(1) D is a centromorphism if, and only if, there existsµ ∈ C and a symmetric
mapZ : g → Z(g) such thatZ|[g,g] = 0 and D= µ Id+Z. Moreover D is
invertible if, and only if,µ 6= 0.



34 DUONG MINH THANH, GEORGES PINCZON, ROSANE USHIROBIRA

(2)

dq(g) = 1+
dim(Z(g))(1+dim(Z(g))

2
.

Proof.

(1) If g = o(3), with B= λκ andκ the Killing form, the two results are ob-
vious. So, we examine the case whereg is solvable, and theng can be

realized as a double extension:g = (CX1⊕CY1)
⊥
⊕ q, with corresponding

bilinear formB on q, C= ad(Y1), C=C|q ∈ o(q).
Let D be an invertible centromorphism. One hasD◦ad(X) = ad(X)◦D,

for all X ∈ g and that impliesDC=CD. Using formula (1) of Lemma 4.2
and CD = DC, from [D(X),Y1] = [X,D(Y1)], we find D(C(X)) =
B(D(X1),Y1)C(X). Let µ = B(D(X1),Y1). SinceD is invertible, one has
µ 6= 0 andC(D−µ Id) = 0. Since ker(C) =CX1⊕ker(C)⊕CY1 = Z(g)⊕
CY1, there exists a mapZ : g → Z(g) and ϕ ∈ g∗ such thatD− µ Id =
Z+ϕ ⊗Y1. But D maps[g,g] into itself, soϕ |[g,g] = 0. One has[g,g] =
CX1 ⊕ Im(C). If X ∈ Im(C), let X = C(Y). ThenD(X) = D(C(Y)) =
µC(Y), soD(X)= µX. ForY1, D([Y1,X]) =DC(X)= µC(X) for all X ∈ g.
But also,D([Y1,X]) = [D(Y1),X] = µC(X)+ϕ(Y1)C(X), henceϕ(Y1) = 0.

Assume we have shown thatD(X1)= µX1. Then ifX ∈ q, B(D(X1),X)=
µB(X1,X)= 0. Moreover,B(D(X1),X)=B(X1,D(X)), soϕ(X)= 0. Thus,
to prove (1), we must prove thatD(X1) = µX1. We decomposeq respec-
tively to C as in Appendix 1. Letl= ker(C). Then:

q= (l⊕ l′)
⊥
⊕ (u⊕u′)

andC is an isomorphism froml′
⊥
⊕ (u⊕u′) onto l

⊥
⊕ (u⊕u′). Or

q= (l+ l′)
⊥
⊕ CT

⊥
⊕ (u⊕u′)

andC is an isomorphism froml′
⊥
⊕ CT

⊥
⊕ (u⊕u′) ontol

⊥
⊕ CT

⊥
⊕ (u⊕u′).

If u⊕ u′ 6= {0}, there existX′, Y′ ∈ u⊕ u′ such thatB(X′,Y′) = −1

andX, Y ∈ l′
⊥
⊕ (u⊕ u′) (resp. l′

⊥
⊕ CT

⊥
⊕ (u⊕ u′)) such thatX′ = C(X),

Y′ =C(Y). It follows that[C(X),Y] = X1 and thenD(X1) = [DC(X),Y] =
µ [C(X),Y] = µX1.

If u⊕u′ = {0}, then eitherq= (l+ l′)
⊥
⊕ CT or q= l+ l′. The first case

is similar to the situation above, settingX′ =Y′ =
T
i

andX, Y ∈ l′
⊥
⊕ CT.

In the second case,l= Im(C) is totally isotropic andC is an isomorphism
from l′ onto l. For any non-zeroX ∈ l′, choose a non-zeroY ∈ l′ such that
B(C(X),Y) = 0. ThenD([X,Y]) = D(B(C(X),Y)X1) = 0. But this is also
equal to[D(X),Y] = µ [X,Y]+ϕ(X)C(Y). SinceD is invertible,[X,Y] = 0
and we conclude thatϕ(X) = 0. Thereforeϕ |l′ = 0. There existL, L′ ∈ l′

such thatX1 = [L,L′] and thenD(X1) = µX1.



A NEW INVARIANT OF QUADRATIC LIE ALGEBRAS 35

Finally, C(g) is generated by invertible centromorphism, so the neces-
sary condition of (1) follows. The sufficiency is a simple verification.

(2) As in (1), we can restrict to a double extension and followthe same nota-
tion. By (1), D is a centromorphism if, and only if,D(X) = µX +Z(X),
for all X ∈ g with µ ∈ C andZ is a symmetric map fromg into Z(g)
satisfyingZ|[g,g] = 0. To computedq(g), we use Appendix 1. Assume

dim(q) is even and writeq = (l⊕ l′)
⊥
⊕ (u⊕ u′) with l = ker(C), Z(g) =

CX1 ⊕ l, Im(C) = l
⊥
⊕ (u⊕ u′) and [g,g] = CX1 ⊕ Im(C). Let us define

Z : l′
⊥
⊕ CY1 → l

⊥
⊕ CX1: set basis{X1,X2, . . . ,Xr} of l⊕CX1 and{Y′

1 =
Y1,Y′

2, . . . ,Y
′
r } of l′⊕CY1 such thatB(Y′

i ,Xj) = δi j . ThenZ is completely
defined by

Z

(
r

∑
j=1

µ jY
′
j

)
=

r

∑
i=1

(
r

∑
j=1

νi j µ j

)
Xi

with νi j = ν ji = B(Y′
i ,Z(Y

′
j )) and the formula follows. The case of dim(q)

odd is completely similar.

�

7.2. As a consequence of Proposition 7.2, we prove:

Proposition 7.3. Thedup-number is invariant under isomorphism, i.e. ifg andg′

are quadratic Lie algebras withg≃ g′, thendup(g) = dup(g′).

Proof. Assume thatg ≃ g′. Since an i-isomorphism does not change dup(g′), we
can assume thatg = g′ as Lie algebras equipped with invariant bilinear formsB
andB′. Thus, we have two dup-numbers, dupB(g) and dupB′(g).

We choosez such thatZ(g) = (Z(g)∩ [g,g])⊕ z. Thenz∩ z⊥B = {0}, z is a

central ideal ofg and g = l
⊥B
⊕ z with l a reduced quadratic Lie algebra. Then

dupB(g)= dupB(l) (see (2.2)). Similarly,z∩z⊥B′ = {0}, g= l′
⊥B′

⊕ zwith l a reduced
quadratic Lie algebra and dupB′(g) = dupB′(l′). Now, l and l′ are isomorphic to
g/z, sol≃ l′. Therefore, it is enough to prove the result for reduced quadratic Lie
algebras to conclude that dupB(l) = dupB′(l) and then that dupB(g) = dupB′(g).

Considerg a reduced quadratic Lie algebra equipped with bilinear forms B and
B′ and associated 3-formsI and I ′. (see (1.6)). We have dupB(g) = dim(VI ) and
dupB′(g)= dim(VI ′) with VI = {α ∈ g∗ |α∧ I = 0} andVI ′ = {α ∈ g∗ |α∧ I ′ = 0}.

We start with the case dupB(g) = 3. This is true if, and only if, dim([g,g]) = 3
[PU07]. Then dupB′(g) = 3.

If dupB(g) = 1, theng is of typeS1 with respect toB. We apply Proposition 7.2
to obtain an invertible centromorphismD= µ Id+Z for a non-zeroµ ∈C,Z= g→
Z(g) satisfyingZ|[g,g] = 0 and such thatB′(X,Y) = B(D(X),Y), for all X,Y ∈ g.
Then I ′(X,Y,Z) = B′([X,Y],Z) = B([D(X),Y],Z) = µB([X,Y],Z) = µ I(X,Y,Z),
for all X, Y, Z ∈ g. SoI ′ = µ I and dupB′(g) = dupB(g).

Finally, if dupB(g) = 0, then from the previous cases,g cannot be of typeS3 or
S1 with respect toB′, so dupB′(g) = 0.
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�

8. APPENDIX 1

In this Appendix, we recall some facts on skew-symmetric maps used in the
paper. Nothing here is new, but short proofs are given for thesake of completeness.

Throughout this section,(V,B) is a quadratic vector space andC is an element
of o(V). We recall the useful identity ker(C) = (Im(C))⊥.

Lemma 8.1. There exist subspaces W and N of V such that:

(1) N ⊂ ker(C), C(W)⊂W and V=W
⊥
⊕ N.

(2) Let BW = B|W×W and CW = C|W. Then BW is non-degenerate, CW ∈
o(W,BW) andker(CW)⊂ Im(CW) = Im(C).

Proof. We follow the proof of Proposition 2.4, given in [PU07]. LetN0 = ker(C)∩
Im(C) and letN be a complementary subspace ofN0 in ker(C), ker(C) = N0⊕N.
Since ker(C) = (Im(C))⊥, we haveB(N0,N) = {0} and N∩N⊥ = {0}. So, if

W = N⊥, one hasV =W
⊥
⊕ N. FromC(N) = {0}, we deduce thatC(W)⊂W.

It is clear thatB is non-degenerate and thatCW ∈ o(W). Moreover, sinceC(W)⊂
W andC(N) = {0}, then Im(C) = Im(CW). It is immediate that ker(CW) = N0, so
ker(CW)⊂ Im(CW). �

Lemma 8.2. Assume thatker(C) ⊂ Im(C). Denote L= ker(C). Let {L1, . . . ,Lr}
be a basis of L.

(1) If dim(V) is even, there exist subspaces L′ with basis{L′
1, . . . ,L

′
r}, U with

basis{U1, . . . ,Us} and U′ with basis{U ′
1, . . . ,U

′
s} such that B(Li,L′

j) = δi j ,
for all 1 ≤ i, j ≤ r, L and L′ are totally isotropic, B(Ui,U ′

j) = δi j , for all
1≤ i, j ≤ s, U and U′ are totally isotropic and

V = (L⊕L′)
⊥
⊕ (U ⊕U ′).

MoreoverIm(C) = L
⊥
⊕ (U ⊕U ′) and C: L′

⊥
⊕ (U ⊕U ′) → L

⊥
⊕ (U ⊕U ′)

is a bijection.

(2) If dim(V) is odd, there exist subspaces L′, U and U′ as in (1) and v∈ V
such that B(v,v) = 1 and

V = (L⊕L′)
⊥
⊕ Cv

⊥
⊕ (U ⊕U ′).

Moreover Im(C) = L
⊥
⊕ Cv

⊥
⊕ (U ⊕U ′) and C : L′

⊥
⊕ Cv

⊥
⊕ (U ⊕U ′) →

L
⊥
⊕ Cv

⊥
⊕ (U ⊕U ′) is a bijection.

(3) In both cases,rank(C) is even.

Proof. Since(ker(C))⊥ = Im(C), L is isotropic.
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(1) If dim(V) is even, there exist maximal isotropic subspacesW1 andW2 such
thatV = W1 ⊕W2 [Bou59] andL ⊂ W1. Let U be a complementary sub-
space ofL in W1, W1 = L⊕U and{U1, . . . ,Us} a basis ofU . Consider
the isomorphismΨ : W2 →W∗

1 defined byΨ(w2)(w1) = B(w2,w1), for all
w1 ∈W1, w2 ∈W2. DefineL′

i = ψ−1(L∗
i ), 1≤ i ≤ r, L′ = span{L′

1, . . . ,L
′
r},

U ′
j = ψ−1(U∗

j ), 1≤ j ≤ s, U ′ = span{U ′
1, . . . ,U

′
s}. ThenB(Li,L′

j) = δi j ,
1≤ i, j ≤ r, L andL′ are isotropic,B(Ui,U ′

j) = δi j , for all 1≤ i, j ≤ s, U
andU ′ are isotropic and

V = (L⊕L′)
⊥
⊕ (U ⊕U ′).

Since Im(C) = L⊥, we have Im(C) = L
⊥
⊕ (U ⊕ U ′). Finally, if

v∈ L′
⊥
⊕ (U ⊕U ′) andC(v) = 0, thenv∈ L. Sov= 0. ThereforeC is one

to one fromL′
⊥
⊕ (U ⊕U ′) into L

⊥
⊕ (U ⊕U ′) and since the dimensions are

the same,C is a bijection.

(2) There exist maximal isotropic subspacesW1 andW2 such thatV = (W1 ⊕

W2)
⊥
⊕ Cv, with v∈V such thatB(v,v) = 1 andL ⊂W1 [Bou59]. Then the

proof is essentially the same as in (1).

(3) Assume dim(V) even. Define a bilinear form∆ on L′
⊥
⊕ (U ⊕U ′) by

∆(v1,v2) = B(v1,C(v2)), for all v1, v2 ∈ L′
⊥
⊕ (U ⊕U ′). SinceC ∈ o(V),

∆ is skew-symmetric. Letv1 ∈ L′
⊥
⊕ (U ⊕U ′) such that∆(v1,v2) = 0, for

all v2 ∈ L′
⊥
⊕ (U ⊕U ′). ThenB(v1,w) = 0, for all w ∈ L

⊥
⊕ (U ⊕U ′). It

follows thatB(v1,w) = 0, for all w∈V, sov1 = 0 and∆ is non-degenerate.

So dim(L′
⊥
⊕ (U ⊕U ′) is even. Therefore dim(L′) = dim(L) is even and

rank(C) is even. IfV is odd-dimensional, the proof is completely similar.
�

Corollary 8.3. If C ∈ o(V), thenrank(C) is even.

Proof. By Lemma 8.1, Im(C) = Im(CW) and rank(CW) is even by the preceding
Lemma. �

For instance, ifC ∈ o(V) andC is invertible, then dim(V) must be even. But
this can also be proved directly: whenC is invertible, then the skew-symmetric
form ∆C on V defined by∆C(v1,v2) = B(v1,C(v2)), for all v1, v2 ∈ V, is clearly
non-degenerate.

WhenC is semi-simple (i.e. diagonalizable), we haveV = ker(C)
⊥
⊕ Im(C) and

C|Im(C) is invertible. So semi-simple elements are completely described by:

Lemma 8.4. Assume C is semi-simple and invertible. Then there is a basis
{e1, . . . ,ep, f1, . . . , fp} of V such that B(ei ,ej) = B( fi , f j) = 0, B(ei , f j) = δi j , 1≤
i, j ≤ p. For 1 ≤ i ≤ p, there exist non-zeroλi ∈ C such that C(ei) = λiei and
C( fi) =−λi fi .
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Moreover, ifΛ denotes the spectrum of C, thenλ ∈ Λ if, and only if,−λ ∈ Λ; λ
and−λ have the same multiplicity.

Proof. We prove the result by induction on dim(V). Assume dim(V) = 2. Let
{e1,e2} be an eigenvector basis ofV corresponding to eigenvaluesλ1 andλ2. We
haveB(C(v),v′) = −B(v,C(v′)) andC is invertible, soB(e1,e1) = B(e2,e2) = 0,

B(e1,e2) 6= 0 andλ2 = −λ1. Let f1 =
1

B(e1,e2)
e2, then the basis{e1, f1} is a

convenient basis.
Assume that the result is true for quadratic vector spaces ofdimensionn with

n ≤ 2(p− 1). Assume dim(V) = 2p. Let {e1, . . . ,e2p} be an eigenvector basis
with corresponding eigenvaluesλ1, . . . ,λ2p. As before,B(ei ,ei) = 0, 1≤ i ≤ 2p,

so there existsj such thatB(e1,ej) 6= 0. Thenλ j =−λ1. Let f1 =
1

B(e1,ej)
ej . Then

B|span{e1, f1} is non-degenerate, soV = span{e1, f1}
⊥
⊕ V1, whereV1 = span{e1, f1}⊥.

But C mapsV1 into itself, so we can apply the induction assumption and theresult
follows. �

As a consequence, we have this classical result, used in Section 5:

Lemma 8.5.
(1) Let C be a semi-simple element ofo(n). Then C belongs to theSO(n)-

adjoint orbit of an element of the standard Cartan subalgebra of o(n)
(i.e., an element with matrixdiag2p(λ1, . . . ,λp,−λ1, . . . ,−λp) if n = 2p
and diag2p+1(λ1, . . . ,λp,0,−λ1, . . . ,−λp) if n = 2p+ 1 in the canonical
basis ofCn).

(2) Let C and C′ be semi-simple elements ofo(n). Then C and C′ are in the
sameO(n)-adjoint orbit if, and only if, they have the same spectrum, with
same multiplicities.

Proof.

(1) We haveCn = ker(C)
⊥
⊕ Im(C) and rank(C) is even. So dim(ker(C)) is

even ifn= 2p and odd, ifn= 2p+1. Then apply Lemma 8.4 toC|Im(C) to
obtain the result.

(2) If C andC′ have the same spectrum and their eigenvalues, same multiplic-
ities, they are O(n)-conjugate to the same element of the standard Cartan
subalgebra.

�

Remark8.6.

(1) Attention: O(n)-adjoint orbits are generally not the same as SO(n)-adjoint
orbits.

(2) Lemma 8.5(1) is a particular case of a general and classical result on semi-
simple Lie algebras: any semi-simple element of a semi-simple Lie algebra
belongs to a Cartan subalgebra and all Cartan subalgebras are conjugate
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under the adjoint action [Sam80]. Here,o(n) is a semi-simple Lie algebra
and the adjoint group is SO(n).

9. APPENDIX 2

Here we prove:

Lemma 9.1. Let (g,B) be a non-Abelian 5-dimensional quadratic Lie algebra.
Theng is a singular quadratic Lie algebra.

Proof.

• We assumeg is not solvable and we writeg= s⊕r with s semi-simple and
r the radical ofg [Bou71]. Thens≃ sl(2) andB|s×s = λκ whereκ is the
Killing form.

If λ = 0, considerΨ : s→ r∗ defined byΨ(S)(R) =B(S,R), for all S∈ s,
R∈ r. ThenΨ is one-to-one andΨ(ad(X)(S)) = ǎd(X)(ψ(S)), for all X,
S∈ s. SoΨ must be a homomorphism from the representation(s,ad|s) of
s into the representation(r∗, ǎd|s), soΨ = 0, a contradiction.

So λ 6= 0. ThenB|s×s is non-degenerate. Thereforeg = s
⊥
⊕ s⊥ and

ad(s)|s⊥ is an orthogonal 2-dimensional representation ofs. Hence,
ad(s)|s⊥ = 0 and[s,s⊥] = 0. We haveB(X, [Y,Z]) = B([X,Y],Z) = 0, for
all X ∈ s, Y ∈ s⊥, Z ∈ g. It follows thats⊥ is an ideal ofg and therefore a

quadratic 2-dimensional Lie algebra. Sos⊥ is Abelian. Finally,g= s
⊥
⊕ s⊥

with s⊥ a central ideal ofg, so dup(g) = dup(s) = 3.

• We assume thatg is solvable and we writeg = l
⊥
⊕ z with z a central ideal

of g (Proposition 2.4). Then dim(l) ≥ 3. If dim(l) = 3 or 4, then it is
proved in Proposition 2.10 thatl is singular, sog is singular. So we can
assume thatg is reduced, i.e.Z(g) ⊂ [g,g]. It results that dim(Z(g)) = 1
or 2 (Remark 2.3).

– If dim(Z(g)) = 1,Z(g) =CX0. Then dim([g,g]) = 4 and[g,g] = X⊥
0 .

We can chooseY0 such thatB(X0,Y0) = 1 and B(Y0,Y0) = 0. Let

q = (CX0⊕CY0)
⊥. Theng = (CX0⊕CY0)

⊥
⊕ q. If X, X′ ∈ q, then

B(X0, [X,X′]) = B([X0,X],X′) = 0, so[X,X′] ∈ X⊥
0 . Write [X,X′] =

λ (X,X′)X0 + [X,X′]q with [X,X′]q ∈ q. Remark that[X, [X′,X′′]] =
λ (X, [X′,X′′]q)X0+[X, [X′,X′′]q]q, for all X, X′, X′′ ∈ q. So[·, ·]q sat-
isfies the Jacobi identity. MoreoverB([X,X′],X′′) =−B(X′, [X,X′′]q).
But alsoB([X,X′],X′′) = B([X,X′]q,X′′). So (q, [·, ·]q,B|q×q) is a 3-
dimensional quadratic Lie algebra.
If q is an Abelian Lie algebra, then[X,X′] ∈ CX0, for all X, X′ ∈ q.
Write B(Y0, [X,X′]) = B([Y0,X],X′) to obtain [X,X′] =
B(ad(Y0)(X),X′)X0, for all X, X′ ∈ q. Since dim(q)= 3 and ad(Y0)|q is
skew-symmetric, there existsQ0 ∈ q such that ad(Y0)(Q0) = 0. It fol-
lows thatQ0 ∈ Z(g) and that is a contradiction since dim(Z(g)) = 1.
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Therefore(q, [·, ·]q)≃ sl(2). Consider

0→ CX0 → X⊥
0 → q→ 0.

Then there is a section σ : q → X⊥
0 such that

σ([X,X′]q) = [σ(X),σ(X′)], for all X, X′ ∈ q [Bou71]. Thenσ(q)
is a Lie subalgebra ofg, isomorphic tosl(2) and that is a contradic-
tion sinceg is solvable.

– If dim(Z(g)) = 2, then we choose a non-zeroX0 ∈ Z(g) andY0 ∈ g

such thatB(X0,Y0) = 1 andB(Y0,Y0) = 0. Let q = (CX0 ⊕CY0)
⊥.

Theng= (CX0⊕CY0)
⊥
⊕ q and as in the preceding case,[X,X′] ∈X⊥

0 ,
for all X, X′ ∈ q. Write [X,X′] = λ (X,X′)X0+[X,X′]q with [X,X′]q ∈
q. Same arguments as in the preceding case allow us to conclude
that [·, ·]q satisfies the Jacobi identity and thatB|q×q is invariant. So
(q, [·, ·]q,B|q×q) is a 3-dimensional quadratic Lie algebra.
If q≃ sl(2), then apply the same reasoning as in the preceding case to
obtain a contradiction withg solvable.
If q is an Abelian Lie algebra, then[X,X′] ∈ CX0, for all X, X′ ∈ q.
Again, as in the preceding case,[X,X′] = B(ad(Y0)(X),X′)X0, for all
X, X′ ∈ q. Then it is easy to check thatg is a double extension of
the quadratic vector spaceq byC= ad(Y0)|q. By Proposition 4.3,g is
singular.

�

Remark9.2. Let us give a list of all non-Abelian 5-dimensional quadratic Lie al-
gebras:

• g
i
≃ o(3)

⊥
⊕ C2 with C2 central,o(3) equipped with bilinear formλκ , λ ∈

C, λ 6= 0 andκ the Killing form. We have dup(g) = 3.

• g
i
≃ g4

⊥
⊕ C with C central,g4 the double extension ofC by

(
1 0
0 −1

)
, g

is solvable, non-nilpotent and dup(g) = 3.

• g
i
≃ g5, a double extension ofC3 by




0 1 0
0 0 −1
0 0 0


, g is nilpotent and

dup(g) = 3.

See Proposition 4.4 for the definition ofg4 andg5. Remark thatg4
⊥
⊕ C is actu-

ally the double extension ofC3 by




1 0 0
0 0 0
0 0 −1



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Norm. Sup.4 (1985), 553 – 561.↑2, 15

[PU07] G. Pinczon and R. Ushirobira,New Applications of Graded Lie Algebras to Lie Algebras,
Generalized Lie Algebras, and Cohomology, Journal of Lie Theory17 (2007), no. 3, 633 –
668.↑1, 7, 8, 9, 10, 11, 17, 18, 35, 36

[Sam80] H. Samelson,Notes on Lie algebras, Universitext, Springer-Verlag, 1980.↑39
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