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A NEW INVARIANT OF QUADRATIC LIE ALGEBRAS

DUONG MINH THANH, GEORGES PINCZON, ROSANE USHIROBIRA

ABSTRACT. We define a new invariant of quadratic Lie algebras and goena
plete study and classification of singular quadratic Lieshtgs, i.e. those for
which the invariant does not vanish. The classificationleteel to Qn)-adjoint
orbits ino(n).

0. INTRODUCTION

Let g be a non-Abelian quadratic Lie algebra equipped with a &dimformB.
We can associate i@, B) a canonical non-zero 3-forine A3(g)? defined by

1(X,Y,Z) :=B([X,Y],Z), VX,Y,Z € g.
Let{-,-} be the super-Poisson bracketfy(y). The 3-forml satisfies (se€ [PU07]):
{I,1}=0.

Conversely, given a quadratic vector spdgeB) and a non-zero 3-fornh €
A3(g) such that{l,I} = 0, there is a non-Abelian quadratic Lie algebra structure
on g such that is the canonical 3-form associatedgt@PUQ7]).

Let Q(n) be the set of non-Abelian quadratic Lie algebra structurethe qua-
dratic vector spac€". We identify

Q(n) {l e N3 | {|,|}=o}

andQ(n) is an affine variety in\3(C") (Propositior. 2.B).
The dupnumberof a non-Abelian quadratic Lie algebgds defined by

dup(g) :=dim({a eg*|aAnl =0}),

wherel is the 3-form associated @ It measures the decomposability of the 3-
form | and its range i§0, 1,3} (Propositiori LIL). For instanckjs decomposable

if, and only if, dugg) = 3 and the corresponding quadratic Lie algebras are clas-
sified in [PUQY], up to i-isomorphism (i.e. isometric isormpbism). It is easy

to check that the dup-number gfis invariant by i-isomorphism, that is, two i-
isomorphic quadratic Lie algebras have the same dup-nutheenmal2.1). We
shall prove in this paper, a much stronger result:

thedup-number ofg is invariant by isomorphism.
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To prove this result, we need to fully understand the strecdfi some particular
Lie algebras. This study is interesting by itself and we Istlakcribe it in the
sequel.

We say that a non-Abelian quadratic Lie algelres ordinary if dup(g) = O.
Otherwise,g is calledsingular. Singular quadratic Lie algebras aretgpeS; if
their dup-number is 1 and ¢fpeSs if their dup-number is 3.

Forn> 1, letO(n) be the set obrdinary andS(n) be the set ofingularquadratic
Lie algebra structures o@". We prove the following Theorem (Propositidns]2.8,
[2.10 and Appendix 2):

THEOREM 1:
(1) O(n) is a Zariski-open subset &f(n).
(2) 8(n) is a Zariski-closed subset 6f(n).
(3) Q(n) #0if, and only if, n> 3.
(4) O(n) # 01if, and only if, n> 6.

As a consequence, non-Abelian quadratic Lie algebras vuitlerasion higher
than 6 are generically ordinary. In this work, we shall givaenplete classification
of singular quadratic Lie algebras, up to i-isomorphism apdo isomorphism.

Let us give some details of the main results of the paper. i@d8t contains
a preparatory study of quadratic Lie algebras of tgpe It allow us to describe
solvable singular Lie algebras in terms of double exterssianuseful method in-
troduced by V. Kac and developed in [MR85] ahd [FS87]. Finat,obtain (Propo-
sitions[4.3 an@414):

THEOREM 2:
(1) Any quadratic Lie algebra of typ®; is solvable and it is a double exten-
sion.

(2) A quadratic Lie algebra is singular and solvable if, and oiilyit is a
double extension.

What aboutnon-solvablesingular Lie algebras? Such a Lie algelgraan be
written as

L
g=5D3
wherej is a central ideal off ands ~ 0(3) equipped with a bilinear form k for

some non-zerd € C, wherek is the Killing form of o(3) (Propositior 4.4).
In the remainder of the paper, we focus on the studgabfable singular Lie

algebras We denote bys(n-+ 2) the set of these structures 61_ﬁ+2, by §S(n+ 2)

the set of isomorphism classes of elementSsim+ 2) and by§5I (n+2) the set of
i-isomorphism classes. Also, we denotelby(o(n)) the projective space af(n)

and byP1(o(n)) the set of orbits of elements iPt(o(n)) under the action induced
by the Q(n)-adjoint action oro(n). GivenC € o(n), there is an associated double
extensionge € 8s(n+2).
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In Propositiof 4.6 and Corollafy 4.6, we characterize i¥isgphisms and iso-
morphisms. As a consequence, we prove the following resatjectured and
partially proved in[[ES87] (Proposition 4.10):

THEOREM 3: o i
The maypC — g¢ induces a bijection fror?(o(n)) ontoSs (n+ 2).

Theorem 3 gives a remarkable relation between solvablelsinquadratic Lie
algebra structures o2 and Q(n)-adjoint orbits ino(n). A strong improvement
to Theorem 3 will be given in Theorem 6.

Next, we detail some particular cases. [&fn+ 2) be the set ofliagonaliz-
able singular structures of£"*? (i.e. C is a semi-simple element af(n)) and
@i(m— 2) be the set of i-isomorphism classeslxin+ 2). It is clear by Theorem
3 thatD’ (n+2) is in bijection with the well-known set of semi-simplg®)-orbits
in PY(o(n)) (see [CM93] for more details on this set). A description @ torre-
sponding Lie algebra structures is given in Propositioh 6atollary[5.8, Lemma
[5.9 and Proposition 5.11.

Let N(n+2) be the set ofilpotent singular structures oi"*?, ﬁi(nJr 2) be
the set of i-isomorphism classes a]?fd'w 2) be the set of isomorphism classes of
elements iN(n+ 2).

In the nilpotent case, we prove (Propositionl 5.2):

THEOREM 4:
(1) Letg andg’ € N(n+2). Then

g2 g if, and only if, g~ g.
ThusN' (n+2) = N(n+2).

(2) Let.#(n) be the set of nilpoter®(n)-orbits ino(n). Then the mag — g
induces a bijection from4#”(n) onto N (n+2) = JA\r(n +2).
(3) The setN(n—+ 2) is finite.

The classification of nilpotent @)-orbits in o(n) is known [CM93]. It uses
deep results by Jacobson-Morosov and Kostant @)-triples in semi-simple Lie
algebras. Using this classification, we obtain a classifinaif JA\ri(n+ 2) = JA\r(n+
2) in terms ofspecialpartitions ofn and a characterization of the corresponding Lie
algebras by means of amalgamated products of nilpotenadeygbe Lie algebras
(Propositiori 5.b).

Before working on the general case, we define the notion dfartible sin-
gular Lie algebra(i.e. C is invertible). LetSi, (2p+ 2) be the set of such struc-
tures onC2P+2 and i, (2p + 2) be the set of isomorphism classes of elements
in Sinv(2p+2). The notions of i-isomorphism and isomorphism coincidehia t
invertible case as we show in Leminal5.9.
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Given a solvable singular Lie algebgarealized as a double extension@f by
C € o(n), we consider the Fitting componer@s andCy of C and the correspond-
ing double extensiong = gs, andgn = g, that we call theFitting components
of g. We haveg, invertible, gy nilpotent and we prove (Proposition b.4):

THEOREM5:

Let g and g’ be solvable singular Lie algebras and lgg, gi, gy, g) be their
Fitting components. Then

. i
g~g if, and only if { N =N
g1 = Gf

The result remains valid if we replac'e by ~ .

Since i-isomorphism and isomorphism are equivalent netionthe case of
nilpotent or invertible singular Lie algebras, we deduceaasmmediate Corol-
lary:

THEOREM 6:
Letg andg’ be solvable singular Lie algebras. Then

g~g if, and only if g ~ g'.
ThereforeSg(n+2) = 8¢ (n+2).

Theorem 6 is a really interesting and unexpected propergolible singular
gquadratic Lie algebras.

Using Theorem 5, since the study of the nilpotent case is tatmpwve are left
with the invertible case. First, we achieve the descriptibrthese structures in
terms of amalgamated products of Jordan-type Lie algelr&ropositior 6.J7.
Then, we give a classification of invertible(@-orbits ino(n) (i.e. O(n)-orbits of
invertible elements). Let (n) be the set of invertible elements dn) and.# (n)
be the set of (n)-adjoint orbits of elements it (n). Notice that# (2p+1) =0
(Appendix 1). Next, we consider

2= {(d,....d)eN|di >dp > >d > 1}
reN*

and the mapp : 2 — N defined by®(dy,...,d;) = 3{_,di. We introduce the set
Yy of all triples (A, m,d) such that:

(1) Ais asubset of \ {0} with A <2pandA € Aif, and only if, —A € A.

(2) m: A — N* satisfiean(A) =m(—A), forallA e Aandy com(A) = 2p.

(3) d: A\ — Z satisfied(A) =d(—A), forall A e Aand®Pod =m.

To everyC € .#(2p), we can associate an eleméntm,d) of #, as follows:

write C = S+ N as a sum of its semi-simple and nilpotent parts. Thénthe spec-
trum of S, mis the multiplicity map om\ andd gives the size of the Jordan blocks

of N. Therefore, we obtain a map .#(2p) — _#, and we prove (Proposition
[6.10):
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THEOREM 7: ~
The map i .#(2p) — _#p induces a bijection fron¥ (2p) onto _#p,.

As a Corollary, we deduce a bijection froﬁ}]\v(Zer 2) onto _¢,/C* (Proposi-
tion[6.11) where the action @f € C* = C\ {0} on _#}, is defined by

- (A,md) = (uA,m d"), withm (gA)=m(A) and d'(uA) =d(A), YA €A

Combine Theorems 5, 4 and 7 to obtain a complete classiﬁicaﬁ&'(n) =

§s(n). As a by-product, we also obtain a complete classificatio®(@f)-orbits
in o(n), a result which is certainly known, but for which we have naikble
reference.

Finally, as a consequence of the preceding results, we jpm@&ection 7 (Propo-
sition[7.3):

THEOREM 8:
Thedup-number is invariant under isomorphism, i.e. if

g~g then dup(g) = dup(g’).

This result is rather unexpected. It is obtained throughrapedgation of centro-
morphisms in the reduced singular case (Propodifion 7.2).
We also obtain the quadratic dimensiongdBBO7] in this case:

dim(Z(g))(1+dim(Z(g))
2 bl

whereZ(g) is the center ofy.

There are two Appendix. In the first one, we collect some \edwn useful
properties of elements ofn), shorts proofs are given for the sake of completeness.
In Appendix 2, we show thad(5) = 0 and describ&(5) up to i-isomorphism.

1. PRELIMINARIES

1.1. All vector spaces considered in the paper are finiteedsional complex
vector spaces.

Given a vector spacé, we denote by * its dual space. Given a subsé€bfV,
X ++ denotes therthogonal subspacef X in V*.

We denote byZ (V) thealgebra of linear operatorsf V, by GL(V) the group
of invertible operatorsn .#(V), by'A thetransposeof an operatoA € .#(V) and
by A(V) the Z-graded)Grassmann algebraf skew-symmetric multilinear forms
onV, i.e. A(V) is the exterior algebra &f*. Recall that given an isomorphis/
between two vector spac¥sandV’, there is an algebra isomorphism frohiV’)
onto A(V) that extends the transpose: V’* — V* and that we also denote bsx.
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1.2. Letl € AX(V), for k> 1. We introduce two subspaces\6f:
Vi = {aeV'|anl =0}
Wi = {veV]i()=0}Y ={iuw()|vwW eV
wherel, is the derivation of\ (V) defined by:
(Q)(V1, ., Vi—1) = Qv Ve, V—1),V Qe AT(V), Vi, .1 €V
The following result is well known, see for instance [Boli58]

Proposition 1.1. Let 1 € AX(V), | # 0. Then:

(1) Vi € Wy, dim(V) <k anddim(W;) > k.

(2) If {ay,...,0} is a basis ofV|, thenai A--- A a, divides |. Moreover, |
belongs to the k-th exterior power ®f,, also denoted b)Ak(W|).

(3) lis decomposable if, and only dim(V;) =k ordim(W,) = k. In this case,
Vi =W, and if {a,...,ax} is a basis ofV|, one has for some non-zero
A eC,

l=AaiA---AQg.

1.3. A vector spac¥ equipped with a non-degenerate symmetric bilinear form
B is called aquadratic vector spacen this case, there is an isomorphigmmfrom
V ontoV* defined by

P(V)(V):=B(vV), YVvV V.

Given a subspac@/ of V, we denote by~ the orthogonal subspacef W in
V with respect to the bilinear forrB. One has/ =W @ W+ if, and only if, the
restrictionB|w«w iS non degenerate and in this case, we use the notation

€
V=WaoW.

1.4. Let(V,B) and (V',B’) be two quadratic vector spaces. Asometryis a
bijective mapA:V — V' that satisfies

B'(A(v),A(w)) = B(V,w), ¥V v,w € V.

We denote byA* € .Z (V) theadjoint mapof an elemeni € £ (V). Remark that
Ais an isometry o¥ if, and only if, A=t = A",

Thegroup of isometriesfV is denoted by ©/,B) (or simply QV)) and its Lie
algebra is denoted by(V,B) (or simply o(V)). An elementA of o(V) C .Z(V)
satisfiesA* = —A (that mean®\ is skew-symmetric with respect B). Notice that
Tr(A) =0, for all A€ o(V). Theadjoint actionAd of O(V) ono(V) is given by

Ady(C):=UCU % YU € O(V),Cco(V).

We denote by’c, theorbit of an elemen€ € o(V).

LetV = C". Consider the canonical basig = {Ej,...,Ey} of V. If n even,
n=2p, write & = {E1,...,Ep,Fi1,...,Fp} and ifnis odd,n = 2p+ 1, write # =
{Ex1,...,Ep,G,Fy,...,Fp}. Thecanonical bilinear form BonV is defined by:
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e if N=2p:
B(Ei7FJ) d]a (EH ) B(HJFJ):07V1§|7J§p
o if N=2p+1:

B(EiaFj) d]a (EH ) B(HJFJ):07V1SI71§p
B(EHG) = B(FJ>G) = 07
B(G,G)=1

In that case, () stands for QC",B) ando(n) stands for(C",B).

Finally, if V is ann-dimensional quadratic vector space, theis isometrically
isomorphic (i-isomorphic) to the quadratic spac&[Bou59].

1.5. Let(V,B) be a quadratic vector space. We define the super-Poissokebrac
on A(V) as follows (see [PU07] for details): fix an orthonormal bgsis ..., vn}
of V. Then

{Q,Q'} = (—1)kt Z Ly, (Q) A1y (Q), Y Q e AKV),Q e A(V)

For instance, ir € V*, one has
{0, Q =141a)(Q), VQE /\(V)

andifa’ eV*, {a,a’} =B(¢ (a), 9 1(a’)). This definition does not depend on
the choice of the basis.
For anyQ e AX(V), define ag(Q) by

ak(Q) (Q) ={Q.Q}, vQ' e A\(V)

Then ad(Q) is a super-derivation of degrele— 2 of the exterior algebra
A(V). One has:

b (Q) ({2, Q") = {ad(Q)(Q),Q"} + (-)*{Q',ad(Q)(Q")},

forall Q" e AK(V), Q" € A(V). That implies thaf\(V) is a graded Lie algebra for
the super-Poisson bracket.

1.6. Aquadratic Lie algebrag,B) is a quadratic vector spagesquipped with a
bilinear formB and a Lie algebra structure grsuch thaB is invariant (that means,
B([X,Y],Z) =B(X,[Y,Z]), forall X, Y, Z € g).
If (g,B) is a quadratic Lie algebra, recall that
[9,0] = 2(g)"
whereZ(g) is the center ofi. There is a canonical invariahie A3(g) defined by
[(X,Y,Z):=B([X,Y],Z2), VX,Y,Z € g.

This invariant satisfie$l,| } = 0 (see[[PUQO7]) and it is easy to check that

Wi =o([g,9])-
We say that is the 3-form associated t@.
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On the other hand, given a quadratic vector sfacB) andl € A3(g), define
X,Y] =@ txay (1), VX, Y € g
This bracket satisfies the Jacobi identity if, and only{If,| } =0 [PUQT]. In this
case g becomes a quadratic Lie algebra with invariant bilineamf&.

Definition 1.2. Let (g,B) and(g’,B’) be two quadratic Lie algebras. We say that
(g,B) and(g’,B’) areisometrically isomorphidor i-isomorphig if there exists a
Lie algebra isomorphism from g ontog’ satisfying

B'(A(X),A(Y)) =B(X,Y), ¥ X,Y € g.
In other wordsA is an i-isomorphism if it is a Lie algebra isomorphism and an
isometry. We writeg ~ g.

Consider two quadratic Lie algebrég, B) and(g,B’) (same Lie algebra) with
B'=AB, A € C, A #0. They are not necessarily i-isomorphic, as shown by the
example below:

Example 1.3.Letg = 0(3) andBiits Killing form. ThenAis a Lie algebra automor-
phism ofg if, and only if, A € O(g). So(g,B) and(g,AB) cannot be i-isomorphic
if A#1.

2. THE DUP NUMBER OF A QUADRATICLIE ALGEBRA

2.1. Letgandg’ be quadratic Lie algebras with associated invarifuatsd!’ (see
(1.6)). The following Lemma is straightforward:

Lemma 2.1. Let A be an i-isomorphism from onto g’. Then I="A(l"), V| =
tA(V|/) and'W, :tA(W|/).

It results from the previous Lemma that dith) and dim{W,) are invariant
under i-isomorphisms. This is not new for diW, ), since dinfW,) = dim([g, g]).

For dim(V,), to our knowledge this fact was not remarked up to now, so we
introduce the following definition:

Definition 2.2. Letg be a quadratic Lie algebra. The doupmberdup(g) is defined
by

dup(g) :=dim(V)).
Remarlk2.3 By Propositiod 111, whegis non-Abelian, one has d(p) < 3. Actu-

ally dup(g) € {0,1,3}. Notice that dinfW,) > 3, so dim([g, g]) > 3 (see[[PUQO7]),
a simple but rather interesting remark.

2.2. We shall use the decomposition result below:

Proposition 2.4. [PUQ7]
Let (g,B) be a non-Abelian quadratic Lie algebra. Then there existertral

ideal 3 and an ideall # {0} such that:
1
Dg=s0!
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(2) (3,Bl;x;) and (I,B|x() are quadratic Lie algebras. Moreovel,is non-
Abelian.

(3) The centerZ(l) is totally isotropic, i.e.Z(l) C [L,].

(4) Letg’ be a quadratic Lie algebra and Ay — g’ be a Lie algebra isomor-
phism. Then

1
g/ _ 5/ e [/
wherej’ = A(3) is central,I' = A(3)+, Z(I') is totally isotropic andl and

[" are isomorphic. Moreover if A is an i-isomorphism, thieand I’ are
i-isomorphic.

Proof. We prove (4) : recall that is any complementary subspaceZdfy) N [g, g]
in Z(g) (see[PUQOI]) and thdtis defined as the orthogonal subspace, of= 3.
One hasA(Z(g) N [g,g]) = 2(¢") N [g',¢'] and 2(¢') = 5’ @ (2(g') N [g',9]).
1
Thereforel’ satisfiesg’ = 3’ @ I' and Z([') is totally isotropic. Sincé is an iso-
morphism fromj onto 3', A induces an isomorphism frogy; onto g’/3’, and it

results thatt and [’ are isomorphic Lie algebras. Same reasoning works\for
isomorphism. O

It is clear tha; = {0} if, and only if, Z(g) is totally isotropic and that
dup(g) = dup(l).

Definition 2.5. A quadratic Lie algebrg is reducedif:

(1) g# {0}
(2) Z(g) is totally isotropic.

Notice that a reduced quadratic Lie algebra is necessauityAbelian.

2.3. We separate non-Abelian quadratic Lie algebras asisll

Definition 2.6.
Let g be a non-Abelian quadratic Lie algebra.

(1) g is anordinary quadratic Lie algebra if dug) = 0.

(2) gis asingularquadratic Lie algebra if dug) > 1.
(i) gis asingularquadratic Lie algebra df/peS; if dup(g) = 1.
(i) gis asingularquadratic Lie algebra df/peSs if dup(g) = 3.

Now, given a non-Abeliam-dimensional quadratic Lie algebgg we can as-
sume, up to i-isomorphism, thgt= C" equipped with its canonical bilinear form
B (as a quadratic spacé) (IL.4). So we introduce the followats} s

Definition 2.7. Forn> 1:

(1) Q(n) is the set of non-Abelian quadratic Lie algebra structure€'a
(2) O(n) is the set obrdinary quadratic Lie algebra structures @f.
(3) 8(n) is the set okingularquadratic Lie algebra structures Gf.
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By (1.6), there is a one to one map frdd(n) onto the subset
{| e A3CY |1 #0,{1,1} :o} c A3,
In the sequel, we identify these two sets, so fiat) c A3(CM).

Proposition 2.8. One has:
(1) Q(n) is an affine variety im\3(C").
(2) O(n) is a Zariski-open subset &f(n).
(3) 8(n) is a Zariski-closed subset 6f(n).

Proof. The mapl — {I,1} is a polynomial map fromi\*(C") into A*(C"), so the
first claim follows.

Fix | € A3(C") such that{l,1} = 0. Consider the mam : (C")* — A*(C")
defined bym(a) = a Al, for all a € (C")*. Then, ifg is the quadratic Lie algebra
associated td, one has dufg) = 0 if, and only if, ranKm) = n. This can never
happen fom < 4. Assumen > 5. LetM be a matrix ofm andA; be the minors
of ordern, for 1 <i < (2) . Theng € O(n) if, and only if, there exists$ such that
A # 0. Butd; is a polynomial function and from that the second and thedthir
claims follow. O

1L
Lemma 2.9. Letg; and g» be non-Abelian quadratic Lie algebras. Thens g»
is an ordinary quadratic Lie algebra.

Proof. Setg = g1 é g2. Denote byl, I; andl, the non-trivial 3-forms associated
to g, g1 andg, respectively.

One ha\(g) = A(g1) @ A(g2), A“(8) = ®r sk A" (92) © A(g2) andl =11 +15,
with 11 € A3(g1) andl, € A3(g2). It immediately results that for = a1 + a; €
g; D g5, one hasy Al = 0if, and only if, oy = a2 = 0. O

Proposition 2.10. One has:
(1) Q(n) # 0if, and only if, n> 3.
(2) O3=04=0andO(n) #0ifn > 6.

Proof. If g is a non-Abelian quadratic Lie algebra, using Reniark 2.2 lbas
dim([g,g]) > 3,s0Q(n) =0if n< 3.

We shall now use some elementary quadratic Lie algebras giv&ection 6
of [PUQ7]. We denote these algebras dpyaccording to their dimension, so that

dim(gi) =1, for 3<i < 6. Note thatgs = 0(3), g4, g5 and ge are examples of
elements of)(3), Q(4), Q(5) andQ(6), respectively.
Consider

kitimes
——f
€

1 1
g=P @e ... o).
3<i<6
Then din(g) = 32 5iki and by Lemm&2]9, dup) = 0, so we obtaird(n) # 0 if
n> 6.
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Finally, let g be a non-Abelian quadratic Lie algebra of dimension 3 or 4 wit
associated 3-formh. Thenl is decomposable, sgis singular. Therefor&; =
04=0.

O

Remark2.11 We shall prove in Appendix 2 th&s = 0. So, generically a non-
Abelian quadratic Lie algebra is ordinarynf> 6.

1L
Definition 2.12. A quadratic Lie algebrg is indecomposablé g = g1 @ g», with
g1 andgo ideals ofg, imply g1 or g» = {0}.

The Proposition below gives another characterization @ficed singular qua-
dratic Lie algebras.

Proposition 2.13. Let g be a singular quadratic Lie algebra. Theris reduced if,
and only if,g is indecomposable.

Proof. If g is indecomposable, by Proposition]2gds reduced. Ify is reduced and

1
g = g1 D g2, With g3 andgy ideals ofg, thenZ(gi) C [gi,gi] fori =1,2. Sog; is
reduced org; = {O0}. Butif g; andg, are both reduced, by LemrhaP.9, one has
dup(g) = 0. Henceyy or g, = {0}. O

3. QUADRATIC LIE ALGEBRAS OF TYPES;

3.1. Let(g,B) be a quadratic vector space anbe a non-zero 3-form im\3(g).
As in (1.8), we define a Lie bracket grby:
X,Y]:= @ tixav (1)), VXY € g.

Theng becomes a quadratic Lie algebra with an invariant bilineamfB if, and
only if, {I,1} = 0 [PUQT7].

In the sequel, we assume that difp) = 1. Fix a € V, and choos& € A%(g)
such that = a A Q as follows: let{a,as,...,0,} be a basis oW,. Then,|
A3(W)) by Propositio T]1. We set:

Xo:= ¢ Ya) andX == ¢ Yaj), 1<i<r.
So, we can choos® € A?(V) whereV = spa{X,...,%X}. Note thatQ is an
indecomposable bilinear form, so diwh) > 3.
We defineC: g — g by
B(C(X),Y) :=Q(X,Y).
ThereforeC is skew-symmetric with respect &

Lemma 3.1. The following are equivalent:
L {1,1y=0
(2) {a,a} =0and{a,Q} =0
(3) B(X0,%0) =0and QXo) =0
In this case, one hagdim([g,g]) > 4, Z(g) C ker(C), Im(C) C [g,g] and X €
Z(g) Mg, gl.
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Proof. It is easy to see that:
{LI}=0<{a,a}ANQANQ =2 A{a,Q}.

If QAQ =0, thenQ is decomposable and that is a contradiction sincedjm= 1.
SoQAQ #0.

If {a,a} #0, thena dividesQ A Q € A*(V), another contradiction. That im-
plies{a,a} =0=B(Xo,Xo). It results thatfa,Q} € V| = Ca, hence{a,Q} =
Aa for someA € C. But{a,Q} is an element of\'(V), soA must be zero and
by (@.3), 1x,(Q) = 0, thereforeC(Xy) = 0. Moreover, sincda,a} ={a,Q} =
0, usingl = a A Q, we deduce thafa,l} = 0. Again by [1.5), it results that
B(Xo, [X,Y]) = {a,1 }(XAY) =0, forall X, Y € g. SoXo € [g,9]* = Z(g). Also,
V) C Wy, 50X = @ Y(a) € o7 1(W)) = [g,9].

Write Q = ¥ a&jai A aj, with g; € C. SinceW, = ¢([g,g]) andXy,..., X €
[g, 9], we deduce that

C=> aj(aaX—ajeX)
i<]
Hence In{C) C [g,g]. SinceC is skew-symmetric, one has k&) = Im(C)* and
it follows Z(g) = [g,9]* C ker(C).

Finally, [g,g] = CXo @V and since dinfV) > 3, we conclude that diffg, g]) >

4. O

Remark3.2 It is important to notice that our choice &f such that = a AQ is
not unique, it depends on the choiceMafsoC is not uniquely defined. Assume
we consider another vector spa¢eéandl = a AQ'. ThenQ' = Q+a AB for
somef € g*. LetX; = ¢ %(B) and letC’ be the map associated @. By a
straightforward computatiorG’ = C+ a ® X; — B ® Xo. SinceC'(Xo) = 0, we
must haveB(Xp, X;) = 0.

3.2.  We keep the notation as in the previous subsection. Mashat{l,l} = 0.
Henceg is a quadratic Lie algebra of tygs.
Lemma 3.3. There exists e V+ such that
V= 2(g) ®CYo, B(Yo,Yo) =0 and BXp,Yo) = 1.
Moreover
C(Yp) =0.

Proof. One hasp=1(W)) = [g,g] = CXo®V, thereforeZ(g) C V+ and dim(2(g)) =
dim(g) — dim([g,g]) = dim(V+) — 1. So there exist¥ € V! such thatv! =
Z(g) @ CY. Now, Y cannot be orthogonal t¥p, since it would be orthogonal
to [g,g] and therefore an element @fg). So we can assume thB{Xp,Y) = 1.

Replacey by Yo =Y — %B(Y,Y)Xo to obtainB(Yp, Yo) = 0 (recallB(Xo, Xo) = 0).
By Lemma[3.], InfC) C V and that implies(Yy,C(X)) = —B(C(Yp),X) =0,
for all X € g. ThenC(Yp) =0. O

Proposition 3.4. We keep the previous notation and assumptions. Then:
(1) [X,Y] =B(Xo,X)C(Y) — B(Xo,Y)C(X) + B(C(X),Y)Xo, forall X, Y € g.
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(2) C=adYp) andrank(C) is even.

(3) kerC) =2Z(g) ®CYy, IM(C) =V and[g, g] = CXp @& Im(C).

(4) the Lie algebrag is solvable. Moreovep is nilpotent if, and only if, C is
nilpotent.

(5) the dimension offg, g| is greater or equal to 5 and it is odd.

Proof.

(1) This is a straightforward computation, BgX,Y],Z) = (a AQ)(X,Y,Z),
a(X) = B(Xo,X) andQ(X,Y) = B(C(X),Y), forall X,Y,Z € g.

(2) SetX =Yy in (1) and use Lemma3.3 to shav= adYp). SinceC(g) =
adYo)(g) = ¢ * (ad(g)(¢(Yo))), the rank ofC is the dimension of the
coadjoint orbit throughp(Yp), so it is even (see also Appendix 1).

(3) We may assume that is reduced. Ther¥(g) is totally isotropic and
2(g) C X5 Write Xg- = Z(g) @ b with b a complementary subspace of
Z(g). Thereforeg =2Z(g) @h®dCYp and foranelemerK =Z+H+AYp €
ker(C), we deduceH € ker(C) by Lemmag3]1 and 3.3.

But B(Xo,H) =0, so using (1)H € Z(g). It results thaH = 0. Then
ker(C) = Z(g) ® CYo. In addition,

dim(Im(C)) = dim(h) = dim(Xs") — dim(Z(g)) = dim([g. ]) - 1.

Our choice oV implies that[g, g] = ¢~ 1(W) = CXo @V and Im(C) C
V (see the proof of Lemnia3.1). Therefore( =V and[g, g] = CXo®
Im(C).

(4) SinceB(Xp,Im(C)) = 0, then[[g,g],[g,9]] = [Im(C),Im(C)] C CXo. We
conclude thaig is solvable. Ifg is nilpotent, therC = ad(Yp) is nilpo-
tent. If C is nilpotent, using InC) C X3, we obtain by induction that
(ad(X))k(g) € CXo® Im(C¥) for anyk € N. So adX) is nilpotent, for all
X € g and that implieg nilpotent.

(5) Notice thatg, g] = CXo® Im(C) and rankC) is even, so dirf{g, g]) is odd.
By (.1), dim([g,g]) > 5.

(]

3.3. Recall tha€ is not unigue (see Remdrk B.2) and it depends on the choice of
V. Let

a:= X5 /CXo.
We denote by? the class of an elemedt € g.
Proposition 3.5.
Keep the notation above. One has:

(1) the Lie algebraa is Abelian.
(2) Define
B(X,Y):=B(X,Y), YX,Y € g.

ThenB is a non degenerate symmetric bilinear formeon
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(3) Define
C(X):=C(X),VXeg.
ThenC € .Z(a) is a skew-symmetric map witankC) = rank(C) even and

~

rank(C) > 4.
4) C does not depend on the choice of V. More preciseW, i= Ca ¢ ¢(V')
and C is the associated map td' {see Remark 3.2), theéi = C.

~ -~

(5) the Lie algebrag is reduced if, and only iker(C)  Im(C).

Proof.
(1) It follows from Proposition 314 (1).
(2) ltis clear thatB is well-defined. Now, sinc®(Xo,Yo) = 1, B(Xo,Xo) =
B(Yo,Yo) = 0, the restriction oB to spa{ X, Yo} is non degenerate. So

a = spar(Xo, Yo} & spar{Xo,Yo} ",

Xg = CXo @ spa{Xo, Yo} and Xg-+ = Xg- nspar{Xo, Yo} = CXo. We
conclude thaB is non degenerate.

(3) We haveC(Xy) = adYo)(Xy) C X5 since Xy is an ideal ofg. More-
over, C(Xo) = 0, soC is well-defined. The image o is contained in
X5 and Im(C) NCXg = {0}, therefore dinfim(C)/CXo) = dim(Im(C)) =
dim(Im(C)). Now it is enough to apply Propositign 8.4.

(4) By RgmarlB]Z, we hav€’ =C+a ® X3 — B ® Xo. But a(Xp) =0, so
C' =C.

(5) By Proposition 34, we have K&) = Z(g) ¢ CYy and by Lemma3]1, we
haveZ(g) C X3. Again by Propositiof3]4, we conclude that (@y =
Z(g)/CXo. Applying Propositiod 3}4 once more, we hdgeg] = CXo &
Im(C), so ImC) = [g,g]/CXo. Then ketC) c Im(C) if, and only if,
Z(g) C [g,9] + CXo. But X € [g,9] (see Lemma3]1), so the result fol-
lows.

O
We should notice tha still depends on the choice of (see Remark312): if
. - 1.
we replacex by Aa, for a non-zerok € C, that will changeC into XC' So there

is not auniquemapC associated tg but rather aamily {AC | A € C\ {0}} of
associated maps. In other words, there is a line

[C] :={AC| A € C} € PX(0(a))
whereP!(o(a)) is the projective space associated to the space

~

Definition 3.6. We call[C]| theline of skew-symmetric mapssociated to the qua-
dratic Lie algebrgy of type S;.

Remark3.7. The unicity of [C] is valuable, but the fact th&t acts on a quotient
space and not on a subspacegafould be a problem. Hence it is convenient to
use the following decomposition @f the restriction ofB to CXg® CYp is non
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degenerate, so we can wrige= (CXp @ CYp) é g Whereq = (CXo® CYp)*. Since
C(Xo) = C(Yo) = 0 andC € o(g), C mapsq into q. Let 1m: X5~ — X5 /CXo be
the canonical surjection ar@= C|,. Then the restriction, : ¢ — X4~ /CXg is an
isometry andC = 1, C 17, &,

Remark thaly is not unique, but it satisfies Lemmia 3.3, considet= ad(Yy)
andq’ such thag = (CXo & CYy) é ¢, thereforeC = 1, C’ .~ with the obvious
notation. It results tham’{*lng{ is an isometry fromy to ¢’ and that

C = (n ‘m)C(rt tm) .

We shall develop this aspect in the next Section.

4. SOLVABLE SINGULAR QUADRATIC LIE ALGEBRAS AND DOUBLE
EXTENSIONS

4.1. Double extensions are a very effective method inifidig V. Kac to con-
struct quadratic Lie algebras (sée [Kad85, ES§87, MR85])reHe&e only need a
particular case that we shall recall:

Definition 4.1.

(1) Let(q,B,) be a quadratic vector space a@dq — q be a skew-symmetric
map. Let(t = spanqXi,Y1},B;) be a 2-dimensional quadratic vector space
with B defined by

Bi(X1,X1) = Bi(Y1,Y1) = 0, Bi(Xg,Y1) = 1.
Consider
1
g=qot
equipped with a bilinear forr8 := B, + B, and define a bracket anby

X+ AXe+ pY1,Y + A%+ p'Ya] i= pC(Y) — p'C(X) + B(C(X),Y)Xq,
for all X,Y € q,A,u,A’, i’ € C. Then(g,B) is a quadratic solvable Lie
algebra. We say thatis thedouble extensioof q by C.
(2) Let g; be double extensions of quadratic vector spgge®;) by skew-
symmetric map€; € .#(q;), for 1 <i < k. Theamalgamated product

g=91XxXg2 X ... X gk
a a a

is defined as follows:

e consider(q,B) be the quadratic vector space with- q1 ©q2P - - - D qx
and the bilinear fornB such thaB(3, X, TK, Yi) = &, Bi(X,Y),
for Xi,Yi € q;, 1<i<Kk.

e the skew-symmetric mag ¢ .#(q) is defined byC(yk, X) =
S Ci(X), for X € gi, 1< i <k.

Theng is the double extension gfby C.
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In this Section, we will show that double extensions are lyigtlated to singular
guadratic Lie algebras. Amalgamated products will be usegkictions 5 and 6 to
decomposealouble extensions.

We notice that ify; ~ g) andgy ~ g5, itmay happen thag; x g> andg) x g, are
a a
not even isomorphic. So, amalgamated products have a bastibeklith respect
to i-isomorphisms. An example will be given in Section 5, Rekib.12.
Lemma 4.2. We keep the notation above.
(1) Letg be the double extension @by C. Then

[X,Y] = B(Xg, X)C(Y) — B(X1,Y)C(X) + B(C(X),Y)Xs, ¥ X,Y € g,

where C=ad(Y;). Moreover, X € Z(g) and G, =C.

(2) Letg’ be the double extension gbyC’ = AC,A € C, A # 0. Theng and
g’ are i-isomorphic.

Proof.
(1) This is a straightforward computation.
1L

(2) Writeg=q & t=g'. Denote by[-, -]’ the Lie bracket ory’. DefineA: g —
g by A(X1) = AXg, A(Yy) = )%Yl andA|, = Id,. ThenA([Y1,X]) =C(X) =
[A(Y1),A(X)]" andA([X,Y]) = [A(X),A(Y)], for all X,Y € q. SoAis an
i-isomorphism.

O

4.2. A natural consequence of formulas in Lenima 4.2 and Bitipo[3.4 (1) is
given by the Proposition below:

Proposition 4.3.

(1) Consider the notation in Sectidd 3, Rembark] 3.7. g dte quadratic Lie
algebra of type5; (that is,dup(g) = 1). Theng is the double extension of
q= ((CX()@(CY())L byC = ad(Yo)‘q.

(2) Let (g,B) be a quadratic Lie algebra. Let’ be a double extension of a
quadratic vector spacéy’,B’) by a mapC’. Let A be an i-isomorphism of
g’ ontog and writeq = A(q"). Theng is a double extension &, B|,.4) by

the mapC =AC' A *whereA= A,

(3) Letg be the double extension of a quadratic vector spplog a mapC # 0.
Theng is a singular solvable quadratic Lie algebra. Moreover:
(@) g is of typeSz if, and only if,rankC) = 2.

(b) gis of typeS; if, and only if,rankC) > 4.
(c) gis reduced if, and only iker(C) c Im(C).
(d) g is nilpotent if, and only ifC is nilpotent.

Proof.
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(1) Letb = CXo® CYp. ThenB|p«p is non degenerate angd= b ® q. Since
adYo)(b) C b and adYp) is skew-symmetric, we have @d)(q) C q. By
Propositio 3.4 (1), we have

[X,X'] = B(C(X),X")Xo, V X, X" € q.
SetX; := Xg andY; := Y to obtain the result.
(2) Write g’ = (CX{ @ CY/) é q'. LetX; = A(X{) andY; = A(Y;). Theng =
(CX1CY) @La q and
Y1, X] = (ACA 1)(X), VX € q, and

[X,Y] = B((ACA™H)(X),Y)X, ¥ X,Y € q.
and this proves the result.

(3) Letg = (CX4 & CYi) & q,C = ad¥y), @ = 9(Xa), Q(X,Y) = B(C(X),Y),
for all X, Y € g andl be the 3-form associated tp Then the formula
for the Lie bracket in Lemmia4.2(1) can be translateti-asa A Q, hence
dup(g) > 1 andg is singular.

Let W, be the seWq = {I1x(Q),X € g}. ThenWg = @(Im(C)). There-
fore ranKC) > 2 by Propositiofi 111 an® is decomposable if, and only if,
rankC) = 2.

If rank(C) > 2, theng is of type S; and by Propositioi 35, we have
rank(C) > 4.

Finally, Z(g) = CX; @ ker(C) and|g,g] = CX; ®Im(C), sog is reduced
if, and only if, ke(C) c Im(C).

The proof of the last claim is exactly the same as in Propgitig (4).

Il

4.3. A complete classification (up to i-isomorphism) of guid Lie algebras of
type Sz is given in [PUQY]. We shall recall the characterization fedge algebras
here:

Proposition 4.4. Letg be a quadratic Lie algebra of tyfdgs. Theng is i-isomorphic

1
to an algebral & 3 wherej is a central ideal ofg and [ is one of the following al-
gebras:

(1) g3(A) = 0(3) equipped with the bilinear form B- Ak wherek is the
Killing form andA € C, A #0.

(2) g4, a 4-dimensional Lie algebra: considgr= C?, {E;,E,} its canonical
basis and the bilinear form B defined by, E;) = B(E,,E;) = 0 and
B(E1,E2) = 1. Theng, is the double extension gfby the skew-symmetric

map
= 1 0
(2 %)

Moreover,g, is solvable, but it is not nilpotent.
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(3) gs, a 5-dimensional Lie algebra: considgr= C3, {Ey,E», E3} its canon-
ical basis and the bilinear form B defined byHB,E;) = B(Ey, Ez) =
B(El, Eg) = B(Ez, E3) =0and aEl, E3) = B(Ez, Ez) =1 Theng5 is the
double extension af by the skew-symmetric map

01 O
C=1|0 0 -1}.
0 0 O

Moreover,gs is nilpotent.

(4) gs, a 6-dimensional Lie algebra: consider= C*, {Ej,E,, E3,E4} its
canonical basis and the bilinear form B defined (¥R E3) = B(Ep,E4) =
1land B(E;,E;) = 0 otherwise. Thefg is the double extension qfby the
skew-symmetric map

(oNeNe)

C=

OO oo
OO Oor
N

S ooo

Moreover,ge is nilpotent.

All solvable quadratic Lie algebras of type Sz are double extensions of a qua-
dratic vector space by a skew-symmetric map.

4.4. Let(q,B) be a quadratic vector space. We recall th&g)ds the group of
orthogonal maps and q) is its Lie algebra, i.e. the Lie algebra of skew-symmetric
maps. Recall that thadjoint actionis the action of Qq) ono(q) by conjugation.

€L
Proposition 4.5. Let (q,B) be a quadratic vector space. Lgt= (CX; & CY1) & q

1 —
andg’ = (CX{ @ CY]) @ q be double extensions of by skew-symmetric mafs
andC’ respectively. Then:

(1) there exists a Lie algebra isomorphism betwgeand g’ if, and only if,
there exists an invertible map €. (q) and a non-zero\ € C such that
C' =X PCP~1and PPPC =C, where P is the adjoint map of P with respect
to B.

(2) there exists an i-isomorphism betwgeand g’ if, and only if,C’ is in the
O(q)-adjoint orbit throughA C for some non-zera < C.

Proof.

(1) LetA: g — ¢ be a Lie algebra isomorphism. We know by Proposition
[4.3 thatg and g’ are singular. Assume thatis of type S3. Then 3=
dim([g,g]) =dim([g’,g']). Sog’ is also of typeS; ([PUQ7]). Thereforeg
andg’ are either both of typ8; or both of typeS;. Let us study these two
cases.

(i) First, assume thaj andg’ are both of type5;. We start by proving
that A(CX; @ q) = CX{ @ g. If this is not the case, there ¥ q such
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thatA(X) = BX{ + VY, +Y with Y € gandy # 0. Then
[AX), CXg @ q) = yC'(q) +[Y,q]'.

Sinceg’ is of type S;, we have ran(C’) > 4 (see Proposition4.3)
and it follows that din{{[A(X),CX{&q]’) > 4. On the other hand,
[A(X),CX{ @ q]" is contained iPA([X, g]) and din([X,g]) < 2, so we
obtain a contradiction.

Next, we prove thaf\(X;) € CX;. SinceX; € [g,g], then there exists
X,Y € qsuch tha¥X; = [X,Y]. ThenA(X1) = [A(X),A(Y)] € [CX]{®
q,CX{ @ q] = CX{. HenceA(X;) = uX] for some non-zerg: € C.
Now, writeA; = P+ B @ X{ with P: g — qandp € g*. If X € ker(P),

themA (X - %B(X)X1> =0, soX = 0 and thereforep is invertible.
For allX,Y € q, we haveA([X,Y]) = uB(C(X),Y)X]. Also,
AIX,Y]) = [P(X)+B(X)XL,P(Y) +B(Y)X)

B(C'P(X),P(Y))Xy.

So it results thaP*C’'P = uC.

MoreoverA([Y1, X]) = P(C(X)+ B(C(X))X1, forall X € q. LetA(Y1) =

YY1 +Y +0X{, with Y € q. Therefore

A(Y2.X]) = YCP(X) + BICTY),POX))X]

and we conclude tha® C P! = yC’ and sinceP*C’P = uC, then

P*PC = yuC.

SetQ =

)} P. It follows thatQCQ ! = yC’ andQ*QC =C. This
HYy)2
finishes the proof in the cageandg’ of typeS;.

We proceed to the case whenand g’ of type S3: the proof is a
straightforward case-by-case verification. By Proposi{figd, we can
assume thaj andg’ are reduced. Then difg) = 2,3 or 4 by Propo-
sition[4.4.

Recall thatg is nilpotent if, and only ifC is nilpotent (see Proposition
[4.3 (3)). The same is valid fay.

If dim(q) = 2, theng is not nilpotent, s& is not nilpotent, T(C) =
andC must be semi-simple. Therefore we can find a bésise;} of
q such thaBB(e;,e) = 1, B(ey,e1) = B(e,e2) = 0 and the matrix of
Cis <g O“>. The same holds faT’: there exists a basige), €, }
of q such thatB(€},€,) = 1 andB(€},e1) = B(€,,€,) = 0 such that

the matrix ofC’ is <% _(L > It results thaC’ and %C are Qq)-

conjugate and we are done.

If dim(q) = 3 or 4, theng andg’ are nilpotent. We use the classifica-
tion of nilpotent orbits given for instance in [CM93]: thassonly one
orbit in dimension 3 or 4, s@ andC’ are conjugate by @).
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This finishes the proof of the necessary condition. To prowesuffi-
ciency, we replac€’ by APCP~! to obtainP*C’P = AC. Then we define
Aig— g byA(Xy) =AX{, A1) = /\EY{ andA(X) = P(X), for all X € g.
By a direct computation, we have for dlandY < g:

A(X,Y]) = [AX),A(Y)]" and A([Y1,X]) = [A(Y1), AXX)],

soAis a Lie algebra isomorphism betwegandg’.

(2) If g andg’ are i-isomorphic, then the isomorphisiin the proof of (1) is
an isometry. Henc® < O(q) andP*C’P = uC gives the result.
Conversely, defin@ as above (sufficiency of (1)). Thekis an isometry
and it is easy to check thatis an i-isomorphism.

O

Corollary 4.6. Let (g,B) and (¢/,B') be double extensions ¢f,B) and (q',B')
respectively, wher® = B|,yq and B = B'|yy. Write g = (CX; & CY1) & q and
g = (CX{ & CY]) GLB q'. Then:
(1) there exists an i-isomorphism betwgeand g’ if, and only if, there exists
an isometryA: q — q such thall’ = A ACA , for some non-zera ¢ C.

(2) there exists a Lie algebra isomorphism betwgeand g’ if, and only if,
there exist invertible map® : q — ¢’ andP € .Z(q) such that
(i) T =2A QCQ * for some non-zera € C,
(i) P"PC=C and
(iii) Qﬁ_l is an isometry frong ontoq’.

Proof.
(1) We can assume that dig) =dim(g'). Defineamafr : g’ — gby F(X{) =
X1, F(Y{) = Y1 andF = F|; is an isometry fromy’ ontoq. Then define a
new Lie bracket org by

X.Y]" =F ([FY(X),F1(Y)]), ¥X,Y € g.
Denote by(g”,[-,-]") this new Lie algebra. SB is an i-isomorphism from
g’ ontog”.
1 —

Moreoverg” = (CX; @ CY1) & q is the double extension afby C” with
C'=FC F . Theng andg’ are i-isomorphic if, and only ifg andg” are
i-isomorphism. Applying Proposition 4.5, this is the cakend only if,
there existd € O(q) such thaC’ = A ACA * for some non-zero complex
A. That implies
ACF A

and proves (1).
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(2) We keep the notation in (1). We have tlgdndg’ are isomorphic if, and
only if, g andg” are isomorphic. Applying Propositidn 4.5,andg” are
isomorphic if, and only if, there exists an invertible magE £ (q) and a
non-zeroA € C such tha€’ =A PCP " andP’ PC = C and we conclude
thatC =A QC 6_1 withQ=F 'P. Finally, F'=-0pP tisan isometry
fromqtoq’.

On the other hand, € =A QCQ "andP* PC=CwithP=F Q
for some isometryF : ¢’ — q, then construcy” as in (1). We deduce
C'=APCP 'andP* PC=C. So, by Propositiofidl5 andg” are
isomorphic and thereforg,andg’ are isomorphic.

g

Remark4.7. Let g be a solvable singular quadratic Lie algebra. Consjdas a
double extension of two quadratic vectors spagaesdq':

L L
g=(CX,®CY;) ®q and g = (CX{®CY;) D q'.

LetC =adY1)|q andC = ad(Y;)|y Since Iq, is obviously an i-isomorphism, there
exists an isometnA: q — ¢’ and a non-zerd < C such that

C =AACA %

Remarkd4.8. A weak form of Corollary 4.6 (1) was stated in [F$87], in theeaf i-
isomorphisms satisfying some (dispensable) conditiong1¥5is an improvement.
To our knowledge, (2) is completely new. Corollaryl4.6 andraek[4.T7 can be
applied directly to solvable singular Lie algebras: by Pifiond 4.8 and 414, they
are double extensions of quadratic vector spaces by skewnsyric maps.

4.5. We shall now classify solvable singular Lie algebracttires orC"2 up to
i-isomorphism in terms of )-orbits inP(o(n)). We need the Lemma below:

Lemma 4.9. Let V be a quadratic vector space such that\(CX; & CY;) @La q
with X, Y; isotropic elements and (B1,Y:) = 1. Let g be a solvable singular
quadratic Lie algebra witldim(g) = dim(V). Then, there exists a skew-symmetric
mapC’ : ' — ¢’ such that V considered as the the double extensiap oy C’ is
i-isomorphic tog.

Proof. By Propositiond 413 and 4.4 is a double extension. Let us write=

1 —
(CXo®CYp) @ q andC = ad(Yp)|4. DefineA: g —V by A(Xo) = X1, A(Yo) = Y1
andA = A|; any isometry fromy — ¢'. It is clear thatA is an isometry frony to
V. Now, define the Lie bracket ov by:

X, Y] =A([A(X),AHY)]), VXY e V.

ThenV is a quadratic Lie algebra, that is i-isomorphicgtoby definition. More-
over,V is obviously a double extension gfbyC’ = AC Al 0O
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We can now apply our results to the classification (up torismphism) of solv-
able elements a8 (n+ 2) (the set of singular Lie algebras structures@ii?), for
n>2. We denote bys(n+ 2) the set of solvable elements 8fn+2). Given

g € 8(n+ 2), we denote byfg|; its i-isomorphism class and tﬁgl(nJr 2) the set
of classes. FofC] € P(o(n)), we denote byO g its O(n)-adjoint orbit and by

P1(o(n)) the set of orbits.

—_——

Proposition 4.10. There exists a bijectiofl : P1(o(n)) — §S'(n+ 2).

Proof. We consider O, € Pl(o(n)). There is a double extensiop of

q = span{Ey,...,En,1} by C realized onC"2 = (CE; @ CEp,») é g. Then, by
Corollary[4.6,g € Ss(n+ 2) and[g]; does not depend on the choice®fWe define
6(0g)) = lali- If ¢’ € 8s(n+2) then by Lemm& 4199’ can be realized (up to i-

1
isomorphism) as a double extension@h? = (CE; @ CEn,2) @ q. S08 is onto.
Finally, 6 is one-to-one by Corollafy 4.6. O

5. NILPOTENT AND DIAGONALIZABLE CASES

5.1. Let us denote biN(n+ 2) the set of nilpotent elements &8{n+ 2), for
n> 1. Giveng € N(n+ 2), we denote byg] its isomorphism class and By]; its
i-isomorphism class. The s&f(n+2) is the set of all isomorphism classes and

ﬁi(nJr 2) is the set of all i-isomorphism classes of elements({n+ 2).
Let .+ (n) be the set of non-zero nilpotent elements @f). GivenC € .#/(n),
we denote by’r its O(n)-adjoint orbit. The set of nilpotent orbits is denoted by

A (n).

Lemma 5.1. LetC andC € .#'(n). ThenC is conjugate taA\C moduloO(n) for
some non-zera € C if, and only if,C is conjugate t& .
Proof. It is enough to show tha andAC are conjugate, for any non-zedoc C.
By [CM93], there exists al(2)-triple {X,H,C} in o(n) such thafH,C] = 2C, so
dadH)(C) = é2C, vt € C. We choosé such that & = A, then &'CetH = AC
and & € O(n). O
Proposition 5.2. One has:

(1) Letgandg’ € N(n+2). Theng andg’ are isomorphic if, and only if, they

are i-isomorphic, sdgli = [g] andN' (n+2) = N(n+ 2).
(2) There is a bijectiorr : .4 (n) — N(n+ 2).
(3) N(n+2) is finite.

Proof.
(1) Using Lemma 4]9, Propositidn_4.3(3) and Corollaryl 4t6s ienough to
show that forC andC' € .# (n+2), if there existsP € GL(n) such that
C = APCP1, for some non-zera ¢ C, thenC andC  are conjugate under
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O(n). By LemmdX5.1, we can assume that 1, and then the result is well
known (see e.g[ [CM93)).

(2) As in the proof of Proposition 4.10, for a giver € .4"(n), we construct
the double extensiop of q = spar{E,...,En.1} by C realized onC"+2.
Then, by Proposition 413 (3) € N(n+ 2) and[g] does not depend on the
choice ofC. We definet(Og) = [g]. Then by (1) and Corollary4.6; is
one-to-one and onto. .

(3) N(n+2) is finite since the set of nilpotent orbitg"(n) is finite (see e.g.
[CM33)).

O

Definition 5.3. Let p e N\ {0}. We denote thdordan block of size py J; := (0)
and forp > 2,

01 O 0
0 0 1 0
=1 1
OO0 .. 0 1
00 O ... O

Next, we define nilpotent Jordan-type Lie algebras. Thezdwao types:

e for p> 2, we consider = C?P equipped with its canonical bilinear form
B and the ma@%p with matrix

Jb O
0 -3,

in the canonical basis. Th@ip € o(2p) and we denote bjp, the double
extension ofy by C%p. S0jop € N(2p+2).

e for p> 1, we consider; = C?P*1 equipped with its canonical bilinear form
B and the ma@%lo+1 with matrix

0 -1,

in the canonical basis, wheM = (m;) denotes th&p+ 1) x p-matrix
with mp;1 p = —1 andm; = O otherwise. Theﬁgpﬂ €o0(2p+1) and we
denote byjzp, 1 the double extension quyC;pH. S0jzp+1 € N(2p+3).

Lie algebrag,p orjzp. 1 Will be callednilpotent Jordan-type Lie algebras

Letne N, n# 0. We consider partitionsl] := (d,...,d;) of n of a special type:

e each evem, must occur with even multiplicity.
e [d] can be written a$ps, p1, P2, P2, - - -, Pks Pk, 201 + 1, ... 20, + 1) with all
pieven,pr>pz>--- > pcandgp > g > -+ > 0.
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We denote by’ (n) the set of partitions satisfying the above conditions. To ev
ery [d € #'(n, we associate a mapCq € o(n): write
[d] = (p1, P1, P2, P2, - -, Pxs P, 201+ 1,... 20, + 1). ThenC[d] is the map with ma-
trix

: P =3 =) =J
dlagZKM(Czpl,Czpz, - Cop, Cogy s -+ 7C2q/+1)'

in the canonical basis d".

Moreover, we denote by the double extension dE" by C[d]. Thengg €
N(n+2) andg|q) is an amalgamated product of nilpotent Jordan-type Liebate
more precisely,

=92p, X 32p, X ... X J2p X J2g141 X ... X §2g,41-
1] = J2p X J2p2 X < J2pc X241 X < J2q0+

The following fundamental result classifies all nilpotentn@orbits ino(n) (see

[CMO3)).

Lemma 5.4. The map[d] — Cjg from #'(n) to o(n) induces a bijection from

Z'(n) onto.4(n).
Using Propositions 512 ald 5.4, we deduce:

Proposition 5.5.
(1) The magd] — gjq) from 2’ (n) to N(n+2) induces a bijection fron¥”’(n)
ontoﬁ(m— 2).
(2) Each nilpotent singular A 2-dimensional Lie algebra is i-isomorphic to

a unique amalgamated produgly, [d] € 2'(n) of nilpotent Jordan-type
Lie algebras.

5.2. We introduce some notation:
Definition 5.6. Let g be a solvable singular quadratic Lie algebra and wyite

1
(CXo & CYp) & q a decomposition of as a double extension (Propositlon]4.3 and
LemmaZ.4). Le€ = adYp)|,. We say thap is adiagonalizableif C is diagonal-
izable.
We denote byD(n+ 2) the set of such structures on the quadratic sEAte,

by Dred(n+ 2) the reduced ones, B (n+2), D'(n+ 2), Dreg(N+2), @‘red(n+2)
the corresponding sets of isomorphism and i-isomorphismssels of elements in

D(n+2) andDyeg(N+ 2).

Remark that the property of being diagonalizable does nué i@ on the chosen
decomposition ofy (see Remark417). By Corollafy 4.6 and a proof completely
similar to Propositiofi 4.0 or Propositibn b.2, we conclude

Proposition 5.7. There is a bijection betweeh! (n+2) and the set of semi-simple
O(n)-orbits in PY(o(n)). The same result holds fob!_,(n+ 2) and semi-simple
invertible orbits inP(o(n)).

Proof. Proceed exactly as in Proposition 4.10 or Propos[fioh funbtice that a
a diagonalizabl€ satisfies kelC) C Im(C) if, and only if, ke(C) = {0}. O
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5.3. The classification of semi-simple adjoint orbits of mssimple Lie algebra
g is fully known (see e.g.[[CM23]). Given a Cartan subalgelpwat g, there is a
bijection between the set of semi-simple adjoint orbits B/, whereW is the
Weyl group.

Here, we deal with (n)-adjoint and not S(n)-adjoint orbits. Hence, slight
changes must be done. Let us recall the result: write 2p if nis even and
n=2p+1if nis odd. Leth be a Cartan subalgebra given by the vector space
of diagonal matrices of type diggA1,...,Ap,A1,...,Ap) if nis even and of type
diagp;1(A1,---,Ap,0,—A1,...,—Ap) if nis odd. Any diagonalizabl€ € o(n) is
conjugate to an element 6f(see Appendix 1 for a direct proof). @ is invertible,
thennis even (see Appendix 1).

If nis even, the Weyl group consists of all permutations and sigmchanges
of (A1,...,Ap). Thus, to describe @)-orbits we must admit any number of sign
changes. We denote I, the corresponding group. ifis odd, the Weyl group is
Gp and there is nothing to add.

However, we are interested in(@-orbits inP*(o(n)). So, we must add maps
(A1,..,Ap) = A(Ag,...,Ap), VA € C, A # 0 to the groupGp. We obtain a group
denoted byHp. Now, letAp = {(A1,...,Ap) | A1,...,Ap € C,A; # 0 for somei}
andA} = {(A1,...,Ap) [A1,...,Ap € C, A #0,V i}

By Propositiori 5.7, we obtain the Corollary:

Corollary 5.8. There is a bijection betweeh'(n+2) and Ap/H,. Moreover, if
n=2p+1, Dred(n+2) =0 and if n= 2p, thenD,eq(2p+ 2) is in bijection with
A% H.

p/Hp

5.4. To go further in the study of diagonalizable reduceccag need the fol-
lowing Lemma that will also be used in Section 6:

Lemma 5.9. .
Letg’ andg” be solvable singular quadratic Lie algebrag = (CX{ ®CY]) & ¢’

a decomposition of as a double extension a@ = adY;)|y. We assume tha
is invertible. Thery’ andg” are isomorphic if, and only if, they are i-isomorphic.

Proof. Write g” = (CX{ @ CY]’) é q” a decomposition of” as a double extension
andC” = ad(Y]")|y.

Assume thay’ andg” are isomorphic. By Corollary 4.6, there ex@t q’ — ¢”
andP € .Z(q¢) such thalQ P " is an isometryP” PC =C andC’ =A QC Q *
for some non-zerd € C. ButC s invertible, soP" P = Id,. ThereforeP is an

isometry ofg’ and therQ is an isometry fromy’ to q”. The conditions of Corollary
[4.8 (1) are satisfied, g9 andg” are i-isomorphic. O

Corollary 5.10. One has:

Dred(2p+2) = Dley(2p+2), ¥ p> 1.
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Next, we describe diagonalizable reduced singular Lie balge using amal-
gamated products. First, lgk(A) be the double extension ef= C? by C =

()\0 _0/\>. By Lemmd4.Rg4(A) is i-isomorphic togs(1), call it ga.

Proposition 5.11. Let (g,B) be a diagonalizable reduced singular Lie algebra.
Theng is an amalgamated product of singular Lie algebras all ifsmrphic tog,.

Proof. We write g = (CXo® CYo) é g, C =adYp), C=CJ; andB = B;,,. Then
C is a diagonalizable invertible element ofq,B). Apply Appendix 1 to ob-
tain a basisey,...,ep, f1,..., fp} of gandAy,...,Ap € C, all non-zero, such that
B(a,ej) = B(fi; fj) =0, B(e, fj) = &; andC(a) = Aje, C(fi) = —A;fj, for all
1<i,j<p. Letgi=sparde,fi},1<i<p. Then

P
q= Di=10i-

Furthermoref; = (CXo® CYp) GLB gi is a Lie subalgebra gf for all 1 <i < pand

g="h1 xbhax ... x hp with hilzg4()\i)zg4.
a a a

Remark5.12 For non-zero\, u € C, consider the amalgamated product:
(A, 1) = ga(A) x galK).

Theng(A, ) is the double extension @ by

A0 0 O
Ou 0 O
00 -A O
00 0 —u

Thereforeg(A, 1) is isomorphic tog(1,1) if, and only if, u = +A (Lemmal5.9

and [5.8)). So, though4(A) andgs(p) are i-isomorphic tay,, the amalgamated

productg(A, ) is not even isomorphic tg(1,1) = g4 x ga if 4 # +A. This illus-
a

trates that amalgamated products may have a rather baditwehdth respect to
isomorphisms.

6. THE GENERAL CASE

6.1. Letg be a solvable singular quadratic Lie algebra. We fix a retidineof

1
g as a double extensiom, = (CXp @ CYp) & q (Propositiond 4]3 and 4.5). Let
C = adYp) andC = CJ,. We consider the Fitting decomposition@f

qg=qnDaqi,
whereqy ansg; areC-stableCy = C|,, is nilpotent andC; = C|,, is invertible.
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SinceC is skew-symmetric, one hag = qﬁ. Therefore, the restrictiorBy =
Blgyxqn @NdB; = B|g g 0f B = B« are non degenerat€y andC; are skew-

symmetric andq;, qn] = 0. Letgn = (CXo @ CYp) é gn andg; = (CXod CYp) GLB q.
Thengy andg, are Lie subalgebras gf gy is the double extension afy by Cy,

g/ is the double extension af by C,; andgy is a nilpotent singular quadratic Lie
algebra. To study, , we introduce the following definition:

Definition 6.1. A double extension is called anvertible quadratic Lie algebra
the corresponding skew-symmetric map is invertible.

Remark6.2

e By Remar 4., the property of being an invertible quadrhtealgebra
does not depend on the chosen decomposition.

e By Appendix 1, the dimension of an invertible quadratic Llgedra is
even.

e By Lemmd5.9, two invertible quadratic Lie algebras are isgrhic if, and
only if, they are i-isomorphic.

With the above definitiong, is an invertible quadratic Lie algebra and we have
g=0Nn X gr.
a
Definition 6.3. The Lie subalgebragy andg, are respectively thailpotentand
invertible Fitting componentsf g.
This definition is justified by:

Proposition 6.4. Letg and g’ be solvable singular quadratic Lie algebras amg,
g1, gy 9 be their Fitting components. Then

Dy ~ g if, and only if, gn L gy andg, L g/. The result remains valid if we
replace& by ~.

(2) g~ ¢ if, and only of,g ~ g’
Proof. We assume thaj ~ g’. Then by Corollary46, there exists an invertible
P:q— ¢ and a non-zera € C such thalC' = A PCP , soq} = P(qn) and
qi = P(q1), then dimqy) = dim(qn) and dim(q[) = dim(q;). Thus, there exist
isometriesHy : gy — gy andF : g; — g and we can define an isomeffy: ' — q
by F(X{+X/) = FnX) +F (X)), VX € qy andX/ € qi. We now defind=: ¢’ — g
by F(X{) = X1, F(Y{) =Y1, F|y =F and a new Lie bracket op:

X Y] =F ([FH(X),FHY))), ¥X.Y € g.

Call g” this new quadratic Lie algebra. We hayé= (CX; & CY;) é q, i.e.,
¢’ =qandC' =FC Ft Soqy, =F(qy) =qn andg) =F(q]) = qi. Butg ~g”,
so there exists an invertibl@: q — q such that’ = A 65671 for some non-zero
A € C (Corollary[4.6). It follows thatyy; = Q(gqn) andq = Q(¢q1), S0Q(qn) = qn
andQ(q|) =qi-
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Moreover, we have&)* Q C = C (Corollary[4.6), soQ* Q C“=C*for all k.
There existsk such thaty; = Im(C¥) and(Q* QCk)(X) = Ck(X), forall X € g. So
Q*Q|, = Idy, andQ, = Q| is an isometry. Sinc€ =A @, C Qfl, theng, ~ a
(Corollary[4.6).

LetQn = Qlgy- ThenCy = A Qy Cn 6@1 andQj, Qn Cn = Cy, so by Corollary

4.8, gn ~ gy- Sincegy andgy are nilpotent, themy ~ gn by PropositiorEElZ.

Conversely, assume thag, ~ gy andg ~ g;. Thengn ~ gy andg ~ g, by
Propositiof 5.2 and Lemnia5.9.

So, there exist isometrid¥ : gn — gn, P 2 g1 — g; and non-zerd\ andA; € C
such thath\I = ANy Pn Cy |3§1 andC{ =A P C |3f1. By Lemmal[5.1L, since
gn and gy are nilpotent, we can assume that = A, = A. Now we defineP :
qg—q by P(Xn+X) =Bu(Xn) + R (X)), VXN € qn, Xi € g1, SOP is an isometry.
Moreover, sinc&C(Xy + X)) = Cn(Xn) +Ci (X)), YXN € qn, X € andC’(X,(l +
X[) = Cn (X)) +C) (X)), for all X}, € qn, X/ € qi, we concludeE’ = A PCP~* and

finally, g ~ ¢, by Corollany[4.6. O

Remark6.5. The class of solvable singular quadratic Lie algebras tasaimark-
able property that two Lie algebras in this class are isotmorib, and only if, they
are i-isomorphic. In addition, the Fitting components dodepend on the realiza-
tions of the Lie algebra as a double extension and they cdetpleharacterize the
Lie algebra (up to isomorphism).

6.2. To classify all solvable singular Lie algebras (up tumrphism), we have

to classify nilpotent and invertible ones (see Proposf@ah). The nilpotent case is

completely achieved in Propositibn b.5, so we are left whithihvertible case.
Forp>1andA €C, letJp(A) =diagy(A,...,A) +Jpand

= (" ).

ThenC%p(}\) €0(2p).

Definition 6.6. For A € C, letjzp(A) be the double extension Gf?P by C‘;p(/\).
We say thaf,p(A ) is aJordan-type quadratic Lie algebra

WhenA = 0 andp > 2, we recover the nilpotent Jordan-type Lie algelsgs
from Definition[5.3.

WhenA # 0,j2p(A) is an invertible singular quadratic lie algebra and

jop(—A) = j2p(A).

Proposition 6.7. Let g be a solvable singular quadratic Lie algebra. Thgis an
invertible Lie algebra if, and only ifg is an amalgamated product of Lie algebras
all i-isomorphic to Jordan-type Lie algebrag,(A ), with A # 0.
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Proof. Letg = (CXp®CYp) @La q, Bbe the bilinear form ofy, B=B|;.4, C = ad(Yo)
andC = C|,; € o(q,B). We decompos€ into its semi-simple and nilpotent parts,
C = S+N. Itis well known thatSandN € o(q,B).

LetA C C\ {0} be the spectrum & We have thah € Aif, and only if, —A € A
(see Appendix 1). Le¥, be the eigenspace corresponding to the eigenvaliwe
have din{V,) = dim(V_,). Denote byq(A) the direct sumy(A) =V, &V_,. If
ueN u#=+A, theng(A) andq(u) are orthogonal (Appendix 1). Choogde
such tha\ = A, U (—A;) andA. N (—=A;) = 0. We have (see Appendix 1):

1
q:<9mmﬂ@)

So the restrictiorBy = BJq(x)xq(1) IS NON degenerate. Moreovef, andV._, are

maximal isotropic subspacesqi).

Now, consider the may :V_, — V;" defined by (u)(v) = B, (u,v), Yue V_,,
veV,. ThenW is an isomorphism. Given any bas#(A) = {e1(A),....e, (A)}
of V), there is a basis#(—A) = {ei(—A),...,e,, (—=A)} of V_, such that
Bi(ei(A),€(—A)) = &, V1 <i,j <m: simply definee(—A) = ¢ *(a(A)"),
forall 1<i<n,.

Remark thalN andS commute, sdN(V, ) C V), VA € A. DefineN, = N|;),
thenN, € o(q(A),B,). Hence, ifN, |y, has a matrixV, with respect toZ(A),
thenN, |y, has a matrix—'M, with respect to(—A). We choose the basis
Z(A) such thatM, is of Jordan type, i.e.

BA)=BA,1)U---UB(A,1)),
the multiplicity my, of A ism, = 3., d, (i) whered, (i) = 1%(A i) and
My = diag,, (Ja, (1), Jay (1)) -
The matrix ofC|,,) written on the basisg(A) U Z(—A) is:
diagh (Jd,\(l)()\ ), .. ,JdA (r,\)()‘ ), —tJdA (1) (A ), ey —tJdA (I’A)(A )) .

Let q(A,i) be the subspace generated®yA ,i) U B(—A,i), forall 1 <i<r,
and letC(A i) = C|y j)- We have

1 :
a(A) = @ a<i<r, qa(A,0).
The matrix of C(A,i) written on the basis ofi(A,i) is ngA(i)()‘)' Let g(A,i),
A e Ni, 1<i<r, be the double extension qfA,i) by C(A,i). Theng(A,i) is
i-isomorphic tojyg, (i)(A ). But
1 _ :
qg= @ Q()\,l) and C|q()\,i) :C()\vl)
AeN;

1§i§r)\
Thereforeg is the amalgamated product

g= x g(A,i).
AeN;

1§i§r)\
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O

6.3. Denote bysin(2p+ 2) the set of invertible singular Lie algebra structures
on C?P+2, by giE(Zer 2) the set of isomorphism (or i-isomorphism) classes of
Sinv(2p+2). Next, we will give a classification dfi,, (2p+2). Using Propositions
and5.b, a classification 8£(n+ 2) can finally be achieved.

We shall need the following Lemma;

Lemma 6.8. Let (V,B) be a quadratic vector space. We assume thatV, ©&V_
with V.. totally isotropic vector subspaces.
(1) LetNe Z(V) such that NV ) C V... We define maps.Noy N, v, =Nly,,
Nilv. =0, N-Jv. =N}y and N_|y, =0. Then Ne o(V) if, and only if,
N_ = —N7 and, in this case, N= N, — N7.
(2) LetU; € Z(V)suchthatU isinvertible, U. (V,) =V, and Uy [y = Idy_.
We define U= .Z(V) by Uly, =U, andUjy_ = (U:%)". ThenUe O(V).
(3) Let N € o(V) such that N satisfies the assumptions of (1). Define &
in (1). Moreover, we assume that there exists&).Z (V. ), U, invertible
such that
N/+|V+ = (UJF N Ull) |V+‘
We extend UtoV by U, |y =Idy_ and define Uc O(V) as in (2). Then

N'=UNU1
Proof. The proof is a straightforward computation. O

Let us now conside€ € o(n), C invertible. Thenn is even,n = 2p (see Ap-
pendix 1). We decomposé = S+ N into semi-simple and nilpotent parts,
N € o(2p). We haveA € A if, and only if, —A € A (Appendix 1), where\ is
the spectrum o€. Alsom(A) =m(—A), for all A € A with multiplicity m(A).
SinceN andScommute, we havBl(V(£A)) C V(£A) whereV, is the eigenspace
of Scorresponding td € A. Denote bywW(A) the direct sum

W(A) =V, aV_,.
Define the equivalence relatidhon A by:
ARu if,and only if, A = +u.
Then
2p -
CP= D renxW(A),

and eacfW(A),B, ) is a quadratic vector space Wi} = Blwx)xw)-

Fix A € A. We writeW(A) =V, @ V_ with V.. =V,,. Then, with the notation
in Lemma6.8, defind, , = N.. SinceN|y. = —Nj, it is easy to verify that the
matrices ofN|y, andN|y_ have the same Jordan form. L@ (A),...,d;, (A)) be
the size of the Jordan blocks in the Jordan decompositidwaf. This does not
depend on a possible choice betwé#, or N|y_ since both maps have the same
Jordan type.
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Next, we consider
9 = U {(dlv"'>dr) eN' |d12d22 Zdr > 1}

reN*
Defined : A — 2 byd(A) = (di(A),...,dr, (A)). Itis clear thai® od = m, where
®: 2 — Nis the map defined bg(dy,...,d) =3[, d.
Finally, we can associate @e o(n) a triple (A,m,d) defined as above.

Definition 6.9. Let _#, be the set of all triple§/\,m,d) such that:
(1) Ais asubset of \ {0} with 4A <2pandA € Aif, and only if, —A € A.
(2) m: A — N* satisfiean(A) =m(—A), forall A e Aandy ;com(A) = 2p.
(3) d: A\ — Z satisfied(A) =d(—A), forall A e Aand®Pod =m.

Let .#(2p) be the set of invertible elements é2p) and.#(2p) be the set of
O(2p)-adjoint orbits of elements i (2p). By the preceding remarks, there is a
mapi : .#(2p) — _#,. The following Proposition classifieg (2p):

Proposition 6.10. o
The map i .#(2p) — _#p induces a bijection: .7 (2p) — _7p.

Proof. Let C andC’ € .#(2p) such thatC’ =U C U1 with U € O(2p). LetS,
S, N, N’ be respectively the semi-simple and nilpotent part€ aindC’. Write
i(C)=(A,mA)andi(C’) = (N,m A").

ThenS =U SUL So/N =Aandn’ =m. Also,U(V,) =Vj, forall A € A,
SinceN’ =U N U™, thenN'|y; =U v, Ny, U~ *|y,. HenceN|y, andN'ly, have
the same Jordan decomposition,dse d’ andi is well defined.

To prove thai is onto, we start with\ = {A1,—A1,..., A, — Ak}, mandd as in
Definition[6.9. Define on the canonical basis:

m(A1) m(Ax) m(Az) m(Ax)

. —N— —N——
S= dlagzp()\l,...,/\1,...,)\k,...,)\k,—/\l,...,—/\1,...,—)\k,...,—)\k).
Forall 1<i <Kk, letd(Ai) = (di(Aj) > ...dy, (Ai) = 1) and define

N+(A) = diagd(,\i) (Jdl(/\i)’sz(/\i)’ ce. 7Jdr}\i ()\i))

on the eigenspacé, and 0 on the eigenspavde, wherely is the Jordan block of
sized.
By Lemmal6.8,N(A;) := N (Ai) — N,(Ai)* is skew-symmetric oV, &V_..
Finally,
k

CP= 51 (W BV,).
DefineN € o(2p) by N ($K.1vi) = $K 1 N(A)(Vi), Vi €V, ®V_5, andC=S+N €
0(2p). By constructionj(C) = (A,m,d), soi is onto.
To prove that is one-to-one, assume t&tC’ € .# (2p) and thai(C) =i(C') =
(A,m,d). Using the previous notation, since their respective sgmple partsS
andS have the same spectrum and same multiplicities, thereléxisD(2p) such
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thatS =USUL. ForA € A, we havel (V) =V for eigenspace¥, andV, of S
andS.

Also, for A € A, if N andN’ are the nilpotent parts & andC/’, thenN"(V, ) C
Vi, with N = U~*N'U. Sincei(C) = i(C’), thenN|y, andN',, have the same
Jordan type. Sinch” =U~IN'U, thenN"|y, andN’\VA/ have the same Jordan type.
SoNly, andN"}y, have the same Jordan type. Therefore, there eRists .2 (V) )
such thaN”}y, = D, Nly,D;*. By Lemmd6.B, there exisB(A) € O(Vy &V._,)
such that

N”‘VAEBVﬁ\ =D, (A )N’VA@V )\D‘l‘(A)_l'
We defineD € O(2p) by D|y,av , =D(A), for all A € A. ThenN” = DND* and
D commutes withS. ThenS = (UD)S(UD)~! andN’ = (UD)N(UD)~! and we
conclude
C' = (UD)C(UD)?!
U

The classification 08in (2p+ 2) can be deduced from the classification of the
set of orbits.# (2p) by _#, as follows: introduce an action of the multiplicative
groupC* =C\ {0} on ¢, by

forall p e C*, u- (A,md) = (uA,m,d"), V (A,md) € Zp,A €A,

wherem(uA) =m(A),d'(uA) =d(A), VA € A. We havei(uC) = pi(C), for all
C e .#(2p) andu € C*. Hence, there is a bijectidn P(.# (2p)) — 7p/C* given
by i([C]) = [i(C)], if [C] is the class of € .#(2p) and [(A,m,d)] is the class of
(A,md) € _7,.

Proposition 6.11. The seS;y, (2p-+ 2) is in bijection with_7,,/C*.

Proof. By Propositio 4.70, there is a bijection betwée,nﬁZpJFZ) and]P’l( (2p)).
By restriction, that mduces a bijection betw@.m, (2p+2) and]Pl(f(Zp)) By

Lemmd5.9, we havé.m, (2p+2) = S.m,(2p+ 2). Then, the result follows: given
gc Sinv(2p+2) and an associateZlc .7 (2p), the bijection mapsg to [i(C)] where
g is the isomorphism class gf O

Remark6.12 Any g € 8(n+2) can be decomposed as an amalgamated product of
its Fitting componentgy = gy x g1 (RemarK6.R). Alsog ~ ¢’ if, and only if, gn ~
a

gy andg) ~ g;. Remark thagn € N(k+ 2) for somek < nandg, € S (204 2)
for some/ with 2¢ < n andk+ 2¢ =n. Up to isomorphism (or the equivalent
notion of i-isomorphism, see Propositibn 16.4), the classifon of N(k + 2) is
known (Propositioi 5]5) and the classification Sf, (2¢ + 2) is known as well
(Propositio 6.111). The decomposition @f andg, as amalgamated products of
Jordan-type Lie algebras is obtained in Propositions 5d6ah and that allows us
to write explicitly the commutation rules @f. So, the complete description and
classification (up to isomorphism or i-isomorphism)Sgfn+ 2) is achieved.
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Remark that aside the singular quadratic Lie algebras ghntee can com-
pletely solve the problem of the classification ofrPadjoint orbits ino(n) as
follows: for C € o(n), consider its Fitting componen@y andC,. They belong
respectively to4”(k), k < nand to.# (2¢), ¢ < nwith k+2¢ = n. MoreoverC and
C’ are conjugate if, and only iCy, C andC;, C are conjugate (it results from
the proof of Proposition 614). B@y is nilpotent and the classification of nilpo-
tent orbits is known (see Lemnha b.4). For the invertiBje the classification is
given in Propositiol 6.10. A Jordan-type decompositio aan be then deduced
(seel(5.R) and the proof of Propositionl6.7). This gives aieik description and
classification of @n)-adjoint orbits ino(n).

7. QUADRATIC DIMENSION OF REDUCED SINGULAR QUADRATICLIE
ALGEBRAS AND INVARIANCE OF dup(g)

7.1. Let(g,B) be a quadratic Lie algebra. Itis shown(in [BB07] that the spafc
invariant symmetric bilinear forms gpand the space generated by non-degenerated
ones are the same. Let us calBitg). The dimension of3(g) is thequadratic di-
mensionof g, denote it bydy(g). Obviously,dq(g) =1 if g is simple. Ifg is
reductive, but neither simple, nor one-dimensional, then

tolg) = s(g) + SR+ A ()
whereZ(g) is the center ofy ands(g) is the number of simple ideals of a Levi
factor of g [BBO7]. A general formula fody(g) is not known. Here, we give a
formula for reduced singular quadratic Lie algebras. To sytymetric bilinear
form B’ on g, there is an associated symmetric niapg — g satisfying

B'(X,Y) =B(D(X),Y),V XY €g.

The following Lemma is straightforward.

Lemma 7.1. Let(g,B) be a quadratic Lie algebra, 'Be a bilinear form ory and
D € Z(g) its associated symmetric map. Then:

(1) B'isinvariant if, and only if, D satisfies
0) D(IX,Y]) = [D(X),Y] = [X,D(Y)], ¥V X,Y € g.
(2) B’ is non-degenerate if, and only if, D is invertible.

A symmetric maD satisfying is called @entromorphisnof g. The space of
centromorphisms and the space generated by invertibleoreotphisms are the
same, denote it b§(g). We havedy(g) = dim(C(g)).

Proposition 7.2. Letg be a reduced singular quadratic Lie algebra andDZ(g)
be a symmetric map. Then:

(1) D is a centromorphism if, and only if, there exigtse C and a symmetric
mapZ: g — Z(g) such thatZ|, 4 = 0and D= pld+Z. Moreover D is
invertible if, and only if,u = 0.
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dim(2(g)) (1 +dim(2(g))

d =1
h(g) =1+ >

If g = 0(3), with B= Ak andk the Killing form, the two results are ob-
vious. So, we examine the case whgre solvable, and theg can be

realized as a double extensian= (CX; & CY1) @La q, with corresponding
bilinear formB on g, C = ad(Y1), C=C|, € o(q).

Let D be an invertible centromorphism. One liasad(X) =ad(X) oD,
for all X € g and that implieDC = CD. Using formula (1) of Lemmg4]2
and CD = DC, from [D(X),Y:] = [X,D(Y1)], we find D(C(X)) =
B(D(X1),Y1)C(X). Let u =B(D(X1),Y1). SinceD is invertible, one has
H # 0andC(D — plId) = 0. Since kefC) = CX; @ ker(C) CY; = 2(g) ®
CY;, there exists a mag : g — Z(g) and ¢ € g* such thatD — uld =
Z+ ¢ ®Y1. ButD maps[g, g| into itself, sog|, ; = 0. One hadg, g] =
CXy®Im(C). If X € Im(C), let X = C(Y). ThenD(X) = D(C(Y)) =
HC(Y), soD(X) = uX. ForYy, D([Y1,X]) =DC(X) = uC(X) forall X € g.
But also,D([Y1,X]) = [D(Y1),X] = HC(X) + ¢ (Y1)C(X), hencep (Y1) = 0.

Assume we have shown thHafX;) = puX;. ThenifX € q, B(D(X1),X) =
uB(X1,X)=0. MoreoverB(D(X3),X) = B(X1,D(X)), so¢ (X) =0. Thus,
to prove (1), we must prove th@(X;) = uX;. We decomposeg respec-
tively to C as in Appendix 1. Let= ker(C). Then:

! L !/
g=(Iel) & (uau')
1 1
andC is an isomorphism fronf @ (u®u’) ontol @ (udu’). Or
! L L /!
q=(I+1 @ CT @ (uow)
. : . L 1 L 1
andC is an isomorphism fronff & CT & (u®u’) ontol & CT & (udu’).

If udu’ # {0}, there existX’, Y € u@ v’ such thatB(X",Y') = -1

andX,Y el é (ueu') (resp. ! é CT é (u@u)) such thatX’ = C(X),
Y' =C(Y). It follows that[C(X),Y] = X; and therD(X;) = [DC(X),Y]| =
H[C(X),Y] = pX;.

1
If udu’ = {0}, then eithery = (I+ ') & CT orq = I[+". The first case
L . . . T L
is similar to the situation above, settiXg=Y' = T andX,Y el'  CT.

In the second casé= Im(C) is totally isotropic andC is an isomorphism
from ' onto[. For any non-zerX < I', choose a non-zeré € ' such that
B(C(X),Y) =0. ThenD([X,Y]) = D(B(C(X),Y)X;) = 0. But this is also
equal to[D(X),Y] = u[X,Y]+ ¢(X)C(Y). SinceD is invertible,[X,Y] =0
and we conclude tha(X) = 0. Thereforep|s = 0. There exist, L' € I'
such thatX; = [L,L'] and therD(X;) = puX;.
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Finally, C(g) is generated by invertible centromorphism, so the neces-
sary condition of (1) follows. The sufficiency is a simpleifieation.
(2) Asin (1), we can restrict to a double extension and foltbes same nota-
tion. By (1), D is a centromorphism if, and only iD(X) = uX + Z(X),
for all X € g with u € C andZ is a symmetric map frony into Z(g)
satisfying Z|; s = 0. To computedy(g), we use Appendix 1. Assume

L —
dim(q) is even and writgj = (& ') ® (ud ') with [ = ker(C), Z(g) =
CX @1, IMC) = [& (wew) and [g,g] = CX4 & IM(C). Let us define

1 1
Z:ldCY, — [ CXq: set baSiS{X]_,XQ,. .. ,Xr} of [ CX; and {Y{ =
Y1,Yy,.... Y/} of [ @ CYy such thaB(Y/,X;) = &;. ThenZ is completely

defined by
r r r

with vij = vji = B(Y/,Z(Y])) and the formula follows. The case of dim
odd is completely similar.

[
7.2. As aconsequence of Proposition 7.2, we prove:

Proposition 7.3. Thedup-number is invariant under isomorphism, i.egifind g’
are quadratic Lie algebras with ~ g’, thendup(g) = dup(g’).

Proof. Assume thaty ~ g’. Since an i-isomorphism does not change (@lp we
can assume that = g’ as Lie algebras equipped with invariant bilinear forBis
andB'. Thus, we have two dup-numbers, dgp) and dug(g).

We chooseg such thatZ(g) = (Z(g)N[g,g]) ©3. Thenznjzte = {0}, ;is a

L
central ideal ofg andg = [@55 with [ a reduced quadratic Lie algebra. Then

Ly
dups(g) = dups (1) (seelZR)). Similarlyynzte = {0}, g=" & 3 with [areduced
quadratic Lie algebra and dgipg) = dupy (I'). Now, [ and[’ are isomorphic to
g/3, sol~I'. Therefore, it is enough to prove the result for reduced rptadLie
algebras to conclude that dy/jp) = dupy (I) and then that dyf{g) = dupg (g).

Considerg a reduced quadratic Lie algebra equipped with bilinear dBrand
B’ and associated 3-formisand!l’. (see[(1.5)). We have dyfy) = dim(V,) and
dupy (g) =dim(V)) withVy ={a e g* | a Al =0} andV;, = {a € g* | a Al’ =0}.

We start with the case dypg) = 3. This is true if, and only if, diffig,g]) = 3
[PUO7]. Then dug (g) = 3.

If dupg(g) = 1, theng is of typeS; with respect td. We apply Proposition 7,2
to obtain an invertible centromorphish= p1d +Z foranon-zerqu e C,Z=g —
Z2(g) satisfyingZ|j; 5 = 0 and such thaB'(X,Y) = B(D(X),Y), for all XY € g.
Thenll(X>Y>Z) = B/([X,Y],Z) = B([D(X),Y],Z) = uB([X,Y],Z) = pl(X,Y,2),
forall X,Y, Z € g. Sol’ = ul and dug,(g) = dups(g).

Finally, if dupg(g) = 0, then from the previous casegsg¢annot be of typ&s or
S1 with respect td’, so dug(g) = 0.
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8. APPENDIX 1

In this Appendix, we recall some facts on skew-symmetric snaged in the
paper. Nothing here is new, but short proofs are given fos#tike of completeness.

Throughout this section(V,B) is a quadratic vector space a@ds an element
of o(V). We recall the useful identity k&€) = (Im(C))*.

Lemma 8.1. There exist subspaces W and N of V such that:

1
(1) N C ker(C),C(W) CW and V=W & N.
(2) Let By = Blwxw and Gy = C|w. Then By is non-degenerate, i €
o(W,Bw) andker(Gy) C Im(Cw) = Im(C).
Proof. We follow the proof of Proposition 2.4, given in [PU07]. L = ker(C)N

Im(C) and letN be a complementary subspaceNfin ker(C), ker(C) = Np @ N.
Since ke(C) = (Im(C))*, we haveB(No,N) = {0} and NN N+ = {0}. So, if

W =N+, one hay/ =W SN, FromC(N) = {0}, we deduce tha(W) Cc W.

It is clear thaB is non-degenerate and tli&g € o(W). Moreover, sinc€(W) C
W andC(N) = {0}, then Im(C) = Im(Gy). It is immediate that k€Cy ) = Np, SO
ker(Cw) C Im(Cw). O
Lemma 8.2. Assume thaker(C) C Im(C). Denote L= ker(C). Let{Ls,...,L/}
be a basis of L.

(1) If dim(V) is even, there exist subspacésnlith basis{L1,...,L;}, U with
basis{Us,...,Us} and U with basis{U, ..., U¢} such that BL;, Lj) = &,
forall 1 <i,j <r, Land L are totally isotropic, aui,ujf) = §;j, for all
1<i,j<s,U andU are totally isotropic and

1L
V=(Lal)a UaU.
1 1 1
Moreoverim(C) =L@ (UaU’)andC:L'® (UaU’') - L& (UaU’)
is a bijection.

(2) If dim(V) is odd, there exist subspace§ U and U as in (1) and e V
such that Bv,v) = 1 and

L L
V=(Lal)®Cva (UaU’).

1 1 1 1
Moreoverim(C) =L@ Cva (UapU’)and C: L' Cvad (U U’) —
1 1
L@ Cva (UaU’)is a bijection.
(3) In both casestank(C) is even.

Proof. Since(ker(C))* = Im(C), L is isotropic.
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(1) Ifdim(V) is even, there exist maximal isotropic subspatgsindW, such
thatV =W, &W, [Bou59] andL ¢ W;. LetU be a complementary sub-
space ofL in Wi, W, =L@ U and {U,,...,Us} a basis olU. Consider
the isomorphism : W, — W, defined byW(ws)(wq) = B(wz,wy ), for all
wi € Wy, wp € W. Definel] = ¢~ 1(L}), 1<i <r, L' =sparl},...,L;},
Ul =g 1(U}), 1< j<s U =sparfUi,...,Us}. ThenB(L; L)) = &;,
1<i,j<r,LandLl’ are isotropic,B(Ui,Uj’) =¢gj, forall 1<i,j<s U
andU’ are isotropic and

1L
V=(Lal)a UaU.
1
Since In{C) = L', we have IniC) = L@ (U @ U’). Finally, if
1
vel'® (UaU’) andC(v) =0, thenv e L. Sov= 0. ThereforeC is one

1 1
to one fromL’ & (U @U’) intoL & (U &U’) and since the dimensions are
the sameC is a bijection.

(2) There exist maximal isotropic subspa®&sandW, such thaVv = (W, @

1
Ws) @ Cv, with v e V such thaB(v,v) = 1 andL C W4 [Bou59]. Then the
proof is essentially the same as in (1).

1
(3) Assume dinV) even. Define a bilinear fornh on L' & (U & U’) by
1
A(va, Vo) = B(v1,C(v2)), for all vi, v, € L' ® (U @ U’). SinceC € o(V),
1
A'is skew-symmetric. Let; € L' @ (U @U’) such thath(vy,v2) = 0, for

1 1
alvw el’® (UaU’). ThenB(vy,w) =0, forallwe L (UaU’). It
follows thatB(v1,w) = 0, for allw € V, sov; = 0 andA is non-degenerate.

1
So dimL’ & (U eU’) is even. Therefore dif’) = dim(L) is even and
rank(C) is even. IfV is odd-dimensional, the proof is completely similar.
O

Corollary 8.3. If C € o(V), thenrank(C) is even.

Proof. By Lemma[8.1, IniC) = Im(Cy) and rankGy) is even by the preceding
Lemma. O

For instance, ifC € o(V) andC is invertible, then dinfiv) must be even. But
this can also be proved directly: wheéhis invertible, then the skew-symmetric
form Ac onV defined byAc(vi,v2) = B(v1,C(v2)), for all vi, vo €V, is clearly
non-degenerate.

1
WhenC is semi-simple (i.e. diagonalizable), we hale- ker(C) & Im(C) and
Clim(c) is invertible. So semi-simple elements are completely rilgsd by:

Lemma 8.4. Assume C is semi-simple and invertible. Then there is a basis
{et1,...,€p, f1,..., fp} of V such that Be,ej) = B(fi, f;) =0, B(e, fj) = &;, 1 <

i,j <p. Forl1<i<p, there exist non-zerd; € C such that Ge) = Ajg and
C(fi) = —Aifi.



38 DUONG MINH THANH, GEORGES PINCZON, ROSANE USHIROBIRA

Moreover, ifA denotes the spectrum of C, there A if, and only if, —A € A; A
and —A have the same multiplicity.

Proof. We prove the result by induction on dim). Assume diniV) = 2. Let
{e1,e:} be an eigenvector basis Wfcorresponding to eigenvaluds andA,. We
haveB(C(v),V) = —B(v,C(V)) andC is invertible, soB(e;,e;) = B(ez,€) =0,

1
B 0 andA; = —A;1. Let f; = ————e, then the basidey, f1} is a
(91,92? # | 2 1 1 8(61’82)62 qer, f1}
convenient basis.
Assume that the result is true for quadratic vector spacesneénsionn with

n<2(p—1). Assume dinfV) = 2p. Let {e,...,ep} be an eigenvector basis
with corresponding eigenvalues, ..., A2,. As before,B(e,g) =0, 1<i < 2p,

1
th ist$ such thaB i)#£0. Themj =—Aq. Letfj=———
so there exist$ such thaB(ey, g)) # en; 1. Letfy Blesq)
1
Blspar{e;, 1.} iS NON-degenerate, o= spar{ey, f1} @ Vi, whereV, = spar{ey, fi}t.

But C mapsV; into itself, so we can apply the induction assumption andesealt
follows. O

€. Then

As a consequence, we have this classical result, used imSéct

Lemma 8.5.

(1) Let C be a semi-simple elementagh). Then C belongs to th8Q(n)-
adjoint orbit of an element of the standard Cartan subalgebf o(n)

(i.e., an element with matridiag,;(A1,...,Ap, —A1,...,—Ap) if n = 2p
and diagzpﬂ()\l,...,)\p,O,—)\l,...,—)\p) if n=2p+1in the canonical
basis ofC").

(2) Let C and C be semi-simple elements @i). Then C and Care in the
sameO(n)-adjoint orbit if, and only if, they have the same spectrurith w
same multiplicities.

Proof.

1

(1) We haveC" = ker(C) & Im(C) and rankC) is even. So dirtker(C)) is
even ifn = 2p and odd, ifn = 2p+ 1. Then apply Lemm@a 8.4 ©|;,c) to
obtain the result.

(2) If C andC’ have the same spectrum and their eigenvalues, same nudltipli
ities, they are @n)-conjugate to the same element of the standard Cartan

subalgebra.
[
Remark8.6.
(1) Attention: Qn)-adjoint orbits are generally not the same ag®&adjoint
orbits.

(2) Lemmd8.b(1) is a particular case of a general and clsgsult on semi-
simple Lie algebras: any semi-simple element of a semidsitie algebra
belongs to a Cartan subalgebra and all Cartan subalgetraajugate
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under the adjoint action [Sam80]. Her€n) is a semi-simple Lie algebra
and the adjoint group is S@).

9. APPENDIX 2

Here we prove:

Lemma 9.1. Let (g,B) be a non-Abelian 5-dimensional quadratic Lie algebra.
Theng is a singular quadratic Lie algebra.

Proof.

e \We assumg is not solvable and we writg = s @t with s semi-simple and
v the radical ofg [Bou71]. Thens ~ s(2) andB|;., = Ak wherek is the
Killing form.

If A =0, considet¥ : s — t* defined by(S)(R) = B(S R), for all Se s,
Re t. ThenW is one-to-one an&¥ (ad(X)(S)) = ad(X)(¢(9)), for all X,
Ses. SoW must be a homomorphism from the representatioad|,) of
s into the representatioft*,ad), soW = 0, a contradiction.

SoA #0. ThenB|s.s is non-degenerate. Therefoge= s égi and
ad(s)|,. is an orthogonal 2-dimensional representationsof Hence,
ad(s)|,. =0 and[s,s*] = 0. We haveB(X,[Y,Z]) = B([X,Y],Z) = 0, for
all X €s,Y €st,Z e g. Itfollows thats is an ideal ofg and therefore a

1
quadratic 2-dimensional Lie algebra. Sois Abelian. Finally,g =s @ s+
with s+ a central ideal ofj, so dugg) = dup(s) = 3.

e We assume thag is solvable and we writg = [ é 3 with 3 a central ideal
of g (Proposition[24). Then difh) > 3. If dim() = 3 or 4, then it is
proved in Propositiof 2.10 thatis singular, sqg is singular. So we can
assume thag is reduced, i.eZ(g) C [g,g]. It results that diniZ(g)) =1
or 2 (Remark213).

— Ifdim(2(g)) = 1, 2(g) = CXo. Then dinf[g, g]) = 4 and[g, g] = Xy
We can choosé&) such thatB(Xo,Yp) = 1 andB(Yp,Yp) = 0. Let

q=(CXp@CYp)*. Theng = (CXo® CYo) GLB g. If X, X" € q, then
B(Xo, [X,X]) = B([X0,X],X") = 0, s0[X,X'] € Xg"-. Write [X,X'] =
A (X, X")Xo 4 [X, X] with [X,X']; € q. Remark thafX, [X’,X"]] =
AKX, X )Xo+ [X, X/, X"]g]q, for all X, X/, X" € q. So[-, ], sat-
isfies the Jacobi identity. MoreovB([X,X'],X") = —B(X’, [X,X"];).
But alsoB([X,X'],X") = B([X,X'],X"). So(q,[,-]q;Blqxq) is @ 3-
dimensional quadratic Lie algebra.

If q is an Abelian Lie algebra, thelX,X'] € CXo, for all X, X’ € g.
Write  B(Yp,[X,X']) = B([Yo,X],X’) to obtain [X,X] =
B(ad(Yo)(X),X")Xo, forall X, X" € q. Since dinfq) = 3 and adYo)|, is
skew-symmetric, there exis@ € q such that afirp)(Qop) = 0. It fol-
lows thatQg € Z(g) and that is a contradiction since di#i(g)) = 1.
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Therefore(q, [, -]q) ~ s[(2). Consider
0—CXy— Xy —q—0.

Then there is a sectono : q — X5 such that
o([X,X']q) = [0(X),o(X")], for all X, X" € q [Bou71]. Theno(q)
is a Lie subalgebra af, isomorphic tos((2) and that is a contradic-
tion sinceg is solvable.

— If dim(Z(g)) = 2, then we choose a non-zexg € Z(g) andYp € g
such thatB(Xo,Yo) = 1 andB(Yo,Yp) = 0. Letq = (CXo @ CYp)*.

Theng = (CXo® CYp) é g and as in the preceding cag¥, X'] € Xg",

forall X, X" € q. Write [X, X'] = A (X, X")Xo+ [X, X'] with [X,X']; €

g. Same arguments as in the preceding case allow us to conclude
that [-, -], satisfies the Jacobi identity and tBjt . is invariant. So
(9,[-+-]q:Blqxq) is @ 3-dimensional quadratic Lie algebra.

If g~ sl(2), then apply the same reasoning as in the preceding case to
obtain a contradiction witlg solvable.

If q is an Abelian Lie algebra, thelX,X'] € CXo, for all X, X’ € g.
Again, as in the preceding cag¥,, X'| = B(ad(Yp)(X), X)Xy, for all

X, X" € q. Then it is easy to check thatis a double extension of

the quadratic vector spageby C = ad(Yo)|q. By Propositio ZBg is
singular.

O

Remark9.2 Let us give a list of all non-Abelian 5-dimensional quadratie al-
gebras:

o g L 0(3) & C2 with C2 central,o(3) equipped with bilinear form k, A €
C, A # 0 andk the Killing form. We have dufy) = 3.

i L
o g ~ g4 @ C with C central,g4 the double extension @ by <(1) _Ol>, g

is solvable, non-nilpotent and dup = 3.

. 01 O
e g ~ g5, a double extension of® by [0 0 —1|, g is nilpotent and
0 0 O
dup(g) = 3.
1L
See Propositioh 414 for the definition @f andgs. Remark thaty, ¢ C is actu-
10 O
ally the double extension @by [0 0 O
0 0 -1
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