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Abstract

In this article we prove that for any saturated fusion system, that the (unique) smallest

weakly normal subsystem of it on a given strongly closed subgroup is actually normal. This

has a variety of corollaries, such as the statement that the notion of a simple fusion system is

independent of whether one uses weakly normal or normal subsystems. We also develop a theory

of weakly normal maps, consider intersections and products of weakly normal subsystems, and

the hypercentre of a fusion system.

1 Introduction

The theory of fusion systems is becoming an important topic in algebra, with interactions with

group theory, representation theory and topology. This article is concerned with the structure

of normal subsystems of fusion systems. There are two notions of a ‘normal’ subsystem in the

literature, one stronger than the other. (We will recall their definitions in this article.) We will

follow [7] and call the subsystem considered by Aschbacher in [2] a normal subsystem, and the

subsystem considered by, among others, Linckelmann in [11] a weakly normal subsystem.

Our first result highlights the exact relationship between normal and weakly normal subsystems.

Theorem A Let F be a saturated fusion system on a finite p-group P . If E is a weakly normal

subsystem of F , then Op′(E) is a normal subsystem of F .

Recall that Op′(E) is the smallest (weakly) normal subsystem of E on the same p-group as E

(see [12, Section 6.5] or [5, Theorem 5.4] for example, or Section 8 of this article). What Theorem

A says is that any weakly normal subsystem can be thought of as a normal subsystem E , together

with some p′-automorphisms of E that lie in F . In other words, we have the following corollary.

Corollary B Let F be a saturated fusion system on a finite p-group P . If E is a weakly normal

subsystem of F , on a subgroup T , then there exists a normal subsystem E ′ of F , also on T , and a

p′-subgroup H of AutF (T ) such that E is generated by E ′ and H.

Theorem A has several corollaries, such as the following.
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Corollary C Let F be a saturated fusion system on a finite p-group P . Then F has no proper,

non-trivial normal subsystems if and only if F has no proper, non-trivial weakly normal subsystems.

In other words, the notion of a simple fusion system is the same with either normal subsystems or

weakly normal subsystems.

We give some more corollaries to Theorem A in Section 9.

Let F be a saturated fusion system on a finite p-group P , and let T be a strongly F-closed

subgroup of P . In [2], Aschbacher developed the concept of a normal map, which is a special type

of function A(−) on the set of all subgroups U of T , with A(U) a subgroup of AutF (U). If E is a

normal subsystem on T , then A(U) = AutE(U) for U 6 T is a normal map. Conversely, if A(−)

is a normal map, then the subsystem generated by A(U) for U 6 T is a normal subsystem E ′, and

A(U) = AutE ′(U) for all U 6 T . In the proof of this theorem in [2], the fact that the map was

associated to a normal subsystem was pivotal to the proof that the subsystem generated by the

map was saturated. Here we decouple the theorem from this requirement, proving a similar result

for weakly normal subsystems.

Theorem D Let F be a saturated fusion system on a finite p-group P , and let T be a strongly

F-closed subgroup of P . Let A(−) be a function from the set of subgroups U of T , such that A(U)

is a subgroup of AutF (U), satisfying the following conditions.

(i) If φ is an F-isomorphism whose domain is U , then A(Uφ) = A(U)φ.

(ii) If U is fully F-normalized, then AutT (U) 6 A(U).

(iii) AutT (T ) is a Sylow p-subgroup of A(T ).

(iv) If U is fully F-normalized, then every element of A(U) extends to an element of A(U CT (U)).

(v) If U is fully F-normalized and CT (U) 6 U then for any subgroup U 6 V 6 NT (U), denoting

by A(U 6 V ) the set of automorphisms of V that restrict to automorphisms of U , the

restriction map

A(U 6 V ) → NA(U)(AutV (U))

is surjective.

If E is the subsystem generated by A(U) for all U 6 T , then E is a weakly normal subsystem of F

and AutE(U) = A(U) for all U 6 T .

When amalgamated with the axiom needed for weakly normal subsystems to be normal, we get

a (slightly) weaker formulation of the axioms for A(−) to be a normal map.

Let F be a saturated fusion system on a finite p-group P . The centre Z (F) of F seems to play

an important role in the theory of fusion systems: for example, in [5, Corollary 6.14] it is proved

that F is a fusion system of a finite group if and only if F/Z (F) is, and in [2, Lemma 8.10] it is

proved that there is a one-to-one correspondence between normal subsystems of F on subgroups
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containing Z (F) and normal subsystems of F/Z (F). As with finite groups, write Z1(F) = Z (F)

and Zi(F) for the preimage in P of Z (F/Zi−1(F)). The series (Zi(F)) eventually stabilizes; write

Z∞(F) for this limit, called the hypercentre of F .

Another subsystem that seems important is NP (Q)CF (Q); ifQ is a fully F-normalized subgroup

of P , then the subsystem NP (Q)CF (Q) is the (saturated) subsystem of F on NP (Q) consisting

of all morphisms φ : R → S in F such that φ extends to φ̄ : QR → QS with φ̄|Q = cg for some

g ∈ NP (Q), where cg denotes conjugation by g. This notion is connected to the hypercentre by the

following theorem.

Theorem E Let F be a saturated fusion system on a finite p-group P . If X is a normal subgroup

of P , then F = P CF (X) if and only if X 6 Z∞(F).

In Section 7 we prove a few results about the hypercentre and central extensions; for example,

we prove the following result. (A saturated fusion system F is perfect if there is no surjective

morphism F → FA(A) for any non-trivial abelian p-group A.)

Proposition F Let F be a saturated fusion system on a finite p-group P . If F is perfect then

Z2(F) = Z (F).

This proposition allows us to define the universal central extension of a perfect fusion system,

exactly analogously to perfect finite groups.

We also extend (slightly) Glauberman’s Z∗-theorem, rewriting it in the language of fusion

systems at the same time.

Proposition G Let G be a finite group with Op′(G) = 1, and let P be a Sylow p-subgroup of G.

Writing F = FP (G), we have that Zi(F) = Zi(G).

We end with three sections applying our results. The first of these deals with intersections

and products of subsystems, the second of these deals with corollaries to Theorem A and the final

section gives a comparison of weakly normal and normal subsystems, giving two situations in which

normal subsystems behave better than weakly normal subsystems.

The notation used in this article is quickly becoming standard in this field, and we refer to [7]

for many of the notational issues. We will define weakly normal subsystems and normal subsystems

in the next section, as this is still relatively new terminology, but leave the standard definitions to

[7] (see also [11] and [6], although note that in the former ‘fusion systems’ there are referred to as

‘saturated fusion systems’ here). Note that in this article maps and homomorphisms are composed

from left to right.

2 Definitions and Notation

The definitions of fusion system and saturated fusion system, and fully normalized, fully centralized,

centric, radical and essential subgroups, are as in [7], and these are now standard in the literature.
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(Notice that our definitions of fully normalized and fully centralized subgroups differ from that of

[12].) The definitions of a fully automized subgroup and a receptive subgroup are not common yet,

and so we give them now.

Definition 2.1 Let F be a fusion system on a finite p-group P . A subgroup Q of P is fully F-

automized if AutP (Q) is a Sylow p-subgroup of AutF (Q). A subgroup R is receptive if, whenever

φ : S → R is an isomorphism in F , φ extends to a map φ̄ : Nφ → P , where Nφ is the (full) preimage

of the subgroup AutP (S) ∩AutP (R)
φ−1

under the natural map NP (S) → Aut(S).

If Q is a subgroup of P then by AutP (Q) we mean the set of automorphisms of Q induced by

conjugation by the elements of P (actually NP (Q)). We introduce the notation Aut(Q 6 R) for

the set of all automorphisms of R that restrict to an automorphism of Q, where Q 6 R. We also

use the obvious extensions of notation AutF (Q 6 R) and AutP (Q 6 R). A subgroup Q is said to

have the surjectivity property if, for any subgroup R with QCP (Q) 6 R 6 NP (Q), the map

AutF (Q 6 R) → NAutF (Q)(AutR(Q))

obtained by restriction is surjective.

The notion of an F-invariant subsystem was introduced by Puig (see [12], where it is called

‘normal’), and a saturated, F-invariant subsystem is called weakly normal here (and ‘normal’ in

[11]). Normal subsystems are defined in [2], with the addition of one more axiom, which involves

how the subsystem is embedded with respect to the centralizer of the underlying subgroup.

Definition 2.2 Let F be a saturated fusion system on a finite p-group P , and let T be a strongly

F-closed subgroup. A subsystem E 6 F , on T , is F-invariant if, whenever Q 6 R are subgroups

of T , φ : Q → R is a morphism in E and ψ : R → T is a morphism in F , the composition

ψ−1φψ : Qψ → Rψ is a morphism in E . If E is saturated and F-invariant then E is weakly normal

in F .

If, in addition, whenever φ is an E-automorphism of T , there is an F-automorphism φ̄ ∈

AutF (T CP (T )) such that [φ̄,CP (T )] 6 Z (T ), then E is said to be normal in F .

We also need to fix our notation for quotient subsystems and morphisms, taken from [7].

Definition 2.3 Let F be a saturated fusion system on a finite p-group P , and let T be a strongly F-

closed subgroup of P . Let F/T denote the fusion system on P/T , whose morphisms HomF/T (Q/T,R/T )

(for T 6 Q,R 6 P ) are all morphisms φ̄ induced from morphisms φ : Q → R in F by taking quo-

tients by T (since φ acts as an automorphism of T ).

Let F be a fusion system on a finite p-group P , and let Q be a subgroup of P . The subsystem

NP (Q)CF (Q) is the subsystem on NP (Q) consisting of all morphisms φ : R → S such that φ

extends to a map φ̄ : QR → QS such that φ|Q = cg for some g ∈ NP (Q), where cg denotes the

conjugation map by g.
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Recall that the centre of F , denoted Z (F), is the set of all x ∈ P such that any morphism

φ : Q → R in F has an extension φ̄ : Q〈x〉 → R〈x〉 such that xφ̄ = x. We may iterate this

construction.

Definition 2.4 Let F be a saturated fusion system on a finite p-group P . Define Z1(F) = Z (F)

and Zi(F) inductively by Zi(F) being the preimage in P of Z (F/Zi−1(F)). The largest term of

this ascending sequence is the hypercentre of F , and is denoted by Z∞(F).

We introduce a couple more definitions concerning the generation and saturation of fusion

systems.

Definition 2.5 Let F be a fusion system on a finite p-group P . Let H be a set of subgroups of

P , and let Q be an F-conjugacy class of subgroups of P .

(i) We say that F is H-generated if F is the smallest fusion system on P containing all F-

morphisms between elements of H.

(ii) We say that Q is saturated if it contains a fully automized, receptive subgroup Q of P .

Finally, we have a definition needed for studying hypercentres.

Definition 2.6 Let F be a saturated fusion system on a finite p-group P . We say that F is perfect

if there is no morphism F → FA(A) of fusion systems, for any abelian p-group A,.

An equivalent way of defining being perfect is to say that Op(F) = F , where Op(F) is the

hyperfocal subsystem (see [5]).

3 Results from the Literature

Having given all of the definitions, we turn to the theorems in the literature that we will need in

the next sections. We start with a well-known result on p′-automorphisms of p-groups that we will

use so often we will not comment.

Lemma 3.1 ([9, Corollary 5.3.3]) Let P be a finite p-group, and let Q be a normal subgroup of

P . The subgroup of Aut(P ) of automorphisms that act trivially on both Q and P/Q is a p-group.

The next two propositions and lemma deal with proving saturation in a fusion system.

Proposition 3.2 ([4, Lemma 2.4]) Let F be a fusion system on a finite p-group P , and let H

be a union of F-conjugacy classes of subgroups of P . Suppose that F is H-generated, and that

every F-conjugacy class in H is saturated. Let Q be an F-conjugacy class of subgroups of P such

that all subgroups of P properly containing members of Q lie in H.

(i) Any fully normalized subgroup Q in Q is fully centralized, and for any other subgroup Q̃ ∈ Q,

there is an F-morphism φ : NP (Q̃) → NP (Q) with Q̃φ = Q.
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(ii) For any fully normalized subgroup Q in Q, if {Q} is saturated in NF (Q), then Q is saturated

in F .

Proposition 3.3 ([4, Lemmas 2.4 and 2.5]) Let F be a fusion system on a finite p-group P ,

and let H be a union of F-conjugacy classes of subgroups of P . Suppose that F is H-generated,

and that every F-conjugacy class in H is saturated. Let Q be an F-conjugacy class of subgroups

of P such that all subgroups of P of smaller index than those in Q lie in H. Let H′ denote the set

of subgroups of NP (Q) strictly containing Q.

(i) Every NF (Q)-conjugacy class of subgroups of H′ is saturated, and every F-automorphism of

Q is the composition of (restrictions of) NF (Q)-morphisms between elements of H′.

(ii) If either Q is not F-centric, or OutP (Q) ∩ Op(OutF (Q)) is non-trivial, then the NF (Q)-

conjugacy class {Q} is saturated.

We need a few different equivalent conditions for a fusion system to be saturated.

Theorem 3.4 (Roberts–Shpectorov [13, Theorems 5.2, 5.3]) Let F be a fusion system on

a finite p-group P . Then F is saturated if and only if P is fully F-automized and every F-conjugacy

class of subgroups of P contains a fully F-normalized, receptive member, and this is equivalent to

every F-conjugacy class of subgroups of P containing a fully F-automized, receptive member.

Theorem 3.5 (Cf. Puig [12, Corollary 2.14]) Let F be a fusion system on a finite p-group P ,

and suppose that P is fully automized. If, for each F-conjugacy class, there is some subgroup Q

such that

(i) if R is F-conjugate to Q then there is a map NP (R) → NP (Q) that restricts to a map R→ Q,

and

(ii) Q has the surjectivity property,

then F is saturated. Conversely, if F is saturated then any fully normalized subgroup Q has the

surjectivity property, and if R is F-conjugate to Q then there is a map NP (R) → NP (Q) that

restricts to a map R→ Q.

The statement here is not quite what is proved in [12] – there it is required that every fully

normalized subgroup satisfies (i) and (ii) above – but it is easily seen to be equivalent.

Combining this theorem with results of Broto, Castellana, Grodal, Levi and Oliver from [4], we

get the following result.

Theorem 3.6 Let F be a fusion system on a finite p-group P with P fully automized, and let H

be the set of all F-centric subgroups of P . If F is generated by {AutF (U) : U ∈ H}, and in every

F-conjugacy class of F-centric subgroups there is a fully normalized subgroup with the surjectivity

property, then F is saturated.
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Proof: Let H′ denote the union of all saturated conjugacy classes of F , and suppose that Q is a

conjugacy class of subgroups of smallest index subject to not being in H′. Let E be the subsystem

of F generated by all morphisms in AutF (R), as R runs over all subgroups of P of larger order

than the subgroups in Q. Notice that HomF (R,S) = HomE (R,S) if R has larger order than the

subgroups in Q, and so such E-conjugacy classes are identical to the F-conjugacy classes, and

also saturated. In addition, Q forms a single E-conjugacy class; in particular, a subgroup in Q is

F-centric if and only if it is E-centric.

If Q consists of subgroups that are not F-centric, then by Propositions 3.2(ii) and 3.3(ii) Q is

saturated in E . Thus we may suppose that Q consists of F-centric subgroups. Let Q be a fully

F-normalized subgroup in Q with the surjectivity property, guaranteed by hypothesis. Proposition

3.2(i), applied to Q and E , is exactly the second requirement for Theorem 3.5, and so Q is saturated,

as required.

We end with a couple of results on quotients, weakly normal subsystems and normalizers.

Theorem 3.7 (Puig [12, Proposition 6.6]) Let F be a saturated fusion system on a finite p-

group P , and let E be a saturated subsystem of F , on the strongly F-closed subgroup T of P . The

following are equivalent:

(i) E is weakly normal in F ; and

(ii) every φ ∈ AutF (T ) induces an automorphism of E (via ψ 7→ ψφ) and every F-morphism ψ :

A→ B with A,B 6 T may be written as ψ = αβ, where α ∈ AutF (T ) and β ∈ HomE(Aα,B).

Proposition 3.8 (Kessar–Linckelmann [10, Proposition 3.4]) Let F be a saturated fusion

system on a finite p-group P , and let Q be a normal subgroup of P such that F = P CF (Q). If

E is a saturated subsystem on a subgroup R with Q 6 R 6 P , then E = NF (R) if and only if

E/Q = NF/Q(R/Q).

Combined with the next lemma, this yields a useful tool for finding subgroups R such that

F = NF (R).

Lemma 3.9 Let F be a saturated fusion system on a finite p-group P , and let T be a strongly

F-closed subgroup of P . Let Q be a subgroup of P containing T . We have that NF (Q)/T =

NF/T (Q/T ), and in particular NP (Q)/T = NP/T (Q/T ).

Proof: Clearly Tg normalizes Q/T if and only if g normalizes Q, and so NP (Q)/T = NP/T (Q/T ).

If φ : R → S is a morphism in NF (Q), then φ extends to a morphism ψ : RQ → SQ such that

Qψ = Q. If φ̄ denotes the image of φ in F/T then φ̄ : RT/T → ST/T extends to ψ̄ : RQ/T →

SQ/T , with (Q/T )ψ̄ = Q/T . Hence NF (Q)/T ⊆ NF/T (Q/T ).

Conversely, let φ̄ : A/T → B/T be a morphism in NF/T (Q/T ), and let ψ̄ : AQ/T → BQ/T

be an extension of φ̄ such that (Q/T )ψ̄ = Q/T . Let ψ : QA → QB be a morphism in F whose
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image in F/T is ψ̄. Since T is strongly F-closed and (Q/T )ψ̄ = Q/T , we must have that Qψ = Q.

Similarly, as (A/T )ψ̄ = B/T , we must have that Aψ = B. Hence φ = ψ|A is a morphism in NF (Q).

It is also clear that the image of φ in F/T is φ̄, and so NF/T (Q/T ) ⊆ NF (Q)/T , completing the

proof.

4 Preliminary Results

Lemma 4.1 Let F be a saturated fusion system on a finite p-group P , and let E be a saturated

subsystem of F , on the subgroup Q of P . We have that

Op(E) > Op(F) ∩Q.

Proof: Let R = Op(F); by [1, (3.7)] (see also [7, Proposition 3.4]), a strongly F-closed subgroup

is contained in Op(F) if and only if it possesses a central series each of whose terms is strongly

F-closed. Hence R possesses a central series

1 = R0 6 R1 6 · · · 6 Rd = R

such that each Ri is strongly F-closed. We claim that Qi = Q ∩ Ri is strongly E-closed; in this

case,

1 = Q0 6 Q1 6 · · · 6 Qd = Q ∩R

is a central series for Q∩R, each of whose terms is strongly E-closed, yielding that Q∩R 6 Op(E)

(by another application of [1, (3.7)]), as required. It remains to show that Qi is strongly E-closed;

however, any morphism in E that originates inside Qi = Q ∩Ri must have image inside Q since E

is a subsystem on Q, and must also lie in Ri since Ri is strongly F-closed, and so Qi is strongly

E-closed.

Lemma 4.2 Let F be a saturated fusion system on a finite p-group P . If X is a strongly F-closed

subgroup of P then so is X CP (X).

Proof: It is easy to see that CP (X) is strongly NF (X)-closed, and hence X CP (X)/X is strongly

NF (X)/X-closed by [7, Theorem 6.1]. However, since NF (X)/X = F/X, by definition of F/X,

we see that X CP (X)/X is strongly F/X-closed, so that X CP (X) is strongly F-closed, by [7,

Theorem 6.1] again.

Lemma 4.3 Let F be a saturated fusion system on a finite p-group P , and let E be a weakly normal

subsystem of F , on the subgroup T of P . If Q is an E-centric subgroup of T , then QCP (Q)∩T = Q

and QCP (Q) ∩ T CP (T ) = QCP (T ).

Proof: Since Q 6 T , by the modular law QCP (Q) ∩ T = Q(CP (Q) ∩ T ) = QZ (Q) = Q. Taking

the product of both sides of the first equation by CP (T ), and by the modular law again,

QCP (T ) = (QCP (Q) ∩ T )CP (T ) = QCP (Q) ∩ T CP (T ),
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as needed.

We introduce a piece of notation at this point for a subquotient that will be important in our

work to prove Theorem A.

Definition 4.4 Let P be a finite p-group, and let T be a normal subgroup of P . If Q is a subgroup

of T such that CT (Q) 6 Q, write YQ for the subquotient Z (Q)CP (T )/Z (Q) of P .

Proposition 4.5 Let F be a saturated fusion system on a finite p-group P , and let E be a weakly

normal subsystem of F , on the subgroup T of P . Let Q and R be E-centric subgroups of T , and

let φ : Q→ R be an isomorphism in F . Let ψ be an extension of φ to QCP (T ) in F .

(i) imψ = RCP (T ).

(ii) Qψ = R, Z (Q)ψ = Z (R), and (Z (Q)CP (T ))ψ = Z (R) CP (T ).

(iii) if g ∈ NT (Q), then cg acts trivially on CP (T ), and so on YQ.

Proof: Let Q̄ = QCP (T ) and R̄ = RCP (T ). Since Q̄ = QCP (Q) ∩ T CP (T ), and T CP (T ) is

strongly F-closed, Q̄ψ 6 T CP (T ). Also, since Q̄ 6 QCP (Q), Q̄ψ 6 RCP (R). Hence Q̄ψ 6

RCP (R) ∩ T CP (T ) = R̄. If |Q̄| = |R̄|, then we have proved (i); however, Q ∩ CP (T ) = Z (Q) and

R ∩ CP (T ) = Z (R), so that indeed they have the same orders.

To prove (ii), clearly Qψ = R, so Z (Q)ψ = Z (R), and certainly CQ̄(Q) = Q̄ ∩ CP (Q) =

Z (Q)CP (T ), and CQ̄(Q)ψ = CR̄(R).

We move on to (iii). The map cg is an automorphism of Q, and cg acts trivially on CP (T ).

By (ii), cg acts as an automorphism of YQ, and this action is trivial since the action on CP (T ) is

trivial.

We will use the following easy lemma often to move between the various possible interpretations

of the condition that [φ,CP (T )] is contained in various subgroups of P .

Lemma 4.6 Let F be a saturated fusion system on a finite p-group P , and let E be a weakly

normal subsystem of F , on the subgroup T of P . Let Q and R be E-centric subgroups of T , and

let φ : QCP (T ) → RCP (T ) be a morphism in F . The following are equivalent:

(i) [φ,CP (T )] 6 T ;

(ii) [φ,CP (T )] 6 Z (R); and

(iii) for x ∈ CP (T ), we have (Z (Q)x)φ = Z (R)x.

Proof: Let x be an element of CP (T ). Firstly, notice that [φ, x−1] = (xφ)x−1.

Assume (i). Since x centralizes T it centralizes Q, and so xφ ∈ CP (R). Also, x centralizes R,

so that [φ, x−1] ∈ CP (R) ∩ T = Z (R), proving that (i) implies (ii). Clearly (ii) implies (i).
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Next, consider the induced action of φ on YQ, which maps it to YR by Proposition 4.5(ii).

As Z (Q)φ = Z (R), the induced action is that Z (Q)x is sent to (Z (Q)x)φ = Z (R) (xφ). Hence

Z (R) (xφ) = Z (R) x if and only if (xφ)x−1 ∈ Z (R), proving that (ii) is equivalent to (iii), as needed.

We end with the following trivial lemma, which has been used in various guises in many papers

in this field.

Lemma 4.7 Let U and V be subgroups of the finite p-group P , and suppose that U P V . If φ is

an automorphism of V that acts trivially on U , and CV (U) 6 U , then φ is a p-automorphism.

Proof: Since φ acts trivially on U , the induced action on Aut(U) is also trivial, and hence φ acts

trivially on V/Z (U), so also on V/U . The set of all automorphisms in Aut(V ) that act trivially on

both U and V/U is a p-group, and so in particular φ is a p-automorphism.

5 Weakly Normal and Normal Subsystems

In this section, F is a saturated fusion system on a finite p-group P and T is a strongly F-

closed subgroup of P . There is a weakly normal subsystem E on T with Op′(E) = E . Let W

denote the subset of AutE(T ) consisting of those automorphisms φ that extend to an automorphism

φ̄ ∈ AutF (T CP (T )) such that [φ̄,CP (T )] 6 Z (T ).

Let α be an E-automorphism of T . If Q is a subgroup of T , call Q a detecting subgroup for α

if there is a morphism β : QCP (T ) → RCP (T ) (where R = Qα) in F such that β|Q = α|Q and

[β,CP (T )] 6 Z (R). Lemma 4.6 gives some equivalent conditions to Q being a detecting subgroup

for α in terms of the condition on [β,CP (T )], and we will move between these conditions regularly.

Let E ′ denote the subsystem (not necessarily saturated) generated by Op′(AutE(Q)), as Q runs

over all subgroups of T . In [5, Section 5], Broto, Castellana, Grodal, Levi and Oliver prove that

for every element α of AutE(T ), there exist E-centric subgroups Q and R of T , with α|Q : Q → R

in E ′. We will show that such a subgroup Q is a detecting subgroup for α.

Proposition 5.1 If α is an automorphism in AutE(T ) then there is a detecting subgroup for α.

Proof: Notice that any morphism in E ′ is a composition of the restriction of p-automorphisms of

subgroups of T , with these p-automorphisms lying in E . We begin by examining such automor-

phisms.

Let g be an element of T , and suppose that g normalizes an E-centric subgroup S of T . Clearly

g centralizes CP (T ), and so induces an automorphism cg ∈ AutF (S CP (T )).

If φ ∈ AutE(S) is any other automorphism, then φ extends to an F-automorphism of S CP (T ).

We claim that (cg)
φ acts trivially on YS = Z (S) CP (T )/Z (S). This is clear since φ acts on YS by

Proposition 4.5(ii), and cg acts trivially on YS by (iii) of the proposition. Hence any p-automorphism
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of S in E ′ extends to an F-automorphism α of S CP (T ) acting trivially on YS. By Lemma 4.6, this

is equivalent to [α,CP (T )] 6 T .

Let α ∈ AutE(T ), and let Q be an E-centric subgroup such that α|Q is a morphism in E ′. The

isomorphism α|Q : Q→ R is a composition of p-automorphisms θi of subgroups Si of T in E ′. Since,

for each θi there is an extension θ̄i ∈ AutF (Si CP (T )) with [θ̄i,CP (T )] 6 T , taking the composition

of these extensions and restricting to QCP (T ) yields an isomorphism ᾱ : QCP (T ) → RCP (T )

in F (whose image is such by Proposition 4.5(i)). We evaluate [ᾱ,CP (T )]: since each [θ̄i,CP (T )]

lies inside T , and [ᾱ,CP (T )] is contained in the product of conjugates of [θ̄i,CP (T )], we see that

[ᾱ,CP (T )] 6 T , so that [ᾱ,CP (T )] 6 Z (R), proving that Q is a detecting subgroup for α.

Now that we have proved that detecting subgroups exist, we choose Q to be a detecting subgroup

for an automorphism α. The aim is to show that NT (Q) is also a detecting subgroup for α, for

then T is a detecting subgroup for α, and so α lies in the subgroup W defined at the beginning

of the section. We will prove this result for p′-automorphisms of T first, and then extend to all

E-automorphisms.

Proposition 5.2 Let φ : Q→ R be an isomorphism in F , where Q and R are E-centric subgroups

of T , and let ψ be an extension of φ to QCP (T ) in F . Suppose that Nφ contains NT (Q). If

RCP (T ) is fully F-normalized then Nψ contains NT (Q), and so ψ extends to θ : NT (Q)CP (T ) →

NT (R)CP (T ) in F .

Proof: Let g be an element of NT (Q), and let h ∈ NT (R) such that cφg = ch. We claim that, as

an element of AutF (RCP (T )), c
ψ
g c

−1
h acts trivially on R and YR = Z (R)CP (T )/Z (R). To see this,

obviously cψg and ch act the same on R; also, ch acts trivially on YR by Proposition 4.5(iii), so we

need that cψg acts trivially on YR. However, cg acts trivially on YQ by Proposition 4.5(iii), and ψ

maps YQ to YR by Proposition 4.5(ii), so that this holds.

Let K denote the set of all elements of AutF (RCP (T )) that act trivially on R and YR. It

is easy to see that K is a p-group, because a p′-automorphism acting trivially on Z (R) and

Z (R)CP (T )/Z (R) acts trivially on Z (R) CP (T ), so that (since it acts trivially on R) it acts triv-

ially on RCP (T ). In fact, since every F-automorphism of RCP (T ) induces an automorphism of R

and YR, K is a normal p-subgroup of AutF (RCP (T )).

Since RCP (T ) is fully F-normalized and K is a normal p-subgroup of AutF (RCP (T )), K 6

AutP (RCP (T )), so that c
ψ
g c

−1
h , which acts trivially on R and YR, lies in AutP (RCP (T )). Therefore,

cψg ∈ AutP (RCP (T )), and so Nψ contains cg. Thus NT (Q) 6 Nψ, so as RCP (T ) is fully F-

normalized, ψ extends to χ : Nψ → P in F , which restricts to θ : NT (Q)CP (T ) → P . As Qθ = R,

NT (Q)θ 6 NT (R), so Proposition 4.5(i) implies that the image of θ is contained in NT (R)CP (T ),

as claimed.

Corollary 5.3 Let φ : Q → R be an F-isomorphism, where Q and R are E-centric subgroups of

T . Let ψ be an extension of φ to QCP (T ) in F . Suppose that AutT (Q)φ = AutT (R), so that
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|NT (Q)| = |NT (R)| (this happens for example if φ is the restriction of an automorphism of T ).

There is an extension θ of ψ in F , with θ : NT (Q)CP (T ) → NT (R)CP (T ) an isomorphism.

Proof: If X is a fully F-normalized subgroup conjugate to RCP (T ), then X = S CP (T ) for

S = T ∩ X, by Proposition 4.5(i). Let χ : NT (R)CP (T ) → NT (S)CP (T ) be a morphism in F ,

with Rχ = S. (Such a morphism exists since there is an isomorphism α : RCP (T ) → S CP (T ) in

F such that Nα = NP (RCP (T )), which clearly contains NT (R)CP (T ); the image of χ is clear by

Proposition 4.5(i) again.)

Consider the maps φχ : Q → S and ψχ : QCP (T ) → S CP (T ). Since Nφχ contains NT (Q), so

does Nψχ by Proposition 5.2, and so there is an extension θ1 : NT (Q)CP (T ) → NT (S)CP (T ) of

ψχ in F . We claim that NT (Q)θ1 = NT (R)χ. If this is true, then θ = θ1χ
−1 : NT (Q)CP (T ) →

NT (R)CP (T ) is an isomorphism (since the two groups have the same order) that extends ψ (since

on QCP (T ) it acts as ψχχ
−1 = ψ).

Write N = NT (Q)θ1 and M = NT (R)χ. The subgroups N and M are determined by the

maps θ1|Q and χ|R respectively, since N and M are the preimages in AutT (S) of the subgroups

AutT (Q)θ1|Q and AutT (R)
χ|R . However, since AutT (Q)φ = AutT (R), we see that

AutT (Q)θ1 = AutT (Q)φχ = AutT (R)
χ,

so that N =M .

We will use this corollary to prove that NT (Q) is a detecting subgroup whenever Q is, at least

for p′-automorphisms.

Proposition 5.4 Let α be a p′-automorphism in AutE (T ). If Q is a detecting subgroup for α, so

is NT (Q).

Proof: Since F is saturated, α extends to some automorphism β ∈ AutF (T CP (T )). Since β acts

as an automorphism of CP (T ) as well, by raising β to a suitable power, we may assume that β|CP (T )

is a p′-automorphism as well.

Let Q be a detecting subgroup for α, so that there exists an isomorphism φ : QCP (T ) →

RCP (T ) in F such that φ|Q = α|Q and [φ,CP (T )] 6 Z (R). By Corollary 5.3, there is a map θ :

NT (Q)CP (T ) → NT (R)CP (T ) in F extending φ. Consider the isomorphism γ : NT (Q)CP (T ) →

NT (R)CP (T ) that is the restriction of β to NT (Q)CP (T ), and the automorphism χ = θ−1γ of

NT (R)CP (T ).

Since θ and γ are both extensions of the same morphism on Q, χ|R is the identity. Therefore,

since χ induces an automorphism of NT (R), and CT (R) 6 R, by Lemma 4.7, χ|NT (R) is a p-

automorphism. Since both θ and γ map YQ to YR, χ induces an automorphism of YR; we claim that

this is a p′-automorphism. To see this, notice that for x ∈ CP (T ), we have (Z (Q)x)θ = Z (R)x and

(Z (Q) x)γ = Z (R) (xβ). Therefore (Z (R)x)χ = Z (R) (xβ), so that the order of the automorphism

that χ induces on YR divides the order of β|CP (T ), a p
′-automorphism.
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Therefore there exists an integer n such that χn|NT (R) = χ|NT (R) and χ
n acts like the identity

on YR. Consider θχn: this map acts like γ on NT (Q) (since it acts like θχn = θχ = θθ−1γ = γ),

and since χ acts like the identity on YR, θχ
n acts like θ on YQ; i.e., [θχ

n,CP (T )] 6 T . Hence θχn is

an extension of α|NT (Q) to NT (Q)CP (T ) in F such that [θχn,CP (T )] 6 Z (NT (Q)) (using Lemma

4.6). Thus NT (Q) is a detecting subgroup for α, as required.

From here it is easy to prove the theorem. Recall from the start of this section that W is the

set of all φ ∈ AutE(T ) that extend to φ̄ ∈ AutF (T CP (T )) with [φ̄,CP (T )] 6 Z (T ). Since AutT (T )

is a Sylow p-subgroup of AutE(T ) and AutT (T ) 6W by Proposition 4.5(iii), and all p′-elements of

AutE(T ) lie in W by the previous proposition, we see that W = AutE(T ), as needed.

6 Weakly Normal Maps

In [2], Aschbacher defined invariant maps and normal maps, the former producing (some) invariant

subsystems of a fusion system, and the latter producing every normal subsystem of a saturated

fusion system. In this section we will define a ‘weakly normal’ map, which will in fact be basically a

normal map [2, Remark 7.5] with one axiom removed. In this section we will prove that every weakly

normal map determines a weakly normal subsystem, and that every weakly normal subsystem gives

rise to a unique weakly normal map, just as with normal subsystems and normal maps.

Because the original proof in [2] uses the fact that the normal map produces a normal subsystem,

we need to find another proof.

Proposition 6.1 Let F be a saturated fusion system on a finite p-group P , and let E be an F-

invariant subsystem on a strongly closed subgroup T of P . A subgroup R 6 T is E-centric if and

only if R is F-conjugate to a fully F-normalized subgroup S of T with CT (S) 6 S.

Proof: This follows from [2, Lemma 6.5(2)].

Related to this is the following understanding of the relationship between E-conjugacy classes

and F-conjugacy classes of subgroups of a strongly closed subgroup T .

Lemma 6.2 Let F be a saturated fusion system on a finite p-group P , and let E be an F-invariant

subsystem on a strongly closed subgroup T of P . If Q is a subgroup of T , then the F-conjugacy class

Q containing Q is a disjoint union of E-conjugacy classes Q1, . . . ,Qn, and there are automorphisms

φi ∈ AutF (T ) 6 Aut(E) of T such that Q1φi = Qi.

Proof: By Theorem 3.7, every F-morphism φ between subgroups of T may be written as φ = αβ,

with α ∈ AutF (T ) and β in E , and AutF (T ) 6 Aut(E). This clearly implies the statement.

Theorem 3.6 in fact tells us what we want for the invariant maps of [2] to be weakly normal.
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Definition 6.3 Let F be a saturated fusion system on a finite p-group P , and let T be a strongly

F-closed subgroup. A weakly normal map on T is a function A(−) on the set of subgroups U of T ,

with A(U) 6 AutF (U), such that

(i) if φ is an F-isomorphism whose domain is U , then A(Uφ) = A(U)φ,

(ii) if U is fully F-normalized, then AutT (U) 6 A(U),

(iii) AutT (T ) is a Sylow p-subgroup of A(T ),

(iv) if U is fully F-normalized, then every element of A(U) extends to an element of A(U CT (U)),

and

(v) if U is fully F-normalized and CT (U) 6 U then for any subgroup U 6 V 6 NT (U), denoting

by A(U 6 V ) the set of automorphisms of V that restrict to automorphisms of U , the

restriction map

A(U 6 V ) → NA(U)(AutV (U))

is surjective.

The idea is that if E is the subsystem generated by the morphisms in A(U) for all U 6 T , then

AutE(U) = A(U).

We will make some short remarks about this definition now. The first two conditions are

simply that A(−) is an invariant map in the sense of [2, Section 5]. The third condition is obviously

necessary for E = 〈A(U) : U 6 T 〉 to be saturated, and the fifth condition is simply the surjectivity

property for fully F-normalized, E-centric subgroups.

The fourth condition is there to make sure that E is actually generated by the automorphisms

of centric subgroups: since every automorphism of a fully F-normalized subgroup U extends to

an automorphism of the E-centric subgroup U CT (U), we really do get that E is generated by

automorphisms of E-centric subgroups, one of the conditions of Theorem 3.6.

Like with normal maps [2, Section 7], because of Condition (iv), we need only define a weakly

normal map on fully F-normalized subgroups U with CT (U) 6 U , and then use (i) to extend to all

F-conjugates of such subgroups, then (iv) to extend to all fully F-normalized subgroups, and then

(i) again to extend to all subgroups of T .

Having discussed the reasons behind the definition of a weakly normal map, we now prove the

claimed result.

Theorem 6.4 Let F be a saturated fusion system on a finite p-group P , and let T be a strongly

F-closed subgroup of P . If A(−) is a weakly normal map on T , then there exists a weakly normal

subsystem E of F on T with AutE (U) = A(U) for all U 6 T .

Proof: Let E denote the subsystem of F generated by A(−). Since A(−) is an invariant map, E

is F-invariant by [2, Lemma 5.5], and since AutE(T ) = A(T ) for all invariant maps, AutT (T ) is a

Sylow p-subgroup of AutE(T ). Let H denote the set of E-centric subgroups of T .
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Step 1: E is generated by E-automorphisms of elements of H. Since E is generated by the subgroups

A(Q) for Q 6 T , it suffices to show that each element of these is a product of (the restriction of)

elements of A(U), for U an E-centric subgroup of T . If Q is fully F-normalized then this is true

by Condition (iv) of being a weakly normal map. If R is a subgroup of T that is F-conjugate to

Q via φ, then φ = αβ, with α ∈ Aut(E) and β a morphism in E by Theorem 3.7. Since every

element of A(Q) is the restriction of an automorphism of some member of H, so is every element of

A(Q)α = A(Qα). Finally, if β is an automorphism of Qα (so Qα = R) then we are done; else Qα

and R are E-conjugate via β, and hence β is a composition of the restriction of automorphisms of

subgroups of T of larger order than that of Q, which by induction are generated by automorphisms

of elements of H. Therefore A(R) = A(Q)β
−1

is generated by E-automorphisms of elements of H,

completing the proof.

Let Q be an E-conjugacy class contained in H, and suppose that it consists of subgroups

of T of largest order subject to the elements Q of Q not satisfying A(Q) = AutE(Q). Since

AutE(T ) = A(T ), Q consists of proper subgroups of T . By Condition (iv), all subgroups in H

of larger order than |Q| lie in saturated E-conjugacy classes. Applying an automorphism of E if

necessary (and using Lemma 6.2) we may assume that Q contains a fully F-normalized subgroup

Q.

Step 2: A(Q) = AutE(Q). Consider the subsystem NE(Q) of E , and notice that AutE(Q) =

AutNE (Q)(Q). Since Q is fully F-normalized, by Proposition 3.3(i) every element of AutE (Q) can

be written as the product of the restriction of morphisms in NE (Q) between subgroups of NT (Q)

strictly containing Q, and all NE(Q)-conjugacy classes containing such subgroups of NT (Q) are

saturated. We first prove that each of these maps φ : R → S may be written as the composition

of automorphisms of overgroups of Q in NE(Q), proceeding by induction on n = |NT (Q) : R|, the

case n = 1 being clear.

Let ψ : S → S̃ be an isomorphism in NE(Q) with S̃ a fully NE(Q)-normalized subgroup of

NT (Q). If the result holds for φψ and ψ then it holds for φ = φψ(ψ−1), so we must show that any

NE(Q)-morphism whose image is fully NE(T )-normalized may be written as a product of elements

of AutNE (Q)(Ui) for various Ui 6 NT (Q); hence we assume that S is fully NE(Q)-normalized. Since

the NE(Q)-conjugacy class containing R is saturated and S is fully normalized, S is fully automized

and so there is a map θ : R → S in NE(Q) that extends to a map θ̄ : NNT (Q)(R) → NNT (Q)(S).

By induction θ̄, and hence θ, is the restriction of NE(Q)-automorphisms of subgroups of NT (Q)

strictly containing Q, and so φ can be expressed in such a way if and only if θφ−1 can, which is an

automorphism of an overgroup of Q, completing the proof of the claim.

Now let φ be an automorphism in AutE(Q). If φ does not lie in A(Q), then it must be the

composition of restrictions of NE(Q)-automorphisms ψi of subgroupsRi of NT (Q) strictly containing

Q by the previous paragraphs; it suffices to check the case where φ is the restriction of a single

automorphism of some overgroup R. By choice of Q we have that A(R) = AutE(R). However, by

Condition (v), and the fact that ψ ∈ A(Q 6 R), we see that φ ∈ A(Q), completing the proof.
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Step 3: In any E-conjugacy class of E-centric subgroups of T , there is a fully E-normalized subgroup

with the surjectivity property. If Q is a fully F-normalized and E-centric subgroup of T , then

Condition (v) of being a weakly normal map implies that Q has the surjectivity property. If

α ∈ Aut(E) then Qα also has the surjectivity property, and by Lemma 6.2 there is such a subgroup

in every E-conjugacy class of E-centric subgroups.

In particular, we now know that E is saturated by Theorem 3.6.

Step 4: AutE(Q) = A(Q) for all Q 6 T . If Q is fully F-normalized then this follows from Step

1 and Condition (iv) of being a weakly normal map. Since E is F-invariant, if φ : Q → R is an

F-isomorphism with R a fully F-normalized subgroup of T then AutE (Q)φ = AutE(R), and since

A(Q)φ = A(R) as A(−) is an invariant map, we are done.

As an example, we show that the condition that E be generated by automorphisms of centric

subgroups is necessary.

Example 6.5 Let P be the group V4, and let F be the fusion system of the alternating group A4.

Let E be the subsystem of F , on P , given by all F-maps between subgroups of order 2, but not their

extensions to P . Hence AutE(Q) is trivial for all Q 6 P , and so Condition (ii) of Theorem 3.5 is

trivially satisfied. It is also clear that E is F-invariant, and that AutP (P ) is a Sylow 2-subgroup of

AutE(P ). However, E is obviously not saturated, since for example it does not satisfy the conclusion

of Alperin’s fusion theorem.

Hence there are F-invariant subsystems E with AutT (T ) fully E-automized, and with all sub-

groups having the surjectivity property, that are not saturated.

7 The Hypercentre

In this section we will study the hypercentre and central extensions of fusion systems. We begin

with the hypercentral subgroup theorem, proving Theorem E.

Theorem 7.1 (Hypercentral subgroup theorem) Let F be a saturated fusion system on a

finite p-group P , and let Q and R be subgroups of P .

(i) If F = P CF (Q) and F = P CF (R) then F = P CF (QR).

Let XF denote the largest (strongly F-closed) subgroup of P such that F = P CF (XF ).

(ii) If Q is a normal subgroup of P contained in XF then Q is strongly F-closed, and XF/Q =

XF/Q and Op(F)/Q = Op(F/Q).

(iii) XF = Z∞(F).
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Proof: As Q,R 6 Op(F), so therefore is QR, and hence F = NF (QR). It remains to show that

AutF (QR) is a p-group, but if φ is a p′-automorphism in AutF (QR) then the restrictions to both

Q and R must be trivial, and hence φ = 1. Thus F = P CF (QR), proving (i).

Let Q P P and Q 6 XF , and let φ : A → B be a morphism with A 6 Q. The map φ extends

to an automorphism of XF , which must be a conjugation map cg for some g ∈ P , and Qg = Q, so

that B 6 Q. Thus Q is strongly F-closed.

Let R/Q be a subgroup of P/Q such that F/Q = NF/Q(R/Q). AsR/Q is normal in P/Q, R P P

and so NF (R) is a saturated subsystem of F . By Lemma 3.9, NF (R)/Q = NF/Q(R/Q) = F/R,

and by Proposition 3.8, NF (R)/Q = F/Q implies F = NF (R). Therefore Op(F)/Q = Op(F/Q).

Next, suppose in addition that AutF/Q(R/Q) is a p-group (i.e., R/Q 6 XF/Q). Since AutF (Q)

is a p-group, any p′-automorphism in AutF (R) must act trivially on both Q and R/Q, and is

therefore trivial; thus F = P CF (R), and so XF/Q = XF/Q, proving (ii).

Finally, we will show that XF = 1 if and only if Z (F) = 1. One direction is immediate, so

suppose that XF 6= 1; let Z be the subgroup Z (P ) ∩XF , and note that Z is non-trivial since XF

is a non-trivial normal subgroup of P . If Z is strongly F-closed, then since F = P CF (Z) (as

Z 6 XF ) and P acts trivially on Z, we actually have that F = CF (Z), so that Z 6 Z (F). If

φ : A→ B is any morphism in F with A 6 Z, then φ extends to a P -automorphism of XF , which

must restrict to a (trivial) automorphism of Z. Hence Z is strongly F-closed, as claimed.

Induction and (ii) of this theorem imply that Z∞(F) 6 XF . If we can show that XF/Z∞(F) = 1

then we are done by (ii) again. However, certainly Z (F/Z∞(F)) = 1, and hence XF/Z∞(F) = 1, as

needed.

We now want to isolate Zi(F), given Z∞(F); this is very easy to do.

Lemma 7.2 Let F be a saturated fusion system on a finite p-group P . Then

Zi(F) = Z∞(F) ∩ Zi(P ).

Proof: Clearly Zi(F) 6 Zi(P )∩Z∞(F). Let x be an element in Z∞(F)∩Zi(P ), and let φ : 〈x〉 → P

be any morphism in F . We need to show that φ acts trivially on 〈x〉Zi−1(F)/Zi−1(F), or in other

words that [φ, x] ∈ Zi−1(F), for then Zi−1(F)x ∈ Z (F/Zi−1(F)); φ extends to an automorphism

ψ of Z∞(F) (as Z∞(F) 6 Op(F)), and by Theorem 7.1, ψ = cg for some g ∈ P . Since [ψ, x] =

[g, x] ∈ Zi−1(P ) (as x ∈ Zi(P )), by induction [ψ, x] ∈ Zi−1(F), proving that x ∈ Zi(F).

In the case of a perfect fusion system, like with a perfect group, performing a central extension

twice still results in a central extension.

Proposition 7.3 Let F be a saturated fusion system on a finite p-group P . If F is perfect then

Z2(F) = Z (F).

Proof: Write Z = Z (F), let x be an element of Z2(F), and for g ∈ P let λx be a map defined

by gλx = [x, g]. We claim that this is a group homomorphism P → Z that induces a morphism
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of fusion systems F → FZ(Z). Since F is perfect, the homomorphism λx must have trivial image;

i.e., gλx = 1 for all g ∈ G, so that x ∈ Z (P ). Lemma 7.2 will then imply that x ∈ Z (F), as needed.

Firstly, let us prove that λx is a group homomorphism: since x ∈ Z2(F), in particular x ∈ Z2(P ),

so that [x, g] ∈ Z (P ) for all g ∈ P . Hence

[x, gh] = [x, h][x, g]h = [x, g][x, h],

so that λx is a group homomorphism.

Let X denote the kernel of λx, and notice that Z 6 X. Let Q and R be subgroups of P with

Q 6 X, and let φ : Q → R be an F-isomorphism. Since x ∈ Z2(F), we may extend φ : Q→ R to a

morphism ψ : Q(Z〈x〉) → R(Z〈x〉) acting as an automorphism of Z〈x〉 that acts trivially on both

Z and Z〈x〉/Z. Write z = x(xψ−1), so that (zx)ψ = x. Since [x,Q] = 1, we have

[x,Qψ] = [zx,Q]ψ 6 ([z,Q]x[x,Q])ψ = 1.

Therefore R 6 X, so that X is strongly F-closed. Hence there is a surjective morphism Φ : F → E

of fusion systems with kernel X, where E is a fusion system on an abelian p-group. If we can show

that any p′-automorphism α of P satisfies αΦ = id then E = FP/X(P/X). Let g be an element in

P ; we need to show that g−1gα lies in X; i.e., that [x, g−1gα] = 1. Since α is a p′-automorphism,

and F = P CF (Z〈x〉), we must have that α acts as the identity on Z〈x〉, which contains both x

and [x, g]. Hence (since [x, g−1] is central in P )

[x, g−1gα] = [x, gα][x, g−1 ]gα = ([x, g]α)[x, g−1 ]g = [x, g][x, g−1]g = [x, g−1g] = 1.

Therefore E is the fusion system FA(A) for some abelian p-group A. Since F is perfect, we must

have A = 1, so that X = P . Therefore x ∈ Z (P ), as needed.

Proposition 7.4 Let G be a finite group with a Sylow p-subgroup P . If Op′(G) = 1 then Zi(G) =

Zi(F), where F = FP (G).

Proof: By Glauberman’s Z∗-theorem (for p = 2 it is from [8], and for odd primes it follows from the

classification of the finite simple groups), if x is an element of order p in P such that xG ∩P = {x}

then x ∈ Z (G). The condition that xG ∩ P = {x} is the same as x ∈ Z (F). Therefore, Z (G) = 1

if and only if Z (F) = 1, and hence Z∞(G) = Z∞(F).

By Lemma 7.2, Zi(F) = Zi(P )∩Z∞(F). We must similarly prove that Zi(G) = Zi(P )∩Z∞(G);

to see this, again we only have to prove that Z (G) = Z (P ) ∩ Z∞(G). Certainly Z (G) 6 Z (P ) ∩

Z∞(G), so let x be an element of Z (P ) ∩ Z∞(G). Any p′-element g of G must centralize Z∞(G),

since it acts trivially on Zi(G)/Zi−1(G) for all i. Since P centralizes x as well, CG(x) contains all

p′-elements of G and a Sylow p-subgroup of G, so that CG(x) = G, as claimed.

Therefore Zi(G) = Zi(P ) ∩ Z∞(G) = Zi(P ) ∩ Z∞(F) = Zi(F), as claimed.
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8 Intersections and Products of Subsystems

We include an application of the theory of weakly normal maps, proving the existence of a subsystem

like the intersection in certain situations.

Theorem 8.1 Let F be a saturated fusion system on a finite p-group P , and let E1 and E2 be

weakly normal subsystems of F , on the strongly F-closed subgroups T and T̄ of P respectively,

with T 6 T̄ . There exists a weakly normal subsystem E , contained in E1 ∩ E2 and denoted by

E1 f E2, such that for any fully F-normalized subgroup Q of T with CT (Q) 6 Q, we have

AutE(Q) = AutE1(Q) ∩AutE2(Q).

Proof: Let A1(−) and A2(−) be the weakly normal maps corresponding to E1 and E2 respectively,

and let A(−) be the map given by A(Q) = A1(Q)∩A2(Q) for Q a subgroup of T with CT (Q) 6 Q,

and then extended to all subgroups using (i) and (iv) of the definition of a weakly normal map, as

described earlier in Section 6. We will show that A(−) is again a weakly normal map; clearly the

subsystem E generated by A(−) will satisfy the conclusions of the theorem. We prove each of the

five conditions in turn.

The first and second properties are clear from the fact that each Ai(−) is a weakly normal

map. Clearly, since AutT (T ) is a Sylow p-subgroup of A1(T ) and contained in A2(T ), it is a Sylow

p-subgroup of A(T ), proving the third condition. The fourth condition follows by the construction

of A(−), and so it remains to prove the fifth condition.

Let Q be a fully F-normalized subgroup of T with CT (Q) 6 Q, and let R be an overgroup of

Q contained in NT (Q). Let φ be an automorphism in NA(Q)(AutR(Q)); since both Ei are weakly

normal subsystems of F , there are elements ψi in Ai(R) that extend φ. (The existence of ψ1 is

clear, and there is obviously a map ψ2 : R → P extending φ. To see that ψ2 is an automorphism

of R, apply the same argument used at the end of the proof of Corollary 5.3.)

Let S be a fully F-normalized subgroup of T that is F-conjugate to R via α : T → S. Notice

that AutT (S)
α is a Sylow p-subgroup of A1(R) and is contained in A2(R). Hence A2(R) is a normal

subgroup of p′-index of A = A1(R)A2(R), and so all p-subgroups of A are p-subgroups of A2(R).

Let K be the subgroup of A consisting of all automorphisms of R acting trivially on Q; K is a

p-subgroup of A by Lemma 4.7. Since all p-subgroups of A are p-subgroups of A2(R), we see that

K is contained in A2(R). Notice that ψ1ψ
−1
2 acts trivially on Q so lies in K, and therefore lies

in A2(R). Hence ψ1 ∈ A2(R), so ψ1 ∈ A(R), as needed. Hence Condition (v) of being a weakly

normal map is satisfied.

We can slightly relax the conditions of Theorem 8.1 to allow the case where E1 is just a saturated

subsystem, and not F-invariant. In this case, E is weakly normal in E1, but not necessarily weakly

normal in F .

We get two corollaries of Theorem 8.1.
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Corollary 8.2 Let F be a saturated fusion system on a finite p-group P , and let E1 and E2 be

weakly normal subsystems of F , on the same strongly F-closed subgroup T of P . Then Op′(E1) =

Op′(E2).

This shows that the set of weakly normal subsystems on a given subgroup T , partially ordered

by inclusion, has a unique minimal element, which we will denote by RF (T ). We also get another

corollary, relating these minimal weakly normal subsystems.

Corollary 8.3 Let F be a saturated fusion system on a finite p-group P , and let T and T̄ be

strongly F-closed subgroups of P , with T 6 T̄ . If there are weakly normal subsystems of F on

both T and T̄ , then RF (T ) 6 RF (T̄ ).

In fact, there is also a largest weakly normal subsystem on a given strongly closed subgroup, if

the set of such weakly normal subsystems is non-empty. This follows from a result of Puig.

Theorem 8.4 (Puig [12, Proposition 6.10]) Let F be a saturated fusion system on a finite

p-group P , and let E be a weakly normal subsystem of F , on a strongly F-closed subgroup T of P .

If H is any normal subgroup of AutF (T ) containing AutE(T ), with |H : AutE(T )| prime to p, then

there exists a weakly normal subsystem E ′ of F on T , containing E , and such that AutE ′(T ) = H.

Furthermore, for any Q 6 T ,

HomE ′(Q,T ) = HomE(Q,T ) ·H.

In particular, if we take E = RF (T ), and H to be the largest such subgroup of AutF (T ), then

we get the largest weakly normal subsystem of F on T . We will denote this by RF (T ). (Notice

that if E ′ is any weakly normal subsystem of F on T , then E ′ contains E and |AutE ′(T ) : AutE(T )|

is prime to p, so every weakly normal subsystem of F on T can be obtained by the method in

Theorem 8.4.)

If there are (weakly) normal subsystems of F on T , then we say that T is based in F . (In the

next section we note that in [2], Aschbacher proves that there are strongly F-closed subgroups that

are not based.) In [3], Aschbacher proves the following theorem.

Theorem 8.5 (Aschbacher) Let F be a saturated fusion system on a finite p-group P , and let

T1 and T2 be strongly F-closed subgroups. If T1 and T2 are based, so is T1 ∩ T2.

An obvious question is to ask whether, in this case, T1T2 is also based. In the same article,

Aschbacher proves that this is true if T1 and T2 commute, but the general case is still open. We will

use the above theorem to develop a general theory of intersections of weakly normal subsystems.

Let T be a strongly F-closed subgroup of P that is based in F , and let E be a subsystem

(not necessarily saturated) of F on some subgroup Q of P , with T 6 Q. Suppose that E contains

RF (T ). It is easy to see via Theorem 8.4 that the set of all weakly normal subsystems of F on T

that are contained in E has a unique largest element, analogous to the core of a subgroup of a finite
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group; we will call such a subsystem the T -core of E . If E1 and E2 are any two subsystems of F on

subgroups Q1 and Q2 of P , such that T = Q1 ∩Q2 is a strongly F-closed subgroup of P based in

F , then we can construct the unique maximal weakly normal subsystem of F contained in both Ei,

simply the T -core of E1∩E2, as long as RF (T ) 6 E1∩E2. In particular, if both Ei are weakly normal

then such a subsystem exists, and as above we will denote it by E1 f E2. (This notation extends

the earlier one, as when both ‘intersections’ are definable they coincide.) This yields a theory of

intersections of weakly normal subsystems.

It should be noted that if the Ei are both normal in F , E1fE2 need not be normal in F . Indeed,

the intersection E1 ∧ E2 constructed by Aschbacher in [3] does not coincide with the subsystem

constructed here in general. We will see an example of such a situation in the next section.

Having proved that if T 6 T̄ are strongly F-closed subgroups that are based in F then RF (T ) 6

RF (T̄ ), we turn our attention to a related question, whether RF (T ) 6 RF (T̄ ). For a satisfactory

theory of products of weakly normal subsystems to be constructed, this must be true, since else

there need not be any weakly normal subsystem on T̄ containing both RF (T ) and RF (T̄ ), an

obvious necessity to define a product of those two subsystems.

However, as the following example shows, it is not true in general that RF (T ) 6 RF (T̄ ).

Example 8.6 Let Q be elementary abelian of order 9, generated by a and b. Let φ be the map

fixing b and sending a to ab, and let ψ be the map fixing a and inverting b. The group H = 〈ψ, φ〉

is isomorphic with S3; let G = Q⋊H and write P for the (unique) Sylow 3-subgroup of G. Finally,

write R = 〈b〉. Notice that R P G, so that FR(R) is a normal subsystem of F = FP (G). It

is easy to see that the subsystem FR(〈R,ψ〉) is isomorphic with the fusion system of S3 and is

equal to RF (R). However, since AutF (Q) ∼= S3, there can be no weakly normal subsystems of

F on Q except for FQ(Q), as there are no normal 3′-subgroups of OutF (Q) = AutF (Q). Thus

RF (Q) = RF (Q) = FQ(Q). Therefore

RF (R) 66 RF (Q).

(There are three saturated subsystems of F that contain both RF (R) and RF (Q), namely those

given by the subgroups 〈Q,ψφi〉 for i = 0, 1, 2. However none of these is weakly normal in F .)

This means that there can be no ‘reasonable’ theory of products of weakly normal subsystems

of fusion systems. It might still be possible to produce a theory of products of normal subsystems

of fusion systems.

We end with a couple of examples of situations that show that some obvious candidates for

an ‘intersection subsystem’ do not work. To see why we cannot simply take E1 ∩ E2, consider the

following example.

Example 8.7 Let G be the group A4×A4, and let P be the Sylow 2-subgroup of G, an elementary

abelian group of order 16, generated by a and b in the first factor, and c and d in the second. Let
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x and y be elements of order 3, with both sending a to b, and x sending c to d and y sending d to

c. Let H1 be the group isomorphic with A4 generated by P and x, and H2 be the group generated

by P and y.

Let F be the fusion system of G on P , and Ei be the subsystem generated by Hi. Since Hi P G,

the Ei are weakly normal in F , but if E = E1∩E2, then AutE(P ) is trivial, but there is a non-trivial

automorphism on Q = 〈a, b〉, which therefore cannot extend to P . Hence E is not saturated.

This example shows why we should define the weakly normal map in Theorem 8.1 only on the

fully F-normalized, F-centric subgroups, and then extend it in the unique way, rather than try

to define it on all subgroups to begin with, as the subgroup Q above was fully F-normalized, and

both AutEi(Q) were the same, but the ‘correct’ choice for AutE (Q) was the trivial group.

If the subsystems Ei do not lie on the same subgroup then the construction in Theorem 8.1 does

not work well; firstly because the E-centric subgroup R need not be Ei-centric, but even in this case

things can go wrong, even in a fusion system FP (P ).

Example 8.8 Let P = D8 × C2, with the D8 factor generated by an element x of order 4 and

y of order 2, and the C2 factor being generated by z. Let Q = 〈x, y〉, and R = 〈xz, y〉; then

S = Q ∩ R = 〈x2, y〉 is a normal Klein four subgroup of P . If F = FP (P ), and E1 and E2 are the

subsystems FQ(Q) and FR(R) respectively, then both E1 and E2 are weakly normal in F . We see

that AutE1(S) = AutE2(S). However, the only saturated subsystem of F on S is E = FS(S), for

which AutE (S) is trivial, and so the ‘correct’ subsystem we want inside E1 ∩ E2 is E itself. Taking

the intersection of the AutEi(S) therefore does not yield a saturated subsystem.

(Notice that in this case, S is both fully F-normalized (indeed, strongly F-closed), and Ei-centric

for i = 1, 2, so the problem does not lie in not being Ei-centric.)

9 Corollaries of Theorem A

Here we collect a few corollaries of Theorem A. We begin with the corollary mentioned in the

introduction.

Corollary 9.1 A saturated fusion system has no proper, non-trivial weakly normal subsystems if

and only if it has no proper, non-trivial normal subsystems.

Using this corollary, it is easy to show that a fusion system being quasisimple (i.e., a perfect

fusion system such that F/Z (F) is simple) is not dependent on which definition of simplicity is

used. In [3], Aschbacher proves the existence of the analogue of the generalized Fitting subgroup

for fusion systems. This is the central product of Op(F) and all subnormal quasisimple subsystems.

It is easy to see that any weakly subnormal (i.e., the transitive closure of being weakly normal)

quasisimple subsystem is also subnormal, and therefore we have the following corollary.
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Corollary 9.2 The generalized Fitting subsystem of a fusion system F is the central product of

Op(F) and all weakly subnormal, quasisimple, subsystems.

In other words, the definition of the generalized Fitting subsystem does not depend on the

definition of normality used, just as the definition of a simple fusion system.

A minimal (weakly) normal subsystem of a fusion system F is a (weakly) normal subsystem E of

F such that if E ′ is a (weakly) normal subsystem of F contained in E , then either E ′ = E or E ′ = 1.

The same methods used for minimal normal subgroups prove that minimal normal subsystems are

isomorphic to direct products of isomorphic simple fusion systems.

Corollary 9.3 A subsystem E of a saturated fusion system F is a minimal normal subsystem if

and only if it is a minimal weakly normal subsystem.

If E is a normal subsystem of a saturated fusion system F and E is contained in a saturated

subsystem F ′ of F , then it need not be true that E is normal in F ′, even in the case where F ′ is

itself normal. The following example proves this.

Example 9.4 Let G be the group S3×S3, and let H denote the subgroup of index 2 not containing

either direct factor. Let P denote a Sylow p-subgroup of G, and let K denote the first S3 factor;

write Q = K∩P . Since K P G, we have that FQ(K) P FP (G). Also, as H is a normal subgroup of

G, FP (H) P FP (G). Clearly also, FQ(K) 6 FP (H). However, it is not true that FQ(K) P FP (H).

(This example also shows that the Q-core of FQ(K) ∩ FP (H), the subsystem FQ(K) f FP (H), is

not the same as FQ(K) ∧ FP (H), since the former is simply FQ(K), and the latter is FQ(Q).)

It is clear that always E is weakly normal in F ′, and this is enough to deduce the following

corollary to Theorem A.

Corollary 9.5 Let F be a saturated fusion system on a finite p-group P , and let E be a normal

subsystem of F . If F ′ is any saturated subsystem of F containing E , and Op′(E) = E , then E P F ′.

In [2, Section 7], Aschbacher gave examples of strongly F-closed subgroups on which there

are no normal subsystems of F defined. In view of Theorem A, we therefore have the following

corollary.

Corollary 9.6 If F is a saturated fusion system on a finite p-group P , and T is a strongly F-closed

subgroup of P , then there need not be a weakly normal subsystem of F defined on T .

10 Comparing Weakly Normal and Normal Subsystems

In this short section we will give an overview of the differences between weakly normal and normal

subsystems. We begin with the following easy lemma, needed to start to understand the direct

products of fusion systems. (For a definition of the direct product of two fusion systems, see [6,

Section 1].)
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Lemma 10.1 Let F be a saturated fusion system on the finite p-group P , and suppose that P

is the direct product of P1 and P2, two strongly F-closed subgroups of P . Write Ei for the full

subcategory of F on Pi. We have that Ei is a weakly normal subsystem of F , that F 6 E1 × E2,

and that F = E1 × E2 if and only if both E1 and E2 are normal in F . This last condition holds if

and only if at least one of the Ei is normal in F .

Proof: Let Ei be defined as above; obviously it suffices to prove that E1 is weakly normal in F to

prove that both Ei are, so let A(U) = AutF (U) for U 6 T = P1. We prove that A(−) is a weakly

normal map: clearly (i) and (ii) are satisfied, and (iii) is satisfied since AutT (T ) = AutP (T ). If

U is fully F-normalized and φ ∈ AutF (U), then φ extends to an automorphism φ̄ of U CP (U) =

U CT (U)× P2 in F ; as T is strongly F-closed, φ̄ restricts to an automorphism in AutF (U CT (U)),

proving (iv).

To prove the fifth property, let U be fully F-normalized and U 6 V 6 NT (U), and let φ ∈

NAutF (U)(AutV (U)). Clearly φ extends to φ̄ in AutF (U × P2) acting trivially on P2, and since V

acts trivially on P2, we see that AutV×P2
(U × P2) is normalized by φ̄. Thus we get an extension

ψ ∈ AutF (V × P2) of φ̄, which restricts to an F-automorphism of V extending φ, completing the

proof of (v). Thus the Ei are weakly normal in F .

If both Ei are normal in F then E1 × E2 is a normal subsystem of F by [3, Theorem 3], and by

the definition of the Ei, we see that F = E1 ×E2. If F = E1 ×E2 on the other hand, it is easy to see

that every automorphism of each Pi extends to an automorphism of P acting trivially on P3−i, so

this equivalence is proved. Finally, suppose that E1 is normal in F , and let φ2 ∈ AutF (P2). Since F

is saturated, it extends to some automorphism φ = (φ1, φ2) on P1 ×P2, where this notation means

that φi ∈ Aut(Pi). Since E1 P F , the automorphism (φ1, 1) lies in F , and so (1, φ2) also lies in F ,

proving that E2 P F .

Hence if one wants direct products to work, one needs normal subsystems, and not merely

weakly normal subsystems. Another deficiency in the definition of weakly normal subsystems is

to do with p-power extensions of a fusion system. Let E be a saturated fusion system on a finite

p-group T , and suppose that P is a p-group containing a normal subgroup isomorphic to T . (We

will identify T with this subgroup.) Suppose that all elements of AutP (T ) induce automorphisms of

E . In [5, Section 4.2], it was shown how to construct a saturated fusion system F ′ on P containing

E , and such that T is strongly F ′-closed and F ′/T = FP/T (P/T ). In other words, this is something

like an extension of E by P/T .

In [3, Theorem 5], Aschbacher went further, and showed that if F is any saturated fusion

system on P containing E as a normal subsystem then F ′ 6 F . Since the only requirement for

the construction of F ′ is that AutP (T ) 6 Aut(E) (in other words, something satisfied by weak

normality), one might try to relax this condition to E being weakly normal in F .

Proposition 10.2 Let F be a saturated fusion system on a finite p-group P , and let E be a

weakly normal subsystem of F , on the subgroup T of P . Let F ′ be the saturated fusion system on
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P containing E such that F ′/T = FP/T (P/T ). We have that F ′ 6 F if and only if E is normal in

F .

Proof: One direction of this proof is the result above, so assume that F ′ 6 F . Let φ ∈ AutE(T ) be

a p′-automorphism; since F ′ is saturated, this extends to φ̄ ∈ AutF ′(T CP (T )) which we may choose

to be a p′-automorphism, and since F ′/T = FP/T (P/T ), φ̄ must act as an inner automorphism

on P/T , which must be trivial since φ̄ is a p′-automorphism. Hence [φ̄,CP (T )] 6 Z (T ). If φ is

a p-automorphism of T , then φ = cg for some g ∈ T , so that it obviously extends to φ̄ = cg ∈

AutF (T CP (T )) with [φ̄,CP (T )] ∈ Z (T ). Hence E P F as required.

This gives two different situations in which the notion of a normal subsystem is better than

the notion of a weakly normal subsystem. The chief advantage of weakly normal subsystems is

that they are easier to work with in some situations, and one may use Theorem A to pass between

normal and weakly normal subsystems with relative ease.
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