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Categories of integrable sl(∞)-, o(∞)-, sp(∞)-
modules

Ivan Penkov and Vera Serganova

Summary. We investigate several categories of integrable sl(∞)-, o(∞)-, sp(∞)-
modules. In particular, we prove that the category of integrable sl(∞)-, o(∞)-,
sp(∞)-modules with finite-dimensional weight spaces is semisimple. The most

interesting category we study is the category T̃ensg of tensor modules. Its ob-
jects M are defined as integrable modules of finite Loewy length such that
the algebraic dual M∗ is also integrable and of finite Loewy length.

We prove that the simple objects of T̃ensg are precisely the simple tensor
modules, i.e. the simple subquotients of the tensor algebra of the direct sum
of the natural and conatural representations.

We also study injectives in T̃ensg and compute the Ext1’s between simple

modules. Finally, we characterize a certain subcategory Tensg of T̃ensg as the
unique minimal abelian full subcategory of the category of integrable modules
which contains a non-trivial module and is closed under tensor product and
algebraic dualization.

Mathematics Subject Classification (2000). Primary 17B65, 17B10.
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1. Introduction

The category of finite-dimensional representations of a Lie algebra is endowed with
a natural contravariant involution

M  M∗, (1)

where ∗ indicates dual space. For categories of infinite-dimensional modules (1) is
never an involution as M 6≃ M∗∗. This is why one usually looks for a “restricted
dual” or a “continuous dual” which might still yield a contravariant involution on
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a given category of infinite-dimensional modules. In this paper we study two cate-
gories of infinite-dimensional modules of certain infinite-dimensional Lie algebras

and show, in particular, that there exists an interesting category T̃ensg of infinite-
dimensional representations on which the functor (1) of algebraic dualization is
well-defined and preserves the property of a module to be of finite Loewy length.

More precisely, we study representations of locally finite Lie algebras, i.e. of
direct limits of finite-dimensional Lie algebras. There are three well-known classical
simple locally finite Lie algebras sl(∞), o(∞), sp(∞), each of them being defined
by an obvious direct limit. None of these Lie algebras admits non-trivial finite-
dimensional representations, and instead one studies integrable representations
(the definition see in section 2 below). However, the category of integrable g-
modules is vast (and “wild” in the technical sense), so it is reasonable to look for
interesting subcategories.

One subcategory we study is the category of integrable weight modules with
finite-dimensional weight spaces, and this is obviously an analog of the category
of finite-dimensional representations of a classical finite-dimensional Lie algebra.
It is less obvious that for g = sl(∞) this category contains some rather interesting
simple modules which are not highest weight modules. The first main result of this
paper is the proof of the semisimplicity of this category: an extension of Hermann
Weyl’s semisimplicity theorem to the classical Lie algebras sl(∞), o(∞), sp(∞).

The above category is clearly not the only reasonable generalization of the
category of finite-dimensional representations, as for instance it does not contain
the adjoint representation. Indeed, note that the adjoint representation has an
infinite-dimensional weight space, the Cartan subalgebra itself. On the other hand,
the adjoint representation is naturally a simple tensor module as defined in [PS].

More generally, we define the category T̃ensg for g ∼= sl(∞), o(∞), sp(∞) simply
as the largest category of integrable g-modules which is closed under algebraic
dualization and such that every object has finite Loewy length. This category is a
(non-rigid) tensor category with respect to the usual tensor product.

The second main contribution of the present paper is the study of the cat-

egory T̃ensg. In particular, we study injectives in T̃ensg and compute the Ext1’s

between simple modules. We also give an alternative characterization of T̃ensg by
proving that an integrable g-module is an object of Tensg if and only if it has finite
Loewy length and admits only finitely many non-isomorphic simple subquotients
each of which is a submodule of a suitable finite tensor product of natural and

conatural modules. Finally, we describe a certain subcategory Tensg of T̃ensg as
the unique minimal abelian full subcategory of the category of integrable mod-
ules which contains a non-trivial module and is closed under tensor product and
algebraic dualization.

Acknowledgement. We thank Gregg Zuckerman for his supportive interest
and constructive criticism of this project. We thank also A. Baranov for pointing
out the connection of Proposition 4.3 to his work. Both authors acknowledge partial
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support through DFG Grants PE 980/2-1 and PE 980/3-1, and the second author
aknowledges partial support through NSF grant 0901554.

2. Basic definitions

The ground field is C and ⊗ stands for ⊗C. If C is a category, C ∈ C indicates
that C is an object of C. If P is a set, we denote by 2P the power set of P . We recall
that the cardinal numbers in are defined inductively: i0 = cardZ, i1 = card 2Z,
in = card 2Pn−1 , where Pn−1 is a set of cardinality in−1.

In this paper g stands for a locally semisimple (complex) Lie algebra. By
definition, g =

⋃
i∈Z>0

gi where

g1 ⊂ g2 ⊂ g3 ⊂ . . . (2)

is a sequence of inclusions of semisimple finite-dimensional Lie algebras. We call
the sequence (2) an exhaustion of g, and we will assume that it is fixed. A locally
semisimple Lie algebra is locally simple if it admits an exhaustion (2) so that all gi
are simple. It is clear that a locally simple Lie algebra is simple. If no restrictions
on g are clearly stated, in what follows g is assumed to be an arbitrary locally
semisimple Lie algebra.

A locally simple algebra g is diagonal if an exhaustion (2) can be chosen so
that all gi are classical simple Lie algebras and the natural representation Vi of
gi, when restricted to gi−1, has the form kiVi−1 ⊕ liV

∗
i−1 ⊕ Csi for some ki, li and

si ∈ Z≥0. Here Vi−1 stands for the natural representation of gi−1, C
si stands for

the trivial module of dimension si, and kiVi−1 (respectively, liV
∗
i−1) denotes the

direct sum of ki(respectively, li) copies of Vi−1 (respectively, V ∗i−1).

The three classical simple Lie algebras sl(∞), o(∞) and sp(∞) (defined re-
spectively as sl(∞) = ∪isl(i), o(∞) = ∪io(i), sp(∞) := ∪isp(2i) via the natural
inclusions sl(i) ⊂ sl(i+1)) etc.) are clearly diagonal. Moreover, sl(∞), o(∞), sp(∞)
are (up to isomorphism) the only finitary locally simple Lie algebras g; finitary
means by definition that g admits a faithful countable-dimensional g-module with
a basis in which each element g ∈ g acts through a finite matrix, [Ba1], [Ba3]. More
generally, there exists also a classification of locally simple diagonal Lie algebras
up to isomorphism, [BZh]. We do not use this classification in the present paper
and present only the simplest example of a diagonal Lie algebra not isomorphic to
sl(∞), o(∞) or sp(∞). This is the Lie algebra sl(2∞) defined as the direct limit
lim
→

sl(2i) under the inclusions

sl(2i)→ sl(2i+1), A→

(
A 0
0 A

)
.

A g-module M is integrable if dim span{m, g · m, g · m2, · · · } < ∞ for any
m ∈M and g ∈ g. Since g is locally semisimple, this is equivalent to the condition
that, when restricted to any semisimple finite-dimensional subalgebra f of g, M
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is isomorphic to a (not necessarily countable) direct sum of finite-dimensional f-
modules. We denote by Intg the category of integrable g-modules; Intg is a full
subcategory of the category of g-modules g-mod.

Any countable-dimensional g-module M ∈ Intg can be exhausted by finite
dimensional gi-modules Mi, i. e. there exists a chain of finite-dimensional gi-
submodules M1 ⊂ M2 ⊂ . . . such that M = lim−→Mi. We call M locally simple

if all Mi can be chosen to be simple modules. It is clear that a locally simple mod-
ule is simple. Note also that if M is locally simple then any two exhaustions {Mi}
and {M ′i} coincide from some point on: that follows from the fact thatMi∩M

′
i 6= 0

for some i and hence Mj = M ′j = Mj ∩M
′
j for any j ≥ i. We say that a locally

simple g-moduleM = lim
−→

Mi is a highest weight module if there is a chain of nested

Borel subalgebras bi of gi such that the bi-highest weight space of Mi is mapped
into the bi+1-highest weight space of Mi+1 under the inclusion Mi ⊂ Mi+1. The
direct limit of highest weight spaces is then the b-highest weight space of M , where
b = lim
−→

bi.

By

Γg : g−mod Intg,

M 7→ Γg(M) := {m ∈M, dim span{m, g ·m, g ·m2, · · · } <∞ ∀g ∈ g}

we denote the functor of g-integrable vectors. It is an exercise to check that Γg(M)
is indeed a well-defined g-submodule of M ; the fact that Γg(M) is integrable is
obvious. Furthermore, Γg is a left-exact functor.

If g is a diagonal (locally simple) Lie algebra, then one can define a natural
module V of g. Indeed, the reader will verify that one can choose a subexhaustion
of (2) such that the natural gi-module Vi is a gi-submodule of Vi+1 for any i.
Therefore, fixing arbitrary injective homomorphisms Vi → Vi+1 of gi-modules, we
obtain a direct system and we set V := lim−→Vi. Note that V depends on the choice

of the homomorphisms Vi → Vi+1. If however, g ∼= sl(∞), o(∞), sp(∞), then the
homomorphisms Vi → Vi+1 are unique up to proportionality, and one can prove
that as a result V is unique up to isomorphism, i.e. in particular does not depend
on the fixed exhaustion of g. In these latter cases we speak about the natural
representation.

By choosing injective homomorphisms of gi-modules V ∗i → V ∗i+1, we obtain
a direct system defining a conatural representation of g. We denote such a repre-
sentation by V∗. For g ∼= sl(∞), o(∞), sp(∞) V∗ is unique up to isomorphism. In
fact, V ≃ V∗ for g ∼= o(∞), sp(∞).

3. Injective modules in Intg and semisimplicity of the category
Intwt

g,h

Proposition 3.1. Ext1g(X,M
∗) = 0 for any X,M ∈ Intg.
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Proof. We use that

Ext1g(X,M
∗) = Ext1g(C,HomC(X,M

∗)) ≃ H1(g,HomC(X,M
∗)) = H1(g, (X⊗M)∗),

see for instance [W]. Therefore it suffices to show that H1(g, R∗) = 0 for any
integrable g-module R. Consider the standard complex for the cohomology of g
with coefficients in R∗:

0→ R∗ → (g⊗R)∗ → (Λ2(g)⊗R)∗ → . . . (3)

It is dual to the standard homology complex

0← R← g⊗R← Λ2(g)⊗R← . . . ,

which is the direct limit of complexes

0← R← gi ⊗R← Λ2(gi)⊗R← . . . .

Since H1(gi, R) = 0 for each i, we get H1(g, R) = 0. Therefore the dual complex
(3) has trivial first cohomology, i.e. H1(g, R∗) = 0. �

Proposition 3.2. For any M ∈ Intg, Γg(M
∗) is an injective object of Intg.

Proof. Let X ∈ Intg. The exact sequence of g-modules

0→ Γg(M
∗)→M∗ →M∗/Γg(M

∗)→ 0

induces an exact sequence of vector spaces

0→ HomC(X,Γg(M
∗))

ϕ
→ HomC(X,M

∗)→ HomC(X,M
∗/Γg(M

∗))→

→ Ext1g(X,Γg(M
∗))

ψ
→ Ext1g(X,M

∗) = 0.

Since HomC(X,M
∗/Γg(M

∗)) = 0 (this follows from the facts that a quotient of an
integrable g-module is again an integrable g-module and that Intg is closed with re-

spect to extensions) we conclude that ψ is an isomorphism, i.e. that Ext1g(X,Γg(M
∗)) =

0. �

Corollary 3.3. Intg has enough injectives.

Proof. LetM ∈ Intg. ThenM ⊂M
∗∗. By the very definition of Γg,M ⊂ Γg(M

∗∗),
and Γg(M

∗∗) is an injective object of Intg by Proposition 3.2. �

Note that there is a simpler proof of Corollary 3.3 not referring to Proposition
3.2. Indeed it is enough to notice that the functor Γg : g-mod Intg is right adjoint
to the inclusion functor Intg ⊂ g-mod. Then the equality

Homg(M,JM ) = Homg(M,Γg(JM ))

allows us to conclude that, if i : M → JM is an injective homomorphism of
M ∈ Intg into an injective g-module, then Γg(JM ) is an injective object of Intg
and i factors through the inclusion Γg(JM ) ⊂ JM . In particular, this argument
allows to reduce the existence of injective hulls in Intg to the well-known existence
of injective hulls in g-mod.
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With this in mind, we can view Propositions 3.1 and 3.2 as yielding an explicit
construction of an injective module Γg(M

∗) associated to any M ∈ Intg.
In the rest of this section we assume that g admits a splitting Cartan subal-

gebra h ⊂ g, i.e. an abelian subalgebra h ⊂ g such that g decomposes as

h⊕
⊕

α∈h∗

gα,

where

gα = {g ∈ g|[h, g] = α(h)g for anyh ∈ h}.

It is well-known that in this case g is isomorphic to a direct sum of copies of
sl(∞), o(∞), sp(∞) and finite-dimensional simple Lie algebras, see [PStr].

We define the category Intwt
g,h as the full subcategory of Intg which consists

of weight modules M , i.e. objects M ∈ Intg which admit a decomposition

M =
⊕

α∈h∗

Mα, (4)

where

Mα = {m ∈M |h ·m = α(h)m for anyh ∈ h}.

Note that (4) is automatically a decomposition of h-modules. It is also clear that
there is a left exact functor

Γwt
h : Intg  Intwt

g,h, M 7→
⊕

α∈h∗

Mα.

By Γwt
g,h we denote the composition

Γwt
h ◦ Γg : g-mod Intwt

g,h.

Lemma 3.4. If X is an injective object of Intg, then Γwt
h (X) is an injective object

of Intwt
g,h.

Proof. It suffices to note that Γwt
g is a right adjoint to the inclusion functor Intwt

g,h ⊂
Intg. �

Example 3.5. Let g = sl(∞) and M = V ⊗ V∗ . Consider the g-module M∗. Let’s
think of M∗ = (V ⊗ V∗)

∗ as the space of all infinite matrices B = (bij), i, j ∈ Z>0,
and of M as the space of finitary infinite matrices A = (aij), i, j ∈ Z>0, where
B(A) =

∑
i,j bijaji. Then g is identified with the subspace F ⊂ (V ⊗ V∗)

∗ of
finitary matrices with trace zero, and the g-module structure on M∗ is given by
A · B = [A,B]. We fix the Cartan subalgebra h to be the algebra of finitary
diagonal matrices, and we claim that Γwt

h (M∗) = F +D where D is the subspace

of diagonal matrices. Indeed, clearly D equals the h-weight space (M∗)0 of weight
0. Furthermore, any non-zero eigenspace of h is the span of an elementary non-
diagonal matrix, hence Γwt

h (M∗) = F +D. Note also that we have a non-splitting
exact sequence of g-modules

0→ g→ Γwt
h (M∗)→ T → 0,
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where T = D/D ∩ F is a trivial g-module of dimension i1.

Corollary 3.6. For any M ∈ Intg, Γ
wt
g,h(M

∗) is an injective object of Intwt
g,h.

Define now Intfing,h as the full subcategory of Intwt
g,h consisting of h-weight

modules M =
⊕

α∈h∗ Mα such that dimMα <∞ for any α ∈ h∗.

Theorem 3.7. The category Intfing,h is semisimple.

Proof. Let M ∈ Intfing,h be simple. Then there is an h-module isomorphism

M = ⊕α∈h∗Mα.

Therefore M∗ =
∏
α∈h∗(Mα)∗. A non-difficult computation shows that Γwt

h (M∗)

is isomorphic to ⊕α∈h∗(Mα)
∗. Moreover, using the fact that dimMα < ∞ for all

α, it is easy to check that M∗ := ⊕α∈h∗(Mα)
∗ is a simple integrable g-module.

Hence M∗ = Γwt
g,h(M

∗). Applying Γwt
g,h again, we see that

Γwt
g,h(Γ

wt
g,h(M

∗)∗) =M.

Therefore M is injective in Intwt
g,h, and thus also in Intfing,h, by Corollary 3.6. �

Example 3.8.

a) Let g = sl(∞). One checks immediately that all tensor powers V ⊗k, V

being the natural module, are objects of Intfing,h. The same applies to the tensor

powers of the conatural module V∗. However, the category Intfing,h contains also

more interesting modules as the following one:M = lim
−→

Si(Vi), Vi being the natural

representation of sl(i) . The module M has 1-dimensional weight spaces, but is
not a highest weight module, see [DP1, Example 3]. Note also that the adjoint

representation is not an object of Intfing,h.

b) Let g = o(∞) and let g be exhausted by gi = o(2i), i ≥ 3. Denote by S1
i and

S2
i the two non-isomorphic spinor gi-modules. Then S1

i and S
2
i are both isomorphic

to S1
i−1 ⊕ S

2
i−1 as gi−1-modules. Therefore there is an injective homomorphism of

gi−1-modules ϕksi−1 : Ski−1 → Ssi for k, s ∈ {1, 2}, and moreover ϕksi−1 is unique
up to proportionality. Any sequence {ti}i≥3 of elements in {1, 2} defines a direct
system

St33
ϕ

t3,t4
3−→ St44

ϕ
t4,t5
4−→ St55

ϕ
t5,t6
5−→ . . .

and hence a simple g-module S({ti}). Using the fact that S({ti}) is locally simple,
it is easy to see that S({ti}) = S({t′i}) if and only if the “tails” of the sequence
{ti} and {t

′
i} coincide, i.e. ti = t′i for large enough i.

The modules S({ti}) are weight modules with 1-dimensional spaces for any
Cartan subalgebra h of the form h = ∪ihi where h3 ⊂ h4 ⊂ . . . are nested Cartan
subalgebras of g3 = o(6) ⊂ g4 = o(8) ⊂ . . . . In particular, S({ti}) ∈ Intfing,h.
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4. On the integrability of M∗ for M ∈ Intg

Lemma 4.1. Let M ∈ Intg. Then M∗ ∈ Intg if and only if for any i > 0
Homgi

(N,M) 6= 0 only for finitely many non-isomorphic simple gi-modules N .

Proof. Fix i. Let Λi be the set of integral dominant weights of gi (for some fixed
Borel subalgebra bi of gi with fixed Cartan subalgebra hi ⊂ bi) and V iλ be the
simple gi-module with highest weight λ. Denote by Λi(M) the set of all λ ∈ Λi
such that Homgi

(V iλ ,M) 6= 0. Since M is a semisimple gi-module, we can write M
as

M = ⊕λ∈Λi(M)M
λ ⊗ V iλ ,

where Mλ := Homgi
(V iλ ,M) is a trivial gi-module. We have

M∗ =
∏

λ∈Λi(M)

(V iλ)
∗ ⊗ (Mλ)∗.

Suppose that Λi(M) is finite. Then for any fixed g ∈ gi there is a polynomial
pλ(z) such that pλ(g) · (V

i
λ)
∗ = 0. Set p(z) :=

∏
λ∈Λi(M) pλ(z). Then p(g) ·M

∗ = 0.

Hence g acts integrably on M∗, i.e. M∗ is integrable over gi.
Now let Λi(M) be infinite. Let vλ be a non-zero vector of weight −λ in

(V iλ)
∗⊗ (Mλ)∗. One can choose h in the Cartan subalgebra of gi such that λ(h) 6=

µ(h) for any µ 6= λ ∈ Λi(M). Let v :=
∏
λ∈Λi(M)(vλ) ∈

∏
λ∈Λi(M)(V

i
λ)
∗ ⊗ (Mλ)∗.

Then dim(C[h] · v) =∞, and M∗ is not gi-integrable. �

Corollary 4.2. Let M,M ′ ∈ Intg. If M
∗, (M ′)∗ ∈ Intg, then (M ⊗M ′)∗ ∈ Intg and

M∗∗ ∈ Intg.

Proposition 4.3. Let g be a locally simple Lie algebra. There exists a non-trivial
module M ∈ Intg such that M∗ is integrable if and only if g is diagonal.

Proof. First of all, if g is diagonal, then any natural module V = lim−→Vn satisfies

the finiteness condition of Lemma 4.1, hence V ∗ is integrable.
Before we prove the other direction, note that, by passing to a subexhaustion,

we can always assume that g is exhausted by classical simple Lie algebras gi of the
same type (A, B, C or D). Let nowM ∈ Intg be a non-trivial andM

∗ be integrable.
We will show that g is diagonal. SinceM satisfies the finiteness condition of Lemma
4.1, EndCM and its submodules satisfy this condition too. The adjoint module g

is a submodule of EndCM , hence this implies that for each i the number of gi-
isotypic components in gi+k is uniformly bounded for all k > 0. Since the adjoint
module of gi is isomorphic to (Vi ⊗ V

∗
i )/C in the type A case, to S2(Vi) in type

C, and to Λ2(Vi) in types B or D, one can easily check that for each i the number
of gi-isotypic components in Vi+k is also uniformly bounded by for all k > 0. Our
goal is to show that for all sufficiently large i, Vi+1 restricted to gi is isomorphic
to a direct sum of copies of Vi, V

∗
i and C.

Let us start with the type A case. Pick an sl(2)-subalgebra in gn for some n.
The set of sl(2)-weights in V is finite. Thus we can let k ∈ Z>0 be the maximal
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weight in this set and fix i such that k is a weight of Vi. Note that sl(2) ⊂ gi.
Then we have an isomorphism of gi-modules

Vi+1 = Tλ1
(Vi)⊕ · · · ⊕ Tλs

(Vi),

where each λj is a Young diagram and Tλj
(Vi) is the image of the corresponding

Young projector in the appropriate tensor power of Vi. Since Vi+1 does not have
any weight greater than k, each diagram λj has only one column. Indeed, otherwise
we can put a vector of weight k in each box of the first row and put other weight
vectors in all other boxes of λj so that the total sum of all weights of vectors is
greater than k, which contradicts the fact that k is the maximal weight. Next we
claim that the length of this column equals 0, 1, dim Vi, or dimVi − 1. Indeed, if
we put in the boxes of λi linearly independent vectors of maximal possible sum of
weights, the total sum is not greater than k only in these four cases. Hence each
simple gi-constituent of Vi+1 is isomorphic to Vi, V

∗
i or C (the numbers 0 and

dimVi correspond both to the trivial 1-dimensional gi-module).
If each gi is of type B or C, D, let si ⊂ gi be a maximal root subalgebra of

type A. Notice that by the previous argument the restriction of Vi+1 on si is a sum
of natural, conatural and trivial modules. That is only possible if the restriction
of Vi+1 to gi is a sum of natural and trivial modules. �

Proposition 4.3 follows also from Corollary 3.9 in [Ba2].

Example 4.4.

a) Let g = sl(∞), and let M = lim−→S
i(Vi) be as in Example 3.8, a). Then

Homgi
(Sk(Vi), S

j(Vj)) 6= 0 for all i, k ≤ j. Hence Homgi
(Sk(Vi),M) 6= 0 for all

k > 0, and by Lemma 4.1 M∗ is not an object of Intg.
b) Consider the case g = o(∞) and let S({ti}) be the g-module defined

in Example 3.8, b). Then if N is a simple gi-module, Homgi
(N,S({ti})) 6= 0 iff

N ≃ S1
i or N ≃ S2

i . Hence S({ti})
∗ ∈ Intg by Lemma 4.1. Moreover, S({ti})

∗ is
injective by Proposition 3.2.

c) Let g = sl(∞) and let M be as in Example 3.5. Then Homgi
(N,M) 6=

0 if N is isomorphic to one of the following simple gi-modules: trivial, natural,
conatural, adjoint. ThereforeM∗ is g-integrable and injective in Intg. Furthermore,
M∗ ∼= C⊕ g∗.

5. On the Loewy length of Γg(M
∗) for M ∈ Intg

Recall that the socle, soc(M), of a g-moduleM is the largest semisimple submodule
of M . The socle filtration of M is the filtration of g-modules

0 ⊂ soc(M) ⊂ soc1(M) ⊂ · · · ⊂ soci(M) ⊂ . . . ,

where soci(M) = p−1i (soc(M/soci−1(M)) and pi : M → M/soci−1(M) is the
natural projection. We say the the socle filtration of M is exhaustive if M =
lim−→(soci(M)). We say that M has finite Loewy length if the socle filtration of
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M is finite and exhaustive. The Loewy length of M equals k + 1 where k =
min{r | socr(M) =M}.

Proposition 5.1. Let M ∈ Intg be a simple g-module such that Γg(M
∗) has finite

Loewy length. Then there exist n ∈ Z>0 and a direct system Mi of simple finite-
dimensional gi-modules such that M = lim

−→
Mi and dimHomgi

(Mi,Mj) = 1 for all

j > i > n.

We first prove several lemmas.

Lemma 5.2. Let Q = lim
−→

Qi ∈ Intg, where Qi are finite-dimensional, not necessarily

simple, gi-modules. Assume that for all sufficiently large i there exists a simple gi-
submodule Xi ⊂ Qi such that dimHomgi

(Xi, Xi+1) > 2. Then there exists a locally
simple module X = lim−→Xi ∈ Intg and a non-trivial extension of g-modules

0→ Q→ Z → X → 0.

Proof. Fix a sequence of injective homomorphisms of gi-modules fi : Xi → Xi+1

and set X = lim−→Xi. Let Zi := Xi⊕Qi and consider the injective homomorphisms

of gi-modules

ai : Zi → Zi+1, ai((x, q)) := (fi(x), ti(x) + ei(q)),

where ti are some injective homomorphisms Xi→Qi+1, ei : Qi → Qi+1 are the
given inclusions, and q ∈ Qi, x ∈ Xi. Put Z := lim−→Zi.

Then, clearly, Q is a submodule of Z and the quotient Z/Q is isomorphic to
X . Thus we have constructed an extension of X by Q. This extension splits if and
only if for all sufficiently large i there exist non-zero homomorphisms pi : Xi → Qi
such that ti = pi+1 ◦ fi − ei ◦ pi, see the following diagram:

Xi+1
pi+1

→ Qi+1

↑fi tiր ↑ei

Xi
pi
→ Qi.

Assume that for any choice of {ti} such a splitting exists. If ni := dimHomgi
(Xi, Qi),

this assumption implies

dimHomgi
(Xi, Qi+1) ≤ ni + ni+1.

On the other hand, dimHomgi
(Xi, Qi+1) ≥ kini+1 where ki := dimHomgi

(Xi, Xi+1).
Since ki > 2, we have ni+1 < ni. As ni > 0 for all i, we obtain a contradiction. �

Corollary 5.3. Let Q ∈ Intg be a simple g-module satisfying the assumption of
Lemma 5.2. Then Q admits no non-zero homomorphism into an injective object
of Intg of finite Loewy length.

Proof. For any m > 0 we will now construct an integrable module Z(m) ⊃ Q
whose socle equals Q and whose Loewy length is greater than m. For m = 1 this
was done in Lemma 5.2. Proceeding by induction, we set

Z
(m)
i := Xi ⊕ Z

(m−1)
i = Xi ⊕ (Xi ⊕ Z

(m−2)
i )
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and define a
(m)
i : Z

(m)
i → Z

(m)
i+1 by

a
(m)
i (x, x′, z) = (fi(x), r

(m−1)
i (x) + fi(x

′), t
(m−2)
i (x′) + q

(m−2)
i (z)),

where now {t
(m−2)
i } is a set of non-zero homomorphisms t

(m−2)
i : Xi → Z

(m−2)
i+1

and {r
(m−1)
i } is a set of non-zero homomorphisms r

(m−1)
i : Xi → Xi+1. As in the

proof of Lemma 5.2 one can choose {t
(m−2)
i } and {r

(m−1)
i } so that Z(m) is a non-

split extension ofX by Z(m−1), and Z(m)/Z(m−2) is a non-split self-extension ofX .
Therefore the Loewy length of Z(m) is greater than m. The statement follows. �

Lemma 5.4. Let Q = lim−→Qi ∈ Intg be a simple g-module which admits a non-

zero homomorphism into an injective object of Intg of finite Loewy length. Then
there exist n ∈ Z>0 and a direct system of simple gi-submodules Si of Q such that
Q = lim

−→
Si and dimHomgi

(Si, Sj) = 1 for all j > i > n.

Proof. Decompose each Qi into a direct sum of isotypic components, Qi = Q1
i ⊕

· · · ⊕Q
l(i)
i . We define a directed graph Γ as follows. The set of vertices V (Γ) is by

definition {Qji}, and V (Γ) = ∪i>0V (Γ)i, where V (Γ)i = {Q
1
i , . . . , Q

l(i)
i }. An edge

A→ B belongs to Γ if A ∈ V (Γi), B ∈ V (Γi+1) and Homgi
(A,B) 6= 0.

Let Γ>i be the full subgraph of Γ whose set of vertices equals ∪k>iV (Γ)k.
For any vertex A of Γ we denote by V (A) the set of vertices B such that there is a
directed path from A to B. Let Γ(A) be the full subgraph of Γ whose set of vertices
equals V (A), and Γ(A)>i be the full subgraph of Γ(A) whose set of vertices equals
∪k>i(V (Γ)k ∩ V (A)). Note that the simplicity of Q implies that Γ>i and Γ(A)>i
are connected. In particular, if Γ(A) is a tree, then Γ(A) is just a string.

We will now prove that there exists a vertex A such that Γ(A) is a tree.
Indeed, assume the contrary. This implies that one can find an infinite sequence
of vertices A1 ∈ V (Γ)i1 , A2 ∈ V (Γ)i2 , . . . such that the number of paths from
An to An+1 is greater than 2 for all n. Then Q = lim−→Qik . In addition, one can

easily see that Q satisfies the assumption of Lemma 5.2 and hence Q admits no
non-zero homomorphism into an injective object of Intg of finite Loewy length.
Contradiction.

Fix now A ∈ V (Γ)i such that Γ(A) is a tree. Then, as we mentioned above,
V (Γ) is necessarily a string Ai = {A→ Ai+1 → Ai+2 . . . }. Let Sj be a simple sub-
module ofAj , j ≥ i. Then by Lemma 5.2 there exists n, such that dimHomgj

(Sj , Sk) =
1 for any k > j ≥ n. Fix s ∈ Sn and set Sj = U(gj) · s for all j ≥ n. Then Sj are
simple and Q = lim−→Sj satisfies the condition in the lemma. �

Lemma 5.5. Let Q = lim−→Si ∈ Intg, where Si are simple gi-modules such that, for

some n, dimHomgi
(Si, Sj) = 1 for all j > i > n. Then Q∗ has a unique simple

submodule Q∗, and Q∗ ∈ Intg.

Proof. The condition on Q implies that dimHomgi
(Si, Q) = 1 for all sufficiently

large i. Therefore dimHomgi
(S∗i , Q

∗) = 1 for all sufficiently large i. Note also
that Q∗ = lim−→S

∗
i is uniquely defined (as dimHomgi

(Si, Si+1) = 1) and is a simple
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integrable submodule of Q∗. Let S be some simple submodule of Q∗. Since Q∗ =
lim
←
S∗i and Homg(S,Q

∗) 6= 0, we have Homgi
(S, S∗i ) 6= 0 for some i. Therefore

S∗i ⊂ S as the multiplicity of S∗i in Q∗ is 1. This implies S = Q∗. �

We are now ready to prove Proposition 5.1.
Proof of Proposition 5.1. Fix 0 6= m ∈ M and put Mi := U(gi) · m. Then, by
the simplicity of M , we have M = lim−→Mi. Since Γg(M

∗) has finite Loewy length,

M∗ has a simple submodule Q. By Lemma 5.4, Q satisfies the assumption of
Lemma 5.5. The composition of the canonical injection M → (M∗)∗ and the dual
map (M∗)∗ → Q∗ defines an injective homomorphism M → Q∗. By Lemma 5.5
M ≃ Q∗ and, since Q∗ also satisfies the assumption of Lemma 5.5, we conclude
that the claim of Proposition 5.1 holds for M .✷

The following statement is a direct consequence of Proposition 5.1.

Corollary 5.6. Let M ∈ Intg be a simple g-module such that Γg(M
∗) has finite

Loewy length. Then for any sufficiently large i there exists a simple gi-module N
such that dimHomgi

(N,M) = 1.

The next corollary is a direct consequence of Lemma 5.5 and Proposition 5.1.

Corollary 5.7. Let M ∈ Intg be a simple g-module such that Γg(M
∗) has finite

Loewy length. Then M∗ has a unique simple submodule M∗, and M∗ ∈ Intg.

Theorem 5.8. Let g be a locally simple algebra which has a non-trivial module M
such that M∗ is integrable and has finite Loewy length, then g is isomorphic to
sl(∞), o(∞) or sp(∞).

Proof. By Proposition 4.3 we know that g is diagonal. Assume that g is not finitary
and there exists M satisfying the conditions of the theorem. Also assume that in
the restriction of Vi to gi−1 there is no costandard module (for types B, C and
D it is automatic). Let g = lim−→gi. Fix n and let ϕk : gn → gn+k denote the

inclusion defined by our fixed exhaustion of g. Since g is diagonal, there exists a
root subalgebra lk ⊂ gn+k such that lk ≃ gn⊕ · · · ⊕ gn and ϕk(gn) is the diagonal
subalgebra in lk. Let ak be the number of simple direct summands in lk. Since g

is not finitary, ak →∞.
By Corollary 5.6 M = lim−→Mi is a direct limit of simple modules and, by

possibly increasing n, we have dimHomgn
(Mn,Mn+k) = 1 for all k. Choose a

set of Borel subalgebras bi ⊂ gi such that ϕk(bn) ⊂ bn+k. Let h be the highest
coroot of gn and let λ be the highest weight of some simple lk-constituent L
of Mn+k. Since M

∗ is integrable, Lemma 4.1 implies that λ(ϕk(h)) is bounded
by some number t. If h1, . . . , hak are the images of ϕk(h) in the simple direct
summands of lk under the natural projections, we have λ(hj) 6= 0 for at most t
direct summands. Therefore L isomorphic to an outer tensor product of at most
t non-trivial simple gn-modules. Since Mn+k is invariant under permutation of
direct summands of lk, we have at least ak−t simple constituents ofMn+k obtained
from L by permutation of the simple direct summands of lk. Note that all these
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simple constituents are isomorphic as ϕk(gn)-modules. Thus the multiplicity of any
simple ϕn+k(gn)-module inMn+k is at least ak−t. Since ak →∞, this contradicts
Proposition 5.1.

The case when the restriction of Vn to gn−1 contains a costandard simple
constituent can be handled by a similar argument which we leave to the reader. �

6. The category T̃ensg for g ≃ sl(∞), o(∞), sp(∞)

Define T̃ensg as the largest full subcategory of Intg which is closed under algebraic
dualization and such that every object in it has finite Loewy length.

It is clear that T̃ensg is closed with respect to finite direct sums, however

T̃ensg is not closed with respect to arbitrary direct sums (see Corollary 6.17 below).

Note also that, if g is finite-dimensional and semisimple, the objects of T̃ensg are
integrable modules which have finitely many isotypic components.

It follows from Theorem 5.8 that if g is locally simple and T̃ensg contains a
non-trivial module, then g is finitary. In the rest of this section we assume that
g ≃ sl(∞), o(∞) or sp(∞).

Set T p,q := V ⊗p ⊗ (V∗)
⊗q, where V and V∗ are respectively the natural and

conatural g-modules (V∗ ≃ V when g ≃ o(∞), sp(∞)). The modules T p,q have been
studied in [PS]; in particular, T p,q has finite length and is semisimple only if pq = 0
for g = sl(∞), and if p+ q ≤ 1 for g = o(∞), sp(∞). Moreover, the Loewy length
of T p,q equals min{p, q} + 1 for g = sl(∞) and [p+q2 ] + 1 for g = o(∞), sp(∞).
A simple module M is called a simple tensor module if it is a submodule (or,
equivalently, a subquotient) of T p,q for some p, q.

It is well-known that there is a choice of nested Borel subalgebras bi ⊂ gi
such that all simple tensor modules are b-highest weight modules for b = lim−→bi, see

[PS]. (Moreover, the positive roots of any such b are not generated by the simple
roots of b. However, in the present paper we will make no further reference to this
fact.)

Denote by Θ the set of all highest weights of simple tensor modules. If λ ∈ Θ,
by Vλ we denote the simple tensor module with highest weight λ, and, as in section
4, by V iλ we denote the simple gi-highest weight module with highest weight λ (here
λ is considered as a weight of gi). It is easy to check (cf [PS]) that every λ ∈ Θ
can be written in the form λ =

∑
aiγi for some finite set γ1, ..., γs of linearly

independent weights of V and some ai ∈ Z. We put |λ| :=
∑
|ai|. It is not hard to

see that for any k the set of all |µ| ≤ k in Θ is finite. It follows from [PS] that all
simple subquotients of T p,q are isomorphic to Vµ with |µ| ≤ p+ q, and that if Vλ
is a submodule in T p,q then |λ| = p+ q.

Note that (T p,q)∗, (T p,q)∗∗, etc., are integrable modules. Indeed, it is easy
to see (cf. [PS]) that for any fixed λ and any fixed i > 0 the non-vanishing of
Homgi

(N, Vλ) for a simple gi-module N implies N ≃ V iµ for |µ| ≤ |λ|. Hence
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the condition of Lemma 4.1 is satisfied for T p,q for fixed p, q. This shows that
(T p,q)∗ ∈ Intg. By Corollary 4.2, (T p,q)∗∗ ∈ Intg, etc..

Lemma 6.1. Fix p, q ∈ Z≥0.

a) (T p,q)∗ has finite Loewy length, and all simple subquotients of (T p,q)∗ are
tensor modules of the form Vλ for |λ| ≤ p+ q.

b) The direct product
∏

f∈F

T p,qf of any family F = {T p,qf } of copies of T
p,q has

finite Loewy length, and all simple subquotients of
∏

f∈F

T p,qf are tensor modules of

the form Vλ for |λ| ≤ p+ q.

Proof. First we prove b) using induction in p + q. The case p + q = 0 is trivial.
If p + q > 0, without loss of generality we can assume that p > 0 (if p = 0 and
q > 0 we replace V by V∗ in the argument below). There is a canonical injective

homomorphism U →
∏

f∈F

T p,qf , where U := V ⊗
∏

f∈F

T p−1,qf , so we can consider U

as a submodule of
∏

f∈F

T p,qf . By the induction assumption b) holds for
∏

f∈F

T p−1,qf .

Since T r,s has finite length for all r, s, [PS], this implies that U has finite Loewy
length and all simple subquotients of U are simple tensor modules of the form

Vλ for |λ| ≤ p + q. The quotient (
∏

f∈F

T p,qf )/U is isomorphic to a submodule of

R :=
∏

f∈F

(V ′ ⊗ T p−1,qf ), where V ′ is a copy of the vector space V with trivial

g-module structure. Since R ≃
∏

f∈F

(
⊕

i∈Z

T p−1,qf,i ), by the induction assumption b)

holds for R. Therefore b) holds for
∏

f∈F

T p,qf .

a) To prove that (T p,q)∗ has finite Loewy length, we consider U ′ := V∗ ⊗
(T p−1,q)∗ as a submodule of (T p,q)∗. By the induction assumption, U ′ has finite

Loewy length. The quotient (T p,q)∗/U ′ is a submodule of R′ =
∏

i∈Z

(T p−1,qi )∗.

The latter g-module has finite Loewy length by induction assumption and b).
The statement about the simple subquotients of (T p,q)∗ follows by an induction
argument similar to the one in the proof of b). This proves a) for (T p,q)∗. �

Example 6.2.

a) We start with the simplest example. Let g = sl(∞), o(∞), sp(∞) and

M = V ∗ = (T 1,0)∗. Then M ∈ T̃ensg by Lemma 6.1. Furthermore, M is an
injective object of Intg by Proposition 3.2. It is easy to see that soc(M) = V∗ and
that M/soc(M) = V ∗/V∗ is a trivial module of cardinality i1. Since soc(M) is
simple, M is an injective hull of V∗.
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b) Let g be as in a) but let M = V ∗∗ = (T 1,0)∗∗. The exact sequence 0 →
V∗ → V ∗ → V ∗/V∗ → 0 yields an exact sequence

0→ (V ∗/V∗)
∗ →M → (V∗)

∗ → 0. (5)

Since (V ∗/V∗)
∗ is a trivial g-module (cf. a)), it is injective, and hence (5) splits.

This yields an isomorphism M = V ∗∗ = (V∗)
∗ ⊕ T , T being a trivial g-module of

cardinality i2.
c) Here is a more interesting example. We consider the g-module M∗ where

g = sl(∞) and M = V ⊗ V∗ = T 1,1 as in Example 3.5. Recall the notation
introduced in Example 3.5. In addition, let Sc be the one-dimensional space of
scalar matrices, and Fr (respectively Fc) denote respectively the spaces of matrices
with finitely many non-zero rows (resp., columns) (F has codimension 1 in Fr∩Fc).
It is important to notice that g ·M∗ ⊂ Fr + Fc.

We first show that soc(M∗) = Sc⊕ F = C ⊕ g. It is obvious that Sc⊕ F ⊂
soc(M∗). To see that Sc⊕F = soc(M∗), letX be any non-trivial simple submodule
of soc(M∗) not lying in Sc ⊕ F . Consider 0 6= x ∈ X . Then g · x ⊂ Fr + Fc.
Furthermore, it is easy to check that for any 0 6= y ∈ Fr + Fc, there exists A ∈ g

such that A · y ∈ F and A · y 6= 0. Hence X = F . Since it is clear that Sc is the
largest trivial g-submodule of M∗, we have shown that soc(M∗) = Sc⊕ F .

We now compute soc1(M∗). We claim that Fr+Fc ⊂ soc1(M∗). Since BA ∈
F for B ∈ Fr, A ∈ F , the action of g on Fr/F is simply left multiplication. Using
this it is not difficult to establish an isomorphism of g-modules Fr/F ≃

⊕
q∈Q Vq,

where Q is a family of copies of V of cardinality 2Z. Similarly, Fc/F ≃
⊕

q∈Q(V∗)q.

(It is convenient to think here of V∗ as the space of all row vectors each of which
have finitely many non-zero entries.) This implies Fr + Fc ⊂ soc1(M∗).

On the other hand M∗/(Fr + Fc) is a trivial g-module as g ·M∗ ⊂ Fr + Fc.
In order to compute soc1(M∗) we need to find all z ∈M∗ such that g ·z ⊂ Sc+F .
A direct computation shows that g · z ∈ Sc+ F if and only z ∈ J , J denoting the
set of matrices each row and each column of which have finitely many non-zero
elements. (In fact, g · J ⊂ F ). Thus soc1(M∗) = Fr + Fc + J , and we obtain the
socle filtration of M∗:

0 ⊂ Sc⊕ F ⊂ Fr + Fc + J ⊂M∗.

In particular, the Loewy length of M∗ equals 3, the irreducible subquotients of
M∗ up to isomorphism are C, V, V∗, g, and all of them occur with multiplicity 2Z,
except g which occurs with multiplicity 1.

Note that M∗ is decomposable and is isomorphic to C ⊕ g∗. As the socle
of g∗ is simple (being isomorphic to g), g∗ is indecomposable. Moreover g∗ is an
injective hull of F = g.

d) We now give an example illustrating statement b) of Lemma 6.1. Let

g = sl(∞), o(∞), sp(∞) and M =
∏

f∈F

Vf , F being an infinite family of copies

of the natural module V . Set Mfin = {ψ : F → V | dim(ψ(F)) < ∞}. Then
Mfin is a g-submodule of M , and g · M ⊂ Mfin. Hence M/Mfin is a trivial
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g-module. Moreover, Mfin ≃
⊕

g∈2F

Vg, where 2F is the set of subsets of F . In-

deed, Mfin = lim−→(
∏
f∈F(V

i)f ) = lim−→((
∏
f∈F Cf ) ⊗ V

i) ∼= lim−→

⊕
g∈2F (Cg ⊗ V

i) =

lim−→(
⊗

g∈2F (V
i)g) =

⊕
g∈2F Vg.

This yields an exact sequence

0→
⊕

g∈2F

Vg →M → T → 0, (6)

T being trivial module of dimension card 2F . Since M has no non-zero trivial
submodules, (6) is in fact the socle filtration ofM . Consequently the Loewy length
of M equals 2.

Corollary 6.3. Let M ∈ Intg have finite Loewy length and all simple subquotients
of M be isomorphic to Vλ where |λ| is less or equal than a fixed k ∈ Z>0. Then

a) for any family F
∏
f∈F Mf has finite Loewy length and all simple subquo-

tients of
∏
f∈FMf are isomorphic to Vλ with |λ| ≤ k;

b) M∗ has finite Loewy length and all simple subquotients of M∗ are isomor-
phic to Vλ with |λ| ≤ k;

c) M ∈ T̃ensg.

Proof. a) The socle filtration of M induces a finite filtration on
∏
f∈FMf

0 ⊂
∏

f∈F

soc(Mf ) ⊂ · · · ⊂
∏

f∈F

soci(Mf ) ⊂ · · · ⊂
∏

f∈F

Mf .

Furthermore,

soci(M)/soci−1(M) ≃
⊕

|λ|≤k

⊕

g∈Fλ

(Vλ)g (7)

for some families Fλ. Hence
∏

f∈F

(soci(Mf )/soc
i−1(Mf )) ≃

⊕

|λ|≤k

∏

f∈F

(
⊕

g∈Fλ

(Vλ)g)f .

Note that for each λ
∏

f∈F

(
⊕

g∈Fλ

(Vλ)g)f ⊂
∏

(f,g)∈F×Fλ

(Vλ)(f,g).

By Lemma 6.1 b),
∏

(f,g)∈F×Fλ
(Vλ)(f,g) has finite Loewy length and all its sim-

ple subquotients are isomorphic ot Vµ with |µ| ≤ |λ| ≤ k. The same holds for∏
f∈F (soc

i(Mf )/soc
i−1(Mf )). Therefore a) holds.

b) Since all Vλ with |λ| ≤ k satisfy the conditions of Lemma 4.1, M satisfies
the condition of Lemma 4.1 and therefore M∗ ∈ Intg.

The socle filtration of M induces a finite filtration on M∗

· · · ⊂ (soci(M))∗ ⊂ (soci−1(M))∗ ⊂ · · · .
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Using (7) we get

(soci−1(M))∗/(soci(M))∗ ≃
⊕

|λ|≤k

∏

g∈Fλ

(V ∗λ )g.

By Lemma 6.1 b) V ∗λ has finite Loewy length and its simple subquotients are
isomorphic to Vµ with |µ| ≤ |λ|, hence by a) the same holds for

∏
g∈Fλ

(V ∗λ )g. This

implies that b) holds.
c) Note that if M satisfies the assumptions of the corollary, then M∗ and

all higher duals M∗∗ etc, satisfy the the assumptions of the corollary. Hence M ∈

T̃ensg. �

Remarkably, there is following abstract characterization of simple tensor mod-
ules.

Theorem 6.4. If M ∈ Intg is simple and Γg(M
∗) has finite Loewy length, then M

is a simple tensor module.

Proof. By Proposition 5.1, M = lim
→
Mi for some n ∈ Z+ and simple nested gi-

submodules Mi ⊂M with dimHomgi
(Mi,M) = 1 for all i ≥ n. If g = sl(∞), it is

useful to considerM as a gl(∞)-module by extending the sl(i)-module structure on
Mi to a gl(i)-module structure in a way compatible with the injectionsMi →Mi+1.
It is easy to see that the condition dimHomgi

(Mi,M) = 1 for all i ≥ n ensures the
existence of such an extension. Note, furthermore, that dimHomgl(i)(Mi,M) = 1.
This allows us to assume that g = gl(∞) and gi = gl(i).

Let now c denote the derived subalgebra of the centralizer of gn in g. Then
obviously c is a simple finitary Lie algebra whose action on M induces a trivial
action onMn. Hence, as a c-module,M is isomorphic to a quotient of U(g)⊗U(c⊕gn)

Mn, or equivalently to a quotient of S.(g/(c ⊕ gn)) ⊗Mn. Note that g/(c ⊕ gn),
considered as a c-module has finite length and that its simple subquotients are
natural, conatural, and possibly 1-dimensional trivial c-modules. This implies that
every simple c-subquotient ofM is a simple tensor c-module. In addition, for i ≥ n,
the number of non-zero marks of the highest weight of any simple gi-submodule of
M is not greater than n plus the multiplicity of the non-trivial simple constituents
of the gn-module g/(c⊕ gn). In particular, if λi denotes the highest weight of Mi

then λi has at most 3n non-zero marks.
Consider first the case when g = gl(∞). Then every weight λi can be written

uniquely in the form

ai1ε1 + · · ·+ aikεk + bi1εn−k + · · ·+ bikεn

for some fixed k, ai1 ≥ ai2 ≥ · · · ≥ aik ≥ 0 and 0 ≥ bi1 ≥ · · · ≥ bik. We claim that

for sufficiently large i the weight stabilizes, i.e. aij = ai+1
j = · · · = apj = . . . and

bij = bi+1
j = · · · = bpj = . . . for all j, 1 ≤ j ≤ k. Indeed, assume the contrary.

Let j be the smallest index such that the sequence {aij} does not stabilize. By the

branching rule for gl(m) ⊂ gl(m+1) (see for instance [GW]) the sequence {aij} is

non-decreasing. Hence there is p such that ap+1
j > apj . Set µ = λp + εj . Then the
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multiplicity of Mp−1 in V pµ is not zero and the multiplicity of V pµ in Mp+1 is not
zero. Since V pµ 6=Mp, this shows that the multiplicity of Mp−1 in Mp+1 is at least

2. Contradiction. Similarly the sequence {bij} stabilizes. As it is easy to see, this
is sufficient to conclude that M ≃ Vλ for some λ ∈ Θ.

Let g = o(∞) or sp(∞). In the first case we assume that gi = o(2i + 1).
Then λi = ai1ε1 + · · · + aikεk for some fixed k and ai1 ≥ ai2 ≥ · · · ≥ aik ≥ 0. The
sequence {aij} is non-decreasing for every fixed j as follows from the branching

laws for the respective pairs o(2m+ 1) ⊂ o(2m+ 3) and sp(2n) ⊂ sp(2m+ 2), see
[GW]. Then by repeating the argument in the previous paragraph we can prove
that {aij} stabilizes, and consequently M ≃ Vλ for some λ ∈ Θ. �

Corollary 6.3 and Theorem 6.4 show that a simple module M ∈ Intg is an

object of T̃ensg if and only if Γg(M
∗) has finite Loewy length. Below we will use

this fact to give an equivalent definition of T̃ensg (Corollary 6.13). Furthermore, it
is easy to check (see also [PS]) that for sufficiently large i the simple gi-module V iλ
occurs in Y with multiplicity 1, and all other simple gi-constituents have infinite
multiplicity and are isomorphic to V iµ with |µ| < |λ|. In what follows we call
this unique gi-constituent the canonical gi-constituent of Vλ. Note also that by

Corollary 5.7 for each simple objectM of T̃ensg,M∗ is a well-defined simple object

in T̃ensg. Hence M∗ is well defined also for any semisimple object M of T̃ensg: if

M =
⊕

λ∈Θ

Mλ ⊗ Vλ (Mλ being trivial g-modules), then M∗ =
⊕

λ∈Θ

Mλ ⊗ (Vλ)∗. It

is clear that M∗ ∼=M for g ∼= o(∞), sp(∞).

Corollary 6.5. The simple objects of T̃ensg are precisely the simple tensor modules.

Lemma 6.6. Let M ∼= Vλ be a simple tensor module. Then soc((M∗)
∗) ≃M . If Vµ

is a subquotient of (M∗)
∗ and µ 6= λ, then |µ| < |λ|.

Proof. The first statement follows from Corollary 5.7.
The second statement follows immediately from the fact that Homgi

(V iµ, (M∗)
∗) 6=

0 implies |µ| < |λ|. �

Corollary 6.7. a) For any simple M ∈ T̃ensg, (M∗)
∗ is an injective hull of M in

Intg (and hence also in T̃ensg).

b) Any indecomposable injective object in T̃ensg is isomorphic toM∗ for some

simple module M ∈ T̃ensg. In particular, any indecomposable injective module is
isomorphic to a direct summand of (T p,q)∗ for some p, q.

c) For any M ∈ T̃ensg, any injective hull IM of M in Intg is an object of

T̃ensg.

Proof. a) Follows directly from Proposition 3.2 and Lemma 6.6.

b) To derive b) from a) it suffices to note that an injective module in T̃ensg
is indecomposable if and only if it has simple socle.
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c) follows from the fact that IM is isomorphic to a submodule of Γg(M
∗∗),

see Corollary 3.3 �

In what follows we set Iλ := ((Vλ)∗)
∗.

Corollary 6.8. Endg(Iλ) = C.

Proof. If ϕ ∈ Endg(Iλ), then ϕ|Vλ
= c Id for c ∈ C. Therefore Vλ ⊂ Ker(ϕ − c Id).

Furthermore, any non-zero g-submodule of Iλ contains soc(Iλ) = Vλ, hence Vλ ⊂
Im(ϕ− c Id). This implies ϕ− c Id = 0, as otherwise Vλ would be isomorphic to a
subquotient of Iλ/Vλ contrary to Lemma 6.6. �

Lemma 6.9. Let X,Y, Z,M ∈ T̃ensg. Assume furthermore that Y is simple, Y =
soc(M), and there exists an exact sequence

0→ X → Z
p
→ Y → 0.

Then there exists M̃ ∈ Intg such that Z ⊂ M̃ and M̃/X ≃M .

Proof. Let Yi be the canonical gi-constituent of Y . Then Y = lim−→Yi. Set Zi :=

p−1(Yi) and Qi := Zi ∩X . Then Zi = Yi ⊕Qi and there are injective homomor-
phisms ϕi : Zi → Zi+1

ϕi(y, q) = (ei(y), ti(y) + fi(q)), y ∈ Yi, q ∈ Qi

for some non-zero homomorphisms ei : Yi → Yi+1, ti : Yi → Qi+1 and fi : Qi →
Qi+1. Clearly, Z = lim−→Zi.

On the other hand,M = lim−→Mi for some nested finite-dimensional gi-submodules

Mi ⊂ M such that Yi ⊂ Mi. Moreover, dimHomgi
(Yi,Mi) = 1 by Lemma 6.6.

Therefore,Mi has a unique gi-module decompositionMi = Ri⊕Yi. The inclusions
ψi :Mi →Mi+1 are given by

ψi(r, y) = (pi(r), si(r) + ei(y)), y ∈ Yi, r ∈ Ri

for some non-zero homomorphisms pi : Ri → Ri+1 and si : Ri → Yi+1.

Define M̃i := Ri ⊕ Yi ⊕Qi and let ζi : M̃i → M̃i+1 be given by the formula

ζ(r, y, q) = (pi(r), si(r) + ei(y), ti(y) + fi(q)).

Set M̃ := lim−→M̃i. It is easy to check that M̃ satisfies the conditions of the lemma.

�

Lemma 6.10. If Homg(Iλ, Iµ) 6= 0, then |µ| ≤ |λ|. If I is any injective object of

T̃ensg and 0 6= ϕ ∈ Homg(I, Iµ), then ϕ is surjective.

Proof. The first statement follows immediately from Lemma 6.6.
To prove the second statement put X = Kerϕ, Y = Vµ, Z = ϕ−1(Y ) and

M = Iµ. Construct M̃ as in Lemma 6.9. By the injectivity of I, the injective

homomorphism Z → M̃ extends to a homomorphism M̃ → I. The latter induces
a homomorphism η :M = Iµ → I/X .
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Let now ϕ̄ : I/X → Iµ denote the injective homomorphism induced by ϕ.
Then it is obvious that ϕ̄ ◦ η(y) = y for any y ∈ Y . By Corollary 6.8, we have
ϕ̄ ◦ η = Id. Hence ϕ̄ is an isomorphism, i.e. ϕ is surjective. �

Proposition 6.11. The Loewy length of Iλ equals |λ|+ 1.

Proof. By Lemma 6.6 we know that the Loewy length of Iλ is at most |λ| + 1.
We prove equality by induction in |λ|. Fix µ ∈ Θ such that |µ| = |λ| − 1 and
Homgi

(V iµ, V
i+1
λ ) 6= 0. We claim that Ext1(Vµ, Vλ) 6= 0. Indeed, consider non-zero

homomorphisms ϕi ∈ Homgi
(V iµ, V

i+1
λ ). Set X = lim

−→
Xi, where Xi = V iµ ⊕ V

i
λ ,

qi : Xi → Xi+1 is given by qi(x, y) = (ei(x), ϕi(x) + fi(y)) for x ∈ Vµ, y ∈ Vλ, and

ei : V
i
µ → V i+1

µ and fi : V
i
λ → V i+1

λ denote the fixed inclusions. It is easy to see
that X is a non-trivial extension of Vµ by Vλ.

Thus, we have a non-zero homomorphism Iλ → Iµ. By Lemma 6.10, it is
surjective. Hence the Loewy length of Iλ is greater or equal to the Loewy length
of Iµ plus 1. The statement follows. �

The following theorem strengthens the claim of Corollary 6.3.

Theorem 6.12. Let M ∈ Intg. Then M ∈ T̃ensg if and only if there exists a finite
subset ΘM ⊂ Θ such that any simple subquotient of M is isomorphic to Vµ for
µ ∈ ΘM .

Proof. Assume that M ∈ T̃ensg. It is sufficient to prove the existence of ΘM for a
semisimple M since then the general case follows from Lemma 6.6. Without loss
of generality we may assume that M =

⊕
j∈C Vλj

, where Vλj
are pairwise non-

isomorphic. We claim that if C is infinite, then M∗ does not have finite Loewy
length. Indeed, M∗ contains a submodule isomorphic to

⊕
j∈C Iµj

, where Vµj
=

(Vλj
)∗. If C is infinite, then |µj | = |λj | is unbounded and the socle filtration of⊕

j∈C Iµj
is infinite. This proves one direction.

Now assume that M admits a finite set ΘM as in the statement of the the-
orem. We claim first that if M ′ is a quotient of M and Ext1g(M

′, Vλ) 6= 0 for
some λ ∈ Θ, then M has a subquotient isomorphic to Vµ for some µ < λ. In-
deed, by extending the sequence 0 → Vλ → Iλ to a minimal injective resolution

0→ Vλ → Iλ
i
→ I1λ → ..., we see that there is a non-zero homomorphismM ′

p
→ I1λ.

Furthermore, by the minimality of the resolution, we have soc(I1λ) ⊂ Imi. Hence
by Lemma 6.9 every simple constituent of soc(I1λ) is of the form Vν for ν < λ.
Since (Imp) ∩ soc(I1λ) 6= 0, some simple constituent of soc(I ′λ) is isomorphic to a
subquotient of M ′ and thus of M .

We show now that M has finite Loewy length. Consider a minimal (with re-
spect to the order≤) weight λ ∈ Θ. The above argument shows that Ext1g(M

′, Vλ) =
0 for any quotientM ′ ofM . This implies that every subquotient ofM isomorphic to
Vλ is a quotient of M . Hence M admits a surjective homomorphism ζ :M →Mλ,
where Mλ is isomorphic to a direct sum of copies of Vλ and Θker ζ = ΘM \ {λ}.
By an induction argument we obtain that M has finite Loewy length. Therefore

M ∈ T̃ensg by Corollary 6.3 c). �
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Corollary 6.13. A g-module M ∈ Intg is an object of T̃ensg if and only if both M
and Γg(M

∗) have finite Loewy length.

Proof. In one direction the statement is trivial. We need to prove that, ifM ∈ Intg
satisfies the above two conditions, then M∗ ∈ Intg. For a semisimple M this
follows directly from Theorem 6.12 (as we have already pointed out). The argument
gets completed by induction on the Loewy length. Let M ∈ Intg have Loewy
length k, and Γg(M

∗) have finite Loewy length. Consider the homomorphism
π : M → top(M) onto the maximal semisimple quotient top(M) of M . Then

Γg((top(M))∗) ⊂ Γg(M
∗), hence top(M) ∈ T̃ensg, i.e. in particular (top(M))∗ ∈

Intg. Therefore there is an exact sequence

0→ (top(M))∗ → Γg(M
∗)→ Γg((Kerπ)∗)→ 0,

implying that Γg((Kerπ)∗) has finite Loewy length. Since the Loewy length of Kerπ
equals k − 1, we can conclude that (Kerπ)∗ ∈ Intg. Hence Γg(M

∗) =M∗. �

Corollary 6.14. T̃ensg is a tensor category with respect to ⊗.

Proof. It suffices to show that T̃ensg is closed with respect to ⊗. The fact that,

if M ∈ T̃ensg and M ′ ∈ T̃ensg then M ⊗M ′ ∈ T̃ensg, follows immediately from
Theorem 6.12. �

The following theorem concerns the structure of injective modules in T̃ensg.

Theorem 6.15. Any injective module I ∈ T̃ensg has a finite filtration {Ij} such
that, for each j, Ij+1/Ij is isomorphic to a direct sum of copies of Iµj for some

µj ∈ Θ.

Proof. We use induction on the length of the filtration. Assume that 0 = I0 ⊂ I1 ⊂
Ik is already constructed. Let soc(I/Ik) =

⊕
f∈F Yf for a family F of simple mod-

ules Yf (there are only finitely many non-isomorphic modules among {Yf}f∈F).
Denoting by p the projection µf : I → I/Ik, set Xf := p−1(Yf ). By Lemma

6.9, there exists Ỹf ∈ Intg such that Ik ⊂ Xf ⊂ Ỹf and Ỹf/Ik ≃ Iµf
, µf ∈ Θ

being the highest weight of Yf . The inclusion Xf ⊂ I induces a homomorphism

ψf : Ỹf → I. Let ψf : Ỹf/Ik→̃Iµf → I/Ik the corresponding homomorphism of

quotients. Then ψ̄ :=
⊕

f∈F ψ̄f :
⊕

f∈F Iµf
→ I is injective since its restriction to

soc(
⊕

f∈F Iµf
) is an isomorphism. This shows that if Ik+1 := p−1(ψ̄(

⊕
f∈F Iµf

)),

there is an isomorphism Ik+1/Ik ≃
⊕

f∈F Iµf
.

The filtration terminates at a finite step as I has finite Loewy length. �

Example 6.16. Let g = sl(∞), o(∞), sp(∞) and let M be a countable direct sum of
copies of V , i.e. M =

⊕
f∈F Vf , cardF = i0. Then (M∗)

∗ can be identified with

the set of all infinite matrices {bij}i,j∈Z>0, the action of g being left multiplication.
The socle soc((M∗)

∗) is the space of matrices Fr with finitely many non-zero rows
and is isomorphic to

⊕
g∈2F Vg. (Note that the module

∏
f∈F Vf considered in
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Example 6.2 d) is a submodule of (M∗)
∗ and has the same socle as (M∗)

∗). We
thus obtain the diagram

⊕
g∈2F Vg ⊂ (M∗)

∗

∪ ∪
M ⊂ IM

,

IM being the injective hull ofM within (M∗)
∗. Moreover, IM is the largest submod-

ule of (M∗)
∗ such that g · IM =M . A direct computation shows that IM coincides

with the space of all matrices with finite rows (i.e. each row has finitely many
non-zero entries).

Note that IM 6≃
⊕

f∈F(Iε1 )f (ε1 ∈ Θ is the highest weight of V ). In fact

IM has the following filtration as in Theorem 6.15: 0 ⊂
⊕

f∈F (Iε1)f ⊂ IM . Here

IM/
⊕

f∈F(Iε1 )f is a trivial module of cardinality 2F which is interpreted as a

direct sum of 2F copies of I0.

For any k ∈ Z>0 we now define T̃ens
k

g be the subcategory of modules whose
simple quotients are isomorphic to Vµ with |µ| ≤ k. Theorem 6.12 and Corollary
6.3 a) imply the following.

Corollary 6.17. The category T̃ens
k

g is closed under direct products and direct sums.

Corollary 6.18. a) The category T̃ensg equals the direct limit lim−→T̃ens
k

g.

b) If {Mf}f∈F is an infinite family of objects of T̃ensg, then
∏
f∈FMf ∈

T̃ensg (equivalently,
⊕

f∈F ∈ T̃ensg) if and only if there is k such that Mf ∈ T̃ens
k

g

for all f ∈ F .

Proof. a) follows directly from Theorem 6.12.

Consider now
∏
f∈FMf . If Mf ∈ T̃ens

k

g for some k, then
∏
f∈FMf ∈ T̃ens

k

g

(and thus also
⊕

f∈FMf ∈ T̃ens
k

g) by Corollary 6.3 a). If no such k exists, then
⊕

f∈FMf /∈ T̃ensg by Theorem 6.12, hence also
∏
f∈FMf /∈ T̃ensg. �

Corollary 6.19. Every object in T̃ensg has a finite injective resolution.

We now introduce the following partial order on Θ: we set µ ≤ λ if for any
sufficiently large i there exists j > i such that Homgi

(V iµ, V
j
λ ) 6= 0. If µ ≤ λ, then

l(λ, µ) denotes the length of a maximal chain µ < µ1 < · · · < λ in Θ.

Lemma 6.20. Ext1g(Vµ, Vλ) 6= 0 if and only if µ < λ. If µ < λ, dimExt1g(Vµ, Vλ) =

2Z.

Proof. Assume that there is a non-trivial extension

0→ Vλ → X → Vµ → 0. (8)
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We will show that µ < λ. Let, on the contrary, Homgi
(V iµ, V

j
λ ) = 0 for all j > i.

Then Homgi
(V iµ, Vλ) = 0. Since dimHomgi

(V iµ, Vµ) = 1, we have dimHomgi
(V iµ, X) =

1. Let ϕ : V iµ → X be a non-zero homomorphism. Then U(g)·ϕ(V iµ) ≃ X . Therefore
ϕ extends to a homomorphism of g-modules Vµ → X , and this yields a splitting

of the sequence in (8). Thus, Ext1g(Vµ, Vλ) 6= 0 implies µ < λ.
Now let µ < λ. Then there exists an infinite sequence i1, i2, . . . such that

Homgij
(V

ij
µ , V

ij+1

λ ) 6= 0 for all j. Consider a sequence of non-zero homomorphisms

ϕj ∈ Homgij
(V

ij
µ , V

ij+1

λ ) and set Zj := V
ij
µ ⊕ V

ij
λ . Denote by ej (respectively, fj)

the inclusion V
ij
µ → V

ij+1

µ (resp., V
ij
λ → V

ij+1

λ ). Define ψj : Zj → Zj+1 by

ψ(x, y) = (ej(x), ϕj(x) + fj(y)), x ∈ V
ij
µ , y ∈ V

ij
λ .

Consider Z = lim−→Zj . It is an exercise to check that Z is an extension of Vµ by Vλ,

and it does not split if infinitely many ϕj 6= 0. Hence the dimension of Ext1g(Vµ, Vλ)

is at least 2Z. On the other hand, the dimension of Ext1g(Vµ, Vλ) is bounded by

the multiplicity of Vµ in soc1(Iλ)/soc(Iλ). The dimension of Iµ = ((Vµ)∗)
∗ is 2Z,

hence the dimension of Ext1g(Vµ, Vλ) is at most 2Z.

To finish the proof just note that Ext1g(Vλ, Vλ) = 0 by Lemma 6.6. �

Corollary 6.21. The category T̃ensg consists of a single block.

Proof. According to Lemma 6.20, Ext1g(C, Vµ) 6= 0 for any µ ∈ Θ. �

Proposition 6.22. For k ∈ Z>0, set

Θk(λ) = {µ < λ|l(λ, µ) ≥ k + 1}.

Then

sock(Iλ)/soc
k−1(Iλ) =

⊕

µ∈Θk(λ)

Xµ ⊗ Vµ,

where each Xµ is a trivial g-module of dimension 2Z.

Proof. For k = 1 the statement follows from Lemma 6.20. Now we proceed by
induction on k. Note first that if Vµ is a simple constituent of sock(Iλ)/soc

k−1(Iλ),
then, by Lemma 6.20, µ < χ for some simple constituent Vχ of sock−1(Iλ)/soc

k−2(Iλ).
By the induction assumption, χ ∈ Θk−1(λ). In addition, it is clear that Vµ is a
simple constituent of sock(Iλ)/soc

k−1(Iλ) if and only if there exists a non-zero
homomorphism ϕ : Iλ → Iµ, such that ϕ(sock−1(Iλ)) = 0. By Lemma 6.10, ϕ
is surjective, so all simple constituents of soc1(Iµ)/soc(Iµ) are also simple con-
stituents of sock(Iλ)/soc

k−1(Iλ). This implies that Vµ is a simple constituent of
sock(Iλ)/soc

k−1(Iλ) if and only if there exists ψ ∈ Θk−1(λ) such that µ ∈ Θ1(ψ).
Since µ ∈ Θ1(ψ) if and only if µ ∈ Θk(λ), the statement follows. �

Let Tensg be the full subcategory of T̃ensg consisting of modules M whose
cardinality cardM is bounded by in for some n depending on M .
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Theorem 6.23. Tensg is the unique minimal abelian full subcategory of Intg which
does not consist of trivial modules only and which is closed under ⊗ and ∗.

Proof. Let C be a minimal abelian full subcategory of Intg which contains a non-
trivial module M and is closed under ⊗ and ∗. We will show that V ∈ C. Since
EndCM is a g-submodule of (M∗ ⊗M)∗ (through the map ϕ(ψ ⊗m) = ψ(ϕ(m))
form ∈M, ψ ∈M∗, ϕ ∈ EndCM), we have EndCM ∈ C. Furthermore, the adjoint
module g is a submodule of EndCM . Hence g ∈ C. Recall that g is the socle of
V∗ ⊗ V for sl(∞), of Λ2(V ) for o(∞), and of S2(V ) for sp(∞). In all cases it is
easy to see that g∗ contains a subquotient isomorphic to V . Therefore V ∈ C. In
addition, V∗ = soc(V ∗) ∈ C. Therefore T p,q ∈ C for all p, q, and Vλ ∈ C for all

λ ∈ Θ. Finally, by Corollary 6.7 a), any M ∈ T̃ensg is a submodule of (soc(M)∗)
∗,

and the statement follows. �

We conclude this paper with the remark that the category T̃ensg, for g =
sl(∞), o(∞), sp(∞), is functorial with respect to any homomorphism of locally

semisimple Lie algebras ϕ : g′ → g. By this we mean that any M ∈ T̃ensg consid-

ered as a g′-module is an object of T̃ensg.
To prove this, recall that the image of ϕ′, being a locally semisimple sub-

algebra of g, is isomorphic to a direct sum of copies of sl(∞), o(∞), sp(∞) and
of finite-dimensional simple Lie algebras, [DP2]. Furthermore, the result of [DP2]
implies that as g′-modules both V and V∗ have Loewy length at most 2 and that
all non-trivial simple constituents of V and V∗ are isomorphic to the natural and
conatural representations Vs and (Vs)∗ for some simple direct summands s of ϕ(g′)
and that all non-trivial constituents occur with finite multiplicity. (The simple triv-
ial representation may occur with up to countable multiplicity in both soc(V ) and
V/soc(V ) (respectively, soc(V∗) and V∗/soc(V∗).) This allows us to conclude that

any single simple object of T̃ensg is an object of T̃ensϕ(g′). Hence, by Theorem

6.12, any M ∈ T̃ensg is an object of T̃ensϕ(g′).
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