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Isolated Singularities of Polyharmonic Inequalities

Marius Ghergu∗, Amir Moradifam†, and Steven D. Taliaferro‡§

Abstract

We study nonnegative classical solutions u of the polyharmonic inequality

−∆mu ≥ 0 in B1(0)− {0} ⊂ R
n.

We give necessary and sufficient conditions on integers n ≥ 2 andm ≥ 1 such that these solutions
u satisfy a pointwise a priori bound as x→ 0. In this case we show that the optimal bound for
u is

u(x) = O(Γ(x)) as x→ 0

where Γ is the fundamental solution of −∆ in R
n.

Keywords: Polyharmonic inequality, isolated singularity.
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1 Introduction

It is easy to show that there does not exist a pointwise a priori bound as x → 0 for C2

nonnegative solutions u(x) of

−∆u ≥ 0 in B1(0)− {0} ⊂ R
n, n ≥ 2. (1.1)

That is, given any continuous function ψ : (0, 1) → (0,∞) there exists a C2 nonnegative solution
u(x) of (1.1) such that

u(x) 6= O(ψ(|x|)) as x→ 0.

The same is true if the inequality in (1.1) is reversed.
In this paper we study C2m nonnegative solutions of the polyharmonic inequality

−∆mu ≥ 0 in B1(0) − {0} ⊂ R
n (1.2)

where n ≥ 2 and m ≥ 1 are integers. We obtain the following result.

Theorem 1.1. A necessary and sufficient condition on integers n ≥ 2 and m ≥ 1 such that C2m

nonnegative solutions u(x) of (1.2) satisfy a pointwise a priori bound as x→ 0 is that

either m is even or n < 2m. (1.3)
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In this case, the optimal bound for u is

u(x) = O(Γ0(x)) as x→ 0, (1.4)

where

Γ0(x) =











|x|2−n if n ≥ 3

log
5

|x|
if n = 2.

(1.5)

The m-Kelvin transform of a function u(x), x ∈ Ω ⊂ R
n − {0}, is defined by

v(y) = |x|n−2mu(x) where x = y/|y|2. (1.6)

By direct computation, v(y) satisfies

∆mv(y) = |x|n+2m∆mu(x). (1.7)

See [15, p. 221] or [16, p. 660]. This fact and Theorem 1.1 immediately imply the following result.

Theorem 1.2. A necessary and sufficient condition on integers n ≥ 2 and m ≥ 1 such that C2m

nonnegative solutions v(y) of
−∆mv ≥ 0 in R

n −B1(0)

satisfy a pointwise a priori bound as |y| → ∞ is that (1.3) holds. In this case, the optimal bound
for v is

v(y) = O(Γ∞(y)) as |y| → ∞ (1.8)

where

Γ∞(y) =

{

|y|2m−2 if n ≥ 3

|y|2m−2 log(5|y|) if n = 2.
(1.9)

The estimates (1.4) and (1.8) are optimal because ∆mΓ0 = 0 = ∆mΓ∞ in R
n − {0}.

The sufficiency of condition (1.3) in Theorem 1.1 and the estimate (1.4) are an immediate
consequence of the following theorem, which gives for C2m nonnegative solutions u of (1.2) one
sided estimates for ∆σu, σ = 0, 1, 2, . . . ,m, and estimates for |Dβu| for certain multi-indices β.

Theorem 1.3. Let u(x) be a C2m nonnegative solution of

−∆mu ≥ 0 in B2(0) − {0} ⊂ R
n, (1.10)

where n ≥ 2 and m ≥ 1 are integers. Then for each nonnegative integer σ ≤ m we have

(−1)m+σ∆σu(x) ≤ C

∣

∣

∣

∣

d2σ

d|x|2σ
Γ0(|x|)

∣

∣

∣

∣

for 0 < |x| < 1 (1.11)

where Γ0 is given by (1.5) and C is a positive constant independent of x.
Moreover, if n < 2m and β is a multi-index then

|Dβu(x)| = O

(∣

∣

∣

∣

∣

d|β|

d|x||β|
Γ0(|x|)

∣

∣

∣

∣

∣

)

as x→ 0 (1.12)

for

|β| ≤

{

2m− n if n is odd

2m− n− 1 if n is even.
(1.13)
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There is a similar result when the singularity is at infinity.

Theorem 1.4. Let v(y) be a C2m nonnegative solution of

−∆mv ≥ 0 in R
n −B1/2(0), (1.14)

where n ≥ 2 and m ≥ 1 are integers. Then for each nonnegative integer σ ≤ m we have

(−1)m+σ∆σ(|y|2σ−2mv(y)) ≤ C

{

|y|−2 log 5|y| if σ = 0 and n = 2

|y|−2 if σ ≥ 1 or n ≥ 3
for |y| > 1 (1.15)

where C is a positive constant independent of y.
Moreover, if n < 2m and β is a multi-index satisfying (1.13) then

|Dβv(y)| = O

(∣

∣

∣

∣

∣

d|β|

d|y||β|
Γ∞(|y|)

∣

∣

∣

∣

∣

)

as |y| → ∞ (1.16)

where Γ∞ is given by (1.9).

Note that in Theorems 1.3 and 1.4 we do not require that m and n satisfy (1.3).
Inequality (1.15) gives one sided estimates for ∆σ(|y|2σ−2mv(y)). Sometimes one sided estimates

for ∆σv also hold. For example, in the important case m = 2, n = 2 or 3, and the singularity is at
the infinity, we have the following corollary of Theorem 1.4.

Corollary 1.1. Let v(y) be a C4 nonnegative solution of

−∆2v ≥ 0 in R
n −B1/2(0)

where n = 2 or 3. Then

v(y) = O (Γ∞(|y|)) and |∇v(y)| = O

(∣

∣

∣

∣

d

d|y|
Γ∞(|y|)

∣

∣

∣

∣

)

as |y| → ∞ (1.17)

and

−∆v(y) < C

∣

∣

∣

∣

d2

d|y|2
Γ∞(|y|)

∣

∣

∣

∣

for |y| > 1 (1.18)

where Γ∞ is given by (1.9) and C is a positive constant independent of y.

The proof of Theorem 1.3 relies heavily on a representation formula for C2m nonnegative solu-
tions u of (1.2), which we state and prove in Section 3. This formula, which is valid for all integers
n ≥ 2 and m ≥ 1 and which when m = 1 is essentially a result of Brezis and Lions [2], may also
be useful for studying nonnegative solutions in a punctured neighborhood of the origin—or near
x = ∞ via the m-Kelvin transform—of problems of the form

−∆mu = f(x, u) or 0 ≤ −∆mu ≤ f(x, u) (1.19)

when f is a nonnegative function and m and n may or may not satisfy (1.3). Examples of such
problems can be found in [4, 5, 9, 11, 12, 15, 16] and elsewhere.

Pointwise estimates at x = ∞ of solutions u of problems (1.19) can be crucial for proving
existence results for entire solutions of (1.19) which in turn can be used to obtain, via scaling
methods, existence and estimates of solutions of boundary value problems associated with (1.19),
see e.g. [13, 14]. An excellent reference for polyharmonic boundary value problems is [8].

Lastly, weak solutions of ∆mu = µ, where µ is a measure on a subset of Rn, have been studied
in [3] and [6], and removable isolated singularities of ∆mu = 0 have been studied in [11].
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2 Preliminary results

In this section we state and prove four lemmas. Lemmas 2.1, 2.2, and 2.3 will only be used to
prove Lemma 2.4, which in turn will be used in Section 3 to prove Theorem 3.1.

Lemmas 2.1 and 2.2 are well-known. We include their very short proofs for the convenience of
the reader.

Lemma 2.1. Let f : (0, r2] → [0,∞) be a continuous function where r2 is a finite positive constant.
Suppose n ≥ 2 is an integer and the equation

v′′ +
n− 1

r
v′ = −f(r) 0 < r < r2 (2.1)

has a nonnegative solution v(r). Then
∫ r2

0
rn−1f(r) dr <∞. (2.2)

Proof. Let r1 = r2/2. Integrating (2.1) we obtain

rn−1v′(r) = rn−1
1 v′(r1) +

∫ r1

r
ρn−1f(ρ) dρ for 0 < r < r1. (2.3)

Suppose for contradiction that

rn−1
1 v′(r1) +

∫ r1

r0

ρn−1f(ρ) dρ ≥ 1 for some r0 ∈ (0, r1).

Then for 0 < r < r0 we have by (2.3) that

v(r0)− v(r) ≥

∫ r0

r
ρ1−n dρ→ ∞ as r → 0+

which contradicts the nonnegativity of v(r).

Lemma 2.2. Suppose f : (0, R] → R is a continuous function, n ≥ 2 is an integer, and
∫ R

0
ρn−1|f(ρ)| dρ <∞. (2.4)

Define u0 : (0, R] → R by

u0(r) =



















1

n− 2

[

1

rn−2

∫ r

0
ρn−1f(ρ) dρ+

∫ R

r
ρf(ρ) dρ

]

if n ≥ 3

(

log
2R

r

)∫ r

0
ρf(ρ) dρ+

∫ R

r
ρ

(

log
2R

ρ

)

f(ρ) dρ if n = 2.

Then u = u0(r) is a C2 solution of

− (∆u)(r) := −

(

u′′(r) +
n− 1

r
u′(r)

)

= f(r) for 0 < r ≤ R. (2.5)

Moreover, all solutions u(r) of (2.5) are such that

∫ r

0
ρn−1|u(ρ)| dρ =











O(r2) as r → 0+ if n ≥ 3

O

(

r2 log
1

r

)

as r → 0+ if n = 2.
(2.6)
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Proof. By (2.4) the formula for u0(r) makes sense and it is easy to check that u = u0(r) is a solution
of (2.5) and, as r → 0+,

u0(r) =











O(r2−n) if n ≥ 3

O

(

log
1

r

)

if n = 2.

Thus, since all solutions of (2.5) are given by

u = u0(r) + C1 + C2











r2−n if n ≥ 3

log
1

r
if n = 2

where C1 and C2 are arbitrary constants, we see that all solutions of (2.5) satisfy (2.6).

Lemma 2.3. Suppose f : (0, R] → R is a continuous function, n ≥ 2 is an integer, and
∫

x∈BR(0)⊂Rn

|f(|x|)| dx <∞. (2.7)

If u = u(|x|) is a radial solution of

−∆mu = f for 0 < |x| ≤ R, m ≥ 1 (2.8)

then
∫

|x|<r

|u(x)| dx =











O(r2) as r → 0+ if n ≥ 3

O

(

r2 log
1

r

)

as r → 0+ if n = 2.
(2.9)

Proof. The lemma is true for m = 1 by Lemma 2.2. Assume, inductively, that the lemma is true
for m− 1 where m ≥ 2. Let u be a radial solution of (2.8). Then

−∆(∆m−1u) = −∆mu = f for 0 < |x| ≤ R.

Hence by (2.7) and Lemma 2.2,

g := −∆m−1u ∈ L1(BR(0)).

So by the inductive assumption, (2.9) holds.

Lemma 2.4. Suppose f : BR(0) − {0} → R is a nonnegative continuous function and u is a C2m

solution of
−∆mu = f

u ≥ 0

}

in BR(0) − {0} ⊂ R
n, n ≥ 2, m ≥ 1. (2.10)

Then

∫

|x|<r

u(x) dx =











O(r2) as r → 0+ if n ≥ 3

O

(

r2 log
1

r

)

as r → 0+ if n = 2
(2.11)

and
∫

|x|<R

|x|2m−2f(x) dx <∞. (2.12)
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Proof. By averaging (2.10) we can assume f = f(|x|) and u = u(|x|) are radial functions. The
lemma is true for m = 1 by Lemmas 2.1 and 2.2. Assume inductively that the lemma is true
for m − 1, where m ≥ 2. Let u = u(|x|) be a radial solution of (2.10). Let v = ∆m−1u. Then
−∆v = −∆mu = f and integrating this equation we obtain as in the proof of Lemma 2.1 that

rn−1v′(r) = rn−1
2 v′(r2) +

∫ r2

r
ρn−1f(ρ) dρ for all 0 < r < r2 ≤ R. (2.13)

We can assume
∫ R

0
ρn−1f(ρ) dρ = ∞ (2.14)

for otherwise
∫

|x|<R

f(x) dx < ∞ and hence (2.12) obviously holds and (2.11) holds by Lemma 2.3.

By (2.13) and (2.14) we have for some r1 ∈ (0, R) that

v′(r1) ≥ 1. (2.15)

Replacing r2 with r1 in (2.13) we get

v′(ρ) =
rn−1
1 v′(r1)

ρn−1
+

1

ρn−1

∫ r1

ρ
sn−1f(s) ds for 0 < ρ ≤ r1

and integrating this equation from r to r1 we obtain for 0 < r ≤ r1 that

−v(r) = −v(r1) + rn−1
1 v′(r1)

∫ r1

r

1

ρn−1
dρ+

∫ r1

r

1

ρn−1

∫ r1

ρ
sn−1f(s) ds dρ

and hence by (2.15) for some r0 ∈ (0, r1) we have

−∆m−1u(r) = −v(r) >

∫ r0

r

1

ρn−1

∫ r0

ρ
sn−1f(s) ds dρ ≥ 0 for 0 < r ≤ r0.

So by the inductive assumption, u satisfies (2.11) and

∞ >
1

nωn

∫

|x|<r0

|x|2m−4(−v(|x|)) dx

=

∫ r0

0
r2m+n−5(−v(r)) dr

≥

∫ r0

0
r2m+n−5

(∫ r0

r

1

ρn−1

∫ r0

ρ
sn−1f(s) ds dρ

)

dr

= C

∫ r0

0
s2m−2f(s)sn−1ds

= C

∫

|x|<r0

|x|2m−2f(x) dx

where in the above calculation we have interchanged the order of integration and C is a positive
constant which depends only on m and n. This completes the inductive proof.
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3 Representation formula

A fundamental solution of ∆m in R
n, where n ≥ 2 and m ≥ 1 are integers, is given by

Φ(x) := a



















(−1)m|x|2m−n, if 2 ≤ 2m < n (3.1)

(−1)
n−1
2 |x|2m−n, if 3 ≤ n < 2m and n is odd (3.2)

(−1)
n
2 |x|2m−n log

5

|x|
, if 2 ≤ n ≤ 2m and n is even (3.3)

where a = a(m,n) is a positive constant. In the sense of distributions, ∆mΦ = δ, where δ is the
Dirac mass at the origin in R

n. For x 6= 0 and y 6= x, let

Ψ(x, y) = Φ(x− y)−
∑

|α|≤2m−3

(−y)α

α!
DαΦ(x) (3.4)

be the error in approximating Φ(x− y) with the partial sum of degree 2m− 3 of the Taylor series
of Φ at x.

The following theorem gives representation formula (3.6) for nonnegative solutions of inequality
(3.5).

Theorem 3.1. Let u(x) be a C2m nonnegative solution of

−∆mu ≥ 0 in B2(0) − {0} ⊂ R
n, (3.5)

where n ≥ 2 and m ≥ 1 are integers. Then

u = N + h+
∑

|α|≤2m−2

aαD
αΦ in B1(0)− {0} (3.6)

where aα, |α| ≤ 2m− 2, are constants, h ∈ C∞(B1(0)) is a solution of

∆mh = 0 in B1(0),

and

N(x) =

∫

|y|≤1

Ψ(x, y)∆mu(y) dy for x 6= 0. (3.7)

When m = 1, equation (3.6) becomes

u = N + h+ a0Φ1 in B1(0) − {0},

where

N(x) =

∫

|y|<1

Φ1(x− y)∆u(y) dy

and Φ1 is the fundamental solution of the Laplacian in R
n. Thus, when m = 1, Theorem 3.1 is

essentially a result of Brezis and Lions [2].
Futamura, Kishi, and Mizuta [6, Theorem 1] and [7, Corollary 5.1] obtained a result very similar

to our Theorem 3.1, but using their result we would have to let the index of summation α in (3.4)
range over the larger set |α| ≤ 2m − 2. This would not suffice for our proof of Theorem 1.1. We
have however used their idea of using the remainder term Ψ(x, y) instead of Φ(x− y) in (3.7). This
is done so that the integral in (3.7) is finite. See also the book [10, p. 137].
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Proof of Theorem 3.1. By (3.5),

f := −∆mu ≥ 0 in B2(0)− {0}. (3.8)

Thus by Lemma 2.4,
∫

|x|<1

|x|2m−2f(x) dx <∞ (3.9)

and
∫

|x|<r

u(x) dx = O

(

r2 log
1

r

)

as r → 0+. (3.10)

If |α| = 2m− 2 we claim

DαΦ(x) = O(Γ0(x)) as x→ 0 (3.11)

where Γ0(x) is given by (1.5). This is clearly true if Φ is given by (3.1) or (3.2) because then n ≥ 3
and Γ0(x) = |x|2−n. The estimate (3.11) is also true when Φ is given by (3.3) because then |x|2m−n

is a polynomial of degree 2m−n ≤ 2m− 2 = |α| with equality if and only if n = 2, and hence DαΦ
has a term with log 5

|x| as a factor if and only if n = 2. This proves (3.11).

By Taylor’s theorem and (3.11) we have

|Ψ(x, y)| ≤ C|y|2m−2Γ0(x) (3.12)

≤ C|y|2m−2|x|2−n log
5

|x|
for |y| <

|x|

2
< 1.

Differentiating (3.4) with respect to x we get

Dβ
x(Ψ(x, y)) = (DβΦ)(x− y)−

∑

|α|≤2m−3

(−y)α

α!
(Dα+βΦ)(x) for x 6= 0 and y 6= x (3.13)

and so by Taylor’s theorem applied to DβΦ we have

|Dβ
xΨ(x, y)| ≤ C|y|2m−2|x|2−n−|β| log

5

|x|
for |y| <

|x|

2
< 1. (3.14)

Also,
∆m

x Ψ(x, y) = 0 = ∆m
y Ψ(x, y) for x 6= 0 and y 6= x (3.15)

(see also [10, Lemma 4.1, p. 137]) and
∫

|x|<r

|Φ(x− y)| dx ≤ Cr2m log
5

r

≤ C|y|2m−2r2 log
5

r
for 0 < r ≤ 2|y| < 2. (3.16)

Before continuing with the proof of Theorem 3.1, we state and prove the following lemma.

Lemma 3.1. For |y| < 1 and 0 < r < 1 we have
∫

|x|<r

|Ψ(x, y)| dx ≤ C|y|2m−2r2 log
5

r
. (3.17)
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Proof. Since Ψ(x, 0) ≡ 0 for x 6= 0, we can assume y 6= 0.

Case I. Suppose 0 < r ≤ |y| < 1. Then by (3.16)

∫

0<|x|<r

|Ψ(x, y)| dx ≤

∫

0<|x|<r

|Φ(x− y)| dx +
∑

|α|≤2m−3

|y||α|
∫

0<|x|<r

|DαΦ(x)| dx

≤ C



|y|2m−2r2 log
5

r
+

∑

|α|<2m−3

|y||α|r2m−|α| log
5

r





≤ C|y|2m−2r2 log
5

r
.

Case II. Suppose 0 < |y| < r < 1. Then by (3.16), with r = 2|y|, and (3.12) we have

∫

|x|<2r

|Ψ(x, y)| dx =

∫

2|y|<|x|<2r

|Ψ(x, y)| dx +

∫

|x|<2|y|

|Ψ(x, y)| dx

≤ C







∫

2|y|<|x|<2r

|y|2m−2|x|2−n log
5

|x|
dx+ |y|2m log

5

|y|

+
∑

|α|≤2m−3

|y||α|
∫

|x|<2|y|

|DαΦ(x)| dx







≤ C

[

|y|2m−2r2 log
5

r
+ |y|2m−2|y|2 log

5

|y|

]

≤ C|y|2m−2r2 log
5

r

which proves the lemma.

Continuing with the proof of Theorem 3.1, let N be defined by (3.7) and let 2r ∈ (0, 1) be fixed.
Then for 2r < |x| < 1 we have

N(x) =

∫

r<|y|<1



Φ(y − x)−
∑

|α|≤2m−3

(−y)α

α!
DαΦ(x)



∆mu(y) dy

−

∫

0<|y|<r

Ψ(x, y)f(y) dy.

By (3.9) and (3.14), we can move differentiation of the second integral with respect to x under the
integral. Hence by (3.15),

∆mN = ∆mu (3.18)

for 2r < |x| < 1 and since 2r ∈ (0, 1) was arbitrary, (3.18) holds for 0 < |x| < 1.
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By (3.7), (3.8), and Lemma 3.1, for 0 < r < 1 we have

∫

|x|<r

|N(x)| dx ≤

∫

|y|<1







∫

|x|<r

|Ψ(x, y)| dx






f(y) dy

≤ Cr2 log
5

r

∫

|y|<1

|y|2m−2f(y) dy

= O

(

r2 log
1

r

)

as r → 0+

by (3.9). Thus by (3.10)
v := u−N ∈ L1

loc(B1(0)) ⊂ D′(B1(0)) (3.19)

and
∫

|x|<r

|v(x)| dx = O

(

r2 log
1

r

)

as r → 0+. (3.20)

By (3.18),
∆mv(x) = 0 for 0 < |x| < 1.

Thus ∆mv is a distribution in D′(B1(0)) whose support is a subset of {0}. Hence

∆mv =
∑

|α|≤k

aαD
αδ

is a finite linear combination of the delta function and its derivatives.
We now use a method of Brezis and Lions [2] to show aα = 0 for |α| ≥ 2m − 1. Choose

ϕ ∈ C∞
0 (B1(0)) such that

(−1)|α|(Dαϕ)(0) = aα for |α| ≤ k.

Let ϕε(x) = ϕ
(

x
ε

)

. Then, for 0 < ε < 1, ϕε ∈ C
∞
0 (B1(0)) and

∫

v∆mϕε = (∆mv)(ϕε) =
∑

|α|≤k

aα(D
αδ)ϕε

=
∑

|α|≤k

aα(−1)|α|δ(Dαϕε) =
∑

|α|≤k

aα(−1)|α|(Dαϕε)(0)

=
∑

|α|≤k

aα(−1)|α|
1

ε|α|
(Dαϕ)(0) =

∑

|α|≤k

a2α
1

ε|α|
.

On the other hand,
∫

v∆mϕε =

∫

v(x)
1

ε2m
(∆mϕ)

(x

ε

)

dx

≤
C

ε2m

∫

|x|<ε

|v(x)| dx = O

(

1

ε2m−2
log

1

ε

)

as ε→ 0+

by (3.20). Hence aα = 0 for |α| ≥ 2m− 1 and consequently

∆mv =
∑

|α|≤2m−2

aαD
αδ =

∑

|α|≤2m−2

aαD
α∆mΦ.
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That is

∆m



v −
∑

|α|≤2m−2

aαD
αΦ



 = 0 in D′(B1(0)).

Thus for some C∞ solution of ∆mh = 0 in B1(0) we have

v =
∑

|α|≤2m−2

aαD
αΦ+ h in B1(0)− {0}.

Hence Theorem 3.1 follows from (3.19).

4 Proofs of Theorems 1.3 and 1.4 and Corollary 1.1

In this section we prove Theorems 1.3 and 1.4 and Corollary 1.1.

Proof of Theorem 1.3. This proof is a continuation of the proof of Theorem 3.1. If m = 1 then
Theorem 1.3 is trivially true. Hence we can assume m ≥ 2. Also, if σ = m then (1.11) follows
trivially from (1.10). Hence we can assume σ ≤ m− 1 in (1.11).

If α and β are multi-indices and |α| = 2m− 2 then it follows from (3.1)–(3.3) that

Dα+βΦ(x) = O

(∣

∣

∣

∣

∣

d|β|

d|x||β|
Γ0(|x|)

∣

∣

∣

∣

∣

)

as x→ 0. (4.1)

(This is clearly true if n = 2. If n ≥ 3 then |α+ β| = 2m− 2 + |β| > 2m− n and thus

Dα+βΦ(x) = O(|x|2m−n−(2m−2+|β|)) = O

(∣

∣

∣

∣

∣

d|β|

d|x||β|
Γ0(|x|)

∣

∣

∣

∣

∣

)

.)

Let Lb be any linear partial differential operator of the form
∑

|β|=b

cβD
β, where b is a nonnegative

integer and cβ ∈ R. Then applying Taylor’s theorem to (3.13) and using (4.1) we obtain

|Lb
xΨ(x, y)| ≤ C|y|2m−2

∣

∣

∣

∣

db

d|x|b
Γ0(|x|)

∣

∣

∣

∣

for |y| <
|x|

2
< 1. (4.2)

Here and later C is a positive constant, independent of x and y, whose value may change from line
to line. For 0 ≤ b ≤ 2m− 1 we have

LbN(x) =

∫

|y|<1

−Lb
xΨ(x, y)f(y) dy for 0 < |x| < 1.

Hence by (4.1), (4.2), (3.6) and (3.9) we have

Lbu(x) ≤ C

∣

∣

∣

∣

db

d|x|b
Γ0(|x|)

∣

∣

∣

∣

for 0 < |x| < 1 (4.3)

provided 0 ≤ b ≤ 2m− 1 and

− Lb
xΨ(x, y) ≤ C|y|2m−2

∣

∣

∣

∣

db

d|x|b
Γ0(|x|)

∣

∣

∣

∣

for 0 <
|x|

2
< |y| < 1. (4.4)
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We will complete the proof of Theorem 1.3 by proving (4.4) for various choices for Lb. For the rest
of the proof of Theorem 1.3 we will always assume

0 <
|x|

2
< |y| < 1 (4.5)

which implies
|x− y| ≤ |x|+ |y| ≤ 3|y|. (4.6)

Case I. Suppose Φ is given by (3.1) or (3.2). It follows from (3.13) and (4.5) that

|Dβ
xΨ(x, y)−Dβ

xΦ(x− y)| ≤ C
∑

|α|≤2m−3

|y||α||x|2m−n−|α|−|β|

≤ C|y|2m−2|x|2−n−|β|.

Thus (4.4), and hence (4.3), holds provided 0 ≤ b ≤ 2m− 1 and

− (LbΦ)(x− y) ≤ C|y|2m−2|x|2−n−b. (4.7)

Case I(a). Suppose Φ is given by (3.1). Let σ ∈ [0,m − 1] be an integer, b = 2σ, and Lb =
(−1)m+σ∆σ. Then 0 ≤ b ≤ 2m− 2 and

sgn(−LbΦ) = (−1)1+m+σ sgn ∆σΦ = (−1)1+2m+σ sgn ∆σ|x|2m−n = (−1)1+2m+2σ = −1.

Thus (4.7), and hence (4.3) holds with Lb = (−1)m+σ∆σ and 0 ≤ σ ≤ m− 1. This completes the
proof of Theorem 1.3 when Φ is given by (3.1).

Case I(b). Suppose Φ is given by (3.2). Then n is odd. It follows from (4.5) and (4.6) that for
0 ≤ |β| ≤ 2m− n we have

|(DβΦ)(x− y)| ≤ C|x− y|2m−n−|β| ≤ C|y|2m−n−|β| ≤ C|y|2m−2|x|2−n−|β|.

So (4.7) holds with Lb = ±Dβ and |β| = b. Hence

|Dβu(x)| ≤ C|x|2−n−|β| for 0 ≤ |β| ≤ 2m− n and 0 < |x| < 1.

In particular
|∆σu(x)| ≤ C|x|2−n−2σ for 2σ ≤ 2m− n and 0 < |x| < 1.

Also, if 2m− n+ 1 ≤ 2σ ≤ 2m− 2, b = 2σ, and Lb = (−1)m+σ∆σ, then 0 ≤ σ ≤ m− 1 and

sgn(−LbΦ) = (−1)m+σ+1 sgn ∆σΦ = (−1)m+σ+1+n−1
2 sgn ∆σ|x|2m−n

= (−1)m+σ+1+n−1
2 sgn(∆

b−(2m−n+1)
2 ∆

2m−n+1
2 |x|2m−n)

= (−1)m+σ+1+n−1
2

+σ−m+n−1
2 = −1

because ∆
2m−n+1

2 |x|2m−n = C|x|−1 where C > 0.
So (4.7) holds with Lb = (−1)m+σ∆σ. Hence (−1)m+σ∆σu(x) ≤ C|x|2−n−2σ for 0 ≤ σ ≤ m− 1

and 0 < |x| < 1. This completes the proof Theorem 1.3 when Φ is given by (3.2).

Case II. Suppose Φ is given by (3.3). Then 2 ≤ n ≤ 2m and n is even. To prove Theorem 1.3 in
Case II, it suffices to prove the following three statements.

(i) Estimate (1.12) holds when n = 2, β = 0, and m ≥ 2.

12



(ii) Estimate (1.12) holds when |β| ≤ 2m− n− 1 and either n ≥ 3 or |β| ≥ 1.

(iii) Estimate (1.11) holds for 2m− n ≤ 2σ ≤ 2m− 2.

Proof of (i). Suppose n = 2, β = 0, and m ≥ 2. Then, since u is nonnegative, to prove (i) it suffices
to prove

u(x) ≤ C log
5

|x|
for 0 < |x| < 1

which holds if (4.4) holds with b = 0 and Lb = D0 = id. That is if

−Ψ(x, y) ≤ C|y|2m−2 log
5

|x|
(4.8)

By (3.4), (4.5), and (4.6) we have

|Ψ(x, y)−Φ(x− y)| ≤
∑

|α|≤2m−3

|y||α||DαΦ(x)|

≤ C
∑

|α|≤2m−3

|y||α||x|2m−2−|α| log
5

|x|
≤ C|y|2m−2 log

5

|x|

and

|Φ(x− y)| = a|x− y|2m−2 log
5

|x− y|

≤ C|y|2m−2 log
5

|y|
≤ C|y|2m−2 log

5

|x|

which imply (4.8). This completes the proof of (i).

Proof of (ii). Suppose |β| ≤ 2m−n− 1 and either n ≥ 3 or |β| ≥ 1. Then n+ |β| ≥ 3 and in order
to prove (ii) it suffices to prove

|Dβ
xΨ(x, y)| ≤ C|y|2m−2

∣

∣

∣

∣

∣

d|β|

d|x||β|
Γ0(|x|)

∣

∣

∣

∣

∣

(4.9)

because then (4.4), and hence (4.3), holds with Lb = ±Dβ.
Since Φ is given by (3.3) we have n ≥ 2 is even and

Φ(x) = P (x) log
5

|x|

where P (x) = a(−1)
n
2 |x|2m−n is a polynomial of degree 2m − n. Since DβP is a polynomial of

degree 2m− n− |β| ≤ 2m− 3 we have

Dβ
xP (x− y) =

∑

|α|≤2m−3

(−y)α

α!
Dα+βP (x). (4.10)

Since Dβ
xΨ(x, y) = A1 +A2 +A3, where

A1 = Dβ
xΨ(x, y)−Dβ

xΦ(x− y) + (Dβ
xP (x− y)) log

5

|x|

A2 = Dβ
xΦ(x− y)− (Dβ

xP (x− y)) log
5

|x− y|

A3 = (Dβ
xP (x− y)) log

|x|

|x− y|
,
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to prove (4.9) it suffices to prove for j = 1, 2, 3 that

|Aj | ≤ C|y|2m−2

∣

∣

∣

∣

∣

d|β|

d|x||β|
Γ0(|x|)

∣

∣

∣

∣

∣

. (4.11)

Since

∣

∣

∣

∣

Dα+βΦ(x)− (Dα+βP (x)) log
5

|x|

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

γ≤α+β
|α+β−γ|≥1

(

α+ β

γ

)

(DγP (x))

(

Dα+β−γ log
5

|x|

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ C|x|2m−n−|α|−|β|

it follows from (3.13), (4.10), and (4.5) that

|A1| = | −A1| =

∣

∣

∣

∣

∣

∣

∑

|α|≤2m−3

(−y)α

α!
Dα+βΦ(x)−

∑

|α|≤2m−3

(−y)α

α!
(Dα+βP (x)) log

5

|x|

∣

∣

∣

∣

∣

∣

≤ C
∑

|α|≤2m−3

|y||α||x|2m−n−|α|−|β| ≤ C|y|2m−2|x|2−n−|β|

= C|y|2m−2

∣

∣

∣

∣

∣

d|β|

d|x||β|
Γ0(|x|)

∣

∣

∣

∣

∣

.

Thus (4.11) hold when j = 1.
Since A2 = 0 when β = 0, we can assume for the proof of (4.11) when j = 2 that |β| ≥ 1. Then

by (4.6) and (4.5),

|A2| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

α≤β
|β−α|≥1

(

β

α

)

(Dα
xP (x− y))

(

Dβ−α
x log

5

|x− y|

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ C|x− y|2m−n−|β| ≤ C|y|2m−n−|β|

≤ C|y|2m−2|x|2−n−|β|

= C|y|2m−2

∣

∣

∣

∣

∣

d|β|

d|x||β|
Γ0(|x|)

∣

∣

∣

∣

∣

.

Thus (4.11) holds when j = 2.
Finally we prove (4.11) when j = 3. Let d = 2m− n− |β|. Then 1 ≤ d ≤ 2m− 3,

|A3| ≤ C|x− y|d
∣

∣

∣

∣

log
|x|

|x− y|

∣

∣

∣

∣

and by (4.5) and (4.6) we have

|x− y|d
∣

∣

∣

∣

log
|x|

|x− y|

∣

∣

∣

∣

≤















|x− y|d
(

|x|

|x− y|

)d

= |x|d ≤ C|y|2m−2|x|2−n−|β| if |x− y| ≤ |x|

|x− y|d
(

|x− y|

|x|

)2m−2−d

= |x− y|2m−2|x|2−n−|β| if |x| ≤ |x− y|

≤ C|y|2m−2|x|2−n−|β| = C|y|2m−2

∣

∣

∣

∣

∣

d|β|

d|x||β|
Γ0(|x|)

∣

∣

∣

∣

∣

.
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Thus (4.11) holds when j = 3. This completes the proof of (4.9) and hence of (ii).

Proof of (iii). Suppose 2m− n ≤ 2σ ≤ 2m− 2. In order to prove (iii) it suffices to prove

(−1)m+σ+1∆σ
xΨ(x, y) ≤ C|y|2m−2

∣

∣

∣

∣

d2σ

d|x|2σ
Γ0(|x|)

∣

∣

∣

∣

(4.12)

because then (4.4), and hence (4.3), holds with Lb = (−1)m+σ∆σ and b = 2σ.
If |β| = 2σ then (4.5) implies

∣

∣

∣

∣

∣

∣

∑

1≤|α|≤2m−3

(−y)α

α!
Dα+βΦ(x)

∣

∣

∣

∣

∣

∣

≤ C
∑

1≤|α|≤2m−3

|y||α||x|2m−n−|α|−|β|

≤ C|y|2m−2|x|2−n−|β|.

Thus it follows from (3.13) that

|∆σ
xΨ(x, y)−∆σ

xΦ(x− y) + ∆σΦ(x)| ≤ C|y|2m−2|x|2−n−2σ.

Hence to prove (4.12) it suffices to prove

(−1)m+σ+1(∆σ
xΦ(x− y)−∆σΦ(x)) ≤ C|y|2m−2|x|2−n−2σ. (4.13)

We divide the proof of (4.13) into cases.

Case 1. Suppose 2 ≤ 2m− n+ 2 ≤ 2σ ≤ 2m− 2. Then by (4.5)

|∆σΦ(x)| ≤ C|x|2m−n−2σ ≤ C|y|2m−2|x|2−n−2σ

and since

∆
2m−n

2

(

|x|2m−n log
5

|x|

)

= A log
5

|x|
−B (4.14)

where A > 0 and B ≥ 0 are constants, we have

sgn((−1)m+σ+1∆σΦ(z)) = (−1)m+σ+n
2
+1(−1)σ−

2m−n
2 = −1 for |z| > 0.

This proves (4.13) and hence (iii) in Case 1.

Case 2. Suppose 2σ = 2m− n. Then by (4.14) and (4.6) we have

(−1)m+σ+1(∆σ
xΦ(x− y)−∆σΦ(x)) = (−1)

n
2
+m+σ+1A log

|x|

|x− y|

= A log
|x− y|

|x|
≤ A log

3|y|

|x|
≤ A

(

3|y|

|x|

)2m−2

= A32m−2|y|2m−2|x|2−n−2σ .

This proves (4.13) and hence (iii) in Case 2, and thereby completes the proof of Theorem 1.3.

Proof of Theorem 1.4. Let u(x) be defined in terms of v(y) by (1.6). Then by (1.7) and (1.14),
u(x) is a C2m nonnegative solution of (1.10), and hence u(x) satisfies the conclusion of Theorem
1.3. It is a straight-forward exercise to show that (1.16) follows from (1.12) when n < 2m and β
satisfies (1.13). So to complete the proof of Theorem 1.4 we will now prove (1.15).
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Suppose σ ≤ m is a nonnegative integer. Let vσ(y) be the σ-Kelvin transform of u(x). Then
vσ(y) = |y|2σ−2mv(y) and thus by (1.11), we have for |y| > 1 that

(−1)m+σ∆σ(|y|2σ−2mv(y)) = (−1)m+σ∆σvσ(y)

= (−1)m+σ |x|n+2σ∆σu(x)

≤ C|x|n+2σ

∣

∣

∣

∣

d2σ

d|x|2σ
Γ0(|x|)

∣

∣

∣

∣

≤ C

{

|x|2 log 5
|x| if σ = 0 and n = 2

|x|2 if σ ≥ 1 or n ≥ 3

which implies (1.15) after replacing |x| with 1/|y|.

Proof of Corollary 1.1. Theorem 1.4 implies (1.17) and

−∆(|y|−2v(y)) ≤ C|y|−2 for |y| > 1

and thus for |y| > 1 we have

−|y|−2∆v(y) = −∆(|y|−2v(y)) + (∆|y|−2)v(y) + 2∇|y|−2 · ∇v(y)

≤ −∆(|y|−2v(y)) + C

(

|y|−4Γ∞(|y|) + |y|−3 d

d|y|
Γ∞(|y|)

)

≤ C

{

|y|−2 if n = 3

|y|−2 log 5|y| if n = 2

≤ C|y|−2

∣

∣

∣

∣

d2

d|y|2
Γ∞(|y|)

∣

∣

∣

∣

which implies (1.18).

5 Proof of Theorem 1.1

As noted in the introduction, the sufficiency of condition (1.3) in Theorem 1.1 and the estimate
(1.4) follow from Theorem 1.3, which we proved in the last section. Consequently, we can complete
the proof of Theorem 1.1 by proving the following proposition.

Proposition 5.1. Suppose n ≥ 2 and m ≥ 1 are integers such that (1.3) does not hold. Let
ψ : (0, 1) → (0,∞) be a continuous function. Then there exists a C∞ positive solution of

−∆mu ≥ 0 in B1(0)− {0} ⊂ R
n (5.1)

such that
u(x) 6= O(ψ(|x|)) as x→ 0. (5.2)

Proof. Let {xj}
∞
j=1 ⊂ R

n − {0} be a sequence such that 4|xj+1| < |xj | < 1. Choose αj > 0 such
that

αj

ψ(xj)
→ ∞ as j → ∞. (5.3)
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Since (1.3) does not hold, it follows from (3.1)–(3.3) that lim
x→0

−Φ(x) = ∞ and −Φ(x) > 0 for

0 < |x| < 5. Hence we can choose Rj ∈ (0, |xj |/4) such that

∫

|z|<Rj

−Φ(z) dz > Rn
j 2

jαj, for j = 1, 2, . . . . (5.4)

Let ϕ : R → [0, 1] be a C∞ function such that ϕ(t) = 1 for t ≤ 1 and ϕ(t) = 0 for t ≥ 2. Define
fj ∈ C∞

0 (B |xj |

2

(xj)) by

fj(x) =
1

2jRn
j

ϕ

(

|x− xj |

Rj

)

.

Then the functions fj have disjoint supports and

∫

Rn

fj(x) dx =

∫

|x−xj|<2Rj

fj(x) dx ≤
C(n)

2j
.

Thus f :=
∞
∑

j=1
fj ∈ L1(Rn)∩C∞(Rn −{0}) and hence the function u : B1(0)−{0} → R defined by

u(x) :=

∫

|y|<1

−Φ(x− y)f(y) dy

is a C∞ positive solution of (5.1). Also

u(xj) ≥

∫

|y|<1

−Φ(xj − y)fj(y) dy

≥
1

2jRn
j

∫

|x−xj|<Rj

−Φ(xj − y) dy

=
1

2jRn
j

∫

|z|<Rj

−Φ(z) dz > αj

by (5.4). Hence (5.3) implies that u satisfies (5.2).
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