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Abstract

This paper studies the sum rate performance of two low catitpleigenmode-based transmission
techniques for the MIMO broadcast channel, employing gressini-orthogonal user selection (SUS).
The first approach, termed ZFDPC-SUS, is based on zeroafpdiity paper coding; the second approach,
termed ZFBF-SUS, is based on zero-forcing beamforming. Vgé éimploy new analytical methods to
prove that as the number of usdtsgrows large, the ZFDPC-SUS approach can achieve the opsimal
rate scaling of the MIMO broadcast channel. We also provettieaverage sum rates of both techniques
converge to the average sum capacity of the MIMO broadcastrad for largeK . In addition to the
asymptotic analysis, we investigate the sum rates achieyet-DPC-SUS and ZFBF-SUS for finit&,
and show that ZFDPC-SUS has significant performance adyesit®ur results also provide key insights
into the benefit of multiple receive antennas, and the efiette SUS algorithm. In particular, we show
that whilst multiple receive antennas only improves thergsptic sum rate scaling via the second-order
behavior of the multi-user diversity gain; for fini#€, the benefit can be very significant. We also show
the interesting result that the semi-orthogonality caistrimposed by SUS, whilst facilitating a very
low complexity user selection procedure, asymptoticatigsinot reduce the multi-user diversity gain in

either first(log K') or second-ordefloglog K) terms.

Copyright (c) 2010 IEEE. Personal use of this material isniiéed. However, permission to use this material for anyepth
purposes must be obtained from the IEEE by sending a requgsths-permissions@ieee.org.

Manuscript received Oct. 27, 2009; revised Feb. 10, 201@ ddsociate editor coordinating the review of this manpscri
and approving it for publication was Dr. Ali Ghrayeb. L. SundaM. R. McKay are with the ECE Department, Hong Kong
University of Science and Technology, Hong Kong. (Emaihleng@ust.hk; eemckay@ust.hk). The work of L. Sun and M.
R. McKay was supported by the Hong Kong Research Grants @qR®C) under grant no. 617108. This work was presented
in part at the IEEE Global Communications Conference (Giob®, Honolulu, USA, December, 2009.


http://arxiv.org/abs/1006.2758v1

. INTRODUCTION

In the multiple-input multiple-output (MIMO) broadcast atmnel, the spatial multiplexing capability
of multiple transmit antennas can be exploited to efficiesttrve multiple users simultaneously, rather
than trying to maximize the capacity of a single-user linkeTcapacity region of the MIMO broadcast
channel has now been well-studied [1-5], and has been shoba achieved through the use of multiple
antenna dirty paper coding (DPC) [3]. Unfortunately, o@inDPC is a highly non-linear technique
involving joint optimization over a set of power-constraghcovariance matrices, and is therefore too
complex for practical implementation [4]. A reduced conxie sub-optimal DPC scheme, known as
zero-forcing dirty paper coding (ZFDPC), was proposed fogle-antenna users in [5], and generalized
to multiple-antenna users in [6], which is based on a QR dgomition of the channel matrix.

To further reduce complexity, linear processing schemeh ag beamforming (BF) have also attracted
a lot of attention. The zero-forcing beamforming (ZFBF) estte was first introduced for single-antenna
users in [5], and further modified in [7] and [8]. In [9], therm®pt of block-diagonalization was proposed
for multiple-antenna users, which completely cancels ttieriuser interference by employing a set of
precoding matrices. One key limitation of these technigadhat, for ZFDPC and ZFBF, the maximum
number of users that can be supported must be no more thamhieen of transmit antennas, whereas
for block-diagonalization, the number of the transmit an&s must be larger than the aggregate number
of receive antennas across all users. This is significamteghe number of users in practice can be large.

When the number of userk is larger than the number of transmit antendds one must select
a subset of users in the system. A common approach is to seesuthset of users which yields the
maximum sum rate. The complexity of finding the optimal sthsewever, can be prohibitively large, and
to reduce complexity greedy algorithms are commonly engadofsee e.g., [L0-12]). A promising way
to further reduce the complexity of user selection is torietsthe searching space of users by imposing
some constraint on the channels of the selected userswhndiahis method, [13] proposed a semi-
orthogonal user selection (SUS) algorithm which iterdyiveearches for users with nearly orthogonal
channel direction's

In this paper, we consider low complexity transmission aseriselection techniques for the MIMO
broadcast channel with multiple-antenna users. It is stli clear how much advantage can be gained
by employing multiple-antennas at the user terminals. Soawent exceptions which deal with the
multiple-antenna user scenario are presented in [14] abd Particularly, [14] proposed a generalized
G-ZFDPC approach, based on the idea of eigenmode tranemig€gen-beamforming). A limitation of

More specifically, two complex vectons and v, with unit norm, are said to be semi-orthogonahiva|2 < 6, whered is
referred to as theemi-orthogonality parameter.



that approach is the relatively high complexity, since guiees numerical optimization of certain system
parameters. In [15], a thresholding technique based on lthanel singular values was proposed, and
necessary and sufficient conditions were given to achieveitimum sum capacity of DPC &S — oc.
However, for that scheme, the optimal threshold must be coetpby exhaustive search, and is once
again quite complicated when the number of users is not small

In this paper, we investigate two low complexity eigen-b&aming-based transceiver structures for the
MIMO broadcast channel with multiple-antenna users, comtbiwith a greedy SUS algorithm. The first
technigue is a generalization the G-ZFDPC approach in [@@dcount for multiple-antenna users and
combine it with SUS. We refer to this technique as ZFDPC-SIH& second technique is a generalization
of the algorithm proposed in [13], which we refer to as ZFBBFSS For both techniques, we present an
asymptotic performance analysis of the sum rate (as in [6lZ1]} as the number of users grows large.
In particular, by employing novel analytical techniques demonstrate that ZFDPC-SUS achieves the
optimal sum capacity scaling of the MIMO broadcast chanseth number of users grows large. In
addition, we prove the more powerful result that the diffes® between the sum rate of ZFDPC-SUS
and the sum capacity of the MIMO broadcast channel conveme®ro. We also establish a similar
result for ZFBF-SUS. In addition to the asymptotic analysie also investigate the sum rates achieved
by ZFDPC-SUS and ZFBF-SUS for finit&, for high and low signal-to-noise ratios (SNR). Based on
our analytical results, we establish a number of importasights. For example, we demonstrate that by
employing multiple-antennas at the user terminals onlgcéf the asymptotic sum rate scaling via the
second-order behavior of the multi-user diversity gainug,hthe improvement due to having multiple
receive antennas at the terminals is much less than thatwafichanultiple transmit antennas, which
provides linear capacity growth through spatial multifihgxgain. However, for finite’, we show that
the performance improvement due to multiple receive ar@sroan still be very significant. We also
establish key insights into the design of the semi-orthadjpnparameter used in the SUS algorithm.
In particular, it has been claimed previously that the sertfiogonality constraint will cause multi-user
diversity gain reduction [13]. However, through our asyatigtanalysis, we show that if some very mild
conditions on the semi-orthogonality constraint are nfentthe semi-orthogonality parametiyes not
reduce the multi-user diversity gain in either first or saetorder, for both ZFDPC-SUS and ZFBF-SUS.
It seems that this conclusion cannot be established by ysingous analytical methods for SUS [13].
Our analysis also leads to practical design guidelines dtecsing the semi-orthogonality parameter for
finite numbers of users, in order to intelligently trade adhplexity and performance. Our analysis also

demonstrates that for finite values &f, ZFDPC-SUS can significantly outperform ZFBF-SUS.



Il. CHANNEL AND SYSTEM MODEL

We consider a MIMO broadcast channel witlh transmit antennas anfl users, withK > M. User

k is equipped withV;, antennas. In a flat-fading environment, the baseband mddhlsosystem is
yr=Hgs+ng, 1<k <K, (1)

wherey, € CV=*! is the received signal vector of uskr H,, € CV~*M denotes the channel matrix
from the transmitter to usek, s € CM*! represents the transmit signal vector, designed to meet the
total power constraint TE{ss’’}) < P, andn;, € CV+*! is white Gaussian noise with zero mean and
covariance matridy,. Throughout the paper, we assume (as in [5,13, 14, 18]) th#t€ channels of
all users are subject to uncorrelated Rayleigh fading asrdsifplicity, all users are homogeneous and
experience statistically independent fading, (i) thesraitter has perfect CSI of all downlink chanrfels
and (iii) each user only has access to their own CSI, but r®tGBIl of the downlink channels of the
other users.

The transmitter supports < M simultaneous data streams, shared by at mastlected users (active
users), which are indexed by(i), i = 1,2,--- , L. (Note that the specific user selection algorithm will

be discussed in Section Ill.) The transmitted signal vertaepresented as
s = WPx, (@)

wherex = [z1,29,--- ,27]T collects the zero-mean circularly symmetric complex Grmssnfor-
mation signals for each of thé data streams, satisfying{xx”} = I, P = diag{p1,p2,--- ,pr}
accounts for the power loading across the multiple streazhesen to satisfnyzlpi < P, and
W = [wi,wo,---,wz] € CM*L represents the precoder matrix, with; denoting the beamforming
vector for thei-th stream (i.e. for user(i)), normalized to satisfyfws||> = 1. Note that with this
formulation, a given user may be assigned multiple datastse

From (2), the received signal vector for ugecan be rewritten as
yvi = HWP:x + ny. (3)

It is convenient to represeil;, via its singular value decomposition (SVB};, = U, 3, VY, whereX;,
is a N, x M diagonal matrix containing the singular valuesHf in decreasing order along its main
diagonal, andUy, = [ug1,uk2, - ,ugn,] € CV*Ne and Vi = [vi 1, v, -+, v ] € CMXM are

2This assumption is reasonable in time division duplex (TB@Stems, which allows the transmitter to employ recipyotsit
estimate the downlink channels.



unitary matrices withu;, ; andv,, ; representing the left and right singular vectors corredpanto the

j-th largest singular valug/Xy ;.

To detect the data streaimusern (i) left multiplies the received vector by, ;) 4, as follows

H
Tr()d, = Wa(i),d, Yn(i)

= A (i) di Vf(i),diWP%x + N (i) d, s 4

whereti; 4, = uf(i) 2. 0x@) ~ CN(0,1) is the effective additive white Gaussian noise after preiogs

st

andd; denotes theeigen-mode indefor streami, chosen according to the selection procedure outlined

in Section Ill. Collecting the processed signals (4) fortreatthe L data streams, we may write

r=C, WPix +i=A2 &, ;WP:x+1, (5)
whereC, 4 = [cf(1)7d] Cf(Z),dw e ’Cz(L),dL]T is the composite channel matrix for the selected users and
eigen-channel set withth row vectorc,.(;) 4. = /)\W(imvf(i) 4o B = [ (1).dys Tor(2) s (L))

Aﬂ,d = diag{)‘w(l),(h? T 7)‘7r(L),dL }v and Eﬂ,d = [Vw(l),dp T 7V7r(L),dL]H'

In the next section, we will describe several transceivarcttires, as well as a greedy method for
selecting the set of active users= {x(1),--- ,7(L)} and the corresponding eigen-channels (active

eigen-channels) = {dy,--- ,dr}.

[1l. TRANSCEIVER STRUCTURES ANDUSER SELECTION ALGORITHM
A. Greedy Zero-Forcing Dirty Paper Coding Algorithm

In this subsection, we present a transmission strategyhajoiotly combines ZF, DPC, and eigen-
beamforming, along with a greedy low complexity SUS schiedualgorithm. Henceforth, this strategy
will be termed ZFDPC-SUS. To the best of our knowledge thigeste has not been considered before.
We note, however, that it is an extension of the ZFDPC styatemsidered in [5, 10, 18] to account for
multiple receive antennas, and also a variation of the #dlgordiscussed briefly in [13, Sect. VIII].

Let 2, 4 = L 4Qx 4 denote the QR decomposition &, 4, whereL, 4 is a L x L lower triangular
matrix with (i, j)-th entryl; ;, andQ, 4 = [ ,--- ,q%]T is a L x M matrix with orthonormal rowsd;

denotes the&-th row vector). The transmit precoder matrix is chosen as

W =QY,. (6)

Then, (5) yields a set of interference channels

Tr@ds = A/ Aeo).a; (VP liiwi + > V5 lijag) + i, (7)

Jj<i



From (7), ifi < j, there is no interference at receive(i) from data streanj. Fori > j, the interference
term ., /bj lijz; is precanceled at the transmitter by using DPC. Then, theub@NR at receiver

m(1) for data stream is given by

Cr(i),di = PiVr(i)d; (8)

wherev, iy a. = Ar(iy.a:Bir With 8; = |1 5|2
Given the optimal user set and the corresponding eigen-channel gethe sum rate has the form
Rzrppc-sus= ZIOgQ (1 + Pivr(i).d,)- 9)
pi: Zl 1p1<
To maximize (9), the power should be allocated accordindnéostandard water-filling algorithm.

Now consider the problem of selecting the optimal usersseind corresponding eigen-mode index
set d. These sets are chosen to maximize the sum rate, given byM®n M < K, to find the
optimal solution, one must apply axhaustive searclver all possibleL, and for eachl, over all
possible sets of subchannels taken from the setﬁffle min{M, N} available eigen-channels spanned
by all K users. Thus, the total number of possible user and eigemehaelection sets is given by
M (e MMMNG) CFurther, since different orderings of a given set will glielifferent output SNRs,
all permutations of a given set must also be considered.riglegae complexity associated with this
exhaustive search is computationally prohibitive in pagtfor all but small values ofs.

Here we consider a user and eigen-mode selection algorititimsignificantly lower complexity, based
on SUS. This algorithm, which was first presented in [13] ia tontext of ZFBF, iteratively selects a
user-eigenmode index pair by searching for a set of usets w@tr orthogonal channel vectors, and is
described as follows. Léf,, denote thecandidate seat then-th iteration. This set contains the indices
of all users and the corresponding eigen-channels thatiavieeen selected previously, and which have
not been pruned in the previous iterations (i.e., they hatsfied the “semi-orthogonality criteria” in
each of the previous iterations). Also, I8t = {(w(1),d;), -, (w(n),d,)} denote the set of indices of
the selected users and the corresponding eigen-chanteigtadn-th iteration.

ZFDPC-SUS (Algorithm 1)
1) Initialization:
Setn =1andiy = {(k,j)| k=1,2,--- ,K; j=1,2,--- ,min(Ng, M)}.
Let v, ;(1) = Ax ;- The transmitter selects the first user and eigen-chanieapdollows:

(r(1).d1) = arg masx (1), (10)

SetS;, = {(n(1),d;)}, and defineq;, = vf(l)d]



2) Whilen < M, n <+ n+1.

Calculate candidate set as

UTL = {(k>])|(kvj) € un—l?
(k, ) # (m(n = 1), dnr), Vi a4 [* < 6}
whered is a positive constant, termed tlsemi-orthogonality parametethat is preset before the

start of the selection procedure.

If U, is empty, setv =n — 1 and go to step 3). Otherwise, for ea@h j) € U,,, denote

& o= vihall, i=1,- n-1 (11)
n—1

&y = Vi =) &Ga (12)
=1

Yej(n) = Aoyl &y ll?- (13)

Select then-th active user and corresponding eigen-channel as follows

{(7(n),dn)} = arg e Yr,j (1) - (14)

Set

Sn =6p1 U {(W(n)a dn)}a

Ex(n).d
an = 75— —. (15)
H Eﬂ(n),dn ||

3) The transmitter informs the selected users of the indafetheir selected eigen-channels; then

performs DPC, beamforming, and water-filling power allimatas discussed previously.

Note that this procedure applies Gram-Schmidt orthogpatdin to the ordered rows & 4, as described
by (11), (12) and (15). As such, it also computes the requir@asmit precoding matrix in (6).
Observe the following important relations. According te@ tQR decomposition d& 4,

n—1
Vi, = (VEa. i) an+ Y (v 4. aa, (16)

j=1

3

andl, ; = vf(n) dan, for j < n. With (12),

Bn = |ln,n|2 = |V7Ir{(n),dnq£1|2 :H éw(n),dn H2 . (17)



In addition, sincel|v(,).4, 2=1andq;, i=1,---,L are orthonormal, it can be easily shown that

S gl =1, forn=1,2-- L (18)
j=1

B. Zero-Forcing Beamforming Algorithm

The ZFDPC approach described in the previous section ha#isantly lower complexity than full
(capacity-achieving) DPC, however it is still a nonlineapgessing strategy, due to the interference
cancelation step. Thus, a common method for reducing coditpleven further is to remove the inter-
ference cancelation and employ linear processing (linearmforming). It is well-known, however, that
establishing the optimal linear beamforming vectors is i difficult non-convex optimization problem
[19]. Instead, sub-optimal but simple linear processirtgestes are usually adopted. Here we will study
ZFBF which is one of the most popular linear strategies. Eletherwise indicated, we will employ the
same notational symbols as used in the previous sections.

Let er,d denote the Moore-Penrose inverse of the equivalent chamatix C; 4, i.e., er,d =

Cl (CrqCH )71, and defineg,, ..., &, as the columns ofC! ;. For ZFBF, the precoding matrix

W = [wy,...,wy] is constructed with the beamforming vecters = ”ng, fori=1,...,L. Note that
this direct implementation of ZFBF requires the explicihquutation of the Moore-Penrose inverse of
the channel matrix in order to obtain the beamforming vecttirhas been shown in [18], however, that
this direct calculation can be circumvented, thereby $icamtly reducing the computational complexity.
To this end, it is convenient to rewrite the decomposition@f, as C, 4 = Ai,dLmded' where
A =diag{\r(1),d;» " s Are(r),4, } @A Ly g, Qr 4 are defined as in Section llI-A. Letting, ; = L;il =

[t1,--- ,tr], assuming thaC, ; has full row rank, the Moore-Penrose invel@éd can be written as
Hy—14"%
er,d = Qral oA G- (19)

Note that calculating the inverse af? , is trivial (since it is diagonal), whereas the inverselgf, can
be computed using a simple iterative algorithm given in [&§, 11].

For ZFBF, the decoded signal for data strea() is easily shown to be given by

Tr(i)ydi = VPi Cx(i)d, WiTi + Tr(s).d,

p2>\7TZ,7, ~
B thd“+mwm (20)

with corresponding SNR

Ar(i),ds

On(i),d; = W . (21)



For the given user set and the corresponding eigen-channel gethe sum rate is given by
L
Rzrsr.sus= max logs (1 + pi0r(i),d.)s (22)
1

pi:ZiLzl pi<P =

where the optimal power allocatidip; } -, is obtained, once again, by applying the waterfilling praced
For ZFBF, we consider a user and eigen-channel selectiarridign based on SUS, following the

same general procedure as Atgorithm 1. Note that SUS has previously been applied to ZFBF in
[13]. This algorithm typically assumes that each user ispgapd with a single receive antenna, however
it extends easily to the multiple receive antenna scenanmsidered in this paper. One key difference
between the algorithms in [11,13,18] are the specific metheriployed for selecting the “best” user
in Step 2 of the algorithm. More specifically, in [13], the samethod was applied as in (14), whereas
[11] applied a method based on selecting one user at eactiioterthat results in the largest sum rate
when combined with previously selected users. Whilst thieedamethod can result in larger sum rate,
here we will consider the former method for analyticallyctebility. It has been shown, however, that

the difference in sum rate between these two methods is nli&pr

IV. SUM RATE ANALYSIS — ASYMPTOTIC K

In this section, we investigate the average sum rate of ehtheoabove transceiver structures. For
tractability, we make the following assumptions throughthis section:

(i) For each user, only the principal eigen-channel is atergid. As such, we drop the indices for the

selected eigen-channels (for example, we 4sg instead ofy. ;) 4,)-

(i) The available powerP is divided equally amongst the active users
Clearly, the sum rate achieved under these two assumptiinsenwe as a lower bound to the maximum
achievable sum rate. We will also assume that each useNhastennas, and that there de= M data
streams.

We will investigate the average sum rate of both scheme siésxliin the previous section. We focus

on establishing asymptotic results As— oo, whilst keeping SNRM, and N fixed.

A. ZFDPC-SUS Scheme

To analyze the sum rate of the ZFDPC-SUS system, we requreistribution of the output SNR; ),
or alternatively the distribution of, ). Let us first determine the distribution of.(n), n =1,--- , M,
wherek is anarbitrary user selected from the candidate &gt

3Note that in practice the transmit power may be optimized.(@ccording to the water-filling strategy). In such casks,

power allocation depends on the instantaneous channdiaierfs and thus changes at the fading rate of the channéthwh
makes the analysis intractable.
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Starting withn = 1, v,(1), k = 1,..., K, are independent and identically distributed (i.i.d.)thwi

V(1) = Ak,max (23)

where A\, max is the maximum eigenvalue dfi{’H,, whose probability density function (p.d.f.) and
cumulative distribution function (c.d.f.) are known in skd-form and are given as follows [20]:
Lemma 1:LetH ~ CN n v (On a7, IN®1Ias). The matrixH"H is complex Wishart, whose maximum

eigenvalue has p.d.f.

p (p+q—2r)r
foa@) =3 D0 ans wteT” (24)
r=1 s=q—p
and c.d.f.
p (p+q—2r)r a
Frax(x Z Z 81817(3 +1,rx) (25)
r=1 s=q—p

wherep = min{M, N}, ¢ = max{M, N}, a,, is a constant (dependent dd and N) which can be
computed using the simple numerical method in [21], afid-) is the lower incomplete gamma function.

Forn > 2, evaluating the distribution ofx(n), k € U,, is significantly more challenging. Particularly,
the “max” operation (10) of Step 1 of the previous iteratioe.( the (n — 1)-th), and also the semi-
orthogonality constraint imposed at Step 2 of the curresriation (i.e., then-th) will make the exact
distribution of the eigen-channel vectordip different from the distributions of the eigen-channel vest
in U, I < n — 1. More specifically, forn > 2, the eigen-channels for users in the candidatd{geare
no longer distributed according to the maximum eigen-ckaioh a complex Wishart matrix (i.e., for
k € Uy, vi is no longer an isotropically distributed unit vector on tt@mplex unit sphere, andl;, max
is no longer distributed as the maximum eigenvalue of a cemVishart matrix).

We see from (13) thaty(n) involves theproductof A\, max @nd the projection variablg &, ||*. For the
reasons stated above, the exact distributions of B@thax and || & || for k € Uy, n > 2 are currently
unknown and appear very difficult to derive analyticallyrteoately, we can make progress by appealing
to the “large-user” regime. In particular, when the numb&wusers in the candidate sét, is large,
the problem is greatly simplified by invoking the followingk lemma, which shows that removing a
finite number of users frorty,, has negligible impact on the statistical properties of #maining users.
Similar results have also been established previously ifterdnt system configurations [11, 13, 18].

Lemma 2: At the n-th iteration,2 < n < M, conditioned on the previously selected eigen-channel
vectorsc, (1), -+, Cr(n—1), the eigen-channel vectors i, are i.i.d. Furthermore, as the size of the

candidate user sef, grows large (i.elimg_, |U,| = oc), conditioned on the previously selected
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eigen-channels, (), -+, cx(,—1), the eigen-channel for each userip converges in distribution to the
distribution of the principal eigen-channel of a complexsWért matrix.
Proof: See Appendix A. [ |

Note that our result here differs from that of [18] in both tistribution of the channel vectors and
also the user selection algorithm.

Equipped withLemmaz2, at then-th iteration, from the point of view of the users if,, the eigen-
channel vectors of the selected users in the previousidesli.e.,c (), - ,cr,,—1)) appear to be
randomlyselected. Thus, the orthonormal bagis- - - , q,—1 (generated frone (), - , cr(,—1)) appears
independent of the eigen-channel vectors of the usédis ifThis greatly simplifies the following analysis.

We require the exact distribution of.(n) = Axmax || & ||?. To this end, the major challenge is to
derive the c.d.f. of8;(n) = [|£x]|* for an arbitrary usek: € Uy, i.e. Fj(,)(z) = Pr(Bp(n) < z| k € U,).

Recalling that,, ; = V7Ir{(n) dan for j < n, with (17) and (18), we can re-express this c.d.f. as follows

Fymy(z) = Pr(vilal? <z | |vila'|? <d,--- ,[vilai* < 9)
_ p _HH2>1_ HoH12 o 5. \WHoH 2 <5
- r Z’quz‘ - Zz ’qu1’ <0, 7‘qun—1‘ <
=1
(S P < 1 el <0 el < 9) o6
Pr(’qu{{2 <57"' 7‘V1?qg—1‘2 <5) .
The denominatory,, (5) 2 Pr(lviiql|? < 6,--- ,|[vigfl ||> < §), denotes the probability that any

arbitrary usek € {1,..., K} will belong to the set/,,. Note that this probability has also been considered
in the context of ZFBF for the MIMO broadcast channel in [I8here a rather loose lower bound was
derived. Here we derive an exact expression which applietafge K, using an alternative derivation
approach. For tractability, our result applies fox ﬁ which is easy to establish.

Lemma 3: With sufficiently largeK ando < ﬁ the probability that an arbitrary uskere {1,..., K}
belongs to the s&t,, forn € {2,--- , M}, is given by

pn(8) = Pr(ivilaf’|? < 6,--- , [vilaf i |* < 9)
M-1 n—1
-y <M ) 1)k [Z <” N 1> Zk] 5 27)
k=n—1 1=0
Proof: See Appendix B. [ |

Note that the term “sufficiently large” ihemma 3implies thatK should be large enough such that:

due to the law of large numbers (LLN). In fact, this also pke@& additional requirement afy which
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must be selected such that&s— oo, |[U,,| becomes sufficiently large (e.g. such thatx_, |U,,| = o).
More specifically, sincé < 1, by examining (28) and (27) and recalling the conditionidn the lemma
statement, we can establish the following design criterioshould be chosen such that

1
lim KoM 1 =00 and § <

K—o0 M -1 ' (29)

This implies that any can be selected, as long as it does not approach zero at afra)fémf;—l or
faster ask’ — oo, whilst also meeting the technical condition< ﬁ These are very mild conditions
which are easy to satisfy (for example, choosintp be any constant less th%}j). We further discuss
the design implications of selectingin Section IV-C.
The numerator in (26) can be evaluated using similar methetich leads to the following result:
Lemma 4:Letk € U,, n € {2,--- , M}, and assumé is chosen to satisfy (29). For sufficiently large
K, the c.d.f. of 3x(n), given in (26), can be expressed as follows:

0, r<1l—(n—-1)

(M)
F(M—n-i—l)un (5) (30)

X[y e [ =i )M Aty s dtyy, 1-(n— 1)<z <1

1—

1, z>1

where the integral region is given by € |0, min {6,1 — z — Z?:‘iﬂrl it

Forn = 2, (30) has the closed-form solution

0 r<1-9§
Fyoy(e) = ¢ Tt 1-d0<a2<1. (31)
1 z>1
Proof: See Appendix C. |

For arbitraryM andn, it is difficult to obtain an exact closed-form solution fdnig c.d.f. Based on the
above lemma, however, we can derive closed-fagper and lower boundss given by the following:
Lemma 5:The c.d.f. F(,) (), for n € {2,--- , M}, satisfiesFjp,,)(z) < Fpy(2) < Fan) (x), with

Fﬁ(n) (z) and Fam) () given by (32) and (33)

0 r<1—(n—-1)5

Fay(2) = 1—- % I-n—1)0<x<1 (32)

1 z>1
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and

0 z<1—(n—1)0
1 x>1

respectively, whereu,(-) is given by (27) and,(-,-) is the regularized incomplete beta function.

Note that forn = 2, Fj, () (z) = Fp(,(2) = Fa (@)

Proof: See Appendix D. [ |

Equipped withLemma 5 and with the help oLemmal, we may now derive upper and lower bounds
on the c.d.f. ofy;(n). To establish this result, recall that for an arbitrary usee U, n > 2, then
yk(n) = /\k,maxﬁk(n) Also, deflneﬁk(n) = /\k,maxﬂ_k(n) andik(n) = Ak,maXBk(n): with C.d.f.SF:Y(n) (:L')
and Fy,,)(z) respectively.

Lemma 6:The c.d.f. F, ) (z), for n € {2,--- , M}, satisfiesFy,)(v) < Fy,) () < Fyp)(z), with

(n)(z) and F5,)(x) given by

o = )y (Y 2 (o)

k=n—1 1=0

p (N+M-=2r)r

E Qr s

r=1 s=q—p

<’?>Tk—j—s—1(_x)k—ﬂ' {r (G—k+s+1,rz)—T (j —k+s+1, %)} . (34)

p (N+M-2r)r M—k—1

S R o (G [T S S i S

k=0 = s=q—p Jj=0 J

x(—z)M=i-1 [r(j+s—M+2,m) T (j+s—M+2, %)} . (35)

respectively, wheréa(-), p, ¢ anda, s are defined as ihemmal, ¢t = 1 — (n—1)6 andI'(-,-) denotes
the upper incomplete gamma function.
For the caser = 2, F,,)(z) = F5,)(7) = Fyp)(2).

Proof: See Appendix E. |
Although not shown due to space limitations, these bounge baen confirmed through simulations.
Recall that our primary aim is to characterize the distidwtof (., or equivalentlyy,,, which,

from (14), is the maximum of a collection of i.i.d. random iedsles chosen frory,,, with common c.d.f.
F,n)(z). Moreover, as discussed previously, our main interestescise where the number of uséfs
and consequently the size &f,, is large. As such, from the theory of extreme order staisfsee e.g.
[14, Appendix I] [22]), the asymptotic distribution of thargest order statisti¢,,) depends on théail

behavior (larger) of F,(,)(z). Forn > 2, the following closed-form asymptotic (higt) expansions for
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the c.d.f. upper and lower bounds in (34) and (35) are derinedppendix F:

1
F- - 1- —x, M+N-n-1
(@) ORI
+ O(e—:va\/I+N—n—2) (36)
_ _ 1 —x M+N-—-n—1
Bw@ = 1= e
+ O(e M%) (37)
where
r I'(n)
en DM —n+1)T(N)(n—1)n-1’ (38)
1 1
Sl ) 39
€n I'M —n+1)I'(N) (39)

Based on the above results, we can establish upper and lawedb of the asymptotic distribution
of vr(n), for large K. To this end, defin€y,(,) = maxgey, Yx(n) and Y.,y = maxgey, Jr(n), with

c.d.f.sFx

5.0 (x) @nd Fy_ (x) respectively. It is clear thak, , (z) < I, (z) < I, (z), where the

equalities hold whem = 1. Then, we have the following lemma:

Lemma 7:The random variable$,,y and¥, ), n € {2,--- , M}, satisfy

Pr{u,, — loglog VK < Yr(n) < Un + loglog \/E}

1
>1_ 40
= O(logK)7 “o
Pr{xs —loglog VK < 9x(n) < xn + loglog VK}
1
> —
21 O(logK)’ @
wherée
un:10g<§>+(M+N—n—1)loglog<§>, (42)
X = log <5> + (M + N —n—1)loglog <5> : (43)
€n n

Proof: This result is readily established by combining (36) and (8ith the extreme order statistics

result given if [14, Lemma7]. |

“Herelog(-) represents the natural logarithm.
SNote that there are some minor typographical errors with [Btnma7]. Here we have adopted the correct results.
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For the caser = 1, Yr(n) = Yr(n) = Vr(n)» Whose asymptotic distribution is [14]

Pr{u; — loglog VK < Yr(1) < u1 + loglog \/E}

> 1 _O(IO;K) (44)

Interestingly, we can obtain the same result if we substitut= 1 into (40)—(43). The asymptotic

distribution of .,y follows from the above results.

Lemma 8:Let p = %. For Cr(ny, m € {1,---, M}, we have

Pr{,, — ploglog VK < Cr(n) < vn + ploglog \/E}

1
>1-— 45
>1-0(r) (45)
where

K K
w, = plog <E—> +p(M + N —n—1)loglog <E—>, (46)

K K
vy, = plog (—) +p(M + N —n—1)loglog (—) . 47)

€n €n
Proof: See Appendix G. [ |

We can now prove the following theorem (see Appendix H), Wwhicesents a key contribution:
Theorem 1:For a fixed number of transmit antenn&s and receive antennas, and fixed transmit
power P, if the semi-orthogonality parametéris chosen to satisfy (29), then the sum r&g-ppc-sus

of the proposed ZFDPC-SUS scheme satisfies

) Rzrppc-sus
1 =1 48
K300 M logy|plog K| (48)

with probability 1, wherep = P/M. In addition,
lim £{Rgc} — £E{Rzrorc-sug =0, (49)
K—o0

where Rgc denotes the sum rate of the MIMO broadcast channel, achigithdDPC. As K — oo, the
average sum rate difference between ZFDPC-SUS and DPC iseateg tham(lﬂilg%ff).

Note that the sum rate difference convergence (49) is muohgr than the sum rate ratio convergence
in probability (48), since the latter does not preclude tkistence of an infinite sum rate gap between

the proposed scheme and the optimal scheme.
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B. ZFBF-SUS Scheme

In this section, we will evaluate the performance of line&BE with SUS. For our analysis, following
[13], we will assume that the criterion (14) is used at eaelation of the SUS algorithm to select the
best user. In [13], it has been proved that ZFBF-SUS can aehiiee same asymptotic sum rate scaling
as DPC. Here we establish the stronger result that the awvesan rate of ZFBF-SUS converges to
the average sum rate achieved with optimal DPC, which wasesiatblished in [13]. Deriving an exact
expression for the asymptotic distribution of the outputRSfdr each data stream, analogous to (45),
appears very difficult for ZFBF-SUS. Thus, here we adopt gediht approach, based on first applying
an upper bound which relates the output SNR of ZFBF-SUS mgeaf the output SNR of ZFDPC-SUS,
and then applying results from the previous subsections Hdds to the following key theorem:

Theorem 2:For a fixed number of transmit antenn&s and receive antennds, and fixed transmit
power P, if the semi-orthogonality parametéris chosen to satisfy (29), then the sum ré&{eRzrsr-sust

of the ZFBF-SUS scheme satisfies:

lim E{RB(:} - E{RZFBF—SUS} =0. (50)

K—o0
As K — oo, the average sum rate difference between ZFBF-SUS and DRE&Cgeeater thaﬂ)(loﬁ)lgoi[{).
Proof: See Appendix I. |

This result shows that, as for the ZFDPC-SUS scheme, we gaifisantly reduce the complexity of
the SUS search algorithm by choosifigeasonably small, whilst at the same time achieve the optima

asymptotic sum rate of DPC.

C. Discussion of Results

Based on the analysis above, some interesting observatiengadily in order.

1) Asymptotically, both schemes can achieve the maximuntigdpaultiplexing gain of M, and also
the maximum multi-user diversity gain up to first order (itlee SNR scales withog K, and the
sum rate scales asg log K). For ZFBF, this scaling behavior agrees with previouslteg5, 18].

2) As shown inTheoreni andTheoren®, provided that the semi-orthogonality paramétey selected
appropriately, the asymptotic ergodic sum rates of bottes®s converge to that of the MIMO
broadcast channel, and in both cases the difference in gavemam rate with respect to optimal
DPC is no greater tha® (“’FJ%KK). Note that similar scaling results have also been obtaioed f
other user selection schemes with ZFBF [15, 18].

3) In contrast to most related work, our results provide kesights into the effect of the SUS semi-

orthogonality parametef and the number of receive antenmnsis Considering ZFDPC-SUS, from
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(45) and the expressions far, in (46) andv,, in (47), we see that imposing the constrairmoes
not reduce the multi-user diversity gain in both first ordembisO(log &) and second-order terms
O(loglog K). It appears that this result can not be established basedemiops (less accurate)
SUS analysis methods [13]. Moreover, our analysis dematestrthat whilst the first order terms
O(log K) in the multi-user diversity gain are unaffected by the nurmdfeeceive antennad’, the
second-order term grows linearly with bot and M. This is consistent with a similar conclusion
made in [14], which considered a different system configomat

4) We can also draw insights into the design dofFor practical systems witfinite numbers of
users, obtaining the exaét which yields the optimal complexity—performance trade@fmains
a challenging open problem. However, our asymptotic amalgsll provides guidance for the
implementation of practical SUS algorithms. In particulae see that the choice ¢fis closely
related toK and M and, to minimize complexity, it is clearly desirable to s¢lé to decrease
with increasing K. At the same time, however, for finite humbers of users it igisable to
“overcompensate” and seletto easily meet the conditions in (29). In our numerical expents,
we found that for systems with/ < 8, the choice ob = @ can work well. In addition, since the
number of candidate users decreases with each iteratidreddS algorithm, further complexity
savings can be achieved by adaptively selecting.g., at iteratiom, settingo,, = Wlunr

5) Although the results in Section IV-A and IV-B demonstrétat both the ZFDPC-SUS and ZFBF-
SUS schemes achieve the same asymptotic average sum etspebd of convergence to this
optimal sum rate can be very different. Intuitively, thisrfioemance difference is caused by a

reduction in theeffective channel gaifiL3] seen by the ZFBF receivers. Thus, for finkg there

will be a gap in the average sum rates of the two schemes. Waavil study this more closely.

V. SUM RATE ANALYSIS — FINITE K

In this section, we analyze the achievable sum rates of tHePZF=SUS and ZFBF-SUS schemes for
finite numbers of users. To obtain clear insights, we focus on thle &nd low SNR regimes. Our analysis
is based on studying the gap between the sum rates achievibe ltywo transceivers and a fixed upper
bound. This study follows the method of [23], which consatesingle-user MIMO receivers. We will
first evaluate the performance for a given set of channelzagans, and then investigate the average
performance via simulations. We make the same assumptatated at the beginning of Section IV.

Given a set of\/ usersr determined by user selectfyrthe sum capacity of the MIMO broadcast chan-

SFor a meaningful comparison, we will assume that for bottesws, the same SUS selection criteria is used, based on (14).
As such, the active users sets and the corresponding comptamnel matrixC . 4 will be the same for both schemes.
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nel {Hw(k)};’ff:l can be written by using the duality of the MIMO broadcast ¢t@rand the MIMO mul-
tiple access channel as [@kc({Hr ()} 1L, P) = maxy yq,<p log, det <I+ SMH () Qi )
Since no closed-form solution exists, it is very dlfflcultdompareCBC({Hw(k b1 P) W|th Rzrppc-sus
and Rzegr-sus In fact, even with our assumption of equal power allocatian Q. = K—IjVI, this problem
is still difficult, due to the complicated structure of thenwound channel matri . ; for the ZFDPC and
ZFBF schemes (see (5)). Thus, to analyze the differencernnrate betweerRzrppc-susand Rzese-sus
for finite K, we adopt an indirect approach and focus on characterizingdifferences between the
sum rates achieved by the two transceiver structuresCgnahereC = log, det(I, + pCdefi 4) With
p=P/M.

Before presenting our main results, it is worth noting tlaflfheorens] limp_, o, Cec(Cr 4, P)—C =
0, whereCgc(Cr 4, P) denotes the sum capacity of a MIMO broadcast system giverboyMoreover,
for the caseV = 1, {H, ) }1L, reduces taC, 4 andCec({Hy ;) }1L,, P) coincides withCec(Cr g, P).
Thus, the high SNR results which we establish below cormedecisely to the gaps between the sum
rates achieved by the two transceivers and the sum capatitgved with optimal DPC. Define

Z:|l,g|2 ‘ Z
|lzz|2’ R

Jj=i+1

(51)

wherel; ; andt; ; are the(s, j)-th elements of matricek, ; and T, 4, respectively. Some basic manip-
ulations of the results in [23] yield the following theorem:

Theorem 3:For finite number of user¥’, finite number of transmit and receive antenddsand NV,

« In the high SNR region:

C—-—R X =
ZFDPC-SUS plog2 Z o |l”|2

+O0(p~ )> (52)
C — Rzrar-sus = Z logy (1 + K4)

+0(p72). (53)
« In the low SNR region:

M
C' — Rzrppc-sus = 1022 > nidaollial®
i=1

+0(p?), (54)
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M

P 1
C—-R 3 = — 1 i —
ZFBF-SUS Tog 2 ;( +1n T Iiz')
X An(i)|lia” + O(p%). (55)

From these results, we can make the following conclusions.

High SNR RegionAs p — oo, for ZFDPC-SUS the sum rate approacliéswhereas for ZFBF-SUS
there is a constant sum rate gapo#& Zf‘il log,(1+x;). This gap can be zero only whef) = 0, which
is a rare case corresponding to complete orthogonality distvthe row vectors of . ;. Subtracting (54)
from (55), in this region we can also quantify the sum rate gapveen ZFDPC-SUS and ZFBF-SUS
as Rzrppc-sus— Rzrsrsus= A + O(p~ 1), which shows the advantage of ZFDPC-SUS for firife

Low SNR RegionAs p — 0, for both ZFDPC-SUS and ZFBF-SUS, the sum rate gaps Wr.t.
approach zero linearly witlp. Moreover, in this region we can again quantify the sum rap gs
Rzrppe-sus— Rzrer-sus= @ Zfﬁl(l — ﬁ))\w(i)]lmz, which is non-negative. It is also worth noting
that in the low SNR regime, better performance may be achlevay transmitting with full power to only
a single user, rather than sending equal power streams $elected users. The benefit of this approach,
however, will depend not only on the SNR value, but also onntlmaber of userd<. In particular, the
benefit of this approach is expected to be most evident wkieis small, for which case there will be
the most disparity between the dominant eigen-channelseofisers.

Effect of SUS Parametet. According to the SUS algorithm, we havyg ;|*> < 4 for i > j, and
llii]* > 1 — (i — 1)6. Thus, with smaller semi-orthogonality parameterit is more likely to have
off-diagonal elements with smaller absolute value in bbtf; and T, ; (i.e smaller|l; ;|,7 < j and
tj.il,7 < j ) and more likely to have diagonal elements with larger aligoValue inL, 4. From (51),
these observations imply that a smalleteads to smaller); and ;. In addition, it is easy to see that
mills i = 2520 1 1* and (1 + n;)|li 3> = 1. With these results, we see that by decreasinthe sum
rate gaps for both transceivers are likely to decrease,dtr high and low SNRs. This implies that the
sum rates of both transceivers are likely to increase, wagiees with intuition.

Fig. 1 demonstrates the average sum rate gaps of ZFDPC-StZFRBF-SUS for different SNRs.
Results are shown foM = 4, N = 4, K = 50, andd = @. These results confirm our analytical

conclusions given above, based Bheorem3.

VI. NUMERICAL RESULTS

For our simulations, we use = 15 dB, 0 = ﬁ, and the optimal water-filling power allocation.
Fig. 2 plots the average sum rate achieved by ZFDPC-SUS aB&-ZUS as a function of the number

of users. Curves are also presented for ZFBF with completeeseas well as optimal DPC. In the first
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Fig. L Comparison of sum rate gap for different SNRg.= 4, N =4, K = 50.

case, a search is conducted over all combinations of useisha combination with the highest sum rate
is selected. Due to the very high complexity of this appreaahonly provide results for relatively small
K. The optimal DPC curve acts as an achievable upper boundjsacodmputed using the algorithm
from [24]. In addition, based on (98) and the expressions:fpin (42) andy,, in (43), we have plotted
Zf‘il logo (1 + p(log K + (M + N —i—1)loglog K)) as an asymptotic approximation for the average
sum rate of the ZFDPC-SUS scheme. As evident from the figheepérformance of ZFDPC-SUS is very
close to that of DPC, and is slowly converging to DPCEragirows large. The asymptotic approximation
for ZFDPC-SUS based on our analysis is also quite good (withhips/Hz). Considering ZFBF, we see
that the ZFBF-SUS curve is no more tha$ dB away from that of the complete search method; further
verifying the utility of the SUS approach. Moreover, the ZBurves are far below the ZFDPC-SUS
curve, demonstrating that ZFDPC-SUS tsgnificantperformance advantages at fini&¢. For further
comparison, we have also implemented a related algoritlopgzed in [15] and plotted the corresponding
sum rate curve. This curve is generated by using an optimastiold, computed by an exhaustive search.
The performance is close to that of ZFBF-SUS.

Fig. 3 compares the average sum rate of ZFDPC-SUS and ZFEF-&SUh function of the number of
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Fig. 2 Comparison of average sum rates for different numbers ausé =4, N =4, P = 15 dB.

users, for different numbers of receive antennas. Noteabedrding to (98) and the expressions fQr
andy,, in (42) and (43) respectively, if we increase the number oénee antennas by one, the increase
in sum rate can be approximated B5log <1 + %) — 0 as K — oo; i.e., the difference in sum
rate will be negligible for largel. However, the figure shows that this convergence is very,siowl

that increasing the number of receive antennas can sigmilfjcacrease the sum rate for finit€.

VIlI. CONCLUSION

We have investigated the sum rate of two low complexity engede-based transmission techniques for
the MIMO broadcast channel, ZFDPC-SUS and ZFBF-SUS. Wegardliat ZFDPC-SUS can achieve
the optimal sum rate scaling of the MIMO broadcast channad, that the average sum rate of both
technigues converges to the average sum capacity of the Mbkt@dcast channel a& grows large
(albeit at different rates). We also investigated and caegbdhe achievable sum rates of ZFDPC-SUS
and ZFBF-SUS for finité(, and demonstrated that ZFDPC-SUS has significant perfarenadvantages.
In contrast to most previous related results, our analytiesults provide important insights into the

benefit of multiple receive antennas, and the effect of th& algorithm.
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Fig. 3 Comparison of average sum rates for different numbers oEwm®l different numbers of receive

antennasiM =4, P = 15 dB.

APPENDIX A

PROOF oFLemma2

Our derivation closely follows the method of proof for [18¢emma3] and [25,Lemmal]. For two
complex vectore = z, + jz; andz’ = z, + jz! with the same dimension, we write < z’ if every
element ofz, andz; is less than or equal to its counterpartzfy and z,, respectively. LetC,, denote
the cardinality of the candidate sét,. For the first iterationC; = K andc,(; is the vector with
the maximum norm. For clarity of exposition, at the endneth iteration, we relabel the eigen-channel
vectors inl, /{n(n)} as¢y,--- ,Cx,—1.

We find that the result in [29,emmal], which was derived specifically for Gaussian vectorsdhol
more generally and does not require the Gaussian assumptidnindeed can also be adapted to our

case. The proof is based on induction. For the first iteratiean have

Pr{¢i X z1, -+ ,€xk-1 2 zr-1lcrq) = z2(1)}

K—-1
=[] P& = zll&] < Iz} (56)
i=1
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and sincdimg o [|Z(1)[| = oo,

Aim PrE X zif[[&ll < llzq)ll} = Fe(=), (57)
—00

where F..(-) is the c.d.f. of the principal eigen-vector of a complex Véighmatrix.

Now assume that this lemma holds up to the- 1)-th iteration and let us consider theth iteration.
Conditioned onc (), - , Cr(n—1), according to our assumption, the channel vectodg,irare i.i.d. and
converge in distribution to the principal eigen-vector of@mplex Wishart matrix. At the end of step
3) of the n-th iteration, userr(n) is chosen. Any usek in U, satisfiesy,(n) < vx(,). Replacing the
conditior! {c1y =z} and {||&;]| < llzwy[I} bY {cx1) = Za)s s Cx(n=1) = Z(n-1)sCx(n) = Z(n)}
and{c.(1) = z(1), " s Cr(n=1) = Z(n—-1), %) < Vr(n)} respectively in the derivation in [2%.emmal]
and following the same method as in [2&2mmal], we can establish that the remaining channel vectors

in U, are i.i.d. with c.d.f.

Pr{¢; = zilcrq) =2y,

Crin—1) = Z(n-1), V(") < Yr(n) } (58)
fori=1,...,K, — 1. Sincelimg o Ky, = 00, 7(n) is unbounded from above, i.e.,

and we have

, e
Jim Pr{&; < aifeq) =20y,

Cr(n-1) = z(n—l)a’Yk(n) < ’Yﬂ(n)}
= Pr{& < zilc,1) =231) ", Cr(n-1) = Z(n—1)}-

(60)

By induction Pr{¢; < zi|c(1) = Z(1), " ; Cx(n—1) = Z(n—1)} CONverges in distribution to the distribution

of the principal eigen-vector of a complex Wishart matrixereby establishing the lemma.

"To be more precise, we note that different notation is usefd&h Our conditions{c.(1) = z(1), " , Cr(n) = Z(n)} and
{exy = 231), s Ca(n—1) = Z(n—1), Vk(n) < Yx(n)} are analogous to the conditiog; ,, = zq), - ,h;,,, =2z} and
{hj(1) =Z@1)," 7hj(n,1) = Z(n71)7R(B,E) (hz) < R?,.FL) (Z(n))} given in [18]

I(n)
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APPENDIX B

PrROOF oFLemma3

According toLemmaz2, the eigen-vectoxy, for k& € U,, is an isotropically distributed unit vector

on the M-dimensional complex unit hypersphere. In addition, fagéak’, the subspace spanned by the

orthonormal basisy, - ,q,-1 becomes independent of.. Thus, without loss of generality we can
assumay; = e;, wheree; is thei-th row of the identity matrixi,;. Let v = [v1,--- ,va]7, then
pn(0) = Pr(|Vk ai’ P <6, Vil P < 5)
= Pr(jvoi? <6, -+, |on_1]> <6). (61)
In the following we will first derive the joint p.d.f. ofvi|?,--- ,|v,_1|%.

The surface area of a complex unit hyperspherdfoflimensions isFZ(’r—Aﬁ[[) [26]. So the joint p.d.f. of

v1, -+, vy can be written as:
S vl =1
f(Vk):f(Ul,"'yvj\/[): . (62)
0, otherwise
Definev; = x9;_1 + jx2;. Then, the joint p.d.f. of1,--- ,xops can be expressed as:
(M) Z2M 2 _q
f(:L'l?mQ?"' 7$2JV[): °n =1t . (63)
0, otherwise
We require the joint p.d.f. ofy,- -, x5,_1), Which is evaluated via
[z, Tomo1))
= / / f(z1, - @an)
221&1 i 2__ =1
X dZo(n—1)41 - dzom
L'(M)
= 27TM V(‘Tla o 7x2(n—1)) (64)
whereV (z1,--- ,x9(,—1)) denotes the area
V(zy,--- » X2(n— 1)

= / / dzg(n—1)+ 1+ dxam
2AI Z‘ 2__ =1
- / / 2M 2=1— 22(71 Doy

i=2(n—1)+1 €T

X dxg(—1)41 - dTanm - (65)



25

The multi-dimensional integral (65) is seen to be the serfaea of a real2M — 2(n — 1))-dimensional

hypersphere of radiu§/1 — zfﬁ;—” x;2. Thus, using results from [26], we evaluate this integral as

follows:

V(zy,--- 7$2(n—1))
2( 1) 2(M—n+1)—1
9rM-n+1 n- 2
'(M—-n+1) pot

xvVdet A dxq--- de(n—l)v (66)
where A is a (2(n — 1) + 1) x (2(n — 1) + 1) matrix with (i, j)-th elementA,; = 22 . 22 with
T 2 J
6= <w1, C Ty, \/ 1 — Zfi’i_l) xf) , and “’ denotes the vector inner product operation. We can
computeA,; ; = 5,-7j+1_§;7ﬁ5ﬂ, whered; ; is the Kronecker-delta function, and after some manipoueti
obtaindet A = W Combining this result with (64) and (66) we obtain
L(M)
f(xla"' 7x2(n—1)) - F(M—?’L+1)7Tn_1
2(n—1) M=n
x (1= > @7 . (67)
=1

It is now convenient to make the polar coordinate transfoiona zo; 1 = r; cos 6;, x9; = r;sin;, for
, =1,---,n—1, wherer; > 0, 0 < 6; < 27. The corresponding Jacobian is easily evaluated as [26]

(3
~1
(H?:‘ll r,-) . So the joint density of, -+ ,7,_1 iS

fr, e rnen)
n—1 M—n n—1
_ L) T .
(M —n—+1)rn1 e~ P '
n—1 .on
< T / do;
=1 0
n— M—n n—1
2 10(M) S
= —(1- 4 i 68
F(M—n+1)( ;T ET (58)
Next we apply the transformation = r2,i = 1,...,n—1. Clearlyt; = |v;|> (we will deal with¢; subse-

quently to simplify notation). The corresponding Jacod@d (t1,...,t,1) = 1/(2" 1\ /E, - tn_1).

So we obtain the desired joint p.d.f. of,...,t,_1 as

M—n
_ T S
f(t, .. thr) = m <1—;t2> . (69)

Armed with this result, we can now evaluate the desired gitiba ,,(6) in (61). For notational
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convenience, we will consider,,.1(d), forn+1 € {2,--- ,M}. DenotingD,, = {0 <t; <4d,---,0 <

t, < d}, we have

Mn+1(5) = //D f(tla"'ytn) dty---dt,
I'(M)

= Tar=m ©n(1) (70)

where we have defined

n M—n—1
son(z)z/m/D (z—ZtZ) dty - dty, (71)
n i=1

for = > nd. Note that with this definitiony, (1) exists for alln provided thats < . This condition

is assumed in the lemma statement. Thgriz) can be written as

5 n M—-n—1
('pn(z) = // / <Z—Zti> dtn dtl"'dtn—l
Dn—y \ /0 i=1
1 n—1 M—n n—1 M—n
_ M_n//D [<z2t> —(2—5—;1@) ] dty - dtp_y

1
= 7 (Pua1(2) — puoa(z - 9)). (72)
So we have
(1) = T (net () ~ eumr(1-3) ) (73)
®Pn - M—n Pn—1 Pn—1
_ 1
(M —n)(M —n+1)
X (Spn—2(1) - 29071—2(1 - 5) + (Pn—Z(l - 25)) (74)
We will now prove, using mathematical induction, that foyantegerk € {1,2,--- ,n — 1},
k—1 -1
eol) = |TT0M = n+9)
j=0
k k
DI (G (75)
i=0

According to (73) and (74), (75) holds fér= 1 and k = 2 respectively. Assuming that (75) holds for



integerk, applying (72) in (75) yields

27

(77)

onll) = LE[O(M ] 222(—1)@' (5) Jprrt=i9) - pnsati= 4 1) 9] 79)
— [ﬁ(M —n +j)} _1{90n—k—1(1) + (=DM (1= (k+1) )
=0
+ I:z;é(—l)iJrl <l::_rll> On—k-1(1—(+1) 5)}
_ L—ljo(M —n +j)} - g(—l)i <k :r 1) On—k—1(1 —1i0)

(78)

where, to obtain (77), we have uséd ) = (*;') + (}7]). Thus, from (78), if (75) holds for integé,

% i+1

it also holds fork + 1. By induction, (75) then holds for any integér< k < n. Settingk =n — 1 in

(75),
n—2 -1
onll) = [jr:[ouw —ntd)
« nf(—w‘ <" ; 1) o1(1— i5).

The functiony; (1 — id) can be evaluated as

d
o1(1 —id) = /(1—i5—t1)M_2dt1
0

(1—ie)M1 —(1— (i + 1))
M—-1 '

Substituting (80) into (79) yields a closed-form solutievhich we simplify as follows:

(M —n) < (n—1
) = S o (")

Since [27]

(79)

(80)

(81)

(82)
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N

> <JZ>(—1)%N =(-1)VN!, N>o0, (83)

k=0

we obtaing,, (1) = F%;;” ML (ML) 1)k [0 () (~1)7*] 6%, Substituting into (70) yields (27).

APPENDIXC

PROOF OFLemma&d

Similar to the proof ofLemma3, we assumey; = e; without loss of generality. Then the numerator

of (26) is given by
n—1
Pr(z VG <1 o vl < 8 vl < 5)
i=1
i=1

n—1
:Pr<2|vz|2§1—$,|v1|2<5,"' >|'Un—1|2<5>. (84)

Recalling thatt; = |v;|?, i = 1,2,--- ,n — 1, we can evaluate (84) using the joint p.dffty,... t,_1)

given in (69) in Appendix B. For = 2, we have

=11 —t)M2dy r<1-9
Privifa’? < 1—a,|vila' P <é) = ¢ [ —1)(1—t)"2dt; 1-6<a<1 (85)
0 z>1

Solving the integrals in (85) and combining the result wi#i7)(and (26) leads to the explicit solution

given in (31). Forn > 2, the problem is much more difficult. In this case, using (6@, obtain

n—1
Pr <Z yqu{{‘Z S 1- z, ’Vl]c;lq{{P < 57' o 7‘V£q7lj—l‘2 < 5)
0 z>1
fin(0) r<1—(n—-1)3 (86)

M—n

(M) -1
F(M( o o (1—2?:1 ti) dt;---dtpy 1-(n—-1)0<az<1
with the integration region for the remaining multi-dimé@nsal integral defined in the lemma statement.

Combining (86) with (27) and (26) leads to (30).
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APPENDIXD

PROOF OFLemmab
We can upper bound the c.d.f. (30), for> 2,1 — (n — 1)6 < = < 1, as follows

(M)
T —n+ 1)jin(0)

1—x 1—x
n—1 n—
>< ..
0 0

n—1 M—n
(1 — th> dty - dt,_q
=1

1-z
- Mnu&«;)l) &7

where the second line follows from (70). For= 2, we have

Fﬁ(n)(l') § 1—

po (1 —x) M-t —(1-5M-1
<1-— =
@) <1-705 (EnES o)
which is exactly the right-hand side of (31).
We can establish the corresponding lower bound via
r(M)
F > 1-
0 2 LRG0 1) ()
n—1 M—n
/ / <1 — Z ti> dty---dt,—1
St <1 © =1
t1>0,  En_1>0
_ T
T T(M —nt1) (o)
11—z o yn—2
X /0 (1-y) m dy
[1—90(” — 1,M —-—n—+ 1)
= 1— , 89
11n(0) (89)
where we have used the identity [27] [--- [ dt; -+ dt, = ;. Forn = 2, it is easily verified that
" t,<h
§>0,t~,t >0
(89) is equal to (88).
APPENDIXE

PROOF OFLemmab
Recalling that for uncorrelated Wishart matrices, the migkies and their corresponding eigenvectors
are independent, it follows that; nax is independent ofﬁk(n), Bk(n), and 3;(n). Thus, the c.d.f.s
of yk(n), Jx(n), and yx(n), can be derived a¥,,)(z) = [~ Fm)(@/y) fmax(y)dy, Fsmy(z) =
I F 5 (@/Y) fmax(y)dy, and Fy,,) (x = 5" Fam) (x/y)fmax( )dy respectively, wherefmax(-) is the
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p.d.f. of the maximum eigenvalue &, HZ. Together withLemmas, it follows trivially that F5 ) (7) <
Fymy () < Fy(n)(z), where the equalities hold for = 2.
What remains is to derive closed-form expressionsHgr, (x) and Fy,,)(z). First considet,,, ().

Recalling (32), and noting that far— (n — 1) < = < 1, Fn) (z) can be re-expressed using (27) as

M-1

1 M-—-1
B =1 2 (et

k=n—1

R () o]

)

it follows usingLemmal that

z k
ar,s/ (1—%) yPe "Vdy. (91)

By applying the transformation = £ along with some elementary algebraic manipulations, theaieing

integral is evaluated as

j
. , rT
X [F(]—k+s+1,r:n)—F(j—k+s+1,T>}.

Substituting this expression into (91), we readily obtdie tesult (34). A closed-form expression for

F-

5(n)(7) can be obtained in a similar manner, and is omitted due toesliadations.

APPENDIX F

ASYMPTOTIC EXPANSION OF CD.F.S OF4(n) AND 7%(n) FOR LARGEx

First note that the tail behavior (largg of Fiax(z) is given by [15]
e—xxAT+N—2

Frax(z) =1 — TONTN) + O(e T MIN=3), (92)

Then, the corresponding expansion for the téfgax(7) in both (34) and (35) follows immediately. In the
following, we require a corresponding expansion for theainmg terms in (34) and (35). First consider

(34). Since the remaining terms in this case involve the upp®mplete gamma functiofi(n, z), we
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require an asymptotic expansion fbfn,z) at z — co. Using the definition and integrating by parts,
for largex we havel'(n,z) = e %2"~1[1 + =1 4 (”_2# +---]. Sincet < 1, the terms that decay

most slowly in the summation in (34) can be expressed as

k
N+M-2 k j
jl k: n— l Ck' Zs —Z —p a]e = Zj:o (_(1324

x [1 ke g Ul d) o } : (93)

where

G (R T 0 R

Using (82) we can obtain

k
> <k> (—)F 5k =k k>1, (95)

zm

that Z;?:O (’;)(—1)’“—j Hﬁzl(j_fjs“_”) = K. We then have

Mol NEM=2 o oopr 1
J = Z Cr Z 761, <E + O <W>> ) (96)

k=n—1 s=q—p

from which it follows that in (93).3-%_, ()(~1)"~ Lo, Uhrstlon) g for 1 < m < k— 1, and also

which upon substituting fo€;, and applying some manipulations using (95) gives

M —1l(n—-1)!
Ji (]\(/[ — n)')(qg — 1)2_1 a1y N—ge TpMTN Tl
+ O(e TgMAN-n=2y (97)
From (92), we havgmax(z) = %JFO( e~ N+M=3) Thereforen; nia—o = m Together

with (97) and (92), we have (36). By using a similar metho&, thrms that decay most slowly in the

summation in (35) can be obtained. That result, used with, {@lds (37).

APPENDIX G
PROOF OFLemma8
Recall thatFy, ., (z) < F, ., (z) < F5, ., (2). FOr ), n € {2,--- , M}, and largek, with (40),
Pr{u, — loglog VK < Ya(n)} = PHu, — log log VK < Yy} =1 - O(l gK> Similarly, with (41)
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we have Pfv;) < xn + loglog VK > Pr{Ax(n) < Xn + loglog VEK}>1-— O(@). Thus,

PHu, —loglog VK < Yr(n) < Xn + loglog VK}

1
c1o(hy) -

Forn = 1, the asymptotic distribution of,,, has been characterized in [14]. Using that result, along

with (98), the lemma follows upon noting thet,,) = PVx(n)-

APPENDIXH

PROOF OFTheoreml

: in ppog(1+@n—ploglog VK) - logy(1+Crn))  log,(1+vntploglogVK) |
Using (45) we can obtain '{ log, [plog K] = log,[plog K] — log, [plog K] =

1- O<10gK> Substituting (46) and (47) and lettinf — oo, the left-hand side and right-hand side
inequality within Pf-} converge to the same value. Thiisn k., % = 1 with probability 1,
and (48) holds. To establish (49), we employ the followingempbound or€{Rgc} derived in [16]:

E{Rec} < Mlog, (1+ p(log K + O(loglog K))). (99)
From Lemma8, we have P{ 1085 (1 + Cr(ny) = logy(1 + @, — ploglog \/—)} >1- <1ogK> Thus,

E{Rac} — E{Rzrorc-sug

< Mlog (1+ p(log K + O(loglog K)))

_<1_O<1og1K>>

M
X Zlog (1+ @, — ploglog VK)

n=1

M
N Zlog <1 N O(loglog K) )
n=1

14w, —ploglog VK
1
—— | M O(loglog K
+O<logK> O(loglog K)

log log K
~ —= o 100
X ( log K > (109)

where we have useldg(1l + z) ~ z for z < 1, andz ~ y meanslimg_, z/y = 1.
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APPENDIX |

PROOF OoFTheoren?

From [13], for small enough, o) > 11*&‘3) wheree(d) = % Using this result, together

with (99) and (45), and following a similar method as in ApgenH, we have

E{Rsc} — &E{Rzrer-sus

PVr(n)
< _ L)
< Mlog (1+ p(log K + O(loglog K))) 5{ ;log (1 + Tt e(5)>}
M 1 wy — ploglog VK

< . . L n
< Mlog (1+ p(log K + O(loglog K))) ;(1 O<logK>>log <1+ 1+ e(®) >

f log <1 N p(e(d)log K + O(loglog K)) ) <log log K)

n=1 1+ (wn — ploglog VK) 3272 ( — e(d))’ log K&

loglog K
where we have used the fact that for small enodigle(d)| < 1, thusﬁe(é) =%, (—e(5))". So we

can see that as long a&)) ~ o(1), or equivalentlyd ~ o(1), whilst satisfying the conditions in (29), the
difference will become zero a& — oco. However, obviously ZFBF-SUS with a smaller candidate set a
each iteration (i.e., reducetf, |) can not achieve more sum rate than ZFBF-SUS with a largetidate
set at each iteration. Thus, with larg&rthere will be more candidate users for each iteration aed th
average sum rate will increase, or at least maintain. So d¢heliton  ~ o(1) can be ignored, thereby

establishing (50). From (101), the difference in sum ratatigostO (&K ).
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