
ar
X

iv
:1

00
6.

27
58

v1
  [

cs
.IT

]  
14

 J
un

 2
01

0
1

Eigen-Based Transceivers for the

MIMO Broadcast Channel with

Semi-Orthogonal User Selection

Liang Sun,Student Member, IEEE and Matthew R. McKay,Member, IEEE

Abstract

This paper studies the sum rate performance of two low complexity eigenmode-based transmission

techniques for the MIMO broadcast channel, employing greedy semi-orthogonal user selection (SUS).

The first approach, termed ZFDPC-SUS, is based on zero-forcing dirty paper coding; the second approach,

termed ZFBF-SUS, is based on zero-forcing beamforming. We first employ new analytical methods to

prove that as the number of usersK grows large, the ZFDPC-SUS approach can achieve the optimalsum

rate scaling of the MIMO broadcast channel. We also prove that the average sum rates of both techniques

converge to the average sum capacity of the MIMO broadcast channel for largeK. In addition to the

asymptotic analysis, we investigate the sum rates achievedby ZFDPC-SUS and ZFBF-SUS for finiteK,

and show that ZFDPC-SUS has significant performance advantages. Our results also provide key insights

into the benefit of multiple receive antennas, and the effectof the SUS algorithm. In particular, we show

that whilst multiple receive antennas only improves the asymptotic sum rate scaling via the second-order

behavior of the multi-user diversity gain; for finiteK, the benefit can be very significant. We also show

the interesting result that the semi-orthogonality constraint imposed by SUS, whilst facilitating a very

low complexity user selection procedure, asymptotically does not reduce the multi-user diversity gain in

either first(logK) or second-order(log logK) terms.
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I. INTRODUCTION

In the multiple-input multiple-output (MIMO) broadcast channel, the spatial multiplexing capability

of multiple transmit antennas can be exploited to efficiently serve multiple users simultaneously, rather

than trying to maximize the capacity of a single-user link. The capacity region of the MIMO broadcast

channel has now been well-studied [1–5], and has been shown to be achieved through the use of multiple

antenna dirty paper coding (DPC) [3]. Unfortunately, optimal DPC is a highly non-linear technique

involving joint optimization over a set of power-constrained covariance matrices, and is therefore too

complex for practical implementation [4]. A reduced complexity sub-optimal DPC scheme, known as

zero-forcing dirty paper coding (ZFDPC), was proposed for single-antenna users in [5], and generalized

to multiple-antenna users in [6], which is based on a QR decomposition of the channel matrix.

To further reduce complexity, linear processing schemes such as beamforming (BF) have also attracted

a lot of attention. The zero-forcing beamforming (ZFBF) scheme was first introduced for single-antenna

users in [5], and further modified in [7] and [8]. In [9], the concept of block-diagonalization was proposed

for multiple-antenna users, which completely cancels the inter-user interference by employing a set of

precoding matrices. One key limitation of these techniquesis that, for ZFDPC and ZFBF, the maximum

number of users that can be supported must be no more than the number of transmit antennas, whereas

for block-diagonalization, the number of the transmit antennas must be larger than the aggregate number

of receive antennas across all users. This is significant, since the number of users in practice can be large.

When the number of usersK is larger than the number of transmit antennasM , one must select

a subset of users in the system. A common approach is to seek the subset of users which yields the

maximum sum rate. The complexity of finding the optimal subset, however, can be prohibitively large, and

to reduce complexity greedy algorithms are commonly employed (see e.g., [10–12]). A promising way

to further reduce the complexity of user selection is to restrict the searching space of users by imposing

some constraint on the channels of the selected users. Following this method, [13] proposed a semi-

orthogonal user selection (SUS) algorithm which iteratively searches for users with nearly orthogonal

channel directions1.

In this paper, we consider low complexity transmission and user selection techniques for the MIMO

broadcast channel with multiple-antenna users. It is stillnot clear how much advantage can be gained

by employing multiple-antennas at the user terminals. Somerecent exceptions which deal with the

multiple-antenna user scenario are presented in [14] and [15]. Particularly, [14] proposed a generalized

G-ZFDPC approach, based on the idea of eigenmode transmission (eigen-beamforming). A limitation of

1More specifically, two complex vectorsu andv, with unit norm, are said to be semi-orthogonal if|uH
v|2 < δ, whereδ is

referred to as thesemi-orthogonality parameter.
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that approach is the relatively high complexity, since it requires numerical optimization of certain system

parameters. In [15], a thresholding technique based on the channel singular values was proposed, and

necessary and sufficient conditions were given to achieve the optimum sum capacity of DPC asK →∞.

However, for that scheme, the optimal threshold must be computed by exhaustive search, and is once

again quite complicated when the number of users is not small.

In this paper, we investigate two low complexity eigen-beamforming-based transceiver structures for the

MIMO broadcast channel with multiple-antenna users, combined with a greedy SUS algorithm. The first

technique is a generalization the G-ZFDPC approach in [10] to account for multiple-antenna users and

combine it with SUS. We refer to this technique as ZFDPC-SUS.The second technique is a generalization

of the algorithm proposed in [13], which we refer to as ZFBF-SUS. For both techniques, we present an

asymptotic performance analysis of the sum rate (as in [6, 13–17]) as the number of users grows large.

In particular, by employing novel analytical techniques, we demonstrate that ZFDPC-SUS achieves the

optimal sum capacity scaling of the MIMO broadcast channel as the number of users grows large. In

addition, we prove the more powerful result that the difference between the sum rate of ZFDPC-SUS

and the sum capacity of the MIMO broadcast channel convergesto zero. We also establish a similar

result for ZFBF-SUS. In addition to the asymptotic analysis, we also investigate the sum rates achieved

by ZFDPC-SUS and ZFBF-SUS for finiteK, for high and low signal-to-noise ratios (SNR). Based on

our analytical results, we establish a number of important insights. For example, we demonstrate that by

employing multiple-antennas at the user terminals only affects the asymptotic sum rate scaling via the

second-order behavior of the multi-user diversity gain. Thus, the improvement due to having multiple

receive antennas at the terminals is much less than that of having multiple transmit antennas, which

provides linear capacity growth through spatial multiplexing gain. However, for finiteK, we show that

the performance improvement due to multiple receive antennas can still be very significant. We also

establish key insights into the design of the semi-orthogonality parameter used in the SUS algorithm.

In particular, it has been claimed previously that the semi-orthogonality constraint will cause multi-user

diversity gain reduction [13]. However, through our asymptotic analysis, we show that if some very mild

conditions on the semi-orthogonality constraint are met, then the semi-orthogonality parameterdoes not

reduce the multi-user diversity gain in either first or second order, for both ZFDPC-SUS and ZFBF-SUS.

It seems that this conclusion cannot be established by usingprevious analytical methods for SUS [13].

Our analysis also leads to practical design guidelines for selecting the semi-orthogonality parameter for

finite numbers of users, in order to intelligently trade off complexity and performance. Our analysis also

demonstrates that for finite values ofK, ZFDPC-SUS can significantly outperform ZFBF-SUS.
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II. CHANNEL AND SYSTEM MODEL

We consider a MIMO broadcast channel withM transmit antennas andK users, withK ≥M . User

k is equipped withNk antennas. In a flat-fading environment, the baseband model of this system is

yk = Hks+ nk, 1 ≤ k ≤ K, (1)

whereyk ∈ CNk×1 is the received signal vector of userk, Hk ∈ CNk×M denotes the channel matrix

from the transmitter to userk, s ∈ CM×1 represents the transmit signal vector, designed to meet the

total power constraint Tr(E{ssH}) ≤ P , andnk ∈ CNk×1 is white Gaussian noise with zero mean and

covariance matrixINk
. Throughout the paper, we assume (as in [5, 13, 14, 18]) that (i) the channels of

all users are subject to uncorrelated Rayleigh fading and, for simplicity, all users are homogeneous and

experience statistically independent fading, (ii) the transmitter has perfect CSI of all downlink channels2,

and (iii) each user only has access to their own CSI, but not the CSI of the downlink channels of the

other users.

The transmitter supportsL ≤M simultaneous data streams, shared by at mostL selected users (active

users), which are indexed byπ(i), i = 1, 2, · · · , L. (Note that the specific user selection algorithm will

be discussed in Section III.) The transmitted signal vectoris represented as

s = WP
1

2x, (2)

where x = [x1, x2, · · · , xL]T collects the zero-mean circularly symmetric complex Gaussian infor-

mation signals for each of theL data streams, satisfyingE{xxH} = IL, P = diag{p1, p2, · · · , pL}

accounts for the power loading across the multiple streams,chosen to satisfy
∑L

i=1 pi ≤ P , and

W = [w1,w2, · · · ,wL] ∈ CM×L represents the precoder matrix, withwi denoting the beamforming

vector for thei-th stream (i.e. for userπ(i)), normalized to satisfy‖w2‖2 = 1. Note that with this

formulation, a given user may be assigned multiple data streams.

From (2), the received signal vector for userk can be rewritten as

yk = HkWP
1

2x+ nk. (3)

It is convenient to representHk via its singular value decomposition (SVD)Hk = UkΣkV
H
k , whereΣk

is a Nk ×M diagonal matrix containing the singular values ofHk in decreasing order along its main

diagonal, andUk = [uk,1,uk,2, · · · ,uk,Nk
] ∈ CNk×Nk andVk = [vk,1,vk,1, · · · ,vk,M ] ∈ CM×M are

2This assumption is reasonable in time division duplex (TDD)systems, which allows the transmitter to employ reciprocity to
estimate the downlink channels.

October 20, 2018 DRAFT



5

unitary matrices withuk,j andvk,j representing the left and right singular vectors corresponding to the

j-th largest singular value
√

λk,j.

To detect the data streami, userπ(i) left multiplies the received vector byuπ(i),di
as follows

rπ(i),di
= uH

π(i),di
yπ(i)

=
√

λπ(i),di
vH
π(i),di

WP
1

2x+ ñπ(i),di
, (4)

whereñπ(i),di
= uH

π(i),di
nπ(i) ∼ CN (0, 1) is the effective additive white Gaussian noise after processing,

anddi denotes theeigen-mode indexfor streami, chosen according to the selection procedure outlined

in Section III. Collecting the processed signals (4) for each of theL data streams, we may write

r = Cπ,dWP
1

2x+ ñ = Λ
1

2

π,dΞπ,dWP
1

2x+ ñ, (5)

whereCπ,d = [cT
π(1),d1

cT
π(2),d2

, · · · , cT
π(L),dL

]T is the composite channel matrix for the selected users and

eigen-channel set withi-th row vectorcπ(i),di
=
√

λπ(i),di
vH
π(i),di

, ñ = [ ñπ(1),d1
, ñπ(2),d2

, · · · , ñπ(L),dL
]T ,

Λπ,d = diag{λπ(1),d1
, · · · , λπ(L),dL

}, andΞπ,d = [vπ(1),d1
, · · · ,vπ(L),dL

]H .

In the next section, we will describe several transceiver structures, as well as a greedy method for

selecting the set of active usersπ = {π(1), · · · , π(L)} and the corresponding eigen-channels (active

eigen-channels)d = {d1, · · · , dL}.

III. T RANSCEIVER STRUCTURES ANDUSERSELECTION ALGORITHM

A. Greedy Zero-Forcing Dirty Paper Coding Algorithm

In this subsection, we present a transmission strategy which jointly combines ZF, DPC, and eigen-

beamforming, along with a greedy low complexity SUS scheduling algorithm. Henceforth, this strategy

will be termed ZFDPC-SUS. To the best of our knowledge this scheme has not been considered before.

We note, however, that it is an extension of the ZFDPC strategy considered in [5, 10, 18] to account for

multiple receive antennas, and also a variation of the algorithm discussed briefly in [13, Sect. VIII].

Let Ξπ,d = Lπ,dQπ,d denote the QR decomposition ofΞπ,d, whereLπ,d is a L× L lower triangular

matrix with (i, j)-th entry li,j, andQπ,d = [qT
1 , · · · ,qT

L]
T is aL×M matrix with orthonormal rows (qi

denotes thei-th row vector). The transmit precoder matrix is chosen as

W = QH
π,d. (6)

Then, (5) yields a set of interference channels

rπ(i),di
=
√

λπ(i),di

(√
pi li,ixi +

∑

j<i

√
pj li,jxj

)

+ ñπ(i),di
. (7)
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From (7), if i < j, there is no interference at receiverπ(i) from data streamj. For i > j, the interference

term
∑

j<i

√
pj li,jxj is precanceled at the transmitter by using DPC. Then, the output SNR at receiver

π(i) for data streami is given by

ζπ(i),di
= piγπ(i),di

(8)

whereγπ(i),di
= λπ(i),di

βi, with βi = |li,i|2.

Given the optimal user setπ and the corresponding eigen-channel setd, the sum rate has the form

RZFDPC-SUS= max
pi:

∑
L

i=1 pi≤P

L
∑

i=1

log2(1 + piγπ(i),di
). (9)

To maximize (9), the power should be allocated according to the standard water-filling algorithm.

Now consider the problem of selecting the optimal user setπ and corresponding eigen-mode index

set d. These sets are chosen to maximize the sum rate, given by (9).When M < K, to find the

optimal solution, one must apply anexhaustive searchover all possibleL, and for eachL, over all

possible sets ofL subchannels taken from the set of
∑K

k=1 min{M,Nk} available eigen-channels spanned

by all K users. Thus, the total number of possible user and eigen-channel selection sets is given by
∑M

l=1

(

∑
K

k=1 min{M,Nk}
l

)

. Further, since different orderings of a given set will yield different output SNRs,

all permutations of a given set must also be considered. Clearly, the complexity associated with this

exhaustive search is computationally prohibitive in practice, for all but small values ofK.

Here we consider a user and eigen-mode selection algorithm with significantly lower complexity, based

on SUS. This algorithm, which was first presented in [13] in the context of ZFBF, iteratively selects a

user-eigenmode index pair by searching for a set of users with near orthogonal channel vectors, and is

described as follows. LetUn denote thecandidate setat then-th iteration. This set contains the indices

of all users and the corresponding eigen-channels that havenot been selected previously, and which have

not been pruned in the previous iterations (i.e., they have satisfied the “semi-orthogonality criteria” in

each of the previous iterations). Also, letSn = {(π(1), d1), · · · , (π(n), dn)} denote the set of indices of

the selected users and the corresponding eigen-channels after then-th iteration.

ZFDPC-SUS (Algorithm 1)

1) Initialization:

Setn = 1 andU1 = {(k, j)| k = 1, 2, · · · ,K; j = 1, 2, · · · ,min(Nk,M)}.

Let γk,j(1) = λk,j. The transmitter selects the first user and eigen-channel pair as follows:

(π(1), d1) = arg max
(k,j)∈U1

γk,j(1) . (10)

SetS1 = {(π(1), d1)}, and defineq1 = vH
π(1),d1

.
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2) While n ≤M , n← n+ 1.

Calculate candidate set as

Un = {(k, j)|(k, j) ∈ Un−1,

(k, j) 6= (π(n− 1), dn−1), |vH
k,j q

H
n−1|2 < δ}

whereδ is a positive constant, termed thesemi-orthogonality parameter, that is preset before the

start of the selection procedure.

If Un is empty, setn = n− 1 and go to step 3). Otherwise, for each(k, j) ∈ Un, denote

ξi = vH
k,jq

H
i , i = 1, · · · , n− 1 (11)

ξk,j = vH
k,j −

n−1
∑

i=1

ξiqi (12)

γk,j(n) = λk,j ‖ ξk,j ‖2 . (13)

Select then-th active user and corresponding eigen-channel as follows:

{(π(n), dn)} = arg max
(k,j)∈Un

γk,j(n) . (14)

Set

Sn = Sn−1 ∪ {(π(n), dn)},

qn =
ξπ(n),dn

‖ ξπ(n),dn
‖ . (15)

3) The transmitter informs the selected users of the indicesof their selected eigen-channels; then

performs DPC, beamforming, and water-filling power allocation, as discussed previously.

Note that this procedure applies Gram-Schmidt orthogonalization to the ordered rows ofΞπ,d, as described

by (11), (12) and (15). As such, it also computes the requiredtransmit precoding matrix in (6).

Observe the following important relations. According to the QR decomposition ofΞπ,d,

vH
π(n),dn

= (vH
π(n),dn

qH
n ) qn +

n−1
∑

j=1

(vH
π(n),dn

qH
j )qj , (16)

and ln,j = vH
π(n),dn

qH
j , for j < n. With (12),

βn = |ln,n|2 = |vH
π(n),dn

qH
n |2 =‖ ξπ(n),dn

‖2 . (17)
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In addition, since‖vπ(n),dn
‖2 = 1 andqi, i = 1, · · · , L are orthonormal, it can be easily shown that

n
∑

j=1

|ln,j|2 = 1, for n = 1, 2, · · · , L. (18)

B. Zero-Forcing Beamforming Algorithm

The ZFDPC approach described in the previous section has significantly lower complexity than full

(capacity-achieving) DPC, however it is still a nonlinear processing strategy, due to the interference

cancelation step. Thus, a common method for reducing complexity even further is to remove the inter-

ference cancelation and employ linear processing (linear beamforming). It is well-known, however, that

establishing the optimal linear beamforming vectors is a very difficult non-convex optimization problem

[19]. Instead, sub-optimal but simple linear processing schemes are usually adopted. Here we will study

ZFBF which is one of the most popular linear strategies. Unless otherwise indicated, we will employ the

same notational symbols as used in the previous sections.

Let C
†
π,d denote the Moore-Penrose inverse of the equivalent channelmatrix Cπ,d, i.e., C†

π,d =

CH
π,d(Cπ,dC

H
π,d)

−1, and definec̃1, . . . , c̃L as the columns ofC†
π,d. For ZFBF, the precoding matrix

W = [w1, . . . ,wL] is constructed with the beamforming vectorswi =
c̃i

‖c̃i‖ , for i = 1, . . . , L. Note that

this direct implementation of ZFBF requires the explicit computation of the Moore-Penrose inverse of

the channel matrix in order to obtain the beamforming vectors. It has been shown in [18], however, that

this direct calculation can be circumvented, thereby significantly reducing the computational complexity.

To this end, it is convenient to rewrite the decomposition ofCπ,d as Cπ,d = Λ
1

2

π,dLπ,dQπ,d, where

Λ = diag{λπ(1),di
, · · · , λπ(L),dL

} andLπ,d,Qπ,d are defined as in Section III-A. LettingTπ,d = L−1
π,d =

[t1, · · · , tL], assuming thatCπ,d has full row rank, the Moore-Penrose inverseC
†
π,d can be written as

C
†
π,d = QH

π,dL
−1
π,dΛ

− 1

2

π,d . (19)

Note that calculating the inverse ofΛ
1

2

π,d is trivial (since it is diagonal), whereas the inverse ofLπ,d can

be computed using a simple iterative algorithm given in [18,Eq. 11].

For ZFBF, the decoded signal for data streamπ(i) is easily shown to be given by

rπ(i),di
=
√
pi cπ(i),di

wixi + ñπ(i),di

=

√

pi λπ(i),di

‖ ti ‖
xi + ñπ(i),di

(20)

with corresponding SNR

̺π(i),di
=

λπ(i),di

‖ ti ‖2
. (21)
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For the given user setπ and the corresponding eigen-channel setd, the sum rate is given by

RZFBF-SUS= max
pi:

∑
L

i=1 pi≤P

L
∑

i=1

log2(1 + pi̺π(i),di
), (22)

where the optimal power allocation{pi}Li=1 is obtained, once again, by applying the waterfilling procedure.

For ZFBF, we consider a user and eigen-channel selection algorithm based on SUS, following the

same general procedure as inAlgorithm 1. Note that SUS has previously been applied to ZFBF in

[13]. This algorithm typically assumes that each user is equipped with a single receive antenna, however

it extends easily to the multiple receive antenna scenario considered in this paper. One key difference

between the algorithms in [11, 13, 18] are the specific methods employed for selecting the “best” user

in Step 2 of the algorithm. More specifically, in [13], the same method was applied as in (14), whereas

[11] applied a method based on selecting one user at each iteration that results in the largest sum rate

when combined with previously selected users. Whilst the latter method can result in larger sum rate,

here we will consider the former method for analytically tractability. It has been shown, however, that

the difference in sum rate between these two methods is minor[18].

IV. SUM RATE ANALYSIS – ASYMPTOTICK

In this section, we investigate the average sum rate of each of the above transceiver structures. For

tractability, we make the following assumptions throughout this section:

(i) For each user, only the principal eigen-channel is considered. As such, we drop the indices for the

selected eigen-channels (for example, we useγπ(i) instead ofγπ(i),di
).

(ii) The available powerP is divided equally amongst the active users3.

Clearly, the sum rate achieved under these two assumptions will serve as a lower bound to the maximum

achievable sum rate. We will also assume that each user hasN antennas, and that there areL = M data

streams.

We will investigate the average sum rate of both scheme discussed in the previous section. We focus

on establishing asymptotic results asK →∞, whilst keeping SNR,M , andN fixed.

A. ZFDPC-SUS Scheme

To analyze the sum rate of the ZFDPC-SUS system, we require the distribution of the output SNRζπ(n),

or alternatively the distribution ofγπ(n). Let us first determine the distribution ofγk(n), n = 1, · · · ,M ,

wherek is anarbitrary user selected from the candidate setUn.

3Note that in practice the transmit power may be optimized (e.g., according to the water-filling strategy). In such cases,the
power allocation depends on the instantaneous channel coefficients and thus changes at the fading rate of the channel, which
makes the analysis intractable.
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Starting withn = 1, γk(1), k = 1, . . . ,K, are independent and identically distributed (i.i.d.), with

γk(1) = λk,max (23)

where λk,max is the maximum eigenvalue ofHH
k Hk, whose probability density function (p.d.f.) and

cumulative distribution function (c.d.f.) are known in closed-form and are given as follows [20]:

Lemma 1:LetH ∼ CNN,M(0N,M , IN⊗IM ). The matrixHHH is complex Wishart, whose maximum

eigenvalue has p.d.f.

fmax(x) =

p
∑

r=1

(p+q−2r)r
∑

s=q−p

ar,s xse−rx (24)

and c.d.f.

Fmax(x) =

p
∑

r=1

(p+q−2r)r
∑

s=q−p

ar,s
rs+1

γ(s+ 1, rx) (25)

wherep = min{M,N}, q = max{M,N}, as,r is a constant (dependent onM andN ) which can be

computed using the simple numerical method in [21], andγ(·, ·) is the lower incomplete gamma function.

For n ≥ 2, evaluating the distribution ofγk(n), k ∈ Un, is significantly more challenging. Particularly,

the “max” operation (10) of Step 1 of the previous iteration (i.e., the(n− 1)-th), and also the semi-

orthogonality constraint imposed at Step 2 of the current iteration (i.e., then-th) will make the exact

distribution of the eigen-channel vectors inUn different from the distributions of the eigen-channel vectors

in Ul, l ≤ n − 1. More specifically, forn ≥ 2, the eigen-channels for users in the candidate setUn are

no longer distributed according to the maximum eigen-channel of a complex Wishart matrix (i.e., for

k ∈ Un, vk is no longer an isotropically distributed unit vector on thecomplex unit sphere, andλk,max

is no longer distributed as the maximum eigenvalue of a complex Wishart matrix).

We see from (13) thatγk(n) involves theproductof λk,max and the projection variable‖ ξk ‖2. For the

reasons stated above, the exact distributions of bothλk,max and‖ ξk ‖2 for k ∈ Un, n ≥ 2 are currently

unknown and appear very difficult to derive analytically. Fortunately, we can make progress by appealing

to the “large-user” regime. In particular, when the number of users in the candidate setUn is large,

the problem is greatly simplified by invoking the following key lemma, which shows that removing a

finite number of users fromUn has negligible impact on the statistical properties of the remaining users.

Similar results have also been established previously for different system configurations [11, 13, 18].

Lemma 2:At the n-th iteration,2 ≤ n ≤ M , conditioned on the previously selected eigen-channel

vectorscπ(1), · · · , cπ(n−1), the eigen-channel vectors inUn are i.i.d. Furthermore, as the size of the

candidate user setUn grows large (i.e.limK→∞ |Un| = ∞), conditioned on the previously selected

October 20, 2018 DRAFT
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eigen-channelscπ(1), · · · , cπ(n−1), the eigen-channel for each user inUn converges in distribution to the

distribution of the principal eigen-channel of a complex Wishart matrix.

Proof: See Appendix A.

Note that our result here differs from that of [18] in both thedistribution of the channel vectors and

also the user selection algorithm.

Equipped withLemma2, at then-th iteration, from the point of view of the users inUn, the eigen-

channel vectors of the selected users in the previous iterations (i.e.,cπ(1), · · · , cπ(n−1)) appear to be

randomlyselected. Thus, the orthonormal basisq1, · · · ,qn−1 (generated fromcπ(1), · · · , cπ(n−1)) appears

independent of the eigen-channel vectors of the users inUn. This greatly simplifies the following analysis.

We require the exact distribution ofγk(n) = λk,max ‖ ξk ‖2. To this end, the major challenge is to

derive the c.d.f. ofβk(n) = ‖ξk‖2 for an arbitrary userk ∈ Un, i.e.Fβ(n)(x) = Pr
(

βk(n) ≤ x| k ∈ Un
)

.

Recalling thatln,j = vH
π(n),dn

qH
j for j < n, with (17) and (18), we can re-express this c.d.f. as follows:

Fβ(n)(x) = Pr
(

|vH
k qH

n |2 ≤ x
∣

∣ |vH
k qH

1 |2 < δ, · · · , |vH
k qH

n−1|2 < δ
)

= Pr

(

n−1
∑

i=1

|vH
k qH

i |2 ≥ 1− x

∣

∣

∣

∣

|vH
k qH

1 |2 < δ, · · · , |vH
k qH

n−1|2 < δ

)

= 1−
Pr
(

∑n−1
i=1 |vH

k qH
i |2 ≤ 1− x, |vH

k qH
1 |2 < δ, · · · , |vH

k qH
n−1|2 < δ

)

Pr
(

|vH
k qH

1 |2 < δ, · · · , |vH
k qH

n−1|2 < δ
) . (26)

The denominator,µn(δ)
∆
= Pr

(

|vH
k qH

1 |2 < δ, · · · , |vH
k qH

n−1|2 < δ
)

, denotes the probability that any

arbitrary userk ∈ {1, . . . ,K} will belong to the setUn. Note that this probability has also been considered

in the context of ZFBF for the MIMO broadcast channel in [13],where a rather loose lower bound was

derived. Here we derive an exact expression which applies for largeK, using an alternative derivation

approach. For tractability, our result applies forδ < 1
M−1 , which is easy to establish.

Lemma 3:With sufficiently largeK andδ < 1
M−1 , the probability that an arbitrary userk ∈ {1, . . . ,K}

belongs to the setUn, for n ∈ {2, · · · ,M}, is given by

µn(δ) = Pr
(

|vH
k qH

1 |2 < δ, · · · , |vH
k qH

n−1|2 < δ
)

=

M−1
∑

k=n−1

(

M − 1

k

)

(−1)k
[ n−1
∑

i=0

(

n− 1

i

)

(−1)iik
]

δk. (27)

Proof: See Appendix B.

Note that the term “sufficiently large” inLemma 3implies thatK should be large enough such that:

Kn = |Un| ≈ Kµn(δ) (28)

due to the law of large numbers (LLN). In fact, this also places an additional requirement onδ, which
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must be selected such that asK →∞, |Un| becomes sufficiently large (e.g. such thatlimK→∞ |Un| =∞).

More specifically, sinceδ < 1, by examining (28) and (27) and recalling the condition onδ in the lemma

statement, we can establish the following design criterion: δ should be chosen such that

lim
K→∞

KδM−1 =∞ and δ <
1

M − 1
. (29)

This implies that anyδ can be selected, as long as it does not approach zero at a rate of 1/K
1

M−1 or

faster asK →∞, whilst also meeting the technical conditionδ < 1
M−1 . These are very mild conditions

which are easy to satisfy (for example, choosingδ to be any constant less than1
M−1 ). We further discuss

the design implications of selectingδ in Section IV-C.

The numerator in (26) can be evaluated using similar methods, which leads to the following result:

Lemma 4:Let k ∈ Un, n ∈ {2, · · · ,M}, and assumeδ is chosen to satisfy (29). For sufficiently large

K, the c.d.f. ofβk(n), given in (26), can be expressed as follows:

Fβ(n)(x) =



































0 , x ≤ 1− (n− 1)δ

1− Γ(M)
Γ(M−n+1)µn(δ)

×
∫

tn−1
· · ·
∫

t1
(1−∑n−1

i=1 ti)
M−ndt1 · · · dtn−1 , 1− (n− 1)δ < x ≤ 1

1 , x > 1

(30)

where the integral region is given byti ∈
[

0,min
{

δ, 1 − x−∑n−1
j=i+1 tj

}

]

.

For n = 2, (30) has the closed-form solution

Fβ(2)(x) =























0 x ≤ 1− δ

xM−1−(1−δ)M−1

1−(1−δ)M−1 1− δ < x ≤ 1

1 x > 1

. (31)

Proof: See Appendix C.

For arbitraryM andn, it is difficult to obtain an exact closed-form solution for this c.d.f. Based on the

above lemma, however, we can derive closed-formupper and lower bounds, as given by the following:

Lemma 5:The c.d.f.Fβ(n)(x), for n ∈ {2, · · · ,M}, satisfiesFβ̄(n)(x) ≤ Fβ(n)(x) ≤ F
β̃(n)(x), with

F
β̃(n)(x) andFβ̄(n)(x) given by (32) and (33)

Fβ̃(n)(x) =























0 x ≤ 1− (n− 1)δ

1− µn(
1−x

n−1
)

µn(δ)
1− (n− 1)δ < x ≤ 1

1 x > 1

(32)
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and

Fβ̄(n)(x) =























0 x ≤ 1− (n− 1)δ

1− I1−x(n−1,M−n+1)
µn(δ)

1− (n− 1)δ < x ≤ 1

1 x > 1

(33)

respectively, whereµn(·) is given by (27) andIx(·, ·) is the regularized incomplete beta function.

Note that forn = 2, Fβk(n)(x) = Fβ̄(n)(x) = F
β̃(n)(x).

Proof: See Appendix D.

Equipped withLemma 5, and with the help ofLemma1, we may now derive upper and lower bounds

on the c.d.f. ofγk(n). To establish this result, recall that for an arbitrary userk ∈ Un, n ≥ 2, then

γk(n) = λk,maxβk(n). Also, defineγ̄k(n) = λk,maxβ̄k(n) and γ̃k(n) = λk,maxβ̃k(n), with c.d.f.sFγ̄(n)(x)

andFγ̃(n)(x) respectively.

Lemma 6:The c.d.f.Fγ(n)(x), for n ∈ {2, · · · ,M}, satisfiesFγ̄(n)(x) ≤ Fγ(n)(x) ≤ Fγ̃(n)(x), with

Fγ̃(n)(x) andFγ̄(n)(x) given by

Fγ̃(n)(x) = Fmax

(x

t

)

− 1

µn(δ)

M−1
∑

k=n−1

(

M − 1

k

)

(−1)k
[

n−1
∑

i=0

(

n− 1

i

)

(−1)i
(

i

n− 1

)k
]

p
∑

r=1

(N+M−2r)r
∑

s=q−p

ar,s

×
k
∑

j=0

(

k

j

)

rk−j−s−1(−x)k−j
[

Γ (j − k + s+ 1, rx)− Γ
(

j − k + s+ 1,
rx

t

)]

. (34)

Fγ̄(n)(x) = Fmax

(x

t

)

− 1

µn(δ)

M−n
∑

k=0

(

M − 1

k

)

(−1)k
p
∑

r=1

(N+M−2r)r
∑

s=q−p

ar,s

M−k−1
∑

j=0

(

M − k − 1

j

)

rM−j−s−2

×(−x)M−j−1
[

Γ (j + s−M + 2, rx)− Γ
(

j + s−M + 2,
rx

t

)]

. (35)

respectively, whereFmax(·), p, q andar,s are defined as inLemma1, t = 1− (n−1)δ andΓ(·, ·) denotes

the upper incomplete gamma function.

For the casen = 2, Fγ(n)(x) = Fγ̃(n)(x) = Fγ̄(n)(x).

Proof: See Appendix E.

Although not shown due to space limitations, these bounds have been confirmed through simulations.

Recall that our primary aim is to characterize the distribution of ζπ(n), or equivalentlyγπ(n) which,

from (14), is the maximum of a collection of i.i.d. random variables chosen fromUn, with common c.d.f.

Fγ(n)(x). Moreover, as discussed previously, our main interest is the case where the number of usersK,

and consequently the size ofUn, is large. As such, from the theory of extreme order statistics (see e.g.

[14, Appendix I] [22]), the asymptotic distribution of the largest order statisticγπ(n) depends on thetail

behavior (largex) of Fγ(n)(x). Forn ≥ 2, the following closed-form asymptotic (highx) expansions for
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the c.d.f. upper and lower bounds in (34) and (35) are derivedin Appendix F:

Fγ̃(n)(x) = 1− 1

µn(δ) εn
e−xxM+N−n−1

+ O(e−xxM+N−n−2) (36)

Fγ̄(n)(x) = 1− 1

µn(δ) ǫn
e−xxM+N−n−1

+ O(e−xxM+N−n−2) (37)

where

1

εn
=

Γ(n)

Γ(M − n+ 1)Γ(N)(n − 1)n−1
, (38)

1

ǫn
=

1

Γ(M − n+ 1)Γ(N)
. (39)

Based on the above results, we can establish upper and lower bounds of the asymptotic distribution

of γπ(n), for largeK. To this end, definẽγπ(n) = maxk∈Un
γ̃k(n) and γ̄π(n) = maxk∈Un

γ̄k(n), with

c.d.f.sFγ̃π(n)
(x) andFγ̄π(n)

(x) respectively. It is clear thatFγ̄π(n)
(x) ≤ Fγπ(n)

(x) ≤ Fγ̃π(n)
(x), where the

equalities hold whenn = 1. Then, we have the following lemma:

Lemma 7:The random variables̃γπ(n) and γ̄π(n), n ∈ {2, · · · ,M}, satisfy

Pr{un − log log
√
K ≤ γ̃π(n) ≤ un + log log

√
K}

≥ 1−O

(

1

logK

)

, (40)

Pr{χn − log log
√
K ≤ γ̄π(n) ≤ χn + log log

√
K}

≥ 1−O

(

1

logK

)

, (41)

where4

un = log

(

K

εn

)

+ (M +N − n− 1) log log

(

K

εn

)

, (42)

χn = log

(

K

ǫn

)

+ (M +N − n− 1) log log

(

K

ǫn

)

. (43)

Proof: This result is readily established by combining (36) and (37) with the extreme order statistics

result given in5 [14, Lemma7].

4Here log(·) represents the natural logarithm.
5Note that there are some minor typographical errors with [14, Lemma7]. Here we have adopted the correct results.
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For the casen = 1, γπ(n) = γ̃π(n) = γ̄π(n), whose asymptotic distribution is [14]

Pr{u1 − log log
√
K ≤ γπ(1) ≤ u1 + log log

√
K}

≥ 1−O

(

1

logK

)

. (44)

Interestingly, we can obtain the same result if we substitute n = 1 into (40)–(43). The asymptotic

distribution ofζπ(n) follows from the above results.

Lemma 8:Let ρ = P
M

. For ζπ(n), n ∈ {1, · · · ,M}, we have

Pr{̟n − ρ log log
√
K ≤ ζπ(n) ≤ υn + ρ log log

√
K}

≥ 1−O

(

1

logK

)

, (45)

where

̟n = ρ log

(

K

εn

)

+ ρ(M +N − n− 1) log log

(

K

εn

)

, (46)

υn = ρ log

(

K

ǫn

)

+ ρ(M +N − n− 1) log log

(

K

ǫn

)

. (47)

Proof: See Appendix G.

We can now prove the following theorem (see Appendix H), which presents a key contribution:

Theorem 1:For a fixed number of transmit antennasM and receive antennasN , and fixed transmit

powerP , if the semi-orthogonality parameterδ is chosen to satisfy (29), then the sum rateRZFDPC-SUS

of the proposed ZFDPC-SUS scheme satisfies

lim
K→∞

RZFDPC-SUS

M log2[ρ logK]
= 1 (48)

with probability 1, whereρ = P/M . In addition,

lim
K→∞

E{RBC} − E{RZFDPC-SUS} = 0, (49)

whereRBC denotes the sum rate of the MIMO broadcast channel, achievedwith DPC. AsK →∞, the

average sum rate difference between ZFDPC-SUS and DPC is no greater thanO
( log logK

logK

)

.

Note that the sum rate difference convergence (49) is much stronger than the sum rate ratio convergence

in probability (48), since the latter does not preclude the existence of an infinite sum rate gap between

the proposed scheme and the optimal scheme.
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B. ZFBF-SUS Scheme

In this section, we will evaluate the performance of linear ZFBF with SUS. For our analysis, following

[13], we will assume that the criterion (14) is used at each iteration of the SUS algorithm to select the

best user. In [13], it has been proved that ZFBF-SUS can achieve the same asymptotic sum rate scaling

as DPC. Here we establish the stronger result that the average sum rate of ZFBF-SUS converges to

the average sum rate achieved with optimal DPC, which was notestablished in [13]. Deriving an exact

expression for the asymptotic distribution of the output SNR for each data stream, analogous to (45),

appears very difficult for ZFBF-SUS. Thus, here we adopt a different approach, based on first applying

an upper bound which relates the output SNR of ZFBF-SUS in terms of the output SNR of ZFDPC-SUS,

and then applying results from the previous subsection. This leads to the following key theorem:

Theorem 2:For a fixed number of transmit antennasM and receive antennasN , and fixed transmit

powerP , if the semi-orthogonality parameterδ is chosen to satisfy (29), then the sum rateE{RZFBF-SUS}

of the ZFBF-SUS scheme satisfies:

lim
K→∞

E{RBC} − E{RZFBF-SUS} = 0 . (50)

As K →∞, the average sum rate difference between ZFBF-SUS and DPC isno greater thanO
( log logK

logK

)

.

Proof: See Appendix I.

This result shows that, as for the ZFDPC-SUS scheme, we can significantly reduce the complexity of

the SUS search algorithm by choosingδ reasonably small, whilst at the same time achieve the optimal

asymptotic sum rate of DPC.

C. Discussion of Results

Based on the analysis above, some interesting observationsare readily in order.

1) Asymptotically, both schemes can achieve the maximum spatial multiplexing gain ofM , and also

the maximum multi-user diversity gain up to first order (i.e.the SNR scales withlogK, and the

sum rate scales aslog logK). For ZFBF, this scaling behavior agrees with previous results [15, 18].

2) As shown inTheorem1 andTheorem2, provided that the semi-orthogonality parameterδ is selected

appropriately, the asymptotic ergodic sum rates of both schemes converge to that of the MIMO

broadcast channel, and in both cases the difference in average sum rate with respect to optimal

DPC is no greater thanO
(

log logK
logK

)

. Note that similar scaling results have also been obtained for

other user selection schemes with ZFBF [15, 18].

3) In contrast to most related work, our results provide key insights into the effect of the SUS semi-

orthogonality parameterδ and the number of receive antennasN . Considering ZFDPC-SUS, from
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(45) and the expressions for̟n in (46) andυn in (47), we see that imposing the constraintδ does

not reduce the multi-user diversity gain in both first order termsO(logK) and second-order terms

O(log logK). It appears that this result can not be established based on previous (less accurate)

SUS analysis methods [13]. Moreover, our analysis demonstrates that whilst the first order terms

O(logK) in the multi-user diversity gain are unaffected by the number of receive antennasN , the

second-order term grows linearly with bothN andM . This is consistent with a similar conclusion

made in [14], which considered a different system configuration.

4) We can also draw insights into the design ofδ. For practical systems withfinite numbers of

users, obtaining the exactδ which yields the optimal complexity–performance tradeoffremains

a challenging open problem. However, our asymptotic analysis still provides guidance for the

implementation of practical SUS algorithms. In particular, we see that the choice ofδ is closely

related toK andM and, to minimize complexity, it is clearly desirable to select δ to decrease

with increasingK. At the same time, however, for finite numbers of users it is advisable to

“overcompensate” and selectδ to easily meet the conditions in (29). In our numerical experiments,

we found that for systems withM ≤ 8, the choice ofδ = 1
logK can work well. In addition, since the

number of candidate users decreases with each iteration of the SUS algorithm, further complexity

savings can be achieved by adaptively selectingδ; e.g., at iterationn, settingδn = 1
log |Un| .

5) Although the results in Section IV-A and IV-B demonstratethat both the ZFDPC-SUS and ZFBF-

SUS schemes achieve the same asymptotic average sum rate, the speed of convergence to this

optimal sum rate can be very different. Intuitively, this performance difference is caused by a

reduction in theeffective channel gain[13] seen by the ZFBF receivers. Thus, for finiteK, there

will be a gap in the average sum rates of the two schemes. We will now study this more closely.

V. SUM RATE ANALYSIS – FINITE K

In this section, we analyze the achievable sum rates of the ZFDPC-SUS and ZFBF-SUS schemes for

finite numbers of users. To obtain clear insights, we focus on the high and low SNR regimes. Our analysis

is based on studying the gap between the sum rates achieved bythe two transceivers and a fixed upper

bound. This study follows the method of [23], which considered single-user MIMO receivers. We will

first evaluate the performance for a given set of channel realizations, and then investigate the average

performance via simulations. We make the same assumptions as stated at the beginning of Section IV.

Given a set ofM usersπ determined by user selection6, the sum capacity of the MIMO broadcast chan-

6For a meaningful comparison, we will assume that for both schemes, the same SUS selection criteria is used, based on (14).
As such, the active users sets and the corresponding compound channel matrixCπ,d will be the same for both schemes.
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nel {Hπ(k)}Mk=1 can be written by using the duality of the MIMO broadcast channel and the MIMO mul-

tiple access channel as [4]CBC
(

{Hπ(k)}Mk=1, P
)

= max∑
k

trQk≤P log2 det

(

I+
∑M

k=1H
H
π(k)QkHπ(k)

)

.

Since no closed-form solution exists, it is very difficult tocompareCBC
(

{Hπ(k)}Mk=1, P
)

with RZFDPC-SUS

andRZFBF-SUS. In fact, even with our assumption of equal power allocation, i.e.Qk = P
KN

I, this problem

is still difficult, due to the complicated structure of the compound channel matrixCπ,d for the ZFDPC and

ZFBF schemes (see (5)). Thus, to analyze the difference in sum rate betweenRZFDPC-SUSandRZFBF-SUS

for finite K, we adopt an indirect approach and focus on characterizing the differences between the

sum rates achieved by the two transceiver structures andC, whereC = log2 det(IM + ρCπ,dC
H
π,d) with

ρ = P/M .

Before presenting our main results, it is worth noting that [5, Theorem3] limP→∞CBC(Cπ,d, P )−C =

0, whereCBC(Cπ,d, P ) denotes the sum capacity of a MIMO broadcast system given by (5). Moreover,

for the caseN = 1, {Hπ(k)}Mk=1 reduces toCπ,d andCBC
(

{Hπ(k)}Mk=1, P
)

coincides withCBC(Cπ,d, P ).

Thus, the high SNR results which we establish below correspond precisely to the gaps between the sum

rates achieved by the two transceivers and the sum capacity achieved with optimal DPC. Define

ηi =

i−1
∑

j=1

|li,j|2
|li,i|2

, κi =

M
∑

j=i+1

|tj,i|2
|ti,i|2

, (51)

whereli,j andti,j are the(i, j)-th elements of matricesLπ,d andTπ,d, respectively. Some basic manip-

ulations of the results in [23] yield the following theorem:

Theorem 3:For finite number of usersK, finite number of transmit and receive antennasM andN ,

• In the high SNR region:

C −RZFDPC-SUS =
1

ρ log 2

M
∑

i=1

κi
λπ(i)|li,i|2

+O(ρ−2), (52)

C −RZFBF-SUS =

M
∑

i=1

log2(1 + κi)

+O(ρ−2). (53)

• In the low SNR region:

C −RZFDPC-SUS =
ρ

log 2

M
∑

i=1

ηiλπ(i)|li,i|2

+O(ρ2), (54)
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C −RZFBF-SUS =
ρ

log 2

M
∑

i=1

(1 + ηi −
1

1 + κi
)

× λπ(i)|li,i|2 +O(ρ2). (55)

From these results, we can make the following conclusions.

High SNR Region:As ρ→∞, for ZFDPC-SUS the sum rate approachesC, whereas for ZFBF-SUS

there is a constant sum rate gap ofA ,
∑M

i=1 log2(1+κi). This gap can be zero only whenκi = 0, which

is a rare case corresponding to complete orthogonality between the row vectors ofCπ,d. Subtracting (54)

from (55), in this region we can also quantify the sum rate gapbetween ZFDPC-SUS and ZFBF-SUS

asRZFDPC-SUS−RZFBF-SUS= A+O(ρ−1), which shows the advantage of ZFDPC-SUS for finiteK.

Low SNR Region:As ρ → 0, for both ZFDPC-SUS and ZFBF-SUS, the sum rate gaps w.r.t.C

approach zero linearly withρ. Moreover, in this region we can again quantify the sum rate gap as

RZFDPC-SUS−RZFBF-SUS=
ρ

log 2

∑M
i=1(1− 1

1+κi
)λπ(i)|li,i|2, which is non-negative. It is also worth noting

that in the low SNR regime, better performance may be achievable by transmitting with full power to only

a single user, rather than sending equal power streams toM selected users. The benefit of this approach,

however, will depend not only on the SNR value, but also on thenumber of usersK. In particular, the

benefit of this approach is expected to be most evident whenK is small, for which case there will be

the most disparity between the dominant eigen-channels of the users.

Effect of SUS Parameterδ: According to the SUS algorithm, we have|li,j|2 < δ for i > j, and

|li,i|2 > 1 − (i − 1)δ. Thus, with smaller semi-orthogonality parameterδ, it is more likely to have

off-diagonal elements with smaller absolute value in bothLπ,d and Tπ,d (i.e smaller|li,j |, i < j and

|tj,i|, i < j ) and more likely to have diagonal elements with larger absolute value inLπ,d. From (51),

these observations imply that a smallerδ leads to smallerηi andκi. In addition, it is easy to see that

ηi|li,i|2 =
∑i−1

j=1 |li,j|2 and (1 + ηi)|li,i|2 = 1. With these results, we see that by decreasingδ, the sum

rate gaps for both transceivers are likely to decrease, for both high and low SNRs. This implies that the

sum rates of both transceivers are likely to increase, whichagrees with intuition.

Fig. 1 demonstrates the average sum rate gaps of ZFDPC-SUS and ZFBF-SUS for different SNRs.

Results are shown forM = 4, N = 4, K = 50, and δ = 1
logK . These results confirm our analytical

conclusions given above, based onTheorem3.

VI. N UMERICAL RESULTS

For our simulations, we useP = 15 dB, δ = 1
logK , and the optimal water-filling power allocation.

Fig. 2 plots the average sum rate achieved by ZFDPC-SUS and ZFBF-SUS as a function of the number

of users. Curves are also presented for ZFBF with complete search, as well as optimal DPC. In the first
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Fig. 1. Comparison of sum rate gap for different SNRs.M = 4, N = 4, K = 50.

case, a search is conducted over all combinations of users, and the combination with the highest sum rate

is selected. Due to the very high complexity of this approach, we only provide results for relatively small

K. The optimal DPC curve acts as an achievable upper bound, andis computed using the algorithm

from [24]. In addition, based on (98) and the expressions forun in (42) andχn in (43), we have plotted
∑M

i=1 log2(1 + ρ(logK + (M +N − i− 1) log logK)) as an asymptotic approximation for the average

sum rate of the ZFDPC-SUS scheme. As evident from the figure, the performance of ZFDPC-SUS is very

close to that of DPC, and is slowly converging to DPC asK grows large. The asymptotic approximation

for ZFDPC-SUS based on our analysis is also quite good (within 1 bps/Hz). Considering ZFBF, we see

that the ZFBF-SUS curve is no more than0.5 dB away from that of the complete search method; further

verifying the utility of the SUS approach. Moreover, the ZFBF curves are far below the ZFDPC-SUS

curve, demonstrating that ZFDPC-SUS hassignificantperformance advantages at finiteK. For further

comparison, we have also implemented a related algorithm proposed in [15] and plotted the corresponding

sum rate curve. This curve is generated by using an optimal threshold, computed by an exhaustive search.

The performance is close to that of ZFBF-SUS.

Fig. 3 compares the average sum rate of ZFDPC-SUS and ZFBF-SUS as a function of the number of
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Fig. 2. Comparison of average sum rates for different numbers of users.M = 4, N = 4, P = 15 dB.

users, for different numbers of receive antennas. Note thataccording to (98) and the expressions forun

andχn in (42) and (43) respectively, if we increase the number of receive antennas by one, the increase

in sum rate can be approximated asM log

(

1 + ρ log logK
1+ρ logK

)

→ 0 asK →∞; i.e., the difference in sum

rate will be negligible for largeK. However, the figure shows that this convergence is very slow, and

that increasing the number of receive antennas can significantly increase the sum rate for finiteK.

VII. C ONCLUSION

We have investigated the sum rate of two low complexity eigenmode-based transmission techniques for

the MIMO broadcast channel, ZFDPC-SUS and ZFBF-SUS. We proved that ZFDPC-SUS can achieve

the optimal sum rate scaling of the MIMO broadcast channel, and that the average sum rate of both

techniques converges to the average sum capacity of the MIMObroadcast channel asK grows large

(albeit at different rates). We also investigated and compared the achievable sum rates of ZFDPC-SUS

and ZFBF-SUS for finiteK, and demonstrated that ZFDPC-SUS has significant performance advantages.

In contrast to most previous related results, our analytical results provide important insights into the

benefit of multiple receive antennas, and the effect of the SUS algorithm.
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APPENDIX A

PROOF OFLemma2

Our derivation closely follows the method of proof for [18,Lemma3] and [25,Lemma1]. For two

complex vectorsz = zr + zi and z′ = z′r + z′i with the same dimension, we writez � z′ if every

element ofzr and zi is less than or equal to its counterpart inz′r and z′i, respectively. LetKn denote

the cardinality of the candidate setUn. For the first iteration,K1 = K and cπ(1) is the vector with

the maximum norm. For clarity of exposition, at the end ofn-th iteration, we relabel the eigen-channel

vectors inUn/{π(n)} as c̃1, · · · , c̃Kn−1.

We find that the result in [25,Lemma1], which was derived specifically for Gaussian vectors, holds

more generally and does not require the Gaussian assumption, and indeed can also be adapted to our

case. The proof is based on induction. For the first iteration, we have

Pr{c̃1 � z1, · · · , c̃K−1 � zK−1|cπ(1) = z(1)}

=

K−1
∏

i=1

Pr{c̃i � zi|‖c̃i‖ < ‖z(1)‖} (56)
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and sincelimK→∞ ‖z(1)‖ =∞,

lim
K→∞

Pr{c̃i � zi|‖c̃i‖ < ‖z(1)‖} = Fc(zi), (57)

whereFc(·) is the c.d.f. of the principal eigen-vector of a complex Wishart matrix.

Now assume that this lemma holds up to the(n− 1)-th iteration and let us consider then-th iteration.

Conditioned oncπ(1), · · · , cπ(n−1), according to our assumption, the channel vectors inUn are i.i.d. and

converge in distribution to the principal eigen-vector of acomplex Wishart matrix. At the end of step

3) of then-th iteration, userπ(n) is chosen. Any userk in Un satisfiesγk(n) ≤ γπ(n). Replacing the

condition7 {cπ(1) = z(1)} and {‖c̃i‖ ≤ ‖z(1)‖} by {cπ(1) = z(1), · · · , cπ(n−1) = z(n−1), cπ(n) = z(n)}

and{cπ(1) = z(1), · · · , cπ(n−1) = z(n−1), γk(n) ≤ γπ(n)} respectively in the derivation in [25,Lemma1]

and following the same method as in [25,Lemma1], we can establish that the remaining channel vectors

in Un are i.i.d. with c.d.f.

Pr{c̃i � zi|cπ(1) = z(1), · · · ,

cπ(n−1) = z(n−1), γk(n) ≤ γπ(n)} (58)

for i = 1, . . . ,Kn − 1. SincelimK→∞Kn =∞, γπ(n) is unbounded from above, i.e.,

lim
K→∞

γπ(n) =∞, (59)

and we have

lim
K→∞

Pr {c̃i � zi|cπ(1) = z(1), · · · ,

cπ(n−1) = z(n−1), γk(n) ≤ γπ(n)}

= Pr {c̃i ≤ zi|cπ(1) = z(1), · · · , cπ(n−1) = z(n−1)}.

(60)

By induction Pr{c̃i � zi|cπ(1) = z(1), · · · , cπ(n−1) = z(n−1)} converges in distribution to the distribution

of the principal eigen-vector of a complex Wishart matrix, thereby establishing the lemma.

7To be more precise, we note that different notation is used in[18]. Our conditions{cπ(1) = z(1), · · · , cπ(n) = z(n)} and
{cπ(1) = z(1), · · · , cπ(n−1) = z(n−1), γk(n) ≤ γπ(n)} are analogous to the conditions{hj(1) = z(1), · · · ,hj(n)

= z(n)} and
{hj(1) = z(1), · · · ,hj(n−1)

= z(n−1), R
BF
(n) (hi) ≤ RBF

(n)

(

z(n)

)

} given in [18].
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APPENDIX B

PROOF OFLemma3

According to Lemma2, the eigen-vectorvk, for k ∈ Un, is an isotropically distributed unit vector

on theM -dimensional complex unit hypersphere. In addition, for largeK, the subspace spanned by the

orthonormal basisq1, · · · ,qn−1 becomes independent ofvk. Thus, without loss of generality we can

assumeqi = ei, whereei is the i-th row of the identity matrixIM . Let vk = [v1, · · · , vM ]T , then

µn(δ) = Pr
(

|vH
k qH

1 |2 < δ, · · · , |vH
k qH

n−1|2 < δ
)

= Pr
(

|v1|2 < δ, · · · , |vn−1|2 < δ
)

. (61)

In the following we will first derive the joint p.d.f. of|v1|2, · · · , |vn−1|2.

The surface area of a complex unit hypersphere ofM dimensions is2πM

Γ(M) [26]. So the joint p.d.f. of

v1, · · · , vM can be written as:

f(vk) = f(v1, · · · , vM ) =







Γ(M)
2πM , ‖vk‖ = 1

0, otherwise
. (62)

Definevi = x2i−1 + x2i. Then, the joint p.d.f. ofx1, · · · , x2M can be expressed as:

f(x1, x2, · · · , x2M ) =







Γ(M)
2πM ,

∑2M
i=1 x

2
i = 1

0, otherwise
. (63)

We require the joint p.d.f. ofx1, · · · , x2(n−1), which is evaluated via

f(x1, · · · , x2(n−1))

=

∫

· · ·
∫

∑2M
i=1 xi

2=1
f(x1, · · · , x2M )

× dx2(n−1)+1 · · · dx2M

=
Γ(M)

2πM
V (x1, · · · , x2(n−1)) (64)

whereV (x1, · · · , x2(n−1)) denotes the area

V (x1, · · · , x2(n−1))

=

∫

· · ·
∫

∑
2M
i=1 xi

2=1
dx2(n−1)+1 · · · dx2M

=

∫

· · ·
∫

∑
2M
i=2(n−1)+1 x

2
i=1−∑2(n−1)

i=1 xi
2

× dx2(n−1)+1 · · · dx2M . (65)
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The multi-dimensional integral (65) is seen to be the surface area of a real(2M −2(n−1))-dimensional

hypersphere of radius
√

1−∑2(n−1)
i=1 xi2. Thus, using results from [26], we evaluate this integral as

follows:

V (x1, · · · , x2(n−1))

=
2πM−n+1

Γ(M − n+ 1)



1−
2(n−1)
∑

i=1

xi
2





2(M−n+1)−1

2

×
√
det A dx1 · · · dx2(n−1), (66)

whereA is a (2(n − 1) + 1) × (2(n − 1) + 1) matrix with (i, j)-th elementAi,j = ∂θ
∂xi
· ∂θ
∂xj

with

θ =

(

x1, · · · , x2(n−1),

√

1−∑2(n−1)
i=1 x2i

)T

, and ‘·’ denotes the vector inner product operation. We can

computeAi,j = δi,j+
xixj

1−∑2m
i=1 xi

2 , whereδi,j is the Kronecker-delta function, and after some manipulations

obtaindetA = 1
1−∑2(n−1)

i=1 xi
2
. Combining this result with (64) and (66) we obtain

f(x1, · · · , x2(n−1)) =
Γ(M)

Γ(M − n+ 1)πn−1

×



1−
2(n−1)
∑

i=1

xi
2





M−n

. (67)

It is now convenient to make the polar coordinate transformations x2i−1 = ri cos θi, x2i = ri sin θi, for

i = 1, · · · , n − 1, whereri ≥ 0, 0 ≤ θi ≤ 2π. The corresponding Jacobian is easily evaluated as [26]
(

∏n−1
i=1 ri

)−1
. So the joint density ofr1, · · · , rn−1 is

f(r1, · · · , rn−1)

=
Γ(M)

Γ(M − n+ 1)πn−1

(

1−
n−1
∑

i=1

r2i

)M−n n−1
∏

i=1

ri

×
n−1
∏

i=1

∫ 2π

0
dθi

=
2n−1Γ(M)

Γ(M − n+ 1)

(

1−
n−1
∑

i=1

r2i

)M−n n−1
∏

i=1

ri. (68)

Next we apply the transformationti = r2i , i = 1, . . . , n−1. Clearlyti = |vi|2 (we will deal with ti subse-

quently to simplify notation). The corresponding Jacobianis J(t1, . . . , tn−1) = 1/(2n−1√t1, · · · , tn−1).

So we obtain the desired joint p.d.f. oft1, . . . , tn−1 as

f(t1, . . . , tn−1) =
Γ(M)

Γ(M − n+ 1)

(

1−
n−1
∑

i=1

ti

)M−n

. (69)

Armed with this result, we can now evaluate the desired probability µn(δ) in (61). For notational
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convenience, we will considerµn+1(δ), for n+ 1 ∈ {2, · · · ,M}. DenotingDn = {0 ≤ t1 ≤ δ, · · · , 0 ≤

tn ≤ δ}, we have

µn+1(δ) =

∫

· · ·
∫

Dn

f (t1, · · · , tn) dt1 · · · dtn

=
Γ(M)

Γ(M − n)
ϕn(1) (70)

where we have defined

ϕn(z) =

∫

· · ·
∫

Dn

(

z −
n
∑

i=1

ti

)M−n−1

dt1 · · · dtn (71)

for z ≥ nδ. Note that with this definition,ϕn(1) exists for alln provided thatδ < 1
M−1 . This condition

is assumed in the lemma statement. Thenϕn(z) can be written as

ϕn(z) =

∫

· · ·
∫

Dn−1





∫ δ

0

(

z −
n
∑

i=1

ti

)M−n−1

dtn



 dt1 · · · dtn−1

=
1

M − n

∫

· · ·
∫

Dn−1





(

z −
n−1
∑

i=1

ti

)M−n

−
(

z − δ −
n−1
∑

i=1

ti

)M−n


 dt1 · · · dtn−1

=
1

M − n
(ϕn−1(z)− ϕn−1(z − δ)) . (72)

So we have

ϕn(1) =
1

M − n

(

ϕn−1(1) − ϕn−1(1− δ)
)

(73)

=
1

(M − n)(M − n+ 1)

× (ϕn−2(1) − 2ϕn−2(1 − δ) + ϕn−2(1− 2δ)). (74)

We will now prove, using mathematical induction, that for any integerk ∈ {1, 2, · · · , n− 1},

ϕn(1) =

[ k−1
∏

j=0

(M − n+ j)

]−1

×
k
∑

i=0

(−1)i
(

k

i

)

ϕn−k(1− iδ). (75)

According to (73) and (74), (75) holds fork = 1 andk = 2 respectively. Assuming that (75) holds for
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integerk, applying (72) in (75) yields

ϕn(1) =

[ k
∏

j=0

(M − n+ j)

]−1 k
∑

i=0

(−1)i
(

k

i

)[

ϕn−k−1(1− i δ)− ϕn−k−1(1− (i+ 1) δ)

]

(76)

=

[ k
∏

j=0

(M − n+ j)

]−1{

ϕn−k−1(1) + (−1)k+1ϕn−k−1(1− (k + 1) δ)

+

k−1
∑

i=0

(−1)i+1

(

k + 1

i+ 1

)

ϕn−k−1(1− (i+ 1) δ)

}

(77)

=

[ k
∏

j=0

(M − n+ j)

]−1 k+1
∑

i=0

(−1)i
(

k + 1

i

)

ϕn−k−1(1− i δ) (78)

where, to obtain (77), we have used
(

k
i+1

)

=
(

k−1
i

)

+
(

k−1
i+1

)

. Thus, from (78), if (75) holds for integerk,

it also holds fork + 1. By induction, (75) then holds for any integer1 ≤ k < n. Settingk = n − 1 in

(75),

ϕn(1) =

[ n−2
∏

j=0

(M − n+ j)

]−1

×
n−1
∑

i=0

(−1)i
(

n− 1

i

)

ϕ1(1− iδ). (79)

The functionϕ1(1− iδ) can be evaluated as

ϕ1(1− iδ) =

∫ δ

0
(1− iδ − t1)

M−2dt1

=
(1− iδ)M−1 − (1− (i+ 1)δ)M−1

M − 1
. (80)

Substituting (80) into (79) yields a closed-form solution,which we simplify as follows:

ϕn(1) =
Γ(M − n)

Γ(M)

n−1
∑

i=0

(−1)i
(

n− 1

i

)

×
(

(1− iδ)M−1 − [1− (i+ 1)δ]M−1
)

=
Γ(M − n)

Γ(M)

n
∑

i=0

(

n

i

)

(−1)i(1− iδ)M−1

=
Γ(M − n)

Γ(M)

M−1
∑

k=0

(

M − 1

k

)

(−1)k

×
[ n
∑

i=0

(

n

i

)

(−1)iik
]

δk. (81)

Since [27]

N
∑

k=0

(

N

k

)

(−1)kk(n−1) = 0, 1 ≤ n ≤ N, (82)
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N
∑

k=0

(

N

k

)

(−1)kkN = (−1)NN !, N ≥ 0, (83)

we obtainϕn(1) =
Γ(M−n)
Γ(M)

∑M−1
k=n

(

M−1
k

)

(−1)k
[
∑n

i=0

(

n
i

)

(−1)iik
]

δk. Substituting into (70) yields (27).

APPENDIX C

PROOF OFLemma4

Similar to the proof ofLemma3, we assumeqi = ei without loss of generality. Then the numerator

of (26) is given by

Pr

(

n−1
∑

i=1

|vH
k qH

i |2 ≤ 1− x, |vH
k qH

1 |2 < δ, · · · , |vH
k qH

n−1|2 < δ

)

= Pr

(

n−1
∑

i=1

|vi|2 ≤ 1− x, |v1|2 < δ, · · · , |vn−1|2 < δ

)

. (84)

Recalling thatti = |vi|2, i = 1, 2, · · · , n− 1, we can evaluate (84) using the joint p.d.f.f(t1, . . . , tn−1)

given in (69) in Appendix B. Forn = 2, we have

Pr
(

|vH
k qH

1 |2 ≤ 1− x, |vH
k qH

1 |2 < δ
)

=























∫ δ

0 (M − 1) (1− t1)
M−2 dt1 x ≤ 1− δ

∫ 1−x

0 (M − 1) (1− t1)
M−2 dt1 1− δ < x ≤ 1

0 x > 1

(85)

Solving the integrals in (85) and combining the result with (27) and (26) leads to the explicit solution

given in (31). Forn > 2, the problem is much more difficult. In this case, using (69),we obtain

Pr

(

n−1
∑

i=1

|vH
k qH

i |2 ≤ 1− x, |vH
k qH

1 |2 < δ, · · · , |vH
k qH

n−1|2 < δ

)

=























0 x > 1

µn(δ) x ≤ 1− (n− 1)δ

Γ(M)
Γ(M−n+1)

∫

tn−1
· · ·
∫

t1

(

1−∑n−1
i=1 ti

)M−n

dt1 · · · dtn−1 1− (n− 1)δ < x ≤ 1

(86)

with the integration region for the remaining multi-dimensional integral defined in the lemma statement.

Combining (86) with (27) and (26) leads to (30).
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APPENDIX D

PROOF OFLemma5

We can upper bound the c.d.f. (30), forn ≥ 2, 1 − (n− 1)δ < x ≤ 1, as follows

Fβ(n)(x) ≤ 1− Γ(M)

Γ(M − n+ 1)µn(δ)

×
∫ 1−x

n−1

0
· · ·
∫ 1−x

n−1

0

(

1−
n−1
∑

i=1

ti

)M−n

dt1 · · · dtn−1

= 1−
µn

(

1−x
n−1

)

µn(δ)
(87)

where the second line follows from (70). Forn = 2, we have

Fβ(2)(x) ≤ 1− µ2 (1− x)

µ2(δ)
=

xM−1 − (1− δ)M−1

(1− δ)M−1
(88)

which is exactly the right-hand side of (31).

We can establish the corresponding lower bound via

Fβ(n)(x) ≥ 1− Γ(M)

Γ(M − n+ 1) µn(δ)

×
∫

· · ·
∫

∑
n−1
i=1 ti≤1−x

t1≥0,··· ,tn−1≥0

(

1−
n−1
∑

i=1

ti

)M−n

dt1 · · · dtn−1

= 1− Γ(M)

Γ(M − n+ 1) µn(δ)

×
∫ 1−x

0
(1− y)M−n yn−2

(n − 2)!
dy

= 1− I1−x(n− 1,M − n+ 1)

µn(δ)
, (89)

where we have used the identity [27]
∫ ∫

· · ·
∫

∑
n

i=1 ti≤h
t1≥0,··· ,tn≥0

dt1 · · · dtn = hn

n! . For n = 2, it is easily verified that

(89) is equal to (88).

APPENDIX E

PROOF OFLemma6

Recalling that for uncorrelated Wishart matrices, the eigenvalues and their corresponding eigenvectors

are independent, it follows thatλk,max is independent ofβk(n), β̃k(n), and β̄k(n). Thus, the c.d.f.s

of γk(n), γ̃k(n), and γ̄k(n), can be derived asFγ(n)(x) =
∫∞
0 Fβ(n)(x/y)fmax(y)dy, Fγ̃(n)(x) =

∫∞
0 F

β̃(n)(x/y)fmax(y)dy, andFγ̄(n)(x) =
∫∞
0 Fβ̄(n)(x/y)fmax(y)dy respectively, wherefmax(·) is the
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p.d.f. of the maximum eigenvalue ofHkH
H
k . Together withLemma5, it follows trivially thatFγ̄(n)(x) ≤

Fγ(n)(x) ≤ Fγ̃(n)(x), where the equalities hold forn = 2.

What remains is to derive closed-form expressions forFγ̃(n)(x) andFγ̄(n)(x). First considerFγ̃(n)(x).

Recalling (32), and noting that for1− (n− 1)δ < x ≤ 1, Fβ̃(n)(x) can be re-expressed using (27) as

F
β̃(n)(x) = 1− 1

µn(δ)

M−1
∑

k=n−1

(

M − 1

k

)

(−1)k

×
[ n−1
∑

i=0

(

n− 1

i

)

(−1)i
(

i

n− 1

)k

(1− x)k
]

(90)

it follows usingLemma1 that

Fγ̃(n)(x) = Fmax

(x

t

)

− 1

µn(δ)

M−1
∑

k=n−1

(

M − 1

k

)

(−1)k

×
[ n−1
∑

i=0

(

n− 1

i

)

(−1)i
(

i

n− 1

)k ] p
∑

r=1

(N+M−2r)r
∑

s=q−p

ar,s

∫ x

t

x

(

1− x

y

)k

yse−rydy. (91)

By applying the transformationz = y
x

along with some elementary algebraic manipulations, the remaining

integral is evaluated as

∫ x

t

x

(

1− x

y

)k ys

ery
dy

=

k
∑

j=0

(

k

j

)

(−1)k−jrk−j−s−1xk−j

×
[

Γ(j − k + s+ 1, rx)− Γ
(

j − k + s+ 1,
rx

t

)]

.

Substituting this expression into (91), we readily obtain the result (34). A closed-form expression for

Fγ̄(n)(x) can be obtained in a similar manner, and is omitted due to space limitations.

APPENDIX F

ASYMPTOTIC EXPANSION OF C.D.F.S OF γ̃k(n) AND γ̄k(n) FOR LARGEx

First note that the tail behavior (largex) of Fmax(x) is given by [15]

Fmax(x) = 1− e−xxM+N−2

Γ(M)Γ(N)
+O(e−xxM+N−3). (92)

Then, the corresponding expansion for the termFmax(
x
t
) in both (34) and (35) follows immediately. In the

following, we require a corresponding expansion for the remaining terms in (34) and (35). First consider

(34). Since the remaining terms in this case involve the upper incomplete gamma functionΓ(n, x), we
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require an asymptotic expansion forΓ(n, x) at x → ∞. Using the definition and integrating by parts,

for largex we haveΓ(n, x) = e−xxn−1[1 + n−1
x

+ (n−1)(n−2)
x2 + · · · ]. Sincet < 1, the terms that decay

most slowly in the summation in (34) can be expressed as

J1 =
∑M−1

k=n−1 Ck
∑N+M−2

s=q−p
a1,sx

s

ex

∑k
j=0

(k
j
)

(−1)k−j

×
[

1 + j−k+s
x

+ (j−k+s)(j−k+s−1)
x2 + · · ·

]

, (93)

where

Ck =

(

M − 1

k

)

(−1)k
[ n−1
∑

i=0

(

n− 1

i

)

(−1)i
(

i

n− 1

)k ]

. (94)

Using (82) we can obtain

k
∑

j=0

(

k

j

)

(−1)k−jj(m−1) = 0, 1 ≤ m ≤ k,

k
∑

j=0

(

k

j

)

(−1)k−jjk = k!, k ≥ 1, (95)

from which it follows that in (93),
∑k

j=0

(

k
j

)

(−1)k−j
∏

m

v=1(j−k+s+1−v)
xm = 0 for 1 ≤ m < k− 1, and also

that
∑k

j=0

(

k
j

)

(−1)k−j
∏

k

v=1(j−k+s+1−v)
xk = k!

xk . We then have

J1 =
M−1
∑

k=n−1

Ck
N+M−2
∑

s=q−p

a1,sx
sk!

ex

(

1

xk
+O

(

1

xk+1

))

, (96)

which upon substituting forCk and applying some manipulations using (95) gives

J1 =
(M − 1)!(n − 1)!

(M − n)!(n− 1)n−1
a1,M+N−2e

−xxM+N−n−1

+ O(e−xxM+N−n−2) . (97)

From (92), we havefmax(x) =
e−xxN+M−2

Γ(M)Γ(N) +O(e−xxN+M−3). Thereforea1,N+M−2 =
1

Γ(M)Γ(N) . Together

with (97) and (92), we have (36). By using a similar method, the terms that decay most slowly in the

summation in (35) can be obtained. That result, used with (92), yields (37).

APPENDIX G

PROOF OFLemma8

Recall thatFγ̄π(n)
(x) ≤ Fγπ(n)

(x) ≤ Fγ̃π(n)
(x). For γπ(n), n ∈ {2, · · · ,M}, and largeK, with (40),

Pr{un − log log
√
K ≤ γπ(n)} ≥ Pr{un − log log

√
K ≤ γ̃π(n)} ≥ 1 − O

(

1
logK

)

. Similarly, with (41)
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we have Pr{γπ(n) ≤ χn + log log
√
K} ≥ Pr{γ̄π(n) ≤ χn + log log

√
K} ≥ 1−O

(

1
logK

)

. Thus,

Pr{un − log log
√
K ≤ γπ(n) ≤ χn + log log

√
K}

≥ 1−O

(

1

logK

)

. (98)

For n = 1, the asymptotic distribution ofγπ(n) has been characterized in [14]. Using that result, along

with (98), the lemma follows upon noting thatζπ(n) = ργπ(n).

APPENDIX H

PROOF OFTheorem1

Using (45) we can obtain Pr

{

log2(1+̟n−ρ log log
√
K)

log2 [ρ logK] ≤ log2(1+ζπ(n))
log2[ρ logK] ≤

log2(1+υn+ρ log log
√
K)

log2 [ρ logK]

}

≥

1 − O

(

1
logK

)

. Substituting (46) and (47) and lettingK → ∞, the left-hand side and right-hand side

inequality within Pr{·} converge to the same value. Thus,limK→∞
log2(1+ζπ(n))
log2[ρ logK] = 1 with probability 1,

and (48) holds. To establish (49), we employ the following upper bound onE{RBC} derived in [16]:

E{RBC} ≤M log2
(

1 + ρ(logK +O(log logK))
)

. (99)

From Lemma8, we have Pr

{

log2(1 + ζπ(n)) ≥ log2(1 +̟n − ρ log log
√
K)

}

≥ 1−O

(

1
logK

)

. Thus,

E{RBC} − E{RZFDPC-SUS}

≤ M log
(

1 + ρ(logK +O(log logK))
)

−
(

1−O

(

1

logK

))

×
M
∑

n=1

log
(

1 +̟n − ρ log log
√
K
)

∼
M
∑

n=1

log

(

1 +
O(log logK)

1 +̟n − ρ log log
√
K

)

+ O

(

1

logK

)

M O(log logK)

∼ O

(

log logK

logK

)

(100)

where we have usedlog(1 + x) ≈ x for x≪ 1, andx ∼ y meanslimK→∞ x/y = 1.
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APPENDIX I

PROOF OFTheorem2

From [13], for small enoughδ, ̺π(n) >
γπ(n)

1+e(δ) , wheree(δ) = (M−1)4δ
1−(M−1)δ . Using this result, together

with (99) and (45), and following a similar method as in Appendix H, we have

E{RBC} − E{RZFBF-SUS}

≤ M log
(

1 + ρ(logK +O(log logK))
)

− E
{ M
∑

n=1

log

(

1 +
ργπ(n)

1 + e(δ)

)}

≤ M log
(

1 + ρ(logK +O(log logK))
)

−
M
∑

n=1

(

1−O

(

1

logK

))

log

(

1 +
̟n − ρ log log

√
K

1 + e(δ)

)

∼
M
∑

n=1

log

(

1 +
ρ
(

e(δ) logK +O(log logK)
)

1 +
(

̟n − ρ log log
√
K
)
∑∞

i=0

(

− e(δ)
)i

)

+O

(

log logK

logK

)

∼ Me(δ) +O

(

log logK

logK

)

, (101)

where we have used the fact that for small enoughδ, |e(δ)| < 1, thus 1
1+e(δ) =

∑∞
i=0

(

− e(δ)
)i

. So we

can see that as long ase(δ) ∼ o(1), or equivalentlyδ ∼ o(1), whilst satisfying the conditions in (29), the

difference will become zero asK →∞. However, obviously ZFBF-SUS with a smaller candidate set at

each iteration (i.e., reduced|Un|) can not achieve more sum rate than ZFBF-SUS with a larger candidate

set at each iteration. Thus, with largerδ, there will be more candidate users for each iteration and the

average sum rate will increase, or at least maintain. So the condition δ ∼ o(1) can be ignored, thereby

establishing (50). From (101), the difference in sum rate isat mostO
( log logK

logK

)

.
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