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SCALING LIMIT FOR THE DIFFUSION EXIT PROBLEM IN

THE LEVINSON CASE

SERGIO ANGEL ALMADA MONTER AND YURI BAKHTIN

Abstract. The exit problem for small perturbations of a dynamical system in
a domain is considered. It is assumed that the unperturbed dynamical system
and the domain satisfy the Levinson conditions. We assume that the random
perturbation affects the driving vector field and the initial condition, and each
of the components of the perturbation follows a scaling limit. We derive the
joint scaling limit for the random exit time and exit point. We use this result
to study the asymptotics of the exit time for 1-d diffusions conditioned on rare
events.

1. Introduction

Small stochastic perturbations of deterministic dynamical systems have been
studied for several decades, see, e.g., a set of lectures [5] and references therein.
Properties of exit distributions for the resulting diffusions are particularly impor-
tant. One reason for that is that one can express the solutions of parabolic and
elliptic PDE’s containing the generator of the diffusion via the exit distributions.
Another reason is the possibility to use exit distributions for the analysis of the
global behavior of the system. One can cover the state space by several domains
and study the process within each of them separately. Using the strong Markov
property one can then treat the exit distribution for one of the domains as the
starting distribution for the next one. This approach was vital for the study of
noisy heteroclinic networks in the vanishing noise limit, see [1],[2].

In this note we study a relatively simple situation called the Levinson case (see [5,
Chapter 2]), where the typical exit happens along a trajectory of the deterministic
flow. We derive a scaling law for the exit distribution in the limit of vanishing
perturbation assuming that the initial random data as well as both deterministic
and white noise components of the perturbation follow a scaling limit.

We also show that our main result can be used to study rare events for diffu-
sions. We present a 1-dimensional situation where to reach a certain threshold,
the diffusion has to evolve against the deterministic flow. By conditioning on this
unlikely event, we reduce the analysis to the Levinson case.

The paper is organized as follows. In Section 2 we state the main theorem for the
Levinson case, postponing its proof to Section 4. In Section 3 we state the result
on the diffusion conditioned on a rare event and derive it from the main theorem
and some auxiliary statements proven in Section 5.
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2. Main result

We consider a C2-smooth bounded vector field b in R
d. The unperturbed dy-

namics is given by the deterministic flow S = (St)t∈R generated by b:

d

dt
Stx0 = b(Stx0), S0x0 = x0.

We will introduce three components of perturbations of this deterministic flow.
They all depend on a small parameter ǫ > 0.

The first component is white noise perturbation generated by ǫσ, where σ : Rd →
R

d×d is a C2-smooth bounded matrix valued function.
The second one is ǫα1Ψǫ, where Ψǫ is a deterministic Lipschitz vector field on R

d

for each ǫ, converging uniformly to a limiting Lipschitz vector field Ψ0, and α1 is a
positive scaling exponent. These conditions ensure that the stochastic Itô equation

(1) dXǫ(t) = (b(Xǫ(t)) + ǫα1Ψǫ(Xǫ(t))) dt+ ǫσ(Xǫ(t))dW

w.r.t. a standard d-dimensional Wiener process W has a unique strong solution
for any ǫ > 0 and all initial conditions (for a general background on stochastic
differential equations see, e.g., [6]).

The last component of the perturbation is the initial condition satisfying

(2) Xǫ(0) = x0 + ǫα2ξǫ, ǫ > 0.

Here α2 > 0, and (ξǫ)ǫ>0 is a family of random variables independent of W , such
that for some random variable ξ0, ξǫ → ξ0 as ǫ → 0 in distribution.

Let M be a smooth C2-hypersurface in R
d. If

τǫ = inf {t ≥ 0 : Xǫ(t) ∈ M} ,

then on {τǫ < ∞} we haveXǫ(τǫ) ∈ M . We are going to study the limiting behavior
of τǫ and Xǫ(τǫ) as ǫ → 0 under the assumptions above.

Let us describe our assumptions on the joint geometry of the vector field b and
the surface M . First we define

T = inf
{

t > 0 : Stx0 ∈ M
}

,

and assume that 0 < T < ∞. Secondly, we denote z = STx0 ∈ M and assume that
b(z) does not belong to the tangent hyperplane TzM . In other words, we assume
that the positive orbit of x0 intersects M and the crossing is transversal.

In the case of ξǫ ≡ 0 and Ψ ≡ 0, Levinson’s theorem states (see [7], [4, Chapter
2], and [5, Chapter 2]) that Xǫ(τǫ) → z in probability as ǫ → 0. Levinson worked
in the PDE context and showed how to obtain an expansion for the solution of the
corresponding elliptic PDE depending on the small parameter ǫ. The main result
of this note describes the limiting behavior of the correction (τǫ − T,Xǫ(τǫ) − z)
and extends [4, Theorem 2.3] to the situation with generic perturbation parameters
ξ0,Ψ, α1, and α2. This extension is essential since, as the analysis in [1] shows, in
the sequential study of entrance-exit distributions for multiple domains one has to
consider nontrivial scaling laws for the initial conditions; also, considering nontrivial
deterministic perturbations will allow us to study rare events, see Section 3.

We need more notation. Due to the smoothness of b,

(3) b(x) = b(y) +Db(y)(x− y) +Q1(y, x− y), x, y ∈ R
d,



SCALING LIMIT FOR THE DIFFUSION EXIT PROBLEM IN THE LEVINSON CASE 3

where

(4) |Q1(u, v)| ≤ K|v|2,

for some constant K > 0 and any u, v ∈ R
d. We denote by Φx(t) the linearization

of S along the orbit of x:

(5)
d

dt
Φx(t) = A(t)Φx(t), Φx(0) = I,

where A(t) = Db(Stx) and I is the identity matrix.
Finally, for any vector v ∈ R

d, we define πbv ∈ R and πMv ∈ TzM by

v = πbv · b(z) + πMv,

i.e., πb is the (algebraic) projection onto span(b(z)) along TzM and πM is the
(geometric) projection onto TzM along span(b(z)).

Theorem 1. Let α = α1 ∧ α2 ∧ 1, and

φ0(t) = 1{α2=α}Φx0
(t)ξ0 + 1{α1=α}Φx0

(t)

∫ t

0

Φx0
(s)−1Ψ0(S

sx)ds

+ 1{1=α}Φx0
(t)

∫ t

0

Φ−1
x0

(s)σ(Ssx0)dW (s), t > 0.(6)

Then, in the setting introduced above,

(7) ǫ−α(τǫ − T,Xǫ(τǫ)− z)→(−πbφ0(T ), πMφ0(T )).

in distribution. If additionally we require that ξǫ → ξ0 in probability or that α2 > α,
then the convergence in (7) is also in probability.

Remark 1. The conditions of Theorem 1 can be relaxed using the standard local-
ization procedure. In fact, one needs to require uniform convergence of Ψǫ → Ψ0

and regularity properties of b and σ only in some neighborhood of the set {Stx0 :
0 ≤ t ≤ T (x0)}.

Remark 2. In applications (see [1],[2]), the parameters α1 and α2 can be chosen
so that the r.h.s. of (7) is nondegenerate.

Remark 3. In the case where d = 1, the hypersurfaceM is just a point. Therefore,
πM is identical zero and the only contentful information Theorem 1 provides is the
asymptotics of the exit time.

3. Conditioned diffusions in 1 dimension

In this section we apply Theorem 1 to the analysis of the exit time of conditioned
diffusions in 1-dimensional situation for the large deviation case.

Suppose, for each ǫ > 0, Xǫ is a weak solution of the following SDE:

dXǫ(t) = b(Xǫ(t))dt+ ǫσ(Xǫ(t))dW (t),

Xǫ(0) = x0,

where b and σ are C1 functions on R, such that b(x) < 0 and σ(x) 6= 0 for all x in
an interval [a1, a2] containing x0. We introduce

τǫ = inf{t ≥ 0 : Xǫ(t) = a1 or a2}

and Bǫ = {Xǫ(τǫ) = a2}. Since b < 0, Bǫ is a rare event since limǫ→0 P(Bǫ) = 0.
More precise estimates on the asymptotic behavior of P(Bǫ) can be obtained in
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terms of large deviations. However, here we study the diffusion Xǫ conditioned on
the rare event Bǫ.

Let T (x0) denote the time it takes for the solution of ẋ = −b(x) starting at x0

to reach a2:

T (x0) = −

∫ a2

x0

1

b(x)
dx.

Theorem 2. Conditioned on Bǫ, the distribution of ǫ−1(τǫ − T (x0)) converges

weakly to a centered Gaussian distribution with variance

−

∫ a2

x0

σ2(y)

b3(y)
dy.

To prove this theorem, we will need two auxiliary statements. Their proofs are
given in Section 5.

Lemma 3. Conditioned on Bǫ, the process Xǫ is a diffusion with the same diffusion

coefficient as the unconditioned process, and with the drift coefficient given by

bǫ(x) = b(x) + ǫ2σ2(x)
hǫ(x)

∫ x

a1

hǫ(y)dy
,

where

(8) hǫ(x) = exp

{

−
2

ǫ2

∫ x

a1

b(y)

σ2(y)
dy

}

.

Further analysis requires understanding the limiting behavior of bǫ. This is the
purpose of the next lemma:

Lemma 4. There is δ > 0 such that

lim sup
ǫ→0

ǫ−2

(

sup
x∈[x0−δ,a2+δ]

|bǫ(x) + b(x)|

)

< ∞.

Proof of Theorem 2. Let us fix β ∈ (1, 2). Lemmas 3 and 4 imply that Xǫ condi-
tioned on Bǫ, up to τǫ satisfies an SDE of the form

dXǫ(t) =
(

−b(Xǫ(t)) + ǫβΨǫ,β(Xǫ(t))
)

dt+ ǫσ(Xǫ(t))dW̃ (t),

for some Brownian Motion W̃ and with Ψǫ,β → 0 uniformly as ǫ → 0. We can
assume that after time τǫ, this process still follows the same equation at least up
to the time it hits x0 − δ or a1 + δ.

So, we can apply Theorem 1 (taking into account Remark 1) to see that

(9) ǫ−1(τǫ−T (x0))
P
−→ −

1

b(a2)
Φx0

(T (x0))

∫ T (x0)

0

Φ−1
x0

(s)σ(Ssx0)dW̃ (s), ǫ → 0,

where Stx0 is the flow generated by the vector field −b, the time T (x0) solves
ST (x0)x0 = a2, and Φx0

is the linearization of S near the orbit of x0. The limit
is clearly a centered Gaussian random variable. To compute its variance we must
first solve

d

dt
Φx0

(t) = −b′(Stx0)Φx0
(t), Φx0

(0) = 1.

The solution to this linear ODE is

Φx0
(t) = exp

{

−

∫ t

0

b′(Ssx0)ds

}

,
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so that after the change of variables u = Ssx0 in the integral, we get

Φx0
(t) =

b(Stx0)

b(x0)
.

Using this expression and Itô isometry for the limiting random variable in (9), we
get that the variance of such random variable is

∫ T (x0)

0

σ2(Stx0)

b2(Stx0)
dt.

We can now use the change of variable u = Ssx0 to get the expression in Theorem 2.
�

4. Proof of the main result

With high probability, at time T the process Xǫ is close to z and the hitting
time τǫ is close to T . The idea of the proof is that while the diffusion is close to z,
the process may be approximated very well by motion with constant velocity b(z).

We start with a lemma and postpone its proof to the end of this section to keep
continuity of the text.

Lemma 5. Let Xǫ be the solution of the SDE (1) with initial condition (2). Let

Θǫ(t) = ǫα2−αΦx0
(t)ξǫ + ǫα1−αΦx0

(t)

∫ t

0

Φx0
(s)−1Ψ0(S

sx0)ds

+ ǫ1−αΦx0
(t)

∫ t

0

Φx0
(s)−1σ(Ssx0)dW (s).(10)

Then,

Xǫ(t) = Stx0 + ǫαφǫ(t)

holds almost surely for every t > 0, where φǫ(t) = Θǫ(t) + rǫ(t), and rǫ converges

to 0 uniformly over compact time intervals in probability.

If ξǫ → ξ0 in distribution, then for any T > 0, φǫ → φ0 in distribution in C[0, T ]
equipped with uniform norm, where φ0 is the stochastic process defined in (6).

If ξǫ → ξ0 in probability or α2 > α, then the uniform convergence for φǫ also

holds in probability.

Remark 4. This lemma gives the first-order approximation for Xǫ(t). Higher-
order approximations in the spirit of [3] are also possible. They can be used to
refine Theorem 1.

Our task now is to analyze the process Xǫ(t) − z for t close to T . Let us first
estimate the deviation of the flow S from the motion with costant velocity b(z).
Let

(11) r±(t, x) = S±tx− (x± tb(z)) , t > 0, x ∈ R
d.

Lemma 6. There are constants C1 and C2 so that for any t > 0 and x ∈ R
d

sup
s≤t

|r±(s, x)| ≤ C1e
C2t(t|x− z|+ t2).

Proof. We prove the result for r+. The analysis of r− is similar since S−tx is the
solution to the ODE

d

dt
S−tx = −b(S−tx).
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Let L > 0 be the Lipschitz constant of b. The proof follows from the inequalities:

|r+(t, x)| ≤

∫ t

0

|b(Ssx)− b(z)| ds

≤ L

∫ t

0

|Ssx− z| ds

≤ L

∫ t

0

|r+(s, x)| ds+ L

∫ t

0

|x+ sb(z)− z| ds

≤ L

∫ t

0

|r+(s, x)| ds+ L

∫ t

0

|x− z|ds+ L

∫ t

0

s|b(z)|ds

≤ L

∫ t

0

|r+(s, x)| ds+ Lt|x− z|+ t2L|b(z)|/2.

The result follows as an application of Gronwall’s lemma. �

Lemma 7. Let γ ∈ (α/2, α). Then, there are two a.s.-continuous stochastic pro-

cesses Γǫ,± such that

sup
t∈[0,ǫγ ]

|Γǫ,±(t)|
P
−→ 0, ǫ → 0,

and almost surely for any t ∈ [0, ǫγ ]

(12) Xǫ(T − t) = z − tb(z) + ǫα (φǫ(T − t) + Γǫ,−(t))

and

(13) Xǫ(T + t) = z + tb(z) + ǫα (Φz(t)φǫ(T ) + Γǫ,+(t)) .

Proof. Due to Lemma 5, the flow property, and (11) we have

Xǫ(T − t) = ST−tx0 + ǫαφǫ(T − t)

= S−tz + ǫαφǫ(T − t)

= z − tb(z) + r−(t, z) + ǫαφǫ(T − t).

The first estimate with Γǫ,−(t) = ǫ−αr−(t, z) follows from Lemma 6 for x = z.

Due to Strong Markov property and Lemma 5 the process X̃ǫ(t) = Xǫ(t+ T ) is
a solution of the initial value problem

dX̃ǫ(t) = (b(X̃ǫ(t)) + ǫα1Ψǫ(X̃ǫ(t)))dt+ ǫσ(X̃ǫ(t))dW̃ ,

X̃ǫ(0) = Xǫ(T ) = z + ǫαφǫ(T ),

with respect to the Brownian Motion W̃ (t) = W (t+T )−W (T ). So, again, applying

Lemma 5 to this shifted equation, we obtain X̃ǫ(t) = Stz+ǫαφ̂ǫ(t), where, for t > 0

φ̂ǫ(t) = Φz(t)φǫ(T ) + θǫ(t),

and

θǫ(t) = ǫ1−αΦz(t)

∫ t

0

Φz(s)
−1σ(Ssz)dW̃ (s)+ǫα1−αΦz(t)

∫ t

0

Φz(s)
−1Ψ0(S

sz)ds+r̃ǫ(t),

where r̃ǫ converges to 0 uniformly over compact time intervals in probability. Then
due to (11),

X̃ǫ(t) = Stz + ǫα(Φz(t)φǫ(t) + θǫ(t))

= z + tb(z) + r+(t, z) + ǫα(Φz(t)φǫ(t) + θǫ(t)).
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Hence, with Γǫ,+(t) = θǫ(t)+ǫ−αr+(t, z) the result is a consequence of Lemma 6. �

Let us now parametrize, locally around z, the hypersurface M as a graph of a
C2-function F over TzM , i.e., y 7→ z+ y+F (y) · b(z) gives a C2-parametrization of
a neighborhood of z in M by a neighborhood of 0 in TzM . Moreover, DF (0) = 0
so that |F (y)| = O(|y|2), y → 0. With this definition, it is clear that, for w ∈ R

d

with w − z small enough, w ∈ M if and only if πb(w − z) = F (πM (w − z)).
Let us define

Ω1,ǫ =
{

τǫ = inf{t ≥ 0 : πb (Xǫ(t)− z) = F (πM (Xǫ(t)− z))}
}

,

Ω2,ǫ = {|τǫ − T | ≤ ǫγ} ,

Ωǫ = Ω1,ǫ ∩ Ω2,ǫ.

Lemma 8. P(Ωǫ) → 1 as ǫ → 0.

Proof. The definition of F and Lemma 5 imply that as ǫ → 0, P(Ω1,ǫ) → 1.
We use (13) to conclude that

πb (Xǫ(T + ǫγ)− z) = ǫγ
(

1 + ǫα−γπb (Φz(ǫ
γ)φǫ(T ) + Γǫ,+(ǫ

γ))
)

,

and
F (πM (Xǫ(T + ǫγ)− z)) = F (ǫαπM (Φz(ǫ

γ)φǫ(T ) + Γǫ,+(ǫ
γ))) .

Since |F (x)| = O(|x|2), these estimates imply that

lim sup
ǫ→0

P ({τǫ > T + ǫγ} ∩ Ω1,ǫ)

≤ lim sup
ǫ→0

P {πb (Xǫ(T + ǫγ)− z) ≤ F (πM (Xǫ(T + ǫγ)− z))} = 0.

It remains to prove

(14) lim
ǫ→0

P {τǫ < T − ǫγ} = 0.

Let us denote the Hausdorff distance between sets by d(·, ·). Then an obvious
estimate

d({Stx0 : 0 ≤ t ≤ T − δ},M) ≥ cδ

holds true for some c > 0 and all sufficiently small δ > 0. Now (14) follows from
Lemma 5, and the proof is complete �

Lemma 9. Define τ ′ǫ = τǫ − T . Then,

ǫ−ατ ′ǫ + πbφǫ(T )
P
−→ 0, ǫ → 0.

Proof. Let us define Aǫ = {0 ≤ τ ′ǫ ≤ ǫγ} ∩Ω1,ǫ and Bǫ = {−ǫγ ≤ τ ′ǫ < 0} ∩Ω1,ǫ, so
that Ωǫ = Aǫ ∪Bǫ. We can use (13) and the definition of Ω1,ǫ to get

1Aǫ
τ ′ǫ + 1Aǫ

ǫαπb (Φz(τ
′
ǫ)φǫ(T ) + Γǫ,+(τ

′
ǫ)) = 1Aǫ

F (ǫαπM (Φz(τ
′
ǫ)φǫ(T ) + Γǫ,+(τ

′
ǫ))) .

This implies

1Aǫ
ǫ−ατ ′ǫ = ǫ−α1Aǫ

F (ǫαπM (Φz(τ
′
ǫ)φǫ(T ) + Γǫ,+(τ

′
ǫ)))

− 1Aǫ
πb (Φz(τ

′
ǫ)φǫ(T ) + Γǫ,+(τ

′
ǫ))

= −1Aǫ
πb (Φz(τ

′
ǫ)φǫ(T )) + rǫ,1

= −1Aǫ
πbφǫ(T ) + 1Aǫ

πb ((I − Φz(τ
′
ǫ))φǫ(T )) + rǫ,1,(15)

where rǫ,1 is a random variable that converges to 0 in probability as ǫ → 0.
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Likewise, since τǫ = T − (−τ ′ǫ) and 1Bǫ
τ ′ǫ ≤ 0, we can use (12) and the definition

of Ω1,ǫ to see that

1Bǫ
τ ′ǫ + 1Bǫ

ǫαπb (φǫ(T + τ ′ǫ) + Γǫ,−(−τ ′ǫ)) = 1Bǫ
F (ǫα (φǫ(T + τ ′ǫ) + Γǫ,−(−τ ′ǫ))) .

Hence, proceeding as before, we see that

1Bǫ
ǫ−ατ ′ǫ = −1Bǫ

πbφǫ(T + τ ′ǫ) + rǫ,2

= −1Bǫ
πbφǫ(T ) + 1Bǫ

πb (φǫ(T )− φǫ(T + τ ′ǫ)) + rǫ,2

for some random variable rǫ,2 such that rǫ,2 → 0 in probability as ǫ → 0. Adding
this identity and (15), we see that on Ωǫ

ǫ−ατ ′ǫ = −πbφǫ(T )+1Aǫ
πb ((I − Φz(τ

′
ǫ))φǫ(T ))+1Bǫ

πb (φǫ(T )− φǫ(T + τ ′ǫ))+rǫ,1+rǫ,2.

Due to Lemma 8, to finish the proof it is sufficient to notice that as ǫ → 0

(16) sup
0≤t≤ǫγ

|(I − Φz(t))φǫ(T )|
P

−→ 0,

and

(17) sup
0≤t≤ǫγ

|φǫ(T )− φǫ(T + t)|
P
−→ 0.

�

Lemma 9 takes care of the time component in Theorem 1. We shall consider the
spatial component now.

Let Aǫ and Bǫ be as in the proof of Lemma 9. Then, (13) implies

(18) 1Aǫ
(Xǫ(τǫ)− z) ǫ−α = 1Aǫ

ǫ−ατ ′ǫb(z) + 1Aǫ
(Φz(τ

′
ǫ)φǫ(T ) + Γǫ,+(τ

′
ǫ))

= 1Aǫ

(

ǫ−ατ ′ǫb(z) + φǫ(T )
)

+ 1Aǫ
[(Φz(τ

′
ǫ)− I)φǫ(T ) + Γǫ,+(τ

′
ǫ)]

Likewise, from (12) we get that

(19) 1Bǫ
(Xǫ(τǫ)− z) ǫ−α = 1Bǫ

ǫ−ατ ′ǫb(z) + 1Bǫ
(φǫ(T + τ ′ǫ) + Γǫ,−(−τ ′ǫ))

= 1Bǫ

(

ǫ−ατ ′ǫb(z) + φǫ(T )
)

+ 1Bǫ
[(φǫ(T + τ ′ǫ)− φǫ(T )) + Γǫ,−(−τ ′ǫ)] .

Adding (18) and (19) and proceding as in the proof of Lemma 9 we see that

(Xǫ(τǫ)− z) ǫ−α − πMφǫ(T ) =
(

ǫ−ατ ′ǫ + πbφǫ(T )
)

b(z) + ρǫ,

where, due to (16), (17) and Lemma 7, ρǫ → 0 in probability as ǫ → 0. From this
expression and Lemma 9 we get that

(Xǫ(τǫ)− z) ǫ−α − πMφǫ(T )
P
−→ 0, ǫ → 0.

Then, using this and the convergence in Lemma 9

ǫ−α(τǫ − T,Xǫ(τǫ)− z) = Rǫ +G(φǫ(T )),

where Rǫ is a random variable such that Rǫ → 0 in probability as ǫ → 0. G is
the continuous function x 7→ (−πbx, πMx). Hence, Theorem 1 follows from the
convergence in Lemma 5.

It remains to prove Lemma 5, the core of the proof of the main result.
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Proof of Lemma 5. Let ∆t
ǫ = Xǫ(t)− Stx0 and note that it satisfies the equation

d∆t
ǫ =

((

b(Xǫ(t))− b(Stx0)
)

+ ǫα1Ψǫ(Xǫ(t))
)

dt+ ǫσ(Xǫ(t))dW (t),

with initial condition ∆0
ǫ = ǫα2ξǫ. We want to study the properties of this equation.

We start with the difference in b. Since b is a C2 vector field, we may write

b(Xǫ(t))− b(Stx0) = Db(Stx0)∆
t
ǫ +Q1(S

tx0,∆
t
ǫ).(20)

Also, we can write

(21) Ψǫ(Xǫ(t)) = Ψ0(S
tx0) +Q2(S

tx0,∆
t
ǫ) +Rǫ(S

tx0),

and

(22) σ(Xǫ(t)) = σ(Stx0) +Q3(S
tx0,∆

t
ǫ),

where

Rǫ(x) = Ψǫ(x) −Ψ0(x) = o(1), ǫ → 0,

uniformly in x; Qi : R
d × R

d → R
d, i = 2, 3 satisfies

(23) |Qi(u, v)| ≤ K|v|, u, v ∈ R
d.

We can assume that the constant K > 0 in (4) and (23) is the same for simplicity
of notation.

Let Q = Q1 + ǫα1Q2 + ǫα1Rǫ. Combine (20), (21), and (22) to get

d∆t
ǫ =

(

A(t)∆t
ǫ + ǫα1Ψ0(S

tx0) +Q(Stx0,∆
t
ǫ)
)

dt

+ ǫ
(

σ(Stx0) +Q3(S
tx0,∆

t
ǫ)
)

dW (t),(24)

∆0
ǫ =ǫα2ξǫ.(25)

Hence, applying Duhamel’s principle to (24) and using (10), we get

∆t
ǫ = ǫαΘǫ(t) + Φx0

(t)

∫ t

0

Φx0
(s)−1Q(Ssx0,∆

s
ǫ)ds

+ ǫΦx0
(t)

∫ t

0

Φx0
(s)−1Q3(S

sx0,∆
s
ǫ)dW (s)

= ǫαΘǫ(t) + Θ′
ǫ(t),(26)

where Θ′
ǫ is defined by (26). A simple inspection of (10) shows that (Θǫ)ǫ>0 con-

verges in distribution in C(0, T ) to the process φ0(t). This convergence is in prob-
ability if α2 > α or ξǫ → ξ0 in probability. Therefore, the lemma will follow with
φǫ = Θǫ + ǫ−αΘ′

ǫ if we show that

(27) ǫ−α sup
t≤T

|Θ′
ǫ(t)|

P
−→ 0, ǫ → 0.

For any δ ∈ (1/2, 1), we introduce the stopping time

lǫ(δ) = inf
{

t > 0 : |∆t
ǫ| ≥ ǫαδ

}

.

Now, Θ′
ǫ = Θ′

ǫ,1 + ǫΘ′
ǫ,2, where

Θ′
ǫ,1(t) = Φx0

(t)

∫ t

0

Φx0
(s)−1Q(Ssx0,∆

s
ǫ)ds,

and

Θ′
ǫ,2(t) = ǫΦx0

(t)

∫ t

0

Φx0
(s)−1Q3(S

sx0,∆
s
ǫ)dW (s).
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Bounds (4), and (23) imply

(28) sup
t≤T∧lǫ(δ)

|Θ′
ǫ,1(t)| = O(ǫ2αδ + ǫα1+αδ) + o(ǫα1) = o(ǫα).

Likewise, (23) for Q3 and BDG inequality imply that for any κ > 0 there is a
constant Kκ such that

(29) P

{

sup
t≤T∧lǫ(δ)

|Θ′
ǫ,2(t)| > Kκǫ

1+αδ

}

< κ

for all ǫ > 0 small enough. Then, this together with (28) imply that

(30) ǫ−αδ sup
t≤T∧lǫ(δ)

|Θ′
ǫ(t)|

P
−→ 0, ǫ → 0.

Then, if lǫ(δ) < T we use (26) to get

1 = ǫ−αδ sup
t≤T∧lǫ(δ)

|∆t
ǫ|

≤ ǫα(1−δ) sup
t≤T∧lǫ(δ)

|Θǫ(t)|+ ǫ−αδ sup
t≤T∧lǫ(δ)

|Θ′
ǫ(t)|.

The r.h.s. converges to 0 in probability due to (30) and the tightness of distributions
of Θǫ. Hence, P{lǫ(δ) < T } → 0 as ǫ → 0. Using T instead of T ∧ lǫ(δ) in (28)
and (29), we see that with the choice of δ > 1/2, (27) follows and the proof is
finished. �

5. Proof of Lemmas 3 and 4

Proof of Lemma 3. Let us find the generator of the conditioned diffusion. To that
end we denote the generator of the original diffusion by Lǫ:

(31) Lǫf(x) = b(x)f ′(x) +
ǫ2

2
σ2(x)f ′′(x) = lim

t→0

Exf(Xǫ)− f(x)

t
,

where f is any bounded C2-function with bounded first two derivatives and Ex

denotes expectation with respect to the measure Px, the element of the Markov
family describing the Markov process emitted from point x.

Let us denote uǫ(x) = Px(Bǫ). This function solves the following boundary-value
problem for the backward Kolmogorov equation:

Lǫuǫ(x) = 0, uǫ(a1) = 0, uǫ(a2) = 1.

Using (31), it is easy to check that a unique solution is given by

uǫ(x) =

∫ x

a1

hǫ(y)dy
∫ a2

a1

hǫ(y)dy
,

where hǫ is defined in (8).
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Now we can compute the generator L̄ of the conditioned flow. For any smooth
and bounded function f ∈ C2 with bounded first two derivatives, we can write

Ex[f(Xǫ)|Bǫ] = u−1(x)Exf(Xǫ(t))1Bǫ

= u−1
ǫ (x)Exf(Xǫ(t))1Bǫ

1{τǫ≥t} +Rǫ

= u−1
ǫ (x)ExEx[f(Xǫ(t))1Bǫ

1{τǫ≥t}|Ft] +Rǫ

= u−1
ǫ (x)Exf(Xǫ(t))PXǫ(t)(Bǫ) +Rǫ

= u−1
ǫ (x)Exf(Xǫ(t))uǫ(Xǫ(t)) +Rǫ,

where

|Rǫ| = u−1
ǫ (x)|Exf(Xǫ)1Bǫ

1{τǫ<t}| ≤ C(x)P{τǫ < t} = o(t)

for some C(x) > 0. Therefore, we obtain

L̄f(x) = lim
t→0

Ex[f(Xǫ(t))|Bǫ]− f(x)

t

= lim
t→0

u−1
ǫ (x)Exf(Xǫ(t))uǫ(Xǫ(t))− f(x)

t

=
1

uǫ(x)
lim
t→0

Exf(Xǫ(t))uǫ(Xǫ(t))− f(x)uǫ(x)

t

=
1

uǫ(x)
L(fuǫ)(x)

=

(

b(x) + ǫ2σ2(x)
u′
ǫ(x)

uǫ(x)

)

f ′(x) + ǫ2
σ2(x)

2
f ′′(x).

=

(

b(x) + ǫ2σ2(x)
hǫ(x)

∫ x

a1

hǫ(y)dy

)

f ′(x) + ǫ2
σ2(x)

2
f ′′(x),

completing the proof. �

Proof of Lemma 4. The proof is a variation of Laplace’s method. Let

(32) Φ(x) = 2

∫ x

a1

b(y)

σ2(y)
dy, x ≥ a1,

so that hǫ(x) = e−Φ(x)/ǫ2. We take any β ∈ (1, 2) and break the integral of hǫ in
two parts:

∫ x

a1

e−Φ(y)/ǫ2dy = Iǫ,1(x) + Iǫ,2(x),

where

(33) Iǫ,1(x) =

∫ x−ǫβ

a1

e−Φ(y)/ǫ2dy,

and

(34) Iǫ,2(x) =

∫ x

x−ǫβ
e−Φ(y)/ǫ2dy.

The idea is to prove that Iǫ,1 is exponentially smaller than Iǫ,2 and then esti-
mate Iǫ,2.

We start with some preliminaries for the function Φ. Since both b and σ are C1

and σ 6= 0 in [a1, a2] we conclude that Φ is a C2 function so that we can find a
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function R : R×R → R and a number δ0 > 0 such that for every x, y ∈ [a1, a2+δ0],
we have the expansion

(35) Φ(y) = Φ(x) + Φ′(x)(y − x) +R(x, y − x),

and

(36) |R(x, v)| ≤ K1|v|
2, x ∈ [a1, a2 + δ0], v ∈ R,

for some K1 > 0.
To estimate Iǫ,1, we introduce

Jǫ,1(x) =
eΦ(x)/ǫ2

ǫ2σ2(x)
Iǫ,1(x), x ∈ [a1, a2 + δ0].

Since Φ is decreasing, we have that for some constant K2 > 0 independent of
x ∈ [a1, a2 + δ0],

Jǫ,1(x) ≤
K2

ǫ2
e(Φ(x)−Φ(x−ǫβ))/ǫ2 .(37)

Since β < 2 and Φ′ is negative and bounded away from zero, we conclude that there
is α(ǫ) such that α(ǫ) = o(ǫ2) as ǫ → 0 and

(38) sup
x∈[a1,a2+δ0]

Jǫ,1(x) ≤ α(ǫ).

We now estimate Iǫ,2. Using expansion (35) and the change of variables u =
−Φ(x)(y − x)/ǫ2, we get

Iǫ,2(x) = e−Φ(x)/ǫ2
∫ x

x−ǫβ
e−Φ′(x)(y−x)/ǫ2−R(x,y−x)/ǫ2dy

= −
ǫ2

Φ′(x)
e−Φ(x)/ǫ2

∫ 0

Φ′(x)/ǫ2−β

eu−R(x,−ǫ2u/Φ′(x))/ǫ2du

= −
ǫ2σ2(x)

2b(x)
e−Φ(x)/ǫ2Jǫ,2(x),(39)

where we use (32) to compute the derivative of Φ, and we define Jǫ,2 by (39). Hence,
combining (37) with the definition of bǫ and (39), we get

bǫ(x) = b(x) +
1

Jǫ,1(x) −
1

2b(x)Jǫ,2(x)
.

Due to (38), the proof will be complete once we prove that for sufficiently small
δ > 0,

lim sup
ǫ→0

ǫ−2

(

sup
x∈[x0−δ,a2+δ]

|Jǫ,2(x)− 1|

)

< ∞.
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Note that for any δ ∈ (0, x0 − a1), some constant K3 = K3(δ) > 0 and all
x ∈ [x0 − δ, a2 + δ],

|Jǫ,2(x)− 1| =
∣

∣

∣

∫ 0

Φ′(x)/ǫ2−β

eu(1− e−R(x,−ǫ2u/Φ′(x))/ǫ2)du

+

∫ Φ′(x)/ǫ2−β

−∞

eudu
∣

∣

∣

≤

∫ 0

Φ′(x)/ǫ2−β

eu|1− e−R(x,−ǫ2u/Φ′(x))/ǫ2 |du+ e−K3/ǫ
2−β

.(40)

Using (36) we see that for some constant K4 > 0 independent of x ∈ [x0− δ, a2+ δ]
and u ∈ R,

|R(x,−ǫ2u/Φ′(x))|/ǫ2 ≤ K4ǫ
2u2.

In particular,

sup
x∈[x0−δ,a2+δ]

sup
u∈[Φ′(x)/ǫ2−β ,0]

|R(x,−ǫ2u/Φ′(x))|/ǫ2 ≤ K4ǫ
2(β−1).

Since β > 1, the r.h.s. converges to 0 and we can apply a basic Taylor estimate
which implies that for all ǫ > 0 small enough,

sup
x∈[x0−δ,a2+δ]

sup
u∈[Φ′(x)/ǫ2−β ,0]

|1− e−R(x,−ǫ2u/Φ′(x))/ǫ2 | ≤ K5ǫ
2u2,

for some K5 > 0. Using this fact in the integral of (40), we can find a constant
K6 = K6(δ) > 0 such that

sup
x∈[x0−δ,a2+δ]

|Jǫ,2(x) − 1| ≤ K6ǫ
2 + e−K3/ǫ

2−β

,

which finishes the proof. �
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[5] Mark Freidlin. Markov processes and differential equations: asymptotic problems. Lectures in
Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1996.
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