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On the range of composition operators on spaces of entire

functions

S. Mukherjee, F. Jafari, and J. E. McInroy

Abstract. The celebrated Paley-Wiener theorem naturally identifies the spaces
of bandlimited functions with subspaces of entire functions of exponential
type. Recently, it has been shown that these spaces remain invariant only
under composition with affine maps. After some motivation demonstrating
the importance of characterization of range spaces arising from the action of
more general composition operators on the spaces of bandlimited functions,
in this paper we identify the subspaces of L2(R) generated by these actions.
Extension of these theorems where Paley-Wiener spaces are replaced by the
deBranges-Rovnyak spaces are given.

1. Introduction

Let Mf (r) denote the maximum modulus of f(z) for |z| = r, i.e., Mf (r) =
max
|z|=r

|f(z)|. Recall that an entire function f is of order ρ if

lim sup
r→∞

log logMf (r)

log r
= ρ, 0 ≤ ρ ≤ ∞.

If the order of an entire function f is finite, we will define another number associated
to f , called the type of the function f , which more precisely describes the rate of
growth of f . The entire function f(z) of positive order ρ is of type σ if

lim sup
r→∞

logMf (r)

rρ
= σ, 0 ≤ σ ≤ ∞.

An entire function f is said to be of exponential type σ, if it is of order ρ = 1 and
type σ with 0 < σ < ∞.

2010 Mathematics Subject Classification. 32A15, 47B33, 47B32, 46E22.
Key words and phrases. Entire functions, bandlimited signals, composition operators, range
spaces, de Branges-Rovnyak spaces.
The work of second and third authors was partially supported by a grant from AFOSR.

1

http://arxiv.org/abs/1006.2793v3


2 SAIKAT MUKHERJEE, FARHAD JAFARI, AND JOHN MCINROY

Suppose f is an analytic function in Ω ⊆ C. f is called bounded type in Ω if

f(z) = p(z)
q(z) , where both p, q are analytic and bounded in Ω and q is not identically

zero. By a theorem of M. G. Krěın, an entire function is of exponential type if it
is bounded type in the upper and lower half of the complex plane. In that case,
the exponential type of the function is equal to the maximum of its mean types in
the upper and lower half planes. Two well-known formulas for mean type h of a
function f in the upper half plane are

h = lim sup
y→∞

log |f(iy)|

y
,

and h = lim
r→∞

2

πr

∫ π

0

log |f(reiθ)| sin θdθ.

Mean type is a generalization of exponential type to functions which are not nec-
essarily entire.

Let H(G) be the set of holomorphic functions on a domain G ⊂ C and let
X ⊆ H(G) be a Banach space of holomorphic functions on G. Assume that the
embedding X → H(G) is continuous with respect to the respective topologies.
Suppose ϕ is a holomorphic function from G into G. Let T : X → X be a bounded
operator. We say T is a composition operator on X induced by ϕ if (Tf)(z) =
f(ϕ(z)), for every f ∈ X . In this case, it is natural to denote T by Cϕ. We say
T is a weighted composition operator if (Tf)(z) = m(z)f(ϕ(z)), i.e., T = MmCϕ,
where Mm is a multiplication operator with multiplier m ∈ H(G) is a holomorphic
function onG. If, in addition,m ∈ Y ⊆ H(G), we say T is a Y -weighted composition
operator.

Composition operators have been the subject matter of study over the last few
decades (see [CM] for extensive references). In this paper we study these operators
on Paley-Wiener and de Branges-Rovnyak spaces. As the composition operators
that keep the Paley-Wiener spaces invariant are quite limited, we consider more
general composition operators acting on Paley-Wiener spaces and characterize the
range of these actions. This problem arises when bandlimited signals are warped
through a nonlinear diffeomorphism of the underlying domain and the ensuing
signals are being approximated. Characterization of these range spaces allows use
of appropriate basis functions to provide appropriate approximation of these signals.
To establish the notation and a detailed introduction, in Section 2 we will discuss the
bounded composition operators on Paley-Wiener spaces and extend this result to
weighted composition operators. In Section 3 we consider more general, non-affine,
composition operators and ask how large can the range of these operators acting on
bandlimited signals get? We provide a full characterization of these range spaces
as reproducing kernel Hilbert spaces and give some of their properties. Finally, in
Section 4 we generalize these results to de Branges-Rovnyak spaces. The Paley-
Wiener spaces are a special instance of these spaces.
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2. Bounded weighted composition operators on Paley-Wiener Spaces

A finite energy signal is said to be bandlimited if its spectrum vanishes outside
of a finite interval of the form [−a, a]. The smallest such a is called the bandwidth
of the signal. Such a signal f(t) can be written in the form

(1) f(t) =

∫ a

−a

f̂(w)e−itwdw

with f̂ ∈ L2([−a, a]). The Paley-Wiener space B2
a is the space of all entire functions

of exponential type less than or equal to a whose restriction to the real line belong
to the space L2(R). This is a Hilbert Space with the inner product inducing the
norm

‖f‖2 =

∫ +∞

−∞

|f(x)|2dx.

The inclusion map from B2
a embeds the Paley-Wiener spaces into L2(R) isomet-

rically. Thus without loss of generality we may identify B2
a as a closed subspace

of L2(R). It follows immediately from the Paley-Wiener theorem ([PW]) that the
space B2

a is the space of all entire functions bandlimited to [−a, a]. This is in fact
a reproducing kernel Hilbert space with the reproducing kernel (see [D], [S])

kw(z) =
sin a(z − w)

π(z − w)

The ubiquity of bandlimited signals in applications and the natural correspondence
of the space of bandlimited functions and Paley-Wiener spaces gives rise to the very
natural question: which composition operators preserve these spaces? Equivalently
stated, for what ϕ’s does Cϕ send B2

a into itself? Very recently, Chacón, et. al.
( [CCG]) provided a complete answer to this questions.

Theorem 2.1. Let ϕ : C → C be a nonconstant entire function. The operator Cϕ

is bounded on B2
a if and only if ϕ(z) = cz + d, z ∈ C, with 0 < |c| ≤ 1, and c ∈ R.

Since the class of warps preserving Paley-Wiener spaces are limited to transla-
tions and dilations, that is composition with affine maps only, it would be interesting
to ask which weighted composition operators have the same property. As the Paley-
Wiener spaces are Fourier spaces, these weighted composition operators naturally
correspond to the smearing and warping of the original bandlimited signals. That
is, suppose T = MmCϕ and T acts on B2

a. We would like to know if ϕ is affine, for
which m, Tf ∈ B2

A for some A and for all f ∈ B2
a. The following theorem answers

this question.

Theorem 2.2. (a) Let ϕ : C → C be a nonconstant entire function. Then
Cϕ : B2

a → B2
|c|a if and only if ϕ(z) = cz + d, z ∈ C, with c ∈ R \ {0}.

(b) Let T = MmCϕ, with ϕ(z) = cz + d and c ∈ R \ {0}, be a weighted
composition operator on B2

a, where m is an entire function. Then T :
B2

a → B2
A for A = max {|r − |c|a|, |s+ |c|a|} if and only if m̂ ∈ Co(R)

with supp(m̂) ⊆ [r, s].



4 SAIKAT MUKHERJEE, FARHAD JAFARI, AND JOHN MCINROY

Proof. (a) Firstly, note that if f(z) is an entire function with order ρ and
type σ, then the order and type of f(cz) are ρ and |c|ρσ. To see this, suppose

f(z) =

∞∑

n=0

anz
n. Then the order and type of f can be determined by the following

two formulas: (see [L])

ρ = lim sup
n→∞

n logn

log(1/|an|)
, σ = 1

ρe lim sup
n→∞

(n n
√
|an|ρ).

Let ρ1 and σ1 be the order and type of f(cz). Then,

ρ1 = lim sup
n→∞

n logn

log(1/|ancn|)
= ρ,

and,

σ1 = 1
ρe lim sup

n→∞
(n n
√
|ancn|ρ) = |c|ρσ.

Now, to prove the theorem, suppose f ∈ B2
a, then f is an entire function of expo-

nential type less than or equal to a. It is clear from Theorem 2.1 that the only part
we need to consider in this proof is when ϕ(z) = cz. Now,

∫

R

|Cϕf(x)|
2dx =

∫

R

|f(cx)|2dx =
1

|c|

∫

R

|f(x)|2dx < ∞.

Also, from above, Cϕf is of exponential type less than or equal to |c|a. Hence Cϕf ∈
B2

|c|a. The converse is also true because, using Pólya’s theorem ( [CCG], [P]), it

follows that if Cϕ(B
2
a) ⊆ B2

A, for any A, then ϕ is affine.

(b) Since ϕ(z) = cz+d, it is clear from part(a) that Cϕ : B2
a → B2

|c|a. Therefore

supp(Ĉϕf) ⊆ [−|c|a, |c|a]. Now suppose m̂ ∈ Co(R), with supp(m̂) ⊆ [r, s]. Then

supp(m̂ ∗ Ĉϕf) ⊆ [r− |c|a, s+ |c|a]. Since m̂ ∈ Co(R), m̂ ∈ L1(R). Also, since m̂ is
defined, m ∈ L1(R) and then by the inverse Fourier transform formula,

m(x) =

∫ ∞

−∞

m̂(t)e−ixtdt,

and this implies,

|m(x)| ≤

∫ ∞

−∞

|m̂(t)|dt = ‖m̂‖1 < ∞.

Hence, m ∈ L∞(R), and therefore Tf = MmCϕf ∈ L2(R). Hence for all f ∈ B2
a,

Tf ∈ B2
A for A = max {|r − |c|a|, |s+ |c|a|}.

Conversely, suppose T : B2
a → B2

A for some A. If m̂ doesn’t have compact support,

then for some f ∈ B2
a, m̂ ∗ Ĉϕf will fail to have compact support. This is a

contradiction to the fact that Tf = MmCϕf ∈ B2
A for some A. �
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3. Range of composition operators acting on Paley-Wiener spaces

Theorem 2.1 demonstrates that Paley-Wiener spaces are rather rigid under dif-
feomorphisms of the underlying domain. However, nonlinear warps (e.g. chirps)
occur in various applications and the bandlimited input signals are transported into
subspaces of L2(R). Characterization of these subspaces would lead to appropriate
approximation theorems which allows for proper representation of the output sig-
nals. To describe these range spaces, we recall the following well known theorem
(see [S1], for example).

Theorem 3.1. Suppose (X,Σ, λ) is a σ-finite measure space and ϕ is a measurable
function on X into itself. Then Cϕ is a bounded composition operator on L2(λ)
if and only if there exists a constant c > 0 such that λϕ−1(E) ≤ cλ(E) for every
measurable set E. Here ϕ−1(E) is the pull-back of the set E.

This is equivalent to saying that Cϕ : L2(λ) → L2(λ) if and only if λϕ−1 is
absolutely continuous with respect to λ and the Radon-Nikodým derivative of λϕ−1

with respect to λ is essentially bounded. Clearly this will serve as a necessary condi-
tion for the theorems to follow. Before, we provide a much deeper characterization
of the range spaces of non-affine warps (or affine warps for that matter), we note an
elementary result which arises from Plancherel’s theorem. This observation shows
that if the support of the bandlimited functions is loosened, then the range spaces
is arbitrarily close to larger Paley-Wiener spaces. More precisely,

Theorem 3.2. Suppose ϕ : R → R is a measurable function that satisfies the
hypothesis of Theorem 3.1, i.e., there exists a constant c > 0 such that mϕ−1(E) ≤
cm(E) for every measurable set E, where m is the Lebesgue measure on the Borel
subsets of R. Let f ∈ B2

a. Then for every ε > 0, there exists a positive N such that
for every A ≥ N there exists an h ∈ B2

A with ‖Cϕf − h‖ < ε.

Proof. Suppose ϕ : R → R is a measurable function and there is c > 0 such
that mϕ−1(E) ≤ cm(E) for every measurable set E ⊆ R, where m is the Lebesgue
measure on the Borel subsets of R. Let f ∈ B2

a be an arbitrary function. Then
since f ∈ L2(R), by Theorem 3.1 it follows that Cϕf ∈ L2(R). Define,

h(z) :=

∫ A

−A

Ĉϕf(t)e
−iztdt

Then it is clear that h ∈ B2
A.

We will show that, ĥ(t) = (χAĈϕf)(t), ∀t ∈ R, where χA is the characteristic func-
tion of [−A,A].
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ĥ(t) =

∫ ∞

−∞

h(x)eixtdx

=

∫ ∞

−∞

{∫ A

−A

Ĉϕf(s)e
−ixsds

}
eixtdx

=

∫ A

−A

Ĉϕf(s)

{∫ ∞

−∞

eix(t−s)dx

}
ds

=

∫ A

−A

Ĉϕf(s)δ(t− s)ds

=

{
Ĉϕf(t) if t ∈ [−A,A]
0 otherwise

Therefore using Plancherel’s theorem we have:

‖Cϕf − h‖ = ‖Ĉϕf − ĥ‖

= ‖Ĉϕf‖L2([−A,A]c),

which goes to zero as A → +∞. Hence the statement of the theorem is proved. �

As a consequence if ϕ : C → C is an entire function, whose restriction to the
real line is real and satisfies all the hypothesis of Theorem 3.2, then the composition
operator induced by ϕ will satisfy the conclusion of the above theorem.

Example 3.3 ([S1], [SM]). Denote ϕR as the restriction of ϕ on R. If ϕ : C → C

is an entire function with ϕR : R → R monotone and 1
ϕ′

R

essentially bounded, then

the composition operator induced by ϕ satisfies the conclusion of Theorem 3.2. An
example of such a function is ϕ(z) = az3 + bz2 + cz + d, where a, b, c, d ∈ R with
b2 < 3ac.

Now we will show that the range spaces are reproducing kernel Hilbert spaces
with reproducing kernel generated by the reproducing kernel of B2

a. These repro-
ducing kernels form a basis for the range spaces and may be used to provide best
approximation results for the images. We know that the inner product of B2

a is de-

fined by (f(·) , g(·))B2
a

=

∫

R

f(t)g(t)dt. Suppose F(C) denotes the linear space of

all complex valued functions on C. Consider the composition map Cϕ : B2
a → F(C).

Let hϕ be a mapping from C into B2
a such that (Cϕf) (z) = (f(·) , hϕ(z, ·))B2

a
for

all f ∈ B2
a.

But we know, f(z) =

(
f(·) ,

sina(· − z)

π(· − z)

)

B2
a

. This implies, Cϕf(z) = f(ϕ(z)) =

(
f(·) ,

sina(· − ϕ(z))

π(· − ϕ(z))

)

B2
a

. Hence we have, hϕ(z, ·) =
sin a(· − ϕ(z))

π(· − ϕ(z))
. Then by

Saitoh’s theorem (see [S]), the range space ran(Cϕ) is a reproducing kernel Hilbert
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space with the reproducing kernel given by,

K(ϕ)(z, w) = (hϕ(w, ·) , hϕ(z, ·))B2
a

=

(
sin a(· − ϕ(w))

π(· − ϕ(w))
,
sin a(· − ϕ(z))

π(· − ϕ(z))

)

B2
a

=

∫ ∞

−∞

sin a(t− ϕ(w))

π(t− ϕ(w))

sin a(t− ϕ(z))

π(t− ϕ(w))
dt

=

∫ a

−a

e−itϕ(w)eitϕ(z)dt

=
sin a(ϕ(z)− ϕ(w))

π(ϕ(z)− ϕ(w))
.

Then we can introduce the inner product in ran(Cϕ) in the following manner:

It is well-known that the set {K(ϕ)(·, n)}n∈Z forms an orthonormal basis in ran(Cϕ).
Then for any F,G ∈ ran(Cϕ), there exist {an}n∈Z, {bn}n∈Z in C such that F =∑

n

anK
(ϕ)(·, n) and G =

∑

n

bnK
(ϕ)(·, n). Then the inner product can be written

as,

(F , G)ran(Cϕ) =

(∑

n

anK
(ϕ)(·, n) ,

∑

m

bmK(ϕ)(·,m)

)

ran(Cϕ)

=
∑

m,n

bmanK
(ϕ)(m,n)

Since Cϕ : B2
a → ran(Cϕ) is a linear and bounded operator, by the closed graph

theorem, Cϕ is a closed operator.

Example 3.4. Suppose ϕ(z) = z3 + z. Then Cϕ : B2
a → ran(Cϕ) ⊂ L2(R) and

ran(Cϕ) is a reproducing kernel Hilbert space with reproducing kernel K(ϕ)(z, w) =
sina(z3 + z − w3 − w)

π(z3 + z − w3 − w)
.

The following theorem will provide the characterization of the range space of Cϕ

and establishes a norm on these range spaces relative to which Cϕ acts isometrically.
In particular, a basis for the range spaces is constructed which provides the best
approximation of the image maps.

Theorem 3.5. Let ϕ : C → C be an entire function, whose restriction to the
real line, ϕR maps R into R. Suppose there exists a constant c > 0 such that
mϕ−1

R
(E) ≤ cm(E) for every measurable set E, where m is the Lebesgue measure

on the Borel subsets of R. In addition, suppose m ≪ m ◦ϕ−1
R

, i.e., m ∼ m ◦ϕ−1
R

(m and m ◦ ϕ−1
R

are mutually absolutely continuous). Then the following are true:

(a) Cφ is a bijection from B2
a onto ran(Cϕ).

(b) ran(Cϕ) is a reproducing kernel Hilbert space with norm defined by

‖Cϕf‖ran(Cϕ) = ‖f‖B2
a
, ∀f ∈ B2

a.

That is Cϕ is an isometry.
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Proof. (a) The first part of this proof is due to Singh and Manhas
(See [SM]).
Since m ◦ϕ−1

R
≪ m, the Radon-Nikodym derivative fϕR

of m ◦ϕ−1
R

with
respect to m exists and we have

mϕ−1
R

(E) =

∫

E

fϕR
dm, for every Borel set E ⊆ R.

Now suppose there exists one such E with m(E) > 0 such that fϕR
= 0

on E. Then from the above equality we have mϕ−1
R

(E) = 0, which is a

contradiction to the fact that m ≪ m ◦ϕ−1
R

. Hence fϕR
is different from

zero almost everywhere.
Then the corresponding multiplication operator MfϕR

is an injection.

But we also know for f, g ∈ L2(R),

(
C∗

ϕR
CϕR

f , g
)

= (CϕR
f , CϕR

g)

=

∫
f g dmϕ−1

R

=

∫
fϕR

f g dm

=
(
MfϕR

f , g
)
.

Hence C∗
ϕR
CϕR

= MfϕR
is an injection on L2(R) and this implies CϕR

is an injection on L2(R). Since B2
a ⊂ L2(R), CϕR

is an injection on B2
a.

Now we claim that Cϕ is an injection on B2
a.

Proof of claim: Let Cϕf = 0 for some f ∈ B2
a. This implies,

f(ϕ(z)) = 0 ∀z ∈ C,

f(ϕ(x)) = 0 ∀x ∈ R,

f(ϕR(x)) = 0 ∀x ∈ R,

CϕR
f(x) = 0 ∀x ∈ R,

CϕR
f = 0 on R,

f = 0 on R.

Therefore by the identity theorem, f = 0 on C. Hence Cφ is an injec-
tion from B2

a onto ran(Cϕ).
(b) We know ‖F‖ran(Cϕ) = inf{‖f‖B2

a
: Cϕf = F}. This implies,

‖F‖ran(Cϕ) = inf{‖f − g‖B2
a
: g ∈ N (Cϕ), Cϕf = F}

= ‖PN (Cϕ)⊥f‖B2
a

(∵ N (Cϕ) is closed)

= ‖f‖B2
a

(∵ N (Cϕ) = 0)

Here, N (Cϕ) is the null space of Cϕ and PN (Cϕ)⊥ is the orthogonal pro-

jection from B2
a onto the orthogonal complement of N (Cϕ) in B2

a. Hence
‖Cϕf‖ran(Cϕ) = ‖f‖B2

a
. This completes the proof.

�
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4. Bounded composition operators on de Branges-Rovnyak Spaces

Let Π+ ⊂ C be the upper half of the complex plane. Let g(z) be an entire
function satisfying |g(z)| < |g(z)|, ∀z ∈ Π+. The de Branges-Rovnyak space H(g)
is the space of all entire functions f(z) satisfying the following conditions:

(1) ‖f‖2H(g) =

∫ +∞

−∞

∣∣∣∣
f(t)

g(t)

∣∣∣∣
2

dt < ∞,

(2) Both ratios f(z)
g(z) and f(z)

g(z) are of bounded type and of nonpositive mean

type in Π+.

H(g) is a Hilbert space with the norm defined above. It is well-known that H(g)
is a reproducing kernel Hilbert space with reproducing kernel given by kw(z) =
i
2
g(z)g(w)−g(z)g(w)

π(z−w) .

Note that the Paley-Wiener space B2
a is the space H(g) with g(z) = e−iaz.

In the following two cases we characterize the bounded composition operators
on H(g) by imposing different conditions on the function g.

Case I: When g is of exponential type.

Lemma 4.1. Suppose g is an entire function of exponential type σ satisfying
|g(z)| < |g(z)|, ∀z ∈ Π+. Then an analytic function f is of exponential type

less than or equal to σ if and only if f(z)
g(z) and f(z)

g(z) are of nonpositive mean type in

Π+.

Proof. Suppose f is of exponential type less than or equal to σ. Then f is
of mean type in upper and lower half plane, say, σ+ and σ−, respectively, where

σ+, σ− ≤ σ. Now the mean type of f(z)
g(z) in Π+ is

lim
r→∞

2

πr

∫ π

0

log

∣∣∣∣
f(reiθ)

g(reiθ)

∣∣∣∣ sin θdθ = σ+ − σ
(
since, |g(z)| < |g(z)| in Π+

)

≤ 0.

Similarly, the mean type of f(z)
g(z) in Π+ is

lim
r→∞

2

πr

∫ π

0

log

∣∣∣∣
f(re−iθ)

g(reiθ)

∣∣∣∣ sin θdθ = σ− − σ
(
again since, |g(z)| < |g(z)| in Π+

)

≤ 0.

Conversely, suppose both f(z)
g(z) and f(z)

g(z) are of nonpositive mean type in Π+.

We need to show that f is of exponential type less than or equal to σ. But, we

know that, lim sup
|z|→∞

log |g(z)|

|z|
= σ. Since, f

g is nonpositive mean type in Π+, we
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have the following

lim sup
y→∞

log | f(iy)g(iy) |

y
≤ 0,

lim sup
y→∞

(
log |f(iy)|

y
−

log |g(iy)|

y

)
≤ 0,

lim sup
y→∞

log |f(iy)|

y
≤ lim inf

y→∞

log |g(iy)|

y

≤ lim sup
y→∞

log |g(iy)|

y

≤ σ.

This implies that f is of mean type ≤ σ on Π+. Also we know f(z)
g(z) is nonpositive

mean type in Π+, therefore

lim sup
y→∞

log | f(−iy)
g(iy) |

y
≤ 0,

lim sup
y→∞

log |f(−iy)|

y
≤ lim inf

y→∞

log |g(iy)|

y

≤ lim sup
y→∞

log |g(iy)|

y

≤ σ.

This implies that f is of mean type ≤ σ on Π−.

Since, f is entire, f is of exponential type σ1, then by Krěın’s theorem σ1 =
max{mean type of f on Π+, mean type of f on Π−} ≤ σ. �

If g is as in Lemma 4.1, then every f ∈ H(g) is of exponential type less than or
equal to σ. The proof of the following theorem on bounded composition operators
on H(g) is very similar to the proof of Theorem 2.1.

Theorem 4.2. Suppose g is an entire function of exponential type σ satisfying
|g(z)| < |g(z)|, ∀z ∈ Π+. Let ϕ : C → C be a non-constant holomorphic map. If
the composition operator Cϕ sends H(g) into itself, then ϕ is affine.

Proof. Suppose that Cϕ : H(g) → H(g). Since both kw ◦ ϕ and kw are in
H(g), by Lemma 4.1 both are exponential type less than or equal to σ and therefore
of order 1. Then by Polya’s theorem ([P]) ϕ is a polynomial. Let degree of ϕ be n.
We will show that n = 1.

Let ϕ(z) =

n∑

k=0

ckz
k, with |cn| 6= 0. Then by Cauchy’s integral formula we

can show that Mϕ(r) ≥ |cn|rn for large r. Now, without loss of generality we may
assume that ϕ(0) = 0. Then there exists a constant c ∈ (0, 1), such that

Mf◦ϕ(r) ≥ Mf

(
cMϕ

(
r
2

))
≥ Mf

(
c|cn|

rn

2n

)
,
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for each function f in H(g).

Now, suppose f ∈ H(g). Since the order of f is one, for arbitrarily large value
of r the inequality Mf (r) ≥ exp rb holds when 0 < b < 1. Hence, from the above
inequality, there are arbitrarily large values of r such that

Mf◦ϕ(r) ≥ exp
((

c|cn|
rn

2n

)b)
= exp

(
cb|cn|

b rnb

2nb

)
.

Since the order of f ◦ ϕ is one, there exist constants A,B such that

Mf◦ϕ(r) ≤ A exp (Br), for all r.

Thus there are arbitrarily large values of r such that exp
(
cb|cn|

b rnb

2nb

)
≤ A exp (Br).

This implies nb ≤ 1, but b is any number less than one, hence n must be one (since
ϕ is not a constant function). �

Theorem 4.3. Suppose g is an entire function of exponential type σ satisfying
|g(z)| < |g(z)|, ∀z ∈ Π+. Let ϕ(z) = az + b, z ∈ C with 0 < |a| ≤ 1, and a ∈ R.

Then the operator Cϕ is bounded on H(g) if | g(at+b)
g(t) | ≤ c, for some constant c and

for all t ∈ R.

Proof. Let f ∈ H(g). Then the order and type of f are respectively 1 and
σ1, where 0 < σ1 ≤ σ.

Denote F = f ◦ ϕ. Then, as in the proof of Theorem (2.2) the order and
type of f(az) are 1 and |a|σ1 respectively. Also by a simple calculation we can
show that the order and type are invariant under translation. Hence the order and
type of F are 1 and |a|σ1(≤ σ) respectively. Hence by Lemma 4.1, F

g , and
F∗

g are

of nonpositive mean type in Π+, where F ∗(z) = F (z). Since both F and g are
of exponential type less than or equal to τ , for τ ≥ σ, it is clear from the fact
F (z)
g(z) = F (z)/e−iτz

g(z)/e−iτz that F
g is bounded type in Π+. Similarly, we can show that F∗

g

is also bounded type in Π+.

Now assuming b = p+ iq, we have the following,
∫

R

∣∣∣∣
(f ◦ ϕ)(t)

g(t)

∣∣∣∣
2

dt =

∫

R

∣∣∣∣
f(at+ b)

g(t)

∣∣∣∣
2

dt

≤ c2
∫

R

∣∣∣∣
f(at+ b)

g(at+ b)

∣∣∣∣
2

dt

≤
c2

|a|

∫

R

∣∣∣∣
f(x+ p+ iq)

g(x+ p+ iq)

∣∣∣∣
2

dx

≤
c2

|a|

∫

R

∣∣∣∣
f(x)

g(x)

∣∣∣∣
2

dx,

which is finite. Here the last inequality follows from Plancherel-Pólya theorem
(see [L], section 7.4) and this completes the proof. �
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Case II: When (g)−1 ∈ L2(R).

The following theorem gives a sufficient condition for composition operators to
be bounded on the de Branges-Rovnyak space H(g) when 1

g ∈ L2(R).

Theorem 4.4. Suppose g is an entire function satisfying |g(z)| < |g(z)|, ∀z ∈ Π+

and also (g)−1 ∈ L2(R). Define, dλ = 1
|g(t)|2 dt. Let ϕ be an entire function such

that its restriction to the real line, ϕR, maps R into R. If Cϕ maps H(g) into

H(g) then there exists a positive constant c such that λϕ−1
R

(E) ≤ cλ(E), for every
measurable set E ⊆ R.

Proof. Suppose f ∈ H(g). Then f ∈ L2(λ). Since Cϕ sends H(g) into H(g),
f ◦ ϕ ∈ H(g); that is, f ◦ ϕ ∈ L2(λ) and this implies f ◦ ϕR ∈ L2(λ). Then
since λ is integrable, it is a σ-finite measure on R, hence by Theorem 3.1 there
exists a positive constant c such that λϕ−1

R
(E) ≤ cλ(E), for every measurable set

E ⊆ R. �
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On the range of composition operators on spaces of entire

functions

S. Mukherjee, F. Jafari, and J. E. McInroy

Abstract. The celebrated Paley-Wiener theorem naturally identifies the spa-
ces of bandlimited functions with subspaces of entire functions of exponential
type. Recently, it has been shown that these spaces remain invariant only
under composition with affine maps. After some motivation demonstrating
the importance of characterization of range spaces arising from the action of
more general composition operators on the spaces of bandlimited functions,
in this paper we identify the subspaces of L2(R) generated by these actions.
Extension of these theorems where Paley-Wiener spaces are replaced by the
deBranges-Rovnyak spaces are given.

1. Introduction

Let Mf (r) denote the maximum modulus of f(z) for |z| = r, i.e., Mf (r) =
max
|z|=r

|f(z)|. Recall that an entire function f is of order ρ if

lim sup
r→∞

log logMf (r)

log r
= ρ, 0 ≤ ρ ≤ ∞.

If the order of an entire function f is finite, we will define another number associated
to f , called the type of the function f , which more precisely describes the rate of
growth of f . The entire function f(z) of positive order ρ is of type σ if

lim sup
r→∞

logMf (r)

rρ
= σ, 0 ≤ σ ≤ ∞.

An entire function f is said to be of exponential type σ, if it is of order ρ = 1 and
type σ with 0 < σ < ∞.

Suppose f is an analytic function in Ω ⊆ C. f is called bounded type in Ω if

f(z) = p(z)
q(z) , where both p, q are analytic and bounded in Ω and q is not identically

zero. By a theorem of M. G. Krěın, an entire function is of exponential type if it
is bounded type in the upper and lower half of the complex plane. In that case,
the exponential type of the function is equal to the maximum of its mean types in
the upper and lower half planes. Two well-known formulas for mean type h of a
function f in the upper half plane are

2010 Mathematics Subject Classification. Primary 32A15, 47B33, 47B32; Secondary 46E22.
Key words and phrases. Entire functions, bandlimited signals, composition operators, range

spaces, de Branges-Rovnyak spaces.
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h = lim sup
y→∞

log |f(iy)|

y
,

and h = lim
r→∞

2

πr

∫ π

0

log |f(reiθ)| sin θdθ.

Mean type is a generalization of exponential type to functions which are not nec-
essarily entire.

Let H(G) be the set of holomorphic functions on a domain G ⊂ C and let
X ⊆ H(G) be a Banach space of holomorphic functions on G. Assume that the
embedding X → H(G) is continuous with respect to the respective topologies.
Suppose ϕ is a holomorphic function from G into G. Let T : X → X be a bounded
operator. We say T is a composition operator on X induced by ϕ if (Tf)(z) =
f(ϕ(z)), for every f ∈ X . In this case, it is natural to denote T by Cϕ. We say
T is a weighted composition operator if (Tf)(z) = m(z)f(ϕ(z)), i.e., T = MmCϕ,
where Mm is a multiplication operator with multiplier m ∈ H(G) is a holomorphic
function onG. If, in addition,m ∈ Y ⊆ H(G), we say T is a Y -weighted composition
operator.

Composition operators have been the subject matter of study over the last few
decades (see [CM] for extensive references). In this paper we study these operators
on Paley-Wiener and de Branges-Rovnyak spaces. As the composition operators
that keep the Paley-Wiener spaces invariant are quite limited, we consider more
general composition operators acting on Paley-Wiener spaces and characterize the
range of these actions. This problem arises when bandlimited signals are warped
through a nonlinear diffeomorphism of the underlying domain and the ensuing
signals are being approximated. Characterization of these range spaces allows use
of appropriate basis functions to provide appropriate approximation of these signals.
To establish the notation and a detailed introduction, in Section 2 we will discuss the
bounded composition operators on Paley-Wiener spaces and extend this result to
weighted composition operators. In Section 3 we consider more general, non-affine,
composition operators and ask how large can the range of these operators acting on
bandlimited signals get? We provide a full characterization of these range spaces
as reproducing kernel Hilbert spaces and give some of their properties. Finally, in
Section 4 we generalize these results to de Branges-Rovnyak spaces. The Paley-
Wiener spaces are a special instance of these spaces.

2. Bounded weighted composition operators on Paley-Wiener Spaces

A finite energy signal is said to be bandlimited if its spectrum vanishes outside
of a finite interval of the form [−a, a]. The smallest such a is called the bandwidth
of the signal. Such a signal f(t) can be written in the form

(1) f(t) =

∫ a

−a

f̂(w)e−itwdw

with f̂ ∈ L2([−a, a]). The Paley-Wiener space B2
a is the space of all entire functions

of exponential type less than or equal to a whose restriction to the real line belong
to the space L2(R). This is a Hilbert Space with the inner product inducing the
norm

‖f‖2 =

∫ +∞

−∞

|f(x)|2dx.
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The inclusion map from B2
a embeds the Paley-Wiener spaces into L2(R) isomet-

rically. Thus without loss of generality we may identify B2
a as a closed subspace

of L2(R). It follows immediately from the Paley-Wiener theorem ([PW]) that the
space B2

a is the space of all entire functions bandlimited to [−a, a]. This is in fact
a reproducing kernel Hilbert space with the reproducing kernel (see [D], [S])

kw(z) =
sin a(z − w)

π(z − w)

The ubiquity of bandlimited signals in applications and the natural correspondence
of the space of bandlimited functions and Paley-Wiener spaces gives rise to the very
natural question: which composition operators preserve these spaces? Equivalently
stated, for what ϕ’s does Cϕ send B2

a into itself? Very recently, Chacón, et. al.
( [CCG]) provided a complete answer to this questions.

Theorem 2.1. Let ϕ : C → C be a nonconstant entire function. The operator Cϕ

is bounded on B2
a if and only if ϕ(z) = cz + d, z ∈ C, with 0 < |c| ≤ 1, and c ∈ R.

Since the class of warps preserving Paley-Wiener spaces are limited to transla-
tions and dilations, that is composition with affine maps only, it would be interesting
to ask which weighted composition operators have the same property. As the Paley-
Wiener spaces are Fourier spaces, these weighted composition operators naturally
correspond to the smearing and warping of the original bandlimited signals. That
is, suppose T = MmCϕ and T acts on B2

a. We would like to know if ϕ is affine, for
which m, Tf ∈ B2

A for some A and for all f ∈ B2
a. The following theorem answers

this question.

Theorem 2.2. (a) Let ϕ : C → C be a nonconstant entire function. Then
Cϕ : B2

a → B2
|c|a if and only if ϕ(z) = cz + d, z ∈ C, with c ∈ R \ {0}.

(b) Let T = MmCϕ, with ϕ(z) = cz + d and c ∈ R \ {0}, be a weighted
composition operator on B2

a, where m is an entire function. Then T :
B2

a → B2
A for A = max {|r − |c|a|, |s+ |c|a|} if and only if m̂ ∈ Co(R)

with supp(m̂) ⊆ [r, s].

Proof. (a) Firstly, note that if f(z) is an entire function with order ρ and
type σ, then the order and type of f(cz) are ρ and |c|ρσ. To see this, suppose

f(z) =

∞∑

n=0

anz
n. Then the order and type of f can be determined by the following

two formulas: (see [L])

ρ = lim sup
n→∞

n logn

log(1/|an|)
, σ = 1

ρe lim sup
n→∞

(n n
√
|an|ρ).

Let ρ1 and σ1 be the order and type of f(cz). Then,

ρ1 = lim sup
n→∞

n logn

log(1/|ancn|)
= ρ,

and,

σ1 = 1
ρe lim sup

n→∞
(n n
√
|ancn|ρ) = |c|ρσ.

Now, to prove the theorem, suppose f ∈ B2
a, then f is an entire function of expo-

nential type less than or equal to a. It is clear from Theorem 2.1 that the only part
we need to consider in this proof is when ϕ(z) = cz. Now,
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∫

R

|Cϕf(x)|
2dx =

∫

R

|f(cx)|2dx =
1

|c|

∫

R

|f(x)|2dx < ∞.

Also, from above, Cϕf is of exponential type less than or equal to |c|a. Hence Cϕf ∈
B2

|c|a. The converse is also true because, using Pólya’s theorem ( [CCG], [P]), it

follows that if Cϕ(B
2
a) ⊆ B2

A, for any A, then ϕ is affine.
(b) Since ϕ(z) = cz+d, it is clear from part(a) that Cϕ : B2

a → B2
|c|a. Therefore

supp(Ĉϕf) ⊆ [−|c|a, |c|a]. Now suppose m̂ ∈ Co(R), with supp(m̂) ⊆ [r, s]. Then

supp(m̂ ∗ Ĉϕf) ⊆ [r− |c|a, s+ |c|a]. Since m̂ ∈ Co(R), m̂ ∈ L1(R). Also, since m̂ is
defined, m ∈ L1(R) and then by the inverse Fourier transform formula,

m(x) =

∫ ∞

−∞

m̂(t)e−ixtdt,

and this implies,

|m(x)| ≤

∫ ∞

−∞

|m̂(t)|dt = ‖m̂‖1 < ∞.

Hence, m ∈ L∞(R), and therefore Tf = MmCϕf ∈ L2(R). Hence for all f ∈ B2
a,

Tf ∈ B2
A for A = max {|r − |c|a|, |s+ |c|a|}.

Conversely, suppose T : B2
a → B2

A for some A. If m̂ doesn’t have compact support,

then for some f ∈ B2
a, m̂ ∗ Ĉϕf will fail to have compact support. This is a

contradiction to the fact that Tf = MmCϕf ∈ B2
A for some A. �

3. Range of composition operators acting on Paley-Wiener spaces

Theorem 2.1 demonstrates that Paley-Wiener spaces are rather rigid under dif-
feomorphisms of the underlying domain. However, nonlinear warps (e.g. chirps)
occur in various applications and the bandlimited input signals are transported into
subspaces of L2(R). Characterization of these subspaces would lead to appropriate
approximation theorems which allows for proper representation of the output sig-
nals. To describe these range spaces, we recall the following well known theorem
(see [S1], for example).

Theorem 3.1. Suppose (X,Σ, λ) is a σ-finite measure space and ϕ is a measurable
function on X into itself. Then Cϕ is a bounded composition operator on L2(λ)
if and only if there exists a constant c > 0 such that λϕ−1(E) ≤ cλ(E) for every
measurable set E. Here ϕ−1(E) is the pull-back of the set E.

This is equivalent to saying that Cϕ : L2(λ) → L2(λ) if and only if λϕ−1 is
absolutely continuous with respect to λ and the Radon-Nikodým derivative of λϕ−1

with respect to λ is essentially bounded. Clearly this will serve as a necessary condi-
tion for the theorems to follow. Before, we provide a much deeper characterization
of the range spaces of non-affine warps (or affine warps for that matter), we note an
elementary result which arises from Plancherel’s theorem. This observation shows
that if the support of the bandlimited functions is loosened, then the range spaces
is arbitrarily close to larger Paley-Wiener spaces. More precisely,

Theorem 3.2. Suppose ϕ : R → R is a measurable function that satisfies the
hypothesis of Theorem 3.1, i.e., there exists a constant c > 0 such that mϕ−1(E) ≤
cm(E) for every measurable set E, where m is the Lebesgue measure on the Borel
subsets of R. Let f ∈ B2

a. Then for every ε > 0, there exists a positive N such that
for every A ≥ N there exists an h ∈ B2

A with ‖Cϕf − h‖ < ε.
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Proof. Suppose ϕ : R → R is a measurable function and there is c > 0 such
that mϕ−1(E) ≤ cm(E) for every measurable set E ⊆ R, where m is the Lebesgue
measure on the Borel subsets of R. Let f ∈ B2

a be an arbitrary function. Then
since f ∈ L2(R), by Theorem 3.1 it follows that Cϕf ∈ L2(R). Define,

h(z) :=

∫ A

−A

Ĉϕf(t)e
−iztdt

Then it is clear that h ∈ B2
A.

We will show that, ĥ(t) = (χAĈϕf)(t), ∀t ∈ R, where χA is the characteristic func-
tion of [−A,A].

ĥ(t) =

∫ ∞

−∞

h(x)eixtdx

=

∫ ∞

−∞

{∫ A

−A

Ĉϕf(s)e
−ixsds

}
eixtdx

=

∫ A

−A

Ĉϕf(s)

{∫ ∞

−∞

eix(t−s)dx

}
ds

=

∫ A

−A

Ĉϕf(s)δ(t− s)ds

=

{
Ĉϕf(t) if t ∈ [−A,A]
0 otherwise

Therefore using Plancherel’s theorem we have:

‖Cϕf − h‖ = ‖Ĉϕf − ĥ‖

= ‖Ĉϕf‖L2([−A,A]c),

which goes to zero as A → +∞. Hence the statement of the theorem is proved. �

As a consequence if ϕ : C → C is an entire function, whose restriction to the
real line is real and satisfies all the hypothesis of Theorem 3.2, then the composition
operator induced by ϕ will satisfy the conclusion of the above theorem.

Example 3.3 ([S1], [SM]). Denote ϕR as the restriction of ϕ on R. If ϕ : C → C

is an entire function with ϕR : R → R monotone and 1
ϕ′

R

essentially bounded, then

the composition operator induced by ϕ satisfies the conclusion of Theorem 3.2. An
example of such a function is ϕ(z) = az3 + bz2 + cz + d, where a, b, c, d ∈ R with
b2 < 3ac.

Now we will show that the range spaces are reproducing kernel Hilbert spaces
with reproducing kernel generated by the reproducing kernel of B2

a. These repro-
ducing kernels form a basis for the range spaces and may be used to provide best
approximation results for the images. We know that the inner product of B2

a is

defined by (f(·), g(·))B2
a
=

∫

R

f(t)g(t)dt. Suppose F(C) denotes the linear space of

all complex valued functions on C. Consider the composition map Cϕ : B2
a → F(C).

Let hϕ be a mapping from C into B2
a such that (Cϕf) (z) = (f(·), hϕ(z, ·))B2

a
for

all f ∈ B2
a.
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But we know, f(z) =

(
f(·),

sin a(· − z)

π(· − z)

)

B2
a

. This implies, Cϕf(z) = f(ϕ(z)) =

(
f(·),

sin a(· − ϕ(z))

π(· − ϕ(z))

)

B2
a

. Hence we have, hϕ(z, ·) =
sin a(· − ϕ(z))

π(· − ϕ(z))
. Then by

Saitoh’s theorem (see [S]), the range space ran(Cϕ) is a reproducing kernel Hilbert
space with the reproducing kernel given by,

K(ϕ)(z, w) = (hϕ(w, ·) , hϕ(z, ·))B2
a

=

(
sin a(· − ϕ(w))

π(· − ϕ(w))
,
sin a(· − ϕ(z))

π(· − ϕ(z))

)

B2
a

=

∫ ∞

−∞

sin a(t− ϕ(w))

π(t− ϕ(w))

sin a(t− ϕ(z))

π(t− ϕ(z))
dt

=

∫ a

−a

e−itϕ(w)eitϕ(z)dt

=
sin a(ϕ(z)− ϕ(w))

π(ϕ(z)− ϕ(w))
.

Then we can introduce the inner product in ran(Cϕ) in the following manner:

It is well-known that the set {K(ϕ)(·, n)}n∈Z forms an orthonormal basis in ran(Cϕ).
Then for any F,G ∈ ran(Cϕ), there exist {an}n∈Z, {bn}n∈Z in C such that F =∑

n

anK
(ϕ)(·, n) and G =

∑

n

bnK
(ϕ)(·, n). Then the inner product can be written

as,

(F , G)ran(Cϕ) =

(∑

n

anK
(ϕ)(·, n) ,

∑

m

bmK(ϕ)(·,m)

)

ran(Cϕ)

=
∑

m,n

bmanK
(ϕ)(m,n)

Since Cϕ : B2
a → ran(Cϕ) is a linear and bounded operator, by the closed graph

theorem, Cϕ is a closed operator.

Example 3.4. Suppose ϕ(z) = z3 + z. Then Cϕ : B2
a → ran(Cϕ) ⊂ L2(R) and

ran(Cϕ) is a reproducing kernel Hilbert space with reproducing kernel K(ϕ)(z, w) =
sina(z3 + z − w3 − w)

π(z3 + z − w3 − w)
.

The following theorem will provide the characterization of the range space of Cϕ

and establishes a norm on these range spaces relative to which Cϕ acts isometrically.
In particular, a basis for the range spaces is constructed which provides the best
approximation of the image maps.

Theorem 3.5. Let ϕ : C → C be an entire function, whose restriction to the
real line, ϕR maps R into R. Suppose there exists a constant c > 0 such that
mϕ−1

R
(E) ≤ cm(E) for every measurable set E, where m is the Lebesgue measure

on the Borel subsets of R. In addition, suppose m ≪ m ◦ϕ−1
R

, i.e., m ∼ m ◦ϕ−1
R

(m and m ◦ ϕ−1
R

are mutually absolutely continuous). Then the following are true:

(a) Cφ is a bijection from B2
a onto ran(Cϕ).
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(b) ran(Cϕ) is a reproducing kernel Hilbert space with norm defined by

‖Cϕf‖ran(Cϕ) = ‖f‖B2
a
, ∀f ∈ B2

a.

That is Cϕ is an isometry.

Proof. (a) The first part of this proof is due to Singh and Manhas
(See [SM]).
Since m ◦ϕ−1

R
≪ m, the Radon-Nikodym derivative fϕR

of m ◦ϕ−1
R

with
respect to m exists and we have

mϕ−1
R

(E) =

∫

E

fϕR
dm, for every Borel set E ⊆ R.

Now suppose there exists one such E with m(E) > 0 such that fϕR
= 0

on E. Then from the above equality we have mϕ−1
R

(E) = 0, which is a

contradiction to the fact that m ≪ m ◦ϕ−1
R

. Hence fϕR
is different from

zero almost everywhere.
Then the corresponding multiplication operator MfϕR

is an injection.

But we also know for f, g ∈ L2(R),
(
C∗

ϕR
CϕR

f , g
)

= (CϕR
f , CϕR

g)

=

∫
f g dmϕ−1

R

=

∫
fϕR

f g dm

=
(
MfϕR

f , g
)
.

Hence C∗
ϕR
CϕR

= MfϕR
is an injection on L2(R) and this implies CϕR

is an injection on L2(R). Since B2
a ⊂ L2(R), CϕR

is an injection on B2
a.

Now we claim that Cϕ is an injection on B2
a.

Proof of claim: Let Cϕf = 0 for some f ∈ B2
a. This implies,

f(ϕ(z)) = 0 ∀z ∈ C,

f(ϕ(x)) = 0 ∀x ∈ R,

f(ϕR(x)) = 0 ∀x ∈ R,

CϕR
f(x) = 0 ∀x ∈ R,

CϕR
f = 0 on R,

f = 0 on R.

Therefore by the identity theorem, f = 0 on C. Hence Cφ is an injec-
tion from B2

a onto ran(Cϕ).
(b) We know ‖F‖ran(Cϕ) = inf{‖f‖B2

a
: Cϕf = F}. This implies,

‖F‖ran(Cϕ) = inf{‖f − g‖B2
a
: g ∈ N (Cϕ), Cϕf = F}

= ‖PN (Cϕ)⊥f‖B2
a

(∵ N (Cϕ) is closed)

= ‖f‖B2
a

(∵ N (Cϕ) = 0)

Here, N (Cϕ) is the null space of Cϕ and PN (Cϕ)⊥ is the orthogonal pro-

jection from B2
a onto the orthogonal complement of N (Cϕ) in B2

a. Hence
‖Cϕf‖ran(Cϕ) = ‖f‖B2

a
. This completes the proof.

�
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4. Bounded composition operators on de Branges-Rovnyak Spaces

Let Π+ ⊂ C be the upper half of the complex plane. Let g(z) be an entire
function satisfying |g(z)| < |g(z)|, ∀z ∈ Π+. The de Branges-Rovnyak space H(g)
is the space of all entire functions f(z) satisfying the following conditions:

(1) ‖f‖2H(g) =

∫ +∞

−∞

∣∣∣∣
f(t)

g(t)

∣∣∣∣
2

dt < ∞,

(2) Both ratios f(z)
g(z) and f(z)

g(z) are of bounded type and of nonpositive mean

type in Π+.

H(g) is a Hilbert space with the norm defined above. It is well-known that H(g)
is a reproducing kernel Hilbert space with reproducing kernel given by kw(z) =
i
2
g(z)g(w)−g(z)g(w)

π(z−w) .

Note that the Paley-Wiener space B2
a is the space H(g) with g(z) = e−iaz.

In the following two cases we characterize the bounded composition operators
on H(g) by imposing different conditions on the function g.
Case I: When g is of exponential type.

Lemma 4.1. Suppose g is an entire function of exponential type σ satisfying
|g(z)| < |g(z)|, ∀z ∈ Π+. Then an analytic function f is of exponential type

less than or equal to σ if and only if f(z)
g(z) and f(z)

g(z) are of nonpositive mean type in

Π+.

Proof. Suppose f is of exponential type less than or equal to σ. Then f is
of mean type in upper and lower half plane, say, σ+ and σ−, respectively, where

σ+, σ− ≤ σ. Now the mean type of f(z)
g(z) in Π+ is

lim
r→∞

2

πr

∫ π

0

log

∣∣∣∣
f(reiθ)

g(reiθ)

∣∣∣∣ sin θdθ = σ+ − σ
(
since, |g(z)| < |g(z)| in Π+

)

≤ 0.

Similarly, the mean type of f(z)
g(z) in Π+ is

lim
r→∞

2

πr

∫ π

0

log

∣∣∣∣
f(re−iθ)

g(reiθ)

∣∣∣∣ sin θdθ = σ− − σ

≤ 0.

Conversely, suppose both f(z)
g(z) and f(z)

g(z) are of nonpositive mean type in Π+.

We need to show that f is of exponential type less than or equal to σ. But, we

know that, lim sup
|z|→∞

log |g(z)|

|z|
= σ. Since, f

g is nonpositive mean type in Π+, we
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have the following

lim sup
y→∞

log | f(iy)g(iy) |

y
≤ 0,

lim sup
y→∞

(
log |f(iy)|

y
−

log |g(iy)|

y

)
≤ 0,

lim sup
y→∞

log |f(iy)|

y
≤ lim inf

y→∞

log |g(iy)|

y

≤ lim sup
y→∞

log |g(iy)|

y

≤ σ.

This implies that f is of mean type ≤ σ on Π+. Also we know f(z)
g(z) is nonpositive

mean type in Π+, therefore

lim sup
y→∞

log | f(−iy)
g(iy) |

y
≤ 0,

lim sup
y→∞

log |f(−iy)|

y
≤ lim inf

y→∞

log |g(iy)|

y

≤ lim sup
y→∞

log |g(iy)|

y

≤ σ.

This implies that f is of mean type ≤ σ on Π−.
Since, f is entire, f is of exponential type σ1, then by Krěın’s theorem σ1 =

max{mean type of f on Π+, mean type of f on Π−} ≤ σ. �

If g is as in Lemma 4.1, then every f ∈ H(g) is of exponential type less than or
equal to σ. The proof of the following theorem on bounded composition operators
on H(g) is very similar to the proof of Theorem 2.1.

Theorem 4.2. Suppose g is an entire function of exponential type σ satisfying
|g(z)| < |g(z)|, ∀z ∈ Π+. Let ϕ : C → C be a non-constant holomorphic map. If
the composition operator Cϕ sends H(g) into itself, then ϕ is affine.

Proof. Suppose that Cϕ : H(g) → H(g). Since both kw ◦ ϕ and kw are in
H(g), by Lemma 4.1 both are exponential type less than or equal to σ and therefore
of order 1. Then by Pólya’s theorem ([P]) ϕ is a polynomial. Let degree of ϕ be
n. We will show that n = 1.

Let ϕ(z) =

n∑

k=0

ckz
k, with |cn| 6= 0. Then by Cauchy’s integral formula we

can show that Mϕ(r) ≥ |cn|rn for large r. Now, without loss of generality we may
assume that ϕ(0) = 0. Then there exists a constant c ∈ (0, 1), such that

Mf◦ϕ(r) ≥ Mf

(
cMϕ

(
r
2

))
≥ Mf

(
c|cn|

rn

2n

)
,

for each function f in H(g).
Now, suppose f ∈ H(g). Since the order of f is one, for arbitrarily large value

of r the inequality Mf (r) ≥ exp rb holds when 0 < b < 1. Hence, from the above
inequality, there are arbitrarily large values of r such that
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Mf◦ϕ(r) ≥ exp
((

c|cn|
rn

2n

)b)
= exp

(
cb|cn|

b rnb

2nb

)
.

Since the order of f ◦ ϕ is one, there exist constants A,B such that

Mf◦ϕ(r) ≤ A exp (Br), for all r.

Thus there are arbitrarily large values of r such that exp
(
cb|cn|b

rnb

2nb

)
≤ A exp (Br).

This implies nb ≤ 1, but b is any number less than one, hence n must be one (since
ϕ is not a constant function). �

Theorem 4.3. Suppose g is an entire function of exponential type σ satisfying
|g(z)| < |g(z)|, ∀z ∈ Π+. Let ϕ(z) = az + b, z ∈ C with 0 < |a| ≤ 1, a ∈ R and

b = p + iq. Then the operator Cϕ is bounded on H(g) if
∣∣∣ g(at+p)

g(t)

∣∣∣ ≤ c, for some

constant c and for all t ∈ R.

Proof. Let f ∈ H(g). Then the order and type of f are respectively 1 and
σ1, where 0 < σ1 ≤ σ.

Denote F = f ◦ ϕ. Then, as in the proof of Theorem (2.2) the order and
type of f(az) are 1 and |a|σ1 respectively. Also by a simple calculation we can
show that the order and type are invariant under translation. Hence the order and
type of F are 1 and |a|σ1(≤ σ) respectively. Hence by Lemma 4.1, F

g , and
F∗

g are

of nonpositive mean type in Π+, where F ∗(z) = F (z). Since both F and g are
of exponential type less than or equal to τ , for τ ≥ σ, it is clear from the fact
F (z)
g(z) = F (z)/e−iτz

g(z)/e−iτz that F
g is bounded type in Π+. Similarly, we can show that F∗

g

is also bounded type in Π+.
Now we have the following,

∫

R

∣∣∣∣
(f ◦ ϕ)(t)

g(t)

∣∣∣∣
2

dt =

∫

R

∣∣∣∣
f(at+ p+ iq)

g(t)

∣∣∣∣
2

dt

≤ c2
∫

R

∣∣∣∣
f(at+ p+ iq)

g(at+ p)

∣∣∣∣
2

dt

=
c2

|a|

∫

R

∣∣∣∣
f(x+ iq)

g(x)

∣∣∣∣
2

dx

≤
c2e2σ|q|

|a|

∫

R

∣∣∣∣
f(x)

g(x)

∣∣∣∣
2

dx

which is finite. Here the last inequality follows from Plancherel-Pólya theorem
(see [SW], Lemma 4.3) and this completes the proof. �

Case II: When (g)−1 ∈ L2(R).
The following theorem gives a sufficient condition for composition operators to

be bounded on the de Branges-Rovnyak space H(g) when 1
g ∈ L2(R).

Theorem 4.4. Suppose g is an entire function satisfying |g(z)| < |g(z)|, ∀z ∈ Π+

and also (g)−1 ∈ L2(R). Define, dλ = 1
|g(t)|2 dt. Let ϕ be an entire function such

that its restriction to the real line, ϕR, maps R into R. If Cϕ maps H(g) into

H(g) then there exists a positive constant c such that λϕ−1
R

(E) ≤ cλ(E), for every
measurable set E ⊆ R.
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Proof. Suppose f ∈ H(g). Then f ∈ L2(λ). Since Cϕ sends H(g) into H(g),
f ◦ ϕ ∈ H(g); that is, f ◦ ϕ ∈ L2(λ) and this implies f ◦ ϕR ∈ L2(λ). Then
since λ is integrable, it is a σ-finite measure on R, hence by Theorem 3.1 there
exists a positive constant c such that λϕ−1

R
(E) ≤ cλ(E), for every measurable set

E ⊆ R. �
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