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On Nichols algebras associated to simple racks

N. Andruskiewitsch, F. Fantino, G. A. Garćıa, L. Vendramin

Dedicado a Mat́ıas Graña

Abstract. This is a report on the present state of the problem of determining

the dimension of the Nichols algebra associated to a rack and a cocycle. This

is relevant for the classification of finite-dimensional complex pointed Hopf

algebras whose group of group-likes is non-abelian. We deal mainly with simple

racks. We recall the notion of rack of type D, collect the known lists of simple

racks of type D and include preliminary results for the open cases. This notion

is important because the Nichols algebra associated to a rack of type D and any

cocycle has infinite dimension. For those racks not of type D, the computation

of the cohomology groups is needed. We discuss some techniques for this

problem and compute explicitly the cohomology groups corresponding to some

conjugacy classes in symmetric or alternating groups of low order.

1. Introduction

The problem of classifying finite-dimensional pointed Hopf algebras over non-
abelian finite groups reduces in many cases to a question on conjugacy classes. In
this introduction we give a historical account and place the problem in the overall
picture.

1.1. We briefly recall the lifting method for the classification of pointed Hopf
algebras, see Subsection 2.2 for unexplained terminology and [AS2] for a full ex-
position. Let H be a Hopf algebra with bijective antipode and assume that the

coradical H0 =
∑

C simple subcoalgebra of H

C is a Hopf subalgebra of H . Consider the

coradical filtration of H :

H0 ⊂ H1 ⊂ · · · ⊂ H =
⋃

n≥0

Hn,

where Hi+1 = {x ∈ H : ∆(x) ∈ Hi ⊗H +H ⊗H0}. Then the associated graded
coalgebra grH has a decomposition grH ≃ R#H0, where R is an algebra with
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some special properties and # stands for a kind of semidirect product (technically,
a Radford biproduct or bosonization; the underlying vector space is R⊗H0). The
algebraR, more precisely, is a Hopf algebra in the braided tensor category of Yetter-
Drinfeld modules over H0, see Subsection 2.2, and inherits the grading of grH :
R = ⊕n≥0R

n. If V = R1, then the subalgebra of R generated by V is isomorphic
to the Nichols algebra B(V ), that is completely determined by the Yetter-Drinfeld
module V .

Let us fix a semisimple Hopf algebra A. One of the fundamental steps of the
lifting method to classify finite-dimensional Hopf algebras H with H0 ≃ A is to
address the following question, see [A]:

Question. Determine the Yetter-Drinfeld modules V over A such that the dimen-

sion of B(V ) is finite, and if so, give an efficient set of relations of B(V ).

An important observation is that the Nichols algebraB(V ), as algebra and coal-
gebra, is completely determined just by the braiding c : V ⊗V → V ⊗V . Therefore,
it is convenient to consider classes of braided vector spaces (V, c) depending on the
class of semisimple Hopf algebras we are considering.

1.2. A Hopf algebra H is pointed if H0 is isomorphic to the group algebra
CG, where G is the group of grouplikes of H . Let us consider first the case when
G is abelian. A braided vector space (V, c) is of diagonal type if V has a basis
(vi)1≤i≤n such that c(vi ⊗ vj) = qijvj ⊗ vi, where the qij ’s are non-zero scalars
[AS1]. The class of braided vector spaces of diagonal type corresponds to the class
of pointed Hopf algebras with G abelian (and finite). A remarkable result is the
complete list of all braided vector spaces of diagonal type with finite-dimensional
Nichols algebra [H2]; the basic tool in the proof of this result is the Weyl groupoid
[H1]. The classification of all finite-dimensional pointed Hopf algebras with G
abelian and order of G coprime with 210 was obtained in [AS3], relying crucially
on [AS1, H2]. Notice however that the article [H2] does not contain the efficient
set of relations for finite-dimensional Nichols algebras of diagonal type; so far, this
is available for the special classes of braided vector spaces of Cartan type [AS1]
and more generally of standard type [Ang].

1.3. Let us now turn to the case when H is pointed with G non-abelian and
mention some antecedents.

⋄ The first genuine examples of finite-dimensional pointed Hopf algebras
with non-abelian group appeared in [MS, FK], as bosonizations of Nichols
algebras related to the transpositions in S3 and S4, see Subsection 6.2.
The analogous quadratic algebra over S5 was computed by Roos with a
computer and proved to be a Nichols algebra in [G2].

⋄ In [G1], Graña identified the class of braided vector spaces corresponding
to pointed Hopf algebras with non-abelian group as those constructed from
racks and cocycles. He also computed in [G2] several finite-dimensional
Nichols algebras with the help of computer programs.

⋄ In [G1], Graña also suggested to look at braided vector subspaces to
decide that a Nichols algebra has infinite dimension. After [H2], this idea
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was implemented in several papers, by looking at abelian subracks. See
[AF1, AF2, AFZ, AZ, F, FGV1, FGV2].

⋄ The construction of the Weyl groupoid for braided vector spaces of di-
agonal type in [H1] was extended to braided vector spaces arising from
semisimple Yetter-Drinfeld modules in [AHS]. This allowed to consider
braided vector subspaces associated to non-abelian subracks [AF3]. A
further study of the Weyl groupoid in [AHS] was undertaken in [HS].
An important consequence of one of the results in [HS] is the notion of
rack of type D [AFGV1].

1.4. We shall explain in detail the notion of rack of type D in Subsection 2.4,
but we try now to give a glimpse. As we explain in Subsection 2.2, our goal is to
determine if the Nichols algebra B(O, ρ) related to a conjugacy class O in a finite
group G and a representation ρ of the centralizer is finite-dimensional. We say that
the conjugacy class O is of type D if there exist r, s ∈ O such that

(1) (rs)2 6= (sr)2,
(2) r is not conjugated to s in the subgroup of G generated by r, s.

Then dimB(O, ρ) = ∞ for any ρ; furthermore this will happen for any group
G′ containing O as a conjugacy class (that is, as a subrack). By reasons exposed in
Subsection 2.4, we focus on the following case.

Question 1. Determine all simple racks of type D.

The classification of finite simple racks is known, see Subsection 2.5; the list
consists of conjugacy classes in groups of 3 types. In other words, we need to check,
for each conjugacy class in the list of simple racks, whether there exist r, s satisfying
(1) and (2) above. The main purpose of this paper is to report the actual status of
this purely group-theoretical question, that is succinctly as follows.

⋄ [AFGV1] The conjugacy classes in the alternating and symmetric groups,
Am and Sm, are of type D, except for a short list of exceptions listed in
Theorems 5.1 and 6.1; for some of these exceptions, we know that they
are not of type D, see Remark 4.2 in loc. cit.

⋄ [AFGV2] The conjugacy classes in the sporadic groups are of type D,
except for a short list of exceptions listed in Theorems 5.2; for some of
these, we know that they are not of type D, see Table 2. The verification
was done with the help of GAP, see [AFGV3].

⋄ [FV] Twisted conjugacy classes of sporadic groups are also mostly of type
D, except for a short list of exceptions, see Theorem 6.2.

⋄ [AFGaV] Some techniques to deal with twisted homogenous racks were
found; so far, most of the examples dealt with are of type D.

⋄ We include in Subsection 5.3 some preliminary results on conjugacy classes
on simple groups of Lie type; again, most of the examples are of type D.

⋄ The simple affine racks does not seem to be of type D.

What happens beyond type D? As we see by now, there are roughly two large
classes of simple racks, one formed by the affine ones and the conjugacy class of
transpositions in Sm, and the rest. For this second class, our project is to finish
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the determination of those of type D and attack the remaining ones as explained
in page 8. That is, to compute the pointed sets of cocycles of degree n and then
try to discard the corresponding braided vector spaces by abelian techniques. The
first class is not tractable by the strategy of subracks. We should also mention the
recent paper [GHV] with a different approach.

1.5. The paper is organized as follows. We discuss Nichols algebras, racks,
cocycles, the criterion of type D, the classification of finite simple racks and the
strategy of subracks in Section 2. Section 3 contains some techniques for the com-
putation of cocycles. In the next sections we list explicitly the simple racks that are
known to be of type D. In Section 8 we illustrate the consequences of these results
to the classification of pointed Hopf algebras. In Appendix A, we list all known
examples of finite-dimensional Nichols algebras associated to racks and cocycles; in
Appendix B, we put together some questions scattered along the text.

This survey contains also a few new concepts and results, among them: the com-
putation of the enveloping group of the rack of transpositions in Sm, see Proposition
3.2; the twisting operation for cocycles on racks, see Subsection 3.4; the calculation
of some cohomology groups using the program RiG, see Subsection 3.3; some pre-
liminary discussions on conjugacy classes of type D in finite groups of Lie type, see
Subsection 5.3.

2. Preliminaries

Conventions. N = {1, 2, 3, . . .}; SX := {f : X → X bijective}; if m ∈ N, then
Gm is the group of m-th roots of 1 in C.

2.1. Racks.

We briefly recall the basics of racks; see [AG] for more information and refer-
ences. A rack is a pair (X, ⊲) where X is a non-empty set and ⊲ : X ×X → X is
an operation such that

the map ϕx = x ⊲ is bijective for any x ∈ X, and(1)

x ⊲ (y ⊲ z) = (x ⊲ y) ⊲ (x ⊲ z) for all x, y, z ∈ X.(2)

A group G is a rack with x ⊲ y = xyx−1, x, y ∈ G; if X ⊂ G is stable under
conjugation by G, that is a union of conjugacy classes, then it is a subrack of
G. The main idea behind the consideration of racks is to keep track just of the
conjugation of a group. Morphisms of racks and subracks are defined as usual. For
instance, ϕ : X → SX , x 7→ ϕx, is a morphism of racks, for any rack X . Any rack
X considered here satisfies the conditions

x ⊲ x = x,(3)

x ⊲ y = y =⇒ y ⊲ x = x,(4)

for any x, y ∈ X . This is technically a crossed set, but we shall simply say a rack.
So, we rule out, for example, the permutation rack (X, σ), where σ ∈ SX and
ϕx = σ for all x.

The rack with just one element is called trivial.

We shall consider some special classes of racks that we describe now.

Affine racks. If A is an abelian group and T ∈ Aut(A), then A is a rack with
x ⊲ y = (1− T )x+ Ty. This is called an affine rack and denoted QA,T .
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Twisted conjugacy classes. Let G be a finite group and u ∈ Aut(G); G acts on
itself by x ⇀u y = x y u(x−1), x, y ∈ G. The orbit OG,u

x of x ∈ G by this action is
a rack with operation

(5) y ⊲u z = y u(z y−1), y, z ∈ OG,u
x .

We shall say that OG,u
x is a twisted conjugacy class of type (G, u).

Notation.

• T = any of the conjugacy classes of 3-cycles in A4 (the tetrahedral rack).

• QA,T = affine rack associated to an abelian group A and T ∈ Aut(A).

• Dn = class of involutions in the dihedral group of order 2n, n odd.

• Om
j = conjugacy class of j-cycles in Sm.

We need some terminology on racks.

• A rackX is decomposable if it can expressed as a disjoint union of subracks
X = X1

∐
X2. Otherwise, X is indecomposable.

• A rack X is said to be simple iff cardX > 1 and for any surjective mor-
phism of racks π : X → Y , either π is a bijection or cardY = 1.

• If X is a rack and j ∈ Z, then X [j] is the rack with the same set X and
multiplication ⊲j given by x ⊲j y = ϕj

x(y), x, y ∈ X .

2.2. Nichols algebras.

Nichols algebras play a crucial role in the classification of Hopf algebras, see
[AS2] or a brief account in Section 8 below. Let n ≥ 2 be an integer. We start
by reminding the well-known presentations by generators and relations of the braid
group Bn and the symmetric group Sn:

Bn = 〈(σi)1≤i≤n−1|σiσjσi = σjσiσj , |i− j| = 1; σiσj = σjσi, |i− j| > 1〉

Sn = 〈(si)1≤i≤n−1|sisjsi = sjsisj , |i− j| = 1; sisj = sjsi, |i− j| > 1; s2i = e〉,

indices in the relations going over all possible i, j. There is a canonical projection
π : Bn → Sn, that admits a so-called Matsumoto section M : Sn → Bn; this is
not a morphism of groups, and it is defined by M(si) = σi, 1 ≤ i ≤ n − 1, and
M(st) = M(s)M(t), for any s, t ∈ Sn such that l(st) = l(s)+ l(t), l being the length
function.

Let V be a vector space and c ∈ GL(V ⊗ V ). Recall that c fulfills the braid
equation if (c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c). In this case, we say that
(V, c) is a braided vector space and that c is a braiding. Since c satisfies the braid
equation, it induces a representation of the braid group Bn, ρn : Bn → GL(V ⊗n),
for each n ≥ 2. Explicitly, ρn(σi) = idV ⊗(i−1) ⊗c⊗ idV ⊗(n−i−1) , 1 ≤ i ≤ n− 1. Let

(6) Qn =
∑

σ∈Sn

ρn(M(σ)) ∈ End(V ⊗n).

Then the Nichols algebra B(V ) is the quotient of the tensor algebra T (V ) by
⊕n≥2 kerQn, in fact a 2-sided ideal of T (V ). If c = τ is the usual switch, then
B(V ) is just the symmetric algebra of V ; if c = −τ , then B(V ) is the exterior
algebra of V . But the computation of the Nichols algebra of an arbitrary braided
vector space is a delicate issue. We are interested in the Nichols algebras of the
braided vector spaces arising from Yetter-Drinfeld modules1.

1Any braided vector space with rigid braiding arises as a Yetter-Drinfeld module [Tk].
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A Yetter-Drinfeld module over a Hopf algebra H with bijective antipode S is a
left H-module M and simultaneously a left H-comodule, with coaction λ : M →
H ⊗M compatible with the action in the sense that λ(h · x) = h(1)x(−1)S(h(3)) ⊗
h(2) · x(0), for any h ∈ H , x ∈ M . Here λ(x) = x(−1) ⊗ x(0), in Heyneman-
Sweedler notation. A Yetter-Drinfeld module M is a braided vector space with
c(m ⊗ n) = m(−1) · n ⊗ m(0), m,n ∈ M . We shall see in Section 8 how Nichols
algebras of Yetter-Drinfeld modules enter into the classification of Hopf algebras.
In this paper, we are interested in the case when H = CG is the group algebra
of a finite group G. In this setting, a Yetter-Drinfeld module over H is a left G-
module M that bears also a G-gradation M = ⊕g∈GMg, compatibility meaning
that h ·Mg = Mhgh−1 for all h, g ∈ G; the braiding is c(m⊗n) = g ·n⊗m, m ∈ Mg,
n ∈ M .

Now a braided vector space may be realized as a Yetter-Drinfeld module over
many different groups and in many different ways. It is natural to look for a
description of the class of braided vector spaces that actually arise as Yetter-Drinfeld
modules over some finite group and to study them by their own. If G is a finite
group, then any Yetter-Drinfeld module over the group algebra CG is semisimple.
Furthermore, it is well-known the set of isomorphism classes of irreducible Yetter-
Drinfeld modules over CG is parameterized by pairs (O, ρ), where O is a conjugacy
class of G and ρ is an irreducible representation of the centralizer of a fixed point in
O. M. Graña observed that the class of braided vector spaces arising from Yetter-
Drinfeld modules over finite groups is described using racks and cocycles, see [G1]
and also [AG, Th. 4.14].

2.3. Nichols algebras associated to racks and cocycles.

We are focused in this paper on Nichols algebras associated to braided vector
spaces build from racks and cocycles. We start by describing the cocycles associated
to racks. Let X be a rack and n ∈ N. A map q : X ×X → GL(n,C) is a 2-cocycle
of degree n if

qx,y⊲zqy,z = qx⊲y,x⊲zqx,z,

for all x, y, z ∈ X . Let q be a 2-cocycle of degree n, V = CX ⊗ Cn, where CX is
the vector space with basis ex, for x ∈ X . We denote exv := ex ⊗ v. Consider the
linear isomorphism cq : V ⊗ V → V ⊗ V ,

(7) cq(exv ⊗ eyw) = ex⊲yqx,y(w) ⊗ exv,

x, y ∈ X , v, w ∈ Cn. Then cq is a solution of the braid equation:

(cq ⊗ id)(id⊗cq)(cq ⊗ id) = (id⊗cq)(cq ⊗ id)(id⊗cq).

Example 2.1. Let X be a finite rack and q a 2-cocycle. The dual braided vector

space of (CX ⊗ Cn, cq) is isomorphic to (CX [−1] ⊗ Cn, cq̂) where q̂x,y = qx,x⊲−1y,

x, y ∈ X [−1]. See Subsection 2.1 for X [−1].

The Nichols algebra associated to cq is denoted B(X,q).

We need to consider only 2-cocycles (or simply cocycles, for short) with some
specific properties.

• A cocycle q is finite if its image generates a finite subgroup of GL(n,C).

• A cocycle q is faithful if the morphism of racks g : X → GL(V ) defined
by gx(eyw) = ex⊲yqx,y(w), x, y ∈ X , w ∈ V , is injective.
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We denote by Z2(X,GL(n,C)) the set of all finite faithful 2-cocycles of degree
n. Let q ∈ Z2(X,GL(n,C)) and γ : X → GL(n,C) a map whose image generates
a finite subgroup. Define q̃ : X ×X → GL(n,C)

(8) q̃ij = (γi⊲j)
−1

qijγj .

Then q̃ is also a finite faithful cocycle and “q ∼ q̃ iff they are related by (8) for
some γ” defines an equivalence relation. We set

(9) H2(X,GL(n,C)) = Z2(X,GL(n,C))/ ∼ .

If q ∼ q̃, then the Nichols algebras B(X,q) and B(X, q̃) are isomorphic as
braided Hopf algebras in the sense of [Tk], see [AG, Th. 4.14]. The converse is
not true, see [G1].

The main question we want to solve is the following.

Question 2. For any finite indecomposable rack X, for any n ∈ N, and for any

q ∈ H2(X,GL(n,C)), determine if dimB(X,q) < ∞.

Definition 2.2. An indecomposable finite rack X collapses at n if for any finite

faithful cocycle q of degree n, dimB(X,q) = ∞; X collapses if it collapses at n for

any n ∈ N.

The first idea that comes to the mind is one would need to compute the group
H2(X,GL(n,C)) for any n. We shall see that in many cases this is actually not
necessary.

Question 3. If X collapses at 1, does necessarily X collapse?

Even partial answers to Question 3 would be very interesting.

2.4. Racks of type D.

We now turn to a setting where the calculation of the cocycles is not needed.

Definition 2.3. Let (X, ⊲) be a rack. We say that X is of type D if there exists a

decomposable subrack Y = R
∐

S of X such that

(10) r ⊲ (s ⊲ (r ⊲ s)) 6= s, for some r ∈ R, s ∈ S.

The following important result is a consequence of [HS, Th. 8.6], proved using
the main result of [AHS].

Theorem 2.4. [AFGV1, Th. 3.6] If X is a finite rack of type D, then X collapses.

�

Therefore, it is very important to determine all simple racks of type D, formally
stated as Question 1. The classification of simple racks is known and will be evoked
below. We focus on simple racks because of the following reasons:

• If Z is a finite rack and admits a rack epimorphism π : Z → X , where X
is of type D, then Z is of type D.

• If Z is indecomposable, then it admits a rack epimorphism π : Z → X
with X simple.
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We collect some criteria on racks of type D, see [AFGV1, Subsection 3.2].

• If Y ⊆ X is a subrack of type D, then X is of type D.
• If X is of type D and Z is a rack, then X × Z is of type D.
• Let K be a subgroup of a finite group G and κ ∈ CG(K). Let Rκ : K → G

be the map given by g 7→ g̃ := gκ. Let O, resp. Õ, be the conjugacy class

of τ ∈ K, resp. of τ̃ in G. Then Rκ identifies O with a subrack of Õ.

Hence, if O is of type D, then Õ is of type D.

There is a variation of the last criterium that needs the notion of quasi-real
conjugacy class. Let G be a finite group, g ∈ G and j ∈ N. Recall that OG

g is

quasi-real of type j if gj 6= g and gj ∈ OG
g . If g is real, that is g−1 ∈ OG

g , but not

an involution, then OG
g is quasi-real of type ord(g)− 1.

Proposition 2.5. [AFGV1, Ex. 3.8] Let G be a finite group and g = τκ ∈ G,

where τ 6= e and κ 6= e commute. Let K = CG(κ) ∋ τ ; then κ ∈ CG(K). Hence,

the conjugacy class O of τ in K can be identified with a subrack of the conjugacy

class Õ of g in G via Rκ as above. Assume that

(1) Õ and O are quasi-real of type j,

(2) the orders N of τ and M of κ are coprime,

(3) M does not divide j − 1,

(4) there exist r0, s0 ∈ O such that r0 ⊲ (s0 ⊲ (r0 ⊲ s0)) 6= s0.

Then Õ is of type D. �

2.5. Simple racks.

Finite simple racks have been classified in [AG, Th. 3.9, Th. 3.12]– see also
[J]. Explicitly, any simple rack falls into one and only one of the following classes:

(1) Simple affine racks (Fp
t, T ), where p a prime, t ∈ N, and T is the com-

panion matrix of a monic irreducible polynomial f ∈ Fp[X] of degree t,
different from X and X− 1.

(2) Non-trivial (twisted) conjugacy classes in simple groups.

(3) Simple twisted homogeneous racks, that is twisted conjugacy classes of
type (G, u), where

• G = Lt, with L a simple non-abelian group and 1 < t ∈ N,
• u ∈ Aut(Lt) acts by

u(ℓ1, . . . , ℓt) = (θ(ℓt), ℓ1, . . . , ℓt−1), ℓ1, . . . , ℓt ∈ L,

for some θ ∈ Aut(L). Furthermore, L and t are unique, and θ only
depends on its conjugacy class in Out(Lt).

Notation. A simple rack of type (L, t, θ) is a twisted homogeneous as in (3).

2.6. The approach by subracks.

The experience shows that the following strategy is useful to approach the study
of Nichols algebras over finite groups. However, there are racks that can not be
treated in this way.

Strategy. Let X be a simple rack.
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Step 1: Is X of type D? In the affirmative, we are done: X and any inde-

composable rack Z that admits a rack epimorphism Z → X collapse, in

the sense of Definition 2.2.

Step 2: If not, look for the abelian subracks of X. For an abelian subrack

S and any q ∈ H2(X,C×), look at the diagonal braiding with matrix

(qij)i,j∈S . If the Nichols algebra associated to this diagonal braiding has

infinite dimension, and this is known from [H2], then so has B(X,q).

Here you do not need to know all the abelian subracks, just to find one

with the above condition.

Step 3: Extend the analysis of Step 2 to cocycles of arbitrary degree.

Step 4: Extend the analysis of Steps 2 and 3 to indecomposable racks Z that

admit a rack epimorphism Z → X.

The following algorithm is the tool needed to deal with Step 1, when the rack
X is realized as a conjugacy class.

Algorithm. Let Γ be a finite group and let O be a conjugacy class. Fix r ∈ O.

(1) For any s ∈ O, check if (rs)2 6= (sr)2; this is equivalent to (10).

(2) If such s is found, consider the subgroupH generated by r, s. If OH
r ∩OH

s =

∅, then Y = OH
r

∐
OH

s is the decomposable subrack we are looking for and

O is of type D.

In practice, we implement this algorithm in a recursive way, running over the
maximal subgroups, see [AFGV2] for details.

Let X be a rack and S a subset of X . We denote ≪ S ≫:=
⋂

Y subrack,
S⊂Y⊂X

Y. If X

is a subrack of a group G and H = 〈S〉, then ≪ S ≫=
⋃

s∈S OH
s .

There are racks that could not be dealt with the criterium of type D.

Definition 2.6. An indecomposable finite rack X is of type M if2 for any r, s ∈ X ,

≪{r, s}≫ either is indecomposable or else equals {r, s}.

There are racks such that all proper subracks are abelian; for instance, the con-
jugacy class of type (2, 3) in S5 (here, all proper subracks have at most 2 elements).
More examples of racks of type M can be found in [AFGV1, Remark 4.2].

3. Tools for cocycles

3.1. The enveloping group.

The enveloping group GX := 〈ex : x ∈ X |ex ey = ex⊲y ex, x, y ∈ X〉 was
introduced in [Bk, FR, J]; it was also considered in [LYZ, ESS, S]. The map
e : X → GX , x 7→ ex has a universal property:

If H is a group and f : X → H is a morphism of racks, then there is a unique
morphism of groups F : GX → H such that F (ex) = fx, x ∈ X.

2M stands for Montevideo, where this notion was discussed by two of the authors.
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In other words, X  GX is the adjoint of the forgetful functor from groups to
racks.

Since ϕ : X → SX is a morphism of racks, there is a group morphism Φ :
GX → SX . The image, resp. the kernel, of Φ is denoted Inn⊲(X) (the group of
inner automorphisms), resp. ΓX (the defect group).

The group Inn⊲(X) is not difficult to compute in the case of our interest. As
for the defect group, some properties were established by Soloviev.

Theorem 3.1. (a) If X is a subrack of a group H, then Inn⊲(X) ≃ C/Z(C),

where C is the subgroup generated by X [AG, Lemma 1.9].

(b) The defect group ΓX is central in GX [S, Th. 2.6]. Hence ΓX = Z(GX)

if Inn⊲(X) is centerless.

(c) The rank of ΓX is the number of Inn⊲(X)-orbits in X [S, Th. 2.10]. �

The difficult part of the calculation of the defect group is to compute its torsion.

Proposition 3.2. Let si = (i i + 1) ∈ Sm. Let X be the rack of transpositions in

Sm; this is the conjugacy class of s1. The enveloping group GX of X is a central

extension

(11) 0 // Z // GX
// Sm // 0

Proof. By property (a) above, Inn⊲(X) ≃ Sm. We have to compute ΓX .

Let Bm be the braid group and as in Subsection 2.2; let Pm = kerπ, the pure

braid group. We claim that there is a morphism of groups Ψ : Bm → GX with

Ψ(σi) = esi , 1 ≤ i ≤ m− 1. To prove the claim, we verify the defining relations of

the braid group:

If |i− j| ≥ 2, then esiesj = esi⊲sj esi = esjesi ;

if |i− j| = 1, then esiesj esi = esiesj⊲siesj = esi⊲(sj⊲si)esiesj = esj esiesj

since si ⊲ (sj ⊲ si) = sj in Sm. In other words, we have a commutative diagram

Bm

π

!!D
DD

DD
DD

D

Ψ
// GX

Φ||||zz
zz

zz
zz

Sm.

Clearly, Ψ is surjective and kerΦ = Ψ(Pm). Let now H be a group and f : X → H

a morphism of racks. If x, y ∈ X , then f2
xfy = fxfx⊲yfx = fyf

2
x and consequently

f2
y⊲x = fyf

2
xf

−1
y = f2

x . Hence for all x, y ∈ X ,

(12) f2
y = f2

x is central in the subgroup generated by f(X).

We call z = e2si ; this is a central element of GX and does not depend on i. Now

Pm is generated by τij = σj ⊲ (σj+1 ⊲ (σj+2 ⊲ . . . ⊲ (σi−1 ⊲ σ
2
i )) for all j < i, see [Ar,

page 119],[Bi]. Hence kerΦ = Ψ(Pm) is generated by Ψ(τij) = z.

Let now V be a vector space with a basis (vx)x∈X and let q ∈ C be a root of 1 of

arbitrary order M . Define fy ∈ GL(V ) by fy(vx) = qvy⊲x, x, y ∈ X . Then fxfy =



ON NICHOLS ALGEBRAS ASSOCIATED TO SIMPLE RACKS 11

fx⊲yfx and f2
x = q2 id for any x, y ∈ X ; thus we have a map F : GX → GL(V ) and

F (z) = q2 id. This implies that z is not torsion and the claim is proved. �

Remark 3.3. (i). By [B, Ch IV, §1, no. 1.9, Prop. 5], there is a section of sets

T : Sm → GX such that T (ww′) = T (w)T (w′) when ℓ(ww′) = ℓ(w)ℓ(w′). Thus

the central extension corresponds to the cocycle η : Sm × Sm → Z, η(w,w′) =

T (w)T (w′)T (ww′)−1, w,w′ ∈ Sm.

(ii). The proof shows the centrality of ΓX directly without referring to Theorem

3.1 (b). By Theorem 3.1 (c), z is not torsion; the last paragraph of the proof avoids

appealing to this result.

Let (X, ⊲) be a rack, q : X × X → GL(n,C) a 2-cocycle of degree n and
(V, c) = (CX⊗Cn, cq), cf. (7). We discuss how to realize (V, c) as a Yetter-Drinfeld
module over a group algebra. Let x ∈ X and define gx : V → V by

(13) gx(eyw) = ex⊲yqx,y(w), y ∈ X,w ∈ Cn,

and let InnX,q be the subgroup of GL(V ) generated by the gx’s, x ∈ X . Then
gxgy = gx⊲ygx for any x, y ∈ X , and (V, c) is a Yetter-Drinfeld module over the
group algebra of InnX,q, with the natural action and coaction δ(exv) = gx ⊗ exv,
x ∈ X , v ∈ Cn.

Lemma 3.4. Let F be a group provided with:

• a group homomorphism p : F → InnX,q;

• a rack homomorphism s : X → F such that p(sx) = gx and F is generated

as a group by s(X).

Then (V, c) ∈ CF
CFYD, with the action induced by p and coaction δ(exv) = sx ⊗ exv,

x ∈ X, v ∈ Cn. In particular, (V, c) ∈ CGX

CGX
YD.

Proof. If x, y ∈ X and w ∈ Cn, then δ(sx · eyw) = δ(ex⊲yqx,y(w)) = sx⊲y ⊗

ex⊲yqx,y(w) = sxsys
−1
x ⊗ ex⊲yqx,y(w) = sxsys

−1
x ⊗ sx · w. Since F is generated by

s(X), it follows that δ(f · eyw) = fsyf
−1 ⊗ f · w, for all f ∈ F . �

As a consequence, the Nichols algebra of the braided vector space (CX, cq)
bears a GX-grading, that we shall call the principal grading, as opposed to the
natural N-grading. Indeed, if X is abelian, then GX ≃ ZcardX and the principal
grading coincides with the one considered e. g. in [AHS].

3.2. The rack cohomology group H2(X,C×).
We now state some general facts about the cocycles on a rack X with values

in the abelian group C×. In this case, the H2 is part of a cohomology theory, see
[AG] and references therein. An alternative description of H2(X,C×) was found
in [EGñ] through the enveloping group. Namely, let Fun(X,C×) be the space of
all functions from X to C× with right GX -action given by (f · ex)(y) = f(x ⊲ y),
f : X → A, x, y ∈ X .

Lemma 3.5. [EGñ] H2(X,C×) ≃ H1(GX ,Fun(X,C×)). �
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In principle, the cohomology of GX could be studied via the Hochschild-Serre
sequence from that of Inn⊲(X) and ΓX . However, the computation of the defect
group seems to be very difficult. There is also a homology theory of racks, related
to the computation we are interested in by the following result.

Lemma 3.6. [AG, Lemma 4.7] H2(X,C×) ≃ Hom(H2(X,Z),C×). �

There is a monomorphism C× →֒ H2(X,C×), since any constant function is a
cocycle. A natural question is to compute the quotient H2(X,C×)/C×. Assume
that X is indecomposable. If q ∈ Z2(X,C×), then

(14) qii = qjj , for any i, j ∈ X.

Note also that q ∼ q̃ as in (8) implies that qii = q̃ii for all i ∈ X . Therefore the
question can be rephrased as follows.

Question 4. Compute all cocycles q ∈ Z2(X,C×) such that qii = −1.

3.3. The program RiG.

A program for calculations with racks, that in particular computes the rack-
(co)homology groups, was developed in [GV]. We use it to compute some coho-
mology groups of simple racks that are not of type D, see Theorems 5.1 and 6.1.

Proposition 3.7. Let σ ∈ Sm be of type (1n1 , 2n2 , . . . ,mnm) and let

O =




(a) the conjugacy class of σ in Sm, if σ /∈ Am,

(b) the conjugacy class of σ in Am, if σ ∈ Am.

(a) If m = 5 and the type is (2, 3), then H2(O,C×) = C× ×G6.

(b) If m = 6, 7, 8 and the type is (1n, 2), then H2(O,C×) = C× ×G2.

(c) If m = 6 and the type is (23), then H2(O,C×) = C× ×G2.

(d) If m = 5 and the type is (12, 3), then H2(O,C×) = C× ×G6.

(e) If m = 6 and the type is (1, 2, 3), then H2(O,C×) = C× ×G3 ×G6.

Table 1. Some homology groups of conjugacy classes in Sm.

type of X H2(X,Z)
S5 (1 2)(3 4 5) Z⊕ Z/6
A5 (1 2 3) Z⊕ Z/6
S6 (1 2)(3 4)(5 6) Z⊕ Z/2
S6 (1 2) Z⊕ Z/2
A6 (1 2 3) Z⊕ Z/3⊕ Z/6
S7 (1 2) Z⊕ Z/2
S8 (1 2) Z⊕ Z/2

Proof. We use GAP and RiG to compute the homology groups H2(O,Z).

These results are listed in Table 1. Now assume X is a rack and that there exists

m ∈ N≥2 such that H2(X,Z) ≃ Z⊕ Z/m1 ⊕ · · · ⊕ Z/mr. By Lemma 3.6, we have



ON NICHOLS ALGEBRAS ASSOCIATED TO SIMPLE RACKS 13

H2(X,C×) ≃ Hom(Z⊕Z/m1⊕· · ·⊕Z/mr,C×) ≃ Hom(Z,C×)×Hom(Z/m1,C×)×

· · · ×Hom(Z/mr,C×) ≃ C× ×Gm1 × · · · ×Gmr
. �

3.4. Twisting.

There is a method, called twisting, to deform the the multiplication of a Hopf
algebra [DT]; it is formally dual to the twisting of the comultiplication [D, R]. The
relation with bosonization was established in [MO]. Here we show how to relate
two cocycles over a rack X by a twisting, in a way that the corresponding Nichols
algebras are preserved.

Let H be a Hopf algebra. Let φ : H ⊗ H → C be an invertible (with
respect to the convolution) linear map and define a new product by x ·φ y =
φ(x(1), y(1))x(2)y(2)φ

−1(x(3), y(3)), x, y ∈ H. If φ is a unitary 2-cocycle, that is
for all x, y, z ∈ H,

φ(x(1) ⊗ y(1))φ(x(2)y(2) ⊗ z) = φ(y(1) ⊗ z(1))φ(x ⊗ y(2)z(2)),(15)

φ(x ⊗ 1) = φ(1 ⊗ x) = ε(x),(16)

then Hφ (the same coalgebra but with multiplication ·φ) is a Hopf algebra.

Theorem 3.8. [MO, 2.7, 3.4] Let φ : H ⊗ H → C be an invertible unitary 2-

cocycle.

(a) There exists an equivalence of braided categories Tφ : H

H
YD →

Hφ

Hφ
YD,

V 7→ Vφ, which is the identity on the underlying vector spaces, morphisms

and coactions, and transforms the action of H on V to ·φ : Hφ⊗Vφ → Vφ,

h ·φ v = φ(h(1), v(−1))(h(2) · v(0))(0) φ
−1((h(2) · v(0))(−1), h(3)),

h ∈ Hφ, v ∈ Vφ. The monoidal structure on Tφ is given by the natural

transformation bV,W : (V ⊗W )φ → Vφ ⊗Wφ

bV,W (v ⊗ w) = φ(v(−1), w(−1))v(0) ⊗ w(0), v ∈ V,w ∈ W.

(b) Tφ preserves Nichols algebras: B(V )φ ≃ B(Vφ) as objects in
Hφ

Hφ
YD. In

particular, the Poincaré series of B(V ) and B(Vφ) are the same. �

Let us recall the argument for (ii). The functor Tφ preserves the braidings; that

is, if c, resp. cφ, is the braiding in H

H
YD, resp.

Hφ

Hφ
YD, then the following diagram

commutes:

(17) (V ⊗W )φ
Tφ(c)

//

bV,W

��

(W ⊗ V )φ

bW,V

��

Vφ ⊗Wφ
cφ

// Wφ ⊗ Vφ.

Since the ideal of relations of a Nichols algebra is the sum of the kernels of the
various quantum symmetrizers, (ii) follows immediately.

Let G be a group. If H = CG, then a unitary 2-cocycle on H is equivalent to
a 2-cocycle φ ∈ Z2(G,C×), that is a map φ : G×G → C× such that

(18) φ(g, h)φ(gh, t) = φ(h, t)φ(g, ht)

and φ(g, e) = φ(e, g) = 1 for all g, h, t ∈ G.
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Let σ, ζ ∈ G, Oσ, Oζ their conjugacy classes, (ρ, V ) ∈ ĈG(σ), (τ,W ) ∈ ĈG(ζ).
For ν ∈ Oσ, ξ ∈ Oζ , pick gν , hξ ∈ G such that gν ⊲ σ = ν, hξ ⊲ ζ = ξ.

Lemma 3.9. If φ ∈ Z2(G,C×), then the braiding

cφ : M(Oσ, ρ)φ ⊗M(Oζ , τ)φ → M(Oζ , τ)φ ⊗M(Oσ, ρ)φ

is given by

(19) cφ(gνv ⊗ hξw) = φ(ν, ξ)φ−1(ν ⊲ ξ, ν) ν · hξw ⊗ gνv,

v ∈ V , w ∈ W .

Proof. By (17), since bM(Oσ ,ρ),M(Oζ ,τ)(gνv ⊗ hξw) = φ(ν, ξ) gνv ⊗ hξw. �

Let now X be a subrack of a conjugacy class O in G, q a 2-cocycle on X arising
from some Yetter-Drinfeld module M(O, ρ) with dim ρ = 1 and φ ∈ Z2(G,C×).
Define qφ : X ×X → C× by

(20) qφxy = φ(x, y)φ−1(x ⊲ y, x) qxy, x, y ∈ X.

Then Lemma 3.9 and Th. 3.8 imply that

(21) The Poincaré series of B(X, q) and B(X, qφ) are equal.

Remark 3.10. If X is any rack, q a 2-cocycle on X and φ : X ×X → C×, then

define qφ by (20). It can be shown that qφ is a 2-cocycle iff

(22) φ(x, z)φ(x ⊲ y, x ⊲ z)φ(x ⊲ (y ⊲ z), x)φ(y ⊲ z, y)

= φ(y, z)φ(x, y ⊲ z)φ(x ⊲ (y ⊲ z), x ⊲ y)φ(x ⊲ z, x)

for any x, y, z ∈ X . Thus, if X is a subrack of a group G and φ ∈ Z2(G,C×), then

φ|X×X satisfies (22).

Definition 3.11. The 2-cocycles q and q′ on X are equivalent by twist if there

exists φ : X ×X → C× such that q′ = qφ as in (20).

4. Simple affine racks

Let p be a prime, t ∈ N and f ∈ Fp[X] of degree t, monic irreducible and different
from X and X− 1. Let T be the companion matrix of f and QFt

p ,f := QFt
p ,T be the

associated affine rack; this will be simply denoted by Q if no emphasis is needed.
Alternatively, set q = pt and identify Fq with Ft

p. Then the action of T corresponds
to multiplication by a, which is the class of X in Fp[X]/(f). Note that a generates
Fq over Fp.

Question 5. Find the proper subracks of Q.

We expect that the simple affine racks will have very few subracks. In fact, they
have no abelian subracks with more than one element [AFGV1, Remark 3.13].

Proposition 4.1. If a generates F×
q , then any proper subrack of QFq,a is trivial.
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Proof. Let X be a subrack of QFq,a with more than one element. Let x, y ∈ X

with x 6= y. By definition we have ϕn
x(y) ∈ X for all n ∈ N. Since ϕn

x(y) =

(1− an)x+ any, for all n ∈ N, we have that

A = {(1− an)x+ any | 0 ≤ n ≤ q − 1} ⊆ X.

Moreover, A has q elements. Indeed, suppose there exist m 6= n such that (1 −

an)x + any = (1 − am)x + amy. Then x(am − an) = y(am − an) which implies

that x = y, a contradiction. Since A ⊆ X ⊆ QFq,a and |QFq,a| = q we have that

X = QFq,a. �

In the particular case t = 1, we can say more: any proper subrack of an affine
rack with p elements is trivial.

Proposition 4.2. Let 1 6= a ∈ F×
p . Then any proper subrack of the affine rack

QFp,a is trivial.

Proof. Let x 6= y be two elements of Fp. It is enough to show that the subrack

generated by x and y is Fp. Let

Fa,m(n1, n2, ..., nm) =
m∑

j=1

(−1)j+1anj+···+nm .

Note that a+ aFa,2k(n1, n2, ..., n2k) = Fa,2k+1(n1, n2, ..., n2k, 1). Then

ϕn2k
y ϕn2k−1

x · · ·ϕn1
x (y) = y + (y − x)Fa,2k(n1, n2, ..., n2k),(23)

ϕn2k+1
y ϕn2k

x · · ·ϕn1
x (y) = x+ (y − x)Fa,2k+1(n1, n2, ..., n2k+1).(24)

Let z ∈ Fp, then

z = ϕn2k
y ϕn2k−1

x · · ·ϕn1
x (y)(25)

has at least one solution. In fact, let nj = (−1)j. Equation (23) implies that (25)

can be re-written as z = y + (y − x)(1 − a)k. Then the result follows by taking

k = (z − y)(1− a)−1(y − x)−1. �

5. Conjugacy classes in non-abelian simple groups

5.1. Alternating groups.

Let σ ∈ Sm. We say that σ is of type (1n1 , 2n2 , . . . ,mnm) if the decomposition of
σ as product of disjoint cycles contains nj cycles of length j, for every j, 1 ≤ j ≤ m.

Theorem 5.1. [AFGV1, Th. 4.1] Let σ ∈ Am, m ≥ 5. If the type of σ is NOT

any of (32); (22, 3); (1n, 3); (24); (12, 22); (1, 22); (1, p), (p) with p prime, then the

conjugacy class of σ in Am is of type D. �

5.2. Sporadic groups.

Theorem 5.2. [AFGV2, AFGV3] If G is a sporadic simple group and O is a

non-trivial conjugacy class of G NOT listed in Table 2, then O is of type D. �
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Table 2. Conjugacy classes of sporadic groups not known of type

D; those which are NOT of type D appear in bold.

G Classes G Classes

M11 8A, 8B, 11A, 11B Co1 3A, 23A, 23B
M12 11A, 11B J1 15A, 15B, 19A, 19B, 19C

M22 11A, 11B O′N 31A, 31B
M23 23A, 23B J3 5A, 5B, 19A, 19B
M24 23A, 23B Ru 29A, 29B
J2 2A, 3A He all of type D
Suz 3A Fi22 2A, 22A, 22B
HS 11A, 11B Fi23 2A, 23A, 23B
McL 11A, 11B HN all of type D
Co3 23A, 23B Th all of type D
Co2 2A, 23A, 23B T 2A

G Classes

Ly 33A, 33B, 37A, 37B, 67A, 67B, 67C
J4 29A, 37A, 37B, 37C, 43A, 43B, 43C
Fi′24 23A, 23B, 27B, 27C, 29A, 29B, 33A, 33B, 39C, 39D
B 2A, 16C, 16D, 32A, 32B, 32C, 32D, 34A,

46A, 46B, 47A, 47B
M 32A, 32B, 41A, 46A, 46B, 47A, 47B, 59A, 59B,

69A, 69B, 71A, 71B, 87A, 87B, 92A, 92B, 94A, 94B

5.3. Finite groups of Lie type.

Let p be a prime number, m ∈ N and q = pm. Let G be an algebraic reductive
group defined over the algebraic closure of Fq and G = G(Fq) be the finite group of
Fq-points. Let x ∈ G; we want to investigate the orbit OG

x of x in G. Let x = xsxu

be the Chevalley-Jordan decomposition of x in G; then xs, xu ∈ G. Let K = CG(xs),
a reductive subgroup of G by [Hu, Thm. 2.2], and let L be its semisimple part;
then K := K ∩ G = CG(xs), by [Bo, Prop. 9.1]. Since xu ∈ K, we conclude from
Subsection 2.4 that

OK
xu

is a subrack of OG
x .

Therefore, we are reduced to investigate the orbits Ox when x is either semisimple
(the case x = xs) or unipotent (by the reduction described).

The first step of the Strategy proposed in Subsection 2.6 consists of finding
subracks of type D of conjugacy classes of semisimple or unipotent elements. We
believe that most semisimple conjugacy classes are of type D. We give now some
evidence for this belief, using techniques with involutions and elements of a Weyl
group associated to a fixed Fq-split torus.

Let n > 1, ξ ∈ F×
q so that ord ξ = m divides q − 1 and a ∈ F×

q . For all

x = (x1, . . . , xn) ∈ (Z/m)n such that
∑n

i=0 xi ≡ 0 (mod m) define na to be the
companion matrix of the polynomialXn−a, ξx = diag(ξx1 , . . . , ξxn) and µx = naξx.
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µx =




0 . . . 0 aξxn

ξx1 0 . . . 0 0

0 ξx2 . . . 0
...

...
. . .

... 0
0 . . . . . . ξxn−1 0




∈ GL(n,Fq).

Let Xa,ξ = {µx :
∑n

i=1 xi ≡ 0 (mod m)}, a subset of the conjugacy class of
na in GL(n,Fq) (that is, the set of matrices with minimal polynomial T n − a). If
a = −1, then Xa,ξ ⊆ SL(n,Fq).

The following proposition is a generalization of [AF3, Example 3.15].

Proposition 5.3. Assume that (n, q− 1) 6= 1; that q > 3, if n = 4; and that q > 5,

if n = 2. Then the conjugacy class of na is of type D.

Proof. Pick a generator ξ of F×
q . We claim that Xa,ξ is a subrack of the

conjugacy class of na in GL(n,Fq), isomorphic to the affine rack Q(Z/(q−1))n−1,g,

with g(x1, . . . , xn−1) =
(
−
∑n−1

i=1 xi, x1, . . . , xn−2

)
. A direct computation shows

that µxµyµ
−1
x = µx⊲y, with

x ⊲ y = (x1 + yn − xn, x2 + y1 − x1, . . . , xn + yn−1 − xn−1).

Thus, the map ϕ : Xa,ξ → Q(Z/(q−1))n−1,g given by ϕ(µx) = (x1, . . . , xn−1) is a rack

isomorphism and the claim is proved. The proposition follows now from [AFGaV,

Lemma 2.2], for n > 2, or [AFGaV, Lemma 2.1], for n = 2. �

The conjugacy class of involutions in PSL(2,Fq) for q ∈ {5, 7, 9} is not of type
D. For q > 9 we have the following result.

Corollary 5.4. (a) Assume that q ≡ 1 (mod 4) and q > 9. Then the conju-

gacy class of involutions of PSL(2,Fq) is of type D.

(b) Assume that q ≡ 3 (mod 4) and q > 9. Then the conjugacy class of

involutions of PGL(2,Fq) is of type D.

Proof. (a) Let ξ ∈ Fq such that F×
q = 〈ξ〉. By Proposition 5.3 with a =

−1, the subrack X = {
(

0 −ξ−x

ξx 0

)
: x ∈ Z/(q − 1)} of the conjugacy class of

n−1 in GL(2,Fq) is isomorphic to the dihedral rack Dq−1. Let π : GL(2,Fq) →

PGL(2,Fq) be the canonical projection. Then π
(

0 −ξ−x

ξx 0

)
∈ PSL(2,Fq) for all

x ∈ Z/(q − 1) and whence π(X) is a subrack of the unique conjugacy class of

involutions in PSL(2,Fq). Now π
(

0 −ξ−x

ξx 0

)
= π

(
0 −ξ−y

ξy 0

)
iff ξx = −ξy, hence

π(X) ≃ D(q−1)/2, which is of type D if (q − 1)/2 is even and > 4.

(b) Let L = {
(

a b
−b a

)
: a, b ∈ Fq}. Then L is a quadratic field extension

of Fq and |L| = q2. Consider now the group map det : L× → F×
q given by the

determinant. Since every element in a finite field is a sum of squares, the kernel is

a subgroup of L× of order |L×|

|F×
q |

= q2−1
q−1 . Since L× is cyclic, there exist a, b ∈ Fq
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such that a2+ b2 = 1 and θ =
(

a b
−b a

)
generates ker det, i.e. it has order q+1. Note

that, as q ≡ 3 (mod 4), θ is contained in a non-split torus.

Let n = ( 0 1
1 0 ). Then the subrack X = {µx = nθx : x ∈ Z/(q + 1)} of the

conjugacy class of n in GL(2,Fq) is isomorphic to the dihedral rack Dq+1. Taking

π as in (a), we have that π(X) ≃ D(q+1)/2 is a subrack of the unique conjugacy class

of involutions in PGL(2,Fq), which is of type D if (q + 1)/2 is even and > 4. �

A similar argument as in the proof of proposition 5.3 applies with weaker hy-
pothesis to matrices whose rational form contains na.

Proposition 5.5. Let x ∈ GL(N,Fq) be a semisimple element whose rational form

x is
(
na 0
0 B1

)
. Suppose there exists B2 ∈ GL(N−n,Fq) such that B2 6= B1, B2 ∼ B1

and B1B2 = B2B1. Then the conjugacy class of x is of type D for all n 6= 2, 4; or

n = 4 and q > 3; or n = 2 and q is odd.

Proof. Pick a generator ξ of F×
q and let µx be as above. Let

Xi =
{( µx 0

0 Bi

)
:

n∑

j=1

xj ≡ 0 (mod q)− 1
}
,

i = 1, 2 and X = X1

∐
X2. Since

( µx 0
0 Bi

)
⊲
(

µy 0
0 Bj

)
=

(
µx⊲y 0
0 Bj

)
and X1∩X2 = ∅,

we see that X is a decomposable rack and each Xi is isomorphic to an affine rack,

by the proof of Proposition 5.3. If x = (0, . . . , 0), y = (1, 0, . . . , 0), s =
(
µx 0
0 B1

)
and

r =
(

µy 0
0 B2

)
, then r ⊲ (s ⊲ (r ⊲ s)) 6= s, by a straightforward computation, see the

proof of [AFGaV, Lemma 2.2], whenever the prescribed restrictions on n hold. �

Assume now thatG be a Chevalley group and denote byG = G(Fq) the group of
Fq-points. Let T be a Fq-split torus inG andW = NG(T )/CG(T ) the corresponding
Weyl group. Let σ ∈ W and nσ ∈ NG(T ) be a representant of σ. Since W stabilizes
T , the adjoint action of nσ on T defines an automorphism gσ of (Z/(q − 1))n.
Indeed, without loss of generality, we may assume that T = F×

q × · · · × F×
q and

F×
q = 〈ξ〉, with ξ ∈ F×

q . Then for all t ∈ T , there exists x ∈ (Z/(q − 1))n such
that t = ξx = diag(ξx1 , . . . , ξxn), n = dimT , and the automorphism is defined by
nσξxn

−1
σ = ξgσ(x).

The following proposition is a generalization of Proposition 5.3.

Proposition 5.6. Let σ ∈ W and nσ ∈ NG(T ) be a representant of σ. Assume

there exists x ∈ (Z/(q−1))n such that x /∈ Im(id−gσ) and x−gσ(x)+g2σ(x)−g3σ(x) 6=

0. Then the conjugacy class of nσ in G is of type D.

Proof. Consider the set Xσ,ξ = {µy = nσξy : y ∈ (Z/(q − 1))n}. Then Xσ,ξ

is a (non-empty) rack isomorphic to the affine rack ((Z/(q−1))n, gσ). Indeed, since

µxµyµ
−1
x = nσξxnσξyξ

−1
x n−1

σ = nσξxnσξy−xn
−1
σ = nσξxξgσ(y−x)

= nσξgσ(y)+(1−gσ)(x) = µx⊲y,
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the map ϕ : Xσ,ξ → ((Z/(q − 1))n, gσ) given by ϕ(µx) = x defines a rack isomor-

phism. Since x /∈ Im(id−gσ), Xσ,ξ contains at least two cosets with respect to

Im(1− gσ). If we take s = µ0 and r = µx, then

r ⊲ (s ⊲ (r ⊲ s)) = µx⊲(0⊲(x⊲0)) = µx−gσ(x)+g2
σ(x)−g3

σ(x)
,

which implies that Xσ,ξ is of type D. �

6. Twisted conjugacy classes in simple non-abelian groups

In this section we consider twisted conjugacy classes in simple non-abelian
groups defined by non-trivial outer automorphisms. These can be realized as con-
jugacy classes in the following way. Pick a representant of θ in Aut(L), called also
θ, and form the semidirect product L⋊ 〈θ〉. Then the racks of type (L, 1, θ) are the
conjugacy classes of L⋊ 〈θ〉 contained in L× {θ}.

6.1. Alternating groups.

Since Am ⋊ Z/2 ≃ Sm, the racks of this type are the conjugacy classes in Sn
do not intersecting An. We keep the notation from subsection 5.1. Assume that
m ≥ 5.

Theorem 6.1. [AFGV1, Th. 4.1] Let σ ∈ Sm − Am. If the type of σ is neither

(2, 3), nor (23), nor (1n, 2), then the conjugacy class of σ is of type D. �

Notice that the racks of type (23) and (14, 2) are isomorphic. As we see, the
only example, except for the type (2, 3), is (1n, 2). We treat it in the following
Subsection.

6.2. The Fomin-Kirillov algebras.

Let X = Om
2 be the rack of transpositions in Sm, m ≥ 3. As shown in [MS],

see also [AFZ], there are two cocycles q ∈ Z2(X,C×) arising from Yetter-Drinfeld
modules over CSm and such that qii = −1 for all (some) i ∈ X . These are either

q = −1 or q = χ, the cocycle given by χ(σ, τ) =

{
1, if σ(i) < σ(j)

−1, if σ(i) > σ(j).
, if τ, σ are

transpositions, τ = (ij) and i < j. Furthermore, their classes in Z2(X,C×) are
different. Hence, we have a monomorphism C× ×G2 →֒ H2(Om

2 ,C×).

Question 6. Is H2(Om
2 ,C×) ≃ C× ×G2 for m ≥ 4?

We conjecture that the answer is yes; Proposition 3.7 (b) gives some computa-
tional support to this conjecture, and Proposition 3.2 should be useful for this.

We turn now to the Nichols algebras associated to X = Om
2 .

⋄ If q ∈ Z2(X,C×) arises from a Yetter-Drinfeld module over CSm and
qii 6= −1, then dimB(X,q) = ∞ [AFZ, Theorem 1]. In fact, assume
that m ≥ 4. Then it can be shown that dimB(X,q) = ∞ for any q ∈
C× × G2 →֒ H2(Om

2 ,C×) such that qii 6= −1, just looking at the abelian
subrack {(12), (34)}.

⋄ The Nichols algebras B(Om
2 ,−1) and B(Om

2 , χ) are finite-dimensional for
m = 3, 4, 5, see Table 6. Indeed, the Hilbert series of B(Om

2 ,−1) and
B(Om

2 , χ) are equal.
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⋄ The quadratic Nichols algebra of a braided vector space V is B̂2(V ) =

T (V )/〈kerQ2〉, cf. (6); clearly, here is an epimorphism B̂2(V ) → B(V ).
The Nichols algebras B(Om

2 ,−1) and B(Om
2 , χ) are quadratic for m =

3, 4, 5. Furthermore, B(Om
2 , χ) appears in [FK] in relation with the quan-

tum cohomology of the flag variety.

⋄ It is known neither if the Nichols algebras B(Om
2 ,−1) and B(Om

2 , χ) are
finite-dimensional, nor if they are quadratic, for m ≥ 6.

Question 7. Are the cocycles −1 and χ equivalent by twist? Recall that H2(Sm,C×) ≃

Z/2 [Schur].

A positive answer to Question 7 would explain the similarities between the
Nichols algebras B(Om

2 ,−1) and B(Om
2 , χ).

6.3. Sporadic groups.

The sporadic groups with non-trivial outer automorphisms group areM12, M22,
J2, Suz, HS, McL, He, Fi22, Fi′24, O

′N , J3, T and HN . For any group L among
these, the outer automorphisms group is Z/2 and Aut(L) ≃ L ⋊ Z/2. Hence we
need to consider the conjugacy classes in Aut(L)− L.

Theorem 6.2. [FV] Let G be one of the following sporadic simple groups: M12,

M22, J2, Suz, HS, McL, He, O′N , J3 or T . If O is the conjugacy class of a

non-trivial element in Aut(G)−G NOT listed in Table 3, then O is of type D. �

Table 3. Twisted conjugacy classes not known of type D

Group Aut(M22) Aut(J3) Aut(HS) Aut(McL) Aut(ON)
Classes 2A 34A, 34B 2C 22A, 22B 38A, 38B, 38C

The groups Aut(Fi22), Aut(Fi′24) and Aut(HN) are being object of present
study, see [FV].

7. On twisted homogeneous racks

In this section, we fix a simple non-abelian group L, an integer t > 1 and
θ ∈ Out(L); by abuse of notation, we call also by θ a representant in Aut(L).
The representant of the trivial element is chosen as the trivial automorphism. Let
u ∈ Aut(Lt) act by

u(ℓ1, . . . , ℓt) = (θ(ℓt), ℓ1, . . . , ℓt−1), ℓ1, . . . , ℓt ∈ L.

The twisted conjugacy class of (x1, . . . , xt) ∈ Lt is called a twisted homogeneous
rack of class (L, t, θ) and denoted C(x1,...,xt). Let also Cℓ := C(e,...,e,ℓ), ℓ ∈ L. The
set of twisted homogeneous racks of class (L, t, θ) is parameterized by the set of
twisted conjugacy classes of L under θ [AFGaV, Prop. 3.3]. Namely,

(1) If (x1, . . . , xt) ∈ Lt and ℓ = xtxt−1 · · ·x2x1, then C(x1,...,xt) = Cℓ.

(2) Cℓ = Ck iff k ∈ O
L,θ
ℓ ; hence

Cℓ = {(x1, . . . , xt) ∈ Lt : xtxt−1 · · ·x2x1 ∈ O
L,θ
ℓ }.
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In [AFGaV], we have developed some techniques to check whether Cℓ is of
type D; so far, these techniques are more useful in the case θ = id. For illustration,
we quote:

• If ℓ ∈ L is quasi-real of type j, t ≥ 3 or t = 2 and ord(ℓ) ∤ 2(1 − j), then
Cℓ is of type D.

• If ℓ is an involution and t > 4 is even, then Cℓ is of type D.

• If ℓ is an involution, t is odd and OL
ℓ is of type D, then so is Cℓ.

• If (t, |L|) is divisible by an odd prime p, or if (t, |L|) is divisible by p = 2
and t ≥ 6, then Ce is of type D.

• If L = A5 or A6 and t = 2, then Ce is not of type D (checked with GAP).

In other words, at least when θ = id, the worse cases are either when ℓ is an
involution and t = 2, 4, or else when ℓ = e.

As an application of these techniques, we have the following result.

Theorem 7.1. [AFGaV] Let L be An, n ≥ 5, or a sporadic group, t ≥ 2 and

ℓ ∈ L. If Cℓ is a twisted homogeneous rack of class (L, t, id) not listed in Tables 4

and 5, then Cℓ is of type D. �

Table 4. THR Cℓ of type (An, t, θ), θ = id, t ≥ 2, n ≥ 5, not

known of type D. Those not of type D are in bold.

n ℓ Type of ℓ t
any e (1n) odd, (t, n!) = 1
5 (15) 2

5 (15) 4
6 (16) 2

5 involution (1, 22) 4, odd
6 (12, 22) odd
8 (24) odd

any order 4 (1r1 , 2r2 , 4r4), r4 > 0, r2 + r4 even 2

Table 5. THR Cℓ of type (L, t, θ), with L a sporadic group, θ = id,

not known of type D.

sporadic t Type of ℓ or

class name of OL
ℓ

any (t, |L|) = 1, t odd 1A
2 ord(ℓ) = 4

T , J2, Fi22, Fi23, Co2 odd 2A
B odd 2A, 2C
Suz any 6B, 6C
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8. Applications to the classification of pointed Hopf algebras

We say that a finite group G collapses if for any finite-dimensional pointed Hopf
algebra H , with G(H) ≃ G, necessarily H ≃ CG. Some applications of the results
on Nichols algebras presented here to the classification of Hopf algebras need the
following Lemma.

Lemma 8.1. [AFGV1, Lemma 1.4] The following statements are equivalent:

(1) If 0 6= V ∈ CG
CGYD, then dimB(V ) = ∞.

(2) If V ∈ CG
CGYD is irreducible, then dimB(V ) = ∞.

(3) G collapses. �

Theorem 8.2. [AFGV1, AFGV2] Let G be either an alternating group Am,

m ≥ 5, or a sporadic simple group, different from the Fischer group Fi22, the Baby

Monster B and the Monster M . Then G collapses. �

The proof goes as follows: by the Lemma 8.1, we need to show that dimB(V ) =
∞ for any irreducible V = M(O, ρ). IF O is of type D, this follows from Theorem
2.4; and we know those classes of type D by Theorems 5.1, 5.2. The remaining
pairs (O, ρ) are treated by abelian techniques, namely one finds an abelian subrack,
computes the corresponding diagonal braiding arising from ρ and applies [H2].

However, there are finite non-abelian groups that do not collapse. Furthermore,
the classification of all finite-dimensional pointed Hopf algebras with group G is
known, when G = S3, S4 or D4t, t ≥ 3, see [AHS, GG, FG], respectively.

Appendix A. Examples of finite-dimensional Nichols algebras

We now list several examples of pairs (X,q) such that dimB(X,q) < ∞; we
give the dimension, the top degree and the reference where the example appeared3.

Appendix B. Questions

Question 1. Determine all simple racks of type D.

Question 2. For any finite indecomposable rack X, for any n ∈ N, and for any

q ∈ H2(X,GL(n,C)), determine if dimB(X,q) < ∞.

Question 3. If X collapses at 1, does necessarily X collapse?

Question 4. Compute all cocycles q ∈ Z2(X,C×) such that qii = −1.

Question 5. Is H2(Om
2 ,C×) ≃ C× ×G2 for m ≥ 4?

Question 6. Find the proper subracks of Q.

3The Nichols algebra corresponding to QZ/5,2 was actually computed by Mat́ıas Graña. The

quadratic Nichols algebra corresponding to O5

2
was computed by Jan-Erik Roos; Graña showed

that this is a Nichols algebra. The computation of the Nichols algebras corresponding to (On
2
, χ),

n = 4, 5, was done in [GG] using Deriva with the help of M. Graña.
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Table 6. Finite-dimensional B(X,q)

X rk q Relations dimB(V ) top Ref.

D3 3 -1 5 in degree 2 12 = 3.22 4 = 22 [MS]

T 4 -1 8 in degree 2,
1 in degree 6

72 9 = 32 [G1]

QZ/5,2 5 -1 10 in degree 2,
1 in degree 4

1280 = 5.44 16 = 42 [AG]

QZ/5,3 5 -1 10 in degree 2,
1 in degree 4

1280 = 5.44 16 = 42 dual of the
preceding

O4
2 6 -1 16 in degree 2 576 = 243 12 [FK, MS]

O4
2 6 χ 16 in degree 2 576 = 243 12 [GG]

O4
4 6 -1 16 in degree 2 576 = 243 12 [AG]

QZ/7,3 7 -1 21 in degree 2,
1 in degree 6

326592 = 7.66 36 = 62 [G2]

QZ/7,5 7 -1 21 in degree 2,
1 in degree 6

326592 = 7.66 36 = 62 dual of the
preceding

O5
2 10 -1 45 in degree 2 8294400 40 [FK, G2]

O5
2 10 χ 45 in degree 2 8294400 40 [GG]

Question 7. Are the cocycles −1 and χ equivalent by twist? Recall that H2(Sm,C×) ≃

Z/2 [Schur].
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taria, Córdoba, Argentina

F. F., G. A. G.: Facultad de Ciencias Exactas, F́ısicas y Naturales, Universidad
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On Nichols algebras associated to simple racks

N. Andruskiewitsch, F. Fantino, G. A. Garćıa, L. Vendramin

Dedicado a Mat́ıas Graña

Abstract. This is a report on the present state of the problem of determining

the dimension of the Nichols algebra associated to a rack and a cocycle. This

is relevant for the classification of finite-dimensional complex pointed Hopf

algebras whose group of group-likes is non-abelian. We deal mainly with simple

racks. We recall the notion of rack of type D, collect the known lists of simple

racks of type D and include preliminary results for the open cases. This notion

is important because the Nichols algebra associated to a rack of type D and any

cocycle has infinite dimension. For those racks not of type D, the computation

of the cohomology groups is needed. We discuss some techniques for this

problem and compute explicitly the cohomology groups corresponding to some

conjugacy classes in symmetric or alternating groups of low order.

1. Introduction

Throughout the paper we work over the field C of complex numbers. The prob-
lem of classifying finite-dimensional pointed Hopf algebras over non-abelian finite
groups reduces in many cases to a question on conjugacy classes. In this introduc-
tion we give a historical account and place the problem in the overall picture.

1.1. We briefly recall the lifting method for the classification of pointed Hopf
algebras, see Subsection 2.2 for unexplained terminology and [AS2] for a full ex-
position. Let H be a Hopf algebra with bijective antipode and assume that the

coradical H0 =
∑

C simple subcoalgebra of H

C is a Hopf subalgebra of H . Consider the

coradical filtration of H :

H0 ⊂ H1 ⊂ · · · ⊂ H =
⋃

n≥0

Hn,

where Hi+1 = {x ∈ H : ∆(x) ∈ Hi ⊗H +H ⊗H0}. Then the associated graded
coalgebra grH has a decomposition grH ≃ R#H0, where R is an algebra with
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some special properties and # stands for a kind of semidirect product (technically,
a Radford biproduct or bosonization; the underlying vector space is R⊗H0). The
algebraR, more precisely, is a Hopf algebra in the braided tensor category of Yetter-
Drinfeld modules over H0, see Subsection 2.2, and inherits the grading of grH :
R = ⊕n≥0R

n. If V = R1, then the subalgebra of R generated by V is isomorphic
to the Nichols algebra B(V ), that is completely determined by the Yetter-Drinfeld
module V .

Let us fix a semisimple Hopf algebra A. One of the fundamental steps of the
lifting method to classify finite-dimensional Hopf algebras H with H0 ≃ A is to
address the following question, see [A]:

Question. Determine the Yetter-Drinfeld modules V over A such that the dimen-

sion of B(V ) is finite, and if so, give an efficient set of relations of B(V ).

An important observation is that the Nichols algebraB(V ), as algebra and coal-
gebra, is completely determined just by the braiding c : V ⊗V → V ⊗V . Therefore,
it is convenient to consider classes of braided vector spaces (V, c) depending on the
class of semisimple Hopf algebras we are considering.

1.2. A Hopf algebra H is pointed if H0 is isomorphic to the group algebra
CG, where G is the group of grouplikes of H . Let us consider first the case when
G is abelian. A braided vector space (V, c) is of diagonal type if V has a basis
(vi)1≤i≤n such that c(vi ⊗ vj) = qijvj ⊗ vi, where the qij ’s are non-zero scalars
[AS1]. The class of braided vector spaces of diagonal type corresponds to the class
of pointed Hopf algebras with G abelian (and finite). A remarkable result is the
complete list of all braided vector spaces of diagonal type with finite-dimensional
Nichols algebra [H2]; the basic tool in the proof of this result is the Weyl groupoid
[H1]. The classification of all finite-dimensional pointed Hopf algebras with G
abelian and order of G coprime with 210 was obtained in [AS3], relying crucially
on [AS1, H2]. Notice however that the article [H2] does not contain the efficient
set of relations for finite-dimensional Nichols algebras of diagonal type; so far, this
is available for the special classes of braided vector spaces of Cartan type [AS1]
and more generally of standard type [Ang].

1.3. Let us now turn to the case when H is pointed with G non-abelian and
mention some antecedents.

⋄ The first genuine examples of finite-dimensional pointed Hopf algebras
with non-abelian group appeared in [MS, FK], as bosonizations of Nichols
algebras related to the transpositions in S3 and S4, see Subsection 6.2.
The analogous quadratic algebra over S5 was computed by Roos with a
computer and proved to be a Nichols algebra in [G2].

⋄ In [G1], Graña identified the class of braided vector spaces corresponding
to pointed Hopf algebras with non-abelian group as those constructed from
racks and cocycles. He also computed in [G2] several finite-dimensional
Nichols algebras with the help of computer programs.

⋄ In [G1], Graña also suggested to look at braided vector subspaces to
decide that a Nichols algebra has infinite dimension. After [H2], this idea
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was implemented in several papers, by looking at abelian subracks. See
[AF1, AF2, AFZ, AZ, F, FGV1, FGV2].

⋄ The construction of the Weyl groupoid for braided vector spaces of di-
agonal type in [H1] was extended to braided vector spaces arising from
semisimple Yetter-Drinfeld modules in [AHS]. This allowed to consider
braided vector subspaces associated to non-abelian subracks [AF3]. A
further study of the Weyl groupoid in [AHS] was undertaken in [HS].
An important consequence of one of the results in [HS] is the notion of
rack of type D [AFGV1].

1.4. We shall explain in detail the notion of rack of type D in Subsection 2.4,
but we try now to give a glimpse. As we explain in Subsection 2.2, our goal is to
determine if the Nichols algebra B(O, ρ) related to a conjugacy class O in a finite
group G and a representation ρ of the centralizer is finite-dimensional. We say that
the conjugacy class O is of type D if there exist r, s ∈ O such that

(1) (rs)2 6= (sr)2,
(2) r is not conjugated to s in the subgroup of G generated by r, s.

Then dimB(O, ρ) = ∞ for any ρ; furthermore this will happen for any group
G′ containing O as a conjugacy class (that is, as a subrack). By reasons exposed in
Subsection 2.4, we focus on the following case.

Question 1. Determine all simple racks of type D.

The classification of finite simple racks is known, see Subsection 2.5; the list
consists of conjugacy classes in groups of 3 types. In other words, we need to check,
for each conjugacy class in the list of simple racks, whether there exist r, s satisfying
(1) and (2) above. The main purpose of this paper is to report the actual status of
this purely group-theoretical question, that is succinctly as follows.

⋄ [AFGV1] The conjugacy classes in the alternating and symmetric groups,
Am and Sm, are of type D, except for a short list of exceptions listed in
Theorems 5.1 and 6.1; for some of these exceptions, we know that they
are not of type D, see Remark 4.2 in loc. cit.

⋄ [AFGV2] The conjugacy classes in the sporadic groups are of type D,
except for a short list of exceptions listed in Theorems 5.2; for some of
these, we know that they are not of type D, see Table 2. The verification
was done with the help of GAP, see [AFGV3].

⋄ [FV] Twisted conjugacy classes of sporadic groups are also mostly of type
D, except for a short list of exceptions, see Theorem 6.2.

⋄ [AFGaV] Some techniques to deal with twisted homogenous racks were
found; so far, most of the examples dealt with are of type D.

⋄ We include in Subsection 5.3 some preliminary results on conjugacy classes
on simple groups of Lie type; again, most of the examples are of type D.

⋄ The simple affine racks do not seem to be of type D.

What happens beyond type D? As we see by now, there are roughly two large
classes of simple racks, one formed by the affine ones and the conjugacy class of
transpositions in Sm, and the rest. For this second class, our project is to finish
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the determination of those of type D and attack the remaining ones as explained
on page 8. That is, to compute the pointed sets of cocycles of degree n and then
try to discard the corresponding braided vector spaces by abelian techniques. The
first class is not tractable by the strategy of subracks. We should also mention the
recent paper [GHV] with a different approach.

1.5. The paper is organized as follows. We discuss Nichols algebras, racks,
cocycles, the criterion of type D, the classification of finite simple racks and the
strategy of subracks in Section 2. Section 3 contains some techniques for the com-
putation of cocycles. In the next sections we list explicitly the simple racks that are
known to be of type D. In Section 8 we illustrate the consequences of these results
to the classification of pointed Hopf algebras. In Appendix A, we list all known
examples of finite-dimensional Nichols algebras associated to racks and cocycles; in
Appendix B, we put together some questions scattered along the text.

This survey contains also a few new concepts and results, among them: the com-
putation of the enveloping group of the rack of transpositions in Sm, see Proposition
3.2; the twisting operation for cocycles on racks, see Subsection 3.4; the calculation
of some cohomology groups using the program RiG, see Subsection 3.3; some pre-
liminary discussions on conjugacy classes of type D in finite groups of Lie type, see
Subsection 5.3.

2. Preliminaries

Conventions. N = {1, 2, 3, . . .}; SX := {f : X → X bijective}; if m ∈ N, then
Gm is the group of m-th roots of 1 in C.

2.1. Racks.

We briefly recall the basics of racks; see [AG] for more information and refer-
ences. A rack is a pair (X, ⊲) where X is a non-empty set and ⊲ : X ×X → X is
an operation such that

the map ϕx = x ⊲ is bijective for any x ∈ X, and(1)

x ⊲ (y ⊲ z) = (x ⊲ y) ⊲ (x ⊲ z) for all x, y, z ∈ X.(2)

A group G is a rack with x ⊲ y = xyx−1, x, y ∈ G; if X ⊂ G is stable under
conjugation by G, that is a union of conjugacy classes, then it is a subrack of
G. The main idea behind the consideration of racks is to keep track just of the
conjugation of a group. Morphisms of racks and subracks are defined as usual. For
instance, ϕ : X → SX , x 7→ ϕx, is a morphism of racks, for any rack X . Any rack
X considered here satisfies the conditions

x ⊲ x = x,(3)

x ⊲ y = y =⇒ y ⊲ x = x,(4)

for any x, y ∈ X . This is technically a crossed set, but we shall simply say a rack.
So, we rule out, for example, the permutation rack (X, σ), where σ ∈ SX and
ϕx = σ for all x.

The rack with just one element is called trivial.

We shall consider some special classes of racks that we describe now.

Affine racks. If A is an abelian group and T ∈ Aut(A), then A is a rack with
x ⊲ y = (1− T )x+ Ty. This is called an affine rack and denoted QA,T .
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Twisted conjugacy classes. Let G be a finite group and u ∈ Aut(G); G acts on
itself by x ⇀u y = x y u(x−1), x, y ∈ G. The orbit OG,u

x of x ∈ G by this action is
a rack with operation

(5) y ⊲u z = y u(z y−1), y, z ∈ OG,u
x .

We shall say that OG,u
x is a twisted conjugacy class of type (G, u).

Notation.

• T = any of the conjugacy classes of 3-cycles in A4 (the tetrahedral rack).

• QA,T = affine rack associated to an abelian group A and T ∈ Aut(A).

• Dn = class of involutions in the dihedral group of order 2n, n odd.

• Om
j = conjugacy class of j-cycles in Sm.

We need some terminology on racks.

• A rackX is decomposable if it can expressed as a disjoint union of subracks
X = X1

∐
X2. Otherwise, X is indecomposable.

• A rack X is said to be simple iff cardX > 1 and for any surjective mor-
phism of racks π : X → Y , either π is a bijection or cardY = 1.

• If X is a rack and j ∈ Z, then X [j] is the rack with the same set X and
multiplication ⊲j given by x ⊲j y = ϕj

x(y), x, y ∈ X .

2.2. Nichols algebras.

Nichols algebras play a crucial role in the classification of Hopf algebras, see
[AS2] or a brief account in Section 8 below. Let n ≥ 2 be an integer. We start
by reminding the well-known presentations by generators and relations of the braid
group Bn and the symmetric group Sn:

Bn = 〈(σi)1≤i≤n−1|σiσjσi = σjσiσj , |i− j| = 1; σiσj = σjσi, |i− j| > 1〉

Sn = 〈(si)1≤i≤n−1|sisjsi = sjsisj , |i− j| = 1; sisj = sjsi, |i− j| > 1; s2i = e〉,

indices in the relations going over all possible i, j. There is a canonical projection
π : Bn → Sn, that admits a so-called Matsumoto section M : Sn → Bn; this is
not a morphism of groups, and it is defined by M(si) = σi, 1 ≤ i ≤ n − 1, and
M(st) = M(s)M(t), for any s, t ∈ Sn such that l(st) = l(s)+ l(t), l being the length
of a word in generators si.

Let V be a vector space and c ∈ GL(V ⊗ V ). Recall that c fulfills the braid
equation if (c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c). In this case, we say that
(V, c) is a braided vector space and that c is a braiding. Since c satisfies the braid
equation, it induces a representation of the braid group Bn, ρn : Bn → GL(V ⊗n),
for each n ≥ 2. Explicitly, ρn(σi) = idV ⊗(i−1) ⊗c⊗ idV ⊗(n−i−1) , 1 ≤ i ≤ n− 1. Let

(6) Qn =
∑

σ∈Sn

ρn(M(σ)) ∈ End(V ⊗n).

Then the Nichols algebra B(V ) is the quotient of the tensor algebra T (V ) by
⊕n≥2 kerQn, in fact a 2-sided ideal of T (V ). If c = τ is the usual switch, then
B(V ) is just the symmetric algebra of V ; if c = −τ , then B(V ) is the exterior
algebra of V . But the computation of the Nichols algebra of an arbitrary braided
vector space is a delicate issue. We are interested in the Nichols algebras of the
braided vector spaces arising from Yetter-Drinfeld modules1.

1Any braided vector space with rigid braiding arises as a Yetter-Drinfeld module [Tk].
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A Yetter-Drinfeld module over a Hopf algebra H with bijective antipode S is a
left H-module M and simultaneously a left H-comodule, with coaction λ : M →
H ⊗M compatible with the action in the sense that λ(h · x) = h(1)x(−1)S(h(3)) ⊗
h(2) · x(0), for any h ∈ H , x ∈ M . Here λ(x) = x(−1) ⊗ x(0), in Heyneman-
Sweedler notation. A Yetter-Drinfeld module M is a braided vector space with
c(m ⊗ n) = m(−1) · n ⊗ m(0), m,n ∈ M . We shall see in Section 8 how Nichols
algebras of Yetter-Drinfeld modules enter into the classification of Hopf algebras.
In this paper, we are interested in the case when H = CG is the group algebra
of a finite group G. In this setting, a Yetter-Drinfeld module over H is a left G-
module M that bears also a G-grading M = ⊕g∈GMg, compatibility meaning that
h ·Mg = Mhgh−1 for all h, g ∈ G; the braiding is c(m ⊗ n) = g · n ⊗m, m ∈ Mg,
n ∈ M .

Now a braided vector space may be realized as a Yetter-Drinfeld module over
many different groups and in many different ways. It is natural to look for a
description of the class of braided vector spaces that actually arise as Yetter-Drinfeld
modules over some finite group and to study them by their own. If G is a finite
group, then any Yetter-Drinfeld module over the group algebra CG is semisimple.
Furthermore, it is well-known that the set of isomorphism classes of irreducible
Yetter-Drinfeld modules over CG is parameterized by pairs (O, ρ), where O is a
conjugacy class of G and ρ is an irreducible representation of the centralizer of
a fixed point in O. M. Graña observed that the class of braided vector spaces
arising from Yetter-Drinfeld modules over finite groups is described using racks
and cocycles, see [G1] and also [AG, Th. 4.14].

2.3. Nichols algebras associated to racks and cocycles.

We are focused in this paper on Nichols algebras associated to braided vector
spaces built from racks and cocycles. We start by describing the cocycles associated
to racks. Let X be a rack and n ∈ N. A map q : X ×X → GL(n,C) is a 2-cocycle
of degree n if

qx,y⊲zqy,z = qx⊲y,x⊲zqx,z,

for all x, y, z ∈ X . Let q be a 2-cocycle of degree n, V = CX ⊗ Cn, where CX is
the vector space with basis ex, for x ∈ X . We denote exv := ex ⊗ v. Consider the
linear isomorphism cq : V ⊗ V → V ⊗ V ,

(7) cq(exv ⊗ eyw) = ex⊲yqx,y(w) ⊗ exv,

x, y ∈ X , v, w ∈ Cn. Then cq is a solution of the braid equation:

(cq ⊗ id)(id⊗cq)(cq ⊗ id) = (id⊗cq)(cq ⊗ id)(id⊗cq).

Example 2.1. Let X be a finite rack and q a 2-cocycle. The dual braided vector

space of (CX ⊗ Cn, cq) is isomorphic to (CX [−1] ⊗ Cn, cq̂) where q̂x,y = qx,x⊲−1y,

x, y ∈ X [−1]. See Subsection 2.1 for X [−1].

The Nichols algebra associated to cq is denoted B(X,q).

We need to consider only 2-cocycles (or simply cocycles, for short) with some
specific properties.

• A cocycle q is finite if its image generates a finite subgroup of GL(n,C).

• A cocycle q is faithful if the morphism of racks g : X → GL(V ) defined
by gx(eyw) = ex⊲yqx,y(w), x, y ∈ X , w ∈ V , is injective.
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We denote by Z2(X,GL(n,C)) the set of all finite faithful 2-cocycles of degree
n. Let q ∈ Z2(X,GL(n,C)) and γ : X → GL(n,C) a map whose image generates
a finite subgroup. Define q̃ : X ×X → GL(n,C)

(8) q̃ij = (γi⊲j)
−1

qijγj .

Then q̃ is also a finite faithful cocycle and “q ∼ q̃ iff they are related by (8) for
some γ” defines an equivalence relation. We set

(9) H2(X,GL(n,C)) = Z2(X,GL(n,C))/ ∼ .

If q ∼ q̃, then the Nichols algebras B(X,q) and B(X, q̃) are isomorphic as
braided Hopf algebras in the sense of [Tk], see [AG, Th. 4.14]. The converse is
not true, see [G1].

The main question we want to solve is the following.

Question 2. For any finite indecomposable rack X, for any n ∈ N, and for any

q ∈ H2(X,GL(n,C)), determine if dimB(X,q) < ∞.

Definition 2.2. An indecomposable finite rack X collapses at n if for any finite

faithful cocycle q of degree n, dimB(X,q) = ∞; X collapses if it collapses at n for

any n ∈ N.

The first idea that comes to the mind is one would need to compute the group
H2(X,GL(n,C)) for any n. We shall see that in many cases this is actually not
necessary.

Question 3. If X collapses at 1, does necessarily X collapse?

Even partial answers to Question 3 would be very interesting.

2.4. Racks of type D.

We now turn to a setting where the calculation of the cocycles is not needed.

Definition 2.3. Let (X, ⊲) be a rack. We say that X is of type D if there exists a

decomposable subrack Y = R
∐

S of X such that

(10) r ⊲ (s ⊲ (r ⊲ s)) 6= s, for some r ∈ R, s ∈ S.

The following important result is a consequence of [HS, Th. 8.6], proved using
the main result of [AHS].

Theorem 2.4. [AFGV1, Th. 3.6] If X is a finite rack of type D, then X collapses.

�

Therefore, it is very important to determine all simple racks of type D, formally
stated as Question 1. The classification of simple racks is known and will be evoked
below. We focus on simple racks because of the following reasons:

• If Z is a finite rack and admits a rack epimorphism π : Z → X , where X
is of type D, then Z is of type D.

• If Z is indecomposable, then it admits a rack epimorphism π : Z → X
with X simple.
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We collect some criteria on racks of type D, see [AFGV1, Subsection 3.2].

• If Y ⊆ X is a subrack of type D, then X is of type D.
• If X is of type D and Z is a rack, then X × Z is of type D.
• Let K be a subgroup of a finite group G and κ ∈ CG(K). Let Rκ : K → G

be the map given by g 7→ g̃ := gκ. Let O, resp. Õ, be the conjugacy class

of τ ∈ K, resp. of τ̃ in G. Then Rκ identifies O with a subrack of Õ.

Hence, if O is of type D, then Õ is of type D.

There is a variation of the last criterium that needs the notion of quasi-real
conjugacy class. Let G be a finite group, g ∈ G and j ∈ N. Recall that OG

g is

quasi-real of type j if gj 6= g and gj ∈ OG
g . If g is real, that is g−1 ∈ OG

g , but not

an involution, then OG
g is quasi-real of type ord(g)− 1.

Proposition 2.5. [AFGV1, Ex. 3.8] Let G be a finite group and g = τκ ∈ G,

where τ 6= e and κ 6= e commute. Let K = CG(κ) ∋ τ ; then κ ∈ CG(K). Hence,

the conjugacy class O of τ in K can be identified with a subrack of the conjugacy

class Õ of g in G via Rκ as above. Assume that

(1) Õ and O are quasi-real of type j,

(2) the orders N of τ and M of κ are coprime,

(3) M does not divide j − 1,

(4) there exist r0, s0 ∈ O such that r0 ⊲ (s0 ⊲ (r0 ⊲ s0)) 6= s0.

Then Õ is of type D. �

2.5. Simple racks.

Finite simple racks have been classified in [AG, Th. 3.9, Th. 3.12]– see also
[J]. Explicitly, any simple rack falls into one and only one of the following classes:

(1) Simple affine racks (Fp
t, T ), where p a prime, t ∈ N, and T is the com-

panion matrix of a monic irreducible polynomial f ∈ Fp[X] of degree t,
different from X and X− 1.

(2) Non-trivial (twisted) conjugacy classes in simple groups.

(3) Simple twisted homogeneous racks, that is twisted conjugacy classes of
type (G, u), where

• G = Lt, with L a simple non-abelian group and 1 < t ∈ N,
• u ∈ Aut(Lt) acts by

u(ℓ1, . . . , ℓt) = (θ(ℓt), ℓ1, . . . , ℓt−1), ℓ1, . . . , ℓt ∈ L,

for some θ ∈ Aut(L). Furthermore, L and t are unique, and θ only
depends on its conjugacy class in Out(Lt).

Notation. A simple rack of type (L, t, θ) is a twisted homogeneous rack as in
(3).

2.6. The approach by subracks.

The experience shows that the following strategy is useful to approach the study
of Nichols algebras over finite groups. However, there are racks that can not be
treated in this way.

Strategy. Let X be a simple rack.
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Step 1: Is X of type D? In the affirmative, we are done: X and any inde-

composable rack Z that admits a rack epimorphism Z → X collapse, in

the sense of Definition 2.2.

Step 2: If not, look for the abelian subracks of X. For an abelian subrack

S and any q ∈ H2(X,C×), look at the diagonal braiding with matrix

(qij)i,j∈S . If the Nichols algebra associated to this diagonal braiding has

infinite dimension, and this is known from [H2], then so has B(X,q).

Here you do not need to know all the abelian subracks, just to find one

with the above condition.

Step 3: Extend the analysis of Step 2 to cocycles of arbitrary degree.

Step 4: Extend the analysis of Steps 2 and 3 to indecomposable racks Z that

admit a rack epimorphism Z → X.

The following algorithm is the tool needed to deal with Step 1, when the rack
X is realized as a conjugacy class.

Algorithm. Let Γ be a finite group and let O be a conjugacy class. Fix r ∈ O.

(1) For any s ∈ O, check if (rs)2 6= (sr)2; this is equivalent to (10).

(2) If such s is found, consider the subgroupH generated by r, s. If OH
r ∩OH

s =

∅, then Y = OH
r

∐
OH

s is the decomposable subrack we are looking for and

O is of type D.

In practice, we implement this algorithm in a recursive way, running over the
maximal subgroups, see [AFGV2] for details.

Let X be a rack and S a subset of X . We denote ≪ S ≫:=
⋂

Y subrack,
S⊂Y⊂X

Y. If X

is a subrack of a group G and H = 〈S〉, then ≪ S ≫=
⋃

s∈S OH
s .

There are racks that could not be dealt with the criterium of type D.

Definition 2.6. An indecomposable finite rack X is of type M if2 for any r, s ∈ X ,

≪{r, s}≫ either is indecomposable or else equals {r, s}.

There are racks such that all proper subracks are abelian; for instance, the con-
jugacy class of type (2, 3) in S5 (here, all proper subracks have at most 2 elements).
More examples of racks of type M can be found in [AFGV1, Remark 4.2].

3. Tools for cocycles

3.1. The enveloping group.

The enveloping group GX := 〈ex : x ∈ X |ex ey = ex⊲y ex, x, y ∈ X〉 was
introduced in [Bk, FR, J]; it was also considered in [LYZ, ESS, S]. The map
e : X → GX , x 7→ ex has a universal property:

If H is a group and f : X → H is a morphism of racks, then there is a unique
morphism of groups F : GX → H such that F (ex) = fx, x ∈ X.

2M stands for Montevideo, where this notion was discussed by two of the authors.
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In other words, X  GX is the adjoint of the forgetful functor from groups to
racks.

Since ϕ : X → SX is a morphism of racks, there is a group morphism Φ :
GX → SX . The image, resp. the kernel, of Φ is denoted Inn⊲(X) (the group of
inner automorphisms), resp. ΓX (the defect group).

The group Inn⊲(X) is not difficult to compute in the case of our interest. As
for the defect group, some properties were established by Soloviev.

Theorem 3.1. (a) If X is a subrack of a group H, then Inn⊲(X) ≃ C/Z(C),

where C is the subgroup generated by X [AG, Lemma 1.9].

(b) The defect group ΓX is central in GX [S, Th. 2.6]. Hence ΓX = Z(GX)

if Inn⊲(X) is centerless.

(c) The rank of ΓX is the number of Inn⊲(X)-orbits in X [S, Th. 2.10]. �

The difficult part of the calculation of the defect group is to compute its torsion.

Proposition 3.2. Let si = (i i + 1) ∈ Sm. Let X be the rack of transpositions in

Sm; this is the conjugacy class of s1. The enveloping group GX of X is a central

extension

(11) 0 // Z // GX
// Sm // 0

Proof. By property (a) above, Inn⊲(X) ≃ Sm. We have to compute ΓX .

Let Bm be the braid group and as in Subsection 2.2; let Pm = kerπ, the pure

braid group. We claim that there is a morphism of groups Ψ : Bm → GX with

Ψ(σi) = esi , 1 ≤ i ≤ m− 1. To prove the claim, we verify the defining relations of

the braid group:

If |i− j| ≥ 2, then esiesj = esi⊲sj esi = esjesi ;

if |i− j| = 1, then esiesj esi = esiesj⊲siesj = esi⊲(sj⊲si)esiesj = esj esiesj

since si ⊲ (sj ⊲ si) = sj in Sm. In other words, we have a commutative diagram

Bm

π

!!D
DD

DD
DD

D

Ψ
// GX

Φ||||zz
zz

zz
zz

Sm.

Clearly, Ψ is surjective and kerΦ = Ψ(Pm). Let now H be a group and f : X → H

a morphism of racks. If x, y ∈ X , then f2
xfy = fxfx⊲yfx = fyf

2
x and consequently

f2
y⊲x = fyf

2
xf

−1
y = f2

x . Hence for all x, y ∈ X ,

(12) f2
y = f2

x is central in the subgroup generated by f(X).

We call z = e2si ; this is a central element of GX and does not depend on i. Now

Pm is generated by τij = σj ⊲ (σj+1 ⊲ (σj+2 ⊲ . . . ⊲ (σi−1 ⊲ σ
2
i )) for all j < i, see [Ar,

page 119],[Bi]. Hence kerΦ = Ψ(Pm) is generated by Ψ(τij) = z.

Let now V be a vector space with a basis (vx)x∈X and let q ∈ C be a root of 1 of

arbitrary order M . Define fy ∈ GL(V ) by fy(vx) = qvy⊲x, x, y ∈ X . Then fxfy =
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fx⊲yfx and f2
x = q2 id for any x, y ∈ X ; thus we have a map F : GX → GL(V ) and

F (z) = q2 id. This implies that z is not torsion and the claim is proved. �

Remark 3.3. (i). By [B, Ch IV, §1, no. 1.9, Prop. 5], there is a section of sets

T : Sm → GX such that T (ww′) = T (w)T (w′) when ℓ(ww′) = ℓ(w)ℓ(w′). Thus

the central extension corresponds to the cocycle η : Sm × Sm → Z, η(w,w′) =

T (w)T (w′)T (ww′)−1, w,w′ ∈ Sm.

(ii). The proof shows the centrality of ΓX directly without referring to Theorem

3.1 (b). By Theorem 3.1 (c), z is not torsion; the last paragraph of the proof avoids

appealing to this result.

Let (X, ⊲) be a rack, q : X × X → GL(n,C) a 2-cocycle of degree n and
(V, c) = (CX⊗Cn, cq), cf. (7). We discuss how to realize (V, c) as a Yetter-Drinfeld
module over a group algebra. Let x ∈ X and define gx : V → V by

(13) gx(eyw) = ex⊲yqx,y(w), y ∈ X,w ∈ Cn,

and let InnX,q be the subgroup of GL(V ) generated by the gx’s, x ∈ X . Then
gxgy = gx⊲ygx for any x, y ∈ X , and (V, c) is a Yetter-Drinfeld module over the
group algebra of InnX,q, with the natural action and coaction δ(exv) = gx ⊗ exv,
x ∈ X , v ∈ Cn.

Lemma 3.4. Let F be a group provided with:

• a group homomorphism p : F → InnX,q;

• a rack homomorphism s : X → F such that p(sx) = gx and F is generated

as a group by s(X).

Then (V, c) ∈ CF
CFYD, with the action induced by p and coaction δ(exv) = sx ⊗ exv,

x ∈ X, v ∈ Cn. In particular, (V, c) ∈ CGX

CGX
YD.

Proof. If x, y ∈ X and w ∈ Cn, then δ(sx · eyw) = δ(ex⊲yqx,y(w)) = sx⊲y ⊗

ex⊲yqx,y(w) = sxsys
−1
x ⊗ ex⊲yqx,y(w) = sxsys

−1
x ⊗ sx · w. Since F is generated by

s(X), it follows that δ(f · eyw) = fsyf
−1 ⊗ f · w, for all f ∈ F . �

As a consequence, the Nichols algebra of the braided vector space (CX, cq)
bears a GX-grading, that we shall call the principal grading, as opposed to the
natural N-grading. Indeed, if X is abelian, then GX ≃ ZcardX and the principal
grading coincides with the one considered e. g. in [AHS].

3.2. The rack cohomology group H2(X,C×).
We now state some general facts about the cocycles on a rack X with values

in the abelian group C×. In this case, the H2 is part of a cohomology theory, see
[AG] and references therein. An alternative description of H2(X,C×) was found
in [EGñ] through the enveloping group. Namely, let Fun(X,C×) be the space of
all functions from X to C× with right GX -action given by (f · ex)(y) = f(x ⊲ y),
f : X → A, x, y ∈ X .

Lemma 3.5. [EGñ] H2(X,C×) ≃ H1(GX ,Fun(X,C×)). �
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In principle, the cohomology of GX could be studied via the Hochschild-Serre
sequence from that of Inn⊲(X) and ΓX . However, the computation of the defect
group seems to be very difficult. There is also a homology theory of racks, related
to the computation we are interested in by the following result.

Lemma 3.6. [AG, Lemma 4.7] H2(X,C×) ≃ Hom(H2(X,Z),C×). �

There is a monomorphism C× →֒ H2(X,C×), since any constant function is a
cocycle. A natural question is to compute the quotient H2(X,C×)/C×. Assume
that X is indecomposable. If q ∈ Z2(X,C×), then

(14) qii = qjj , for any i, j ∈ X.

Note also that q ∼ q̃ as in (8) implies that qii = q̃ii for all i ∈ X . Therefore the
question can be rephrased as follows.

Question 4. Compute all cocycles q ∈ Z2(X,C×) such that qii = −1.

3.3. The program RiG.

A program for calculations with racks, that in particular computes the rack-
(co)homology groups, was developed in [GV]. We use it to compute some coho-
mology groups of simple racks that are not of type D, see Theorems 5.1 and 6.1.

We say that σ ∈ Sn is of type (1n1 , 2n2 , . . . ,mnm) if the decomposition of σ as
product of disjoint cycles contains nj cycles of length j, for every j, 1 ≤ j ≤ m.

Proposition 3.7. Let σ ∈ Sm be of type (1n1 , 2n2 , . . . ,mnm) and let

O =




the conjugacy class of σ in Sm, if σ /∈ Am,

the conjugacy class of σ in Am, if σ ∈ Am.

(a) If m = 5 and the type is (2, 3), then H2(O,C×) = C× ×G6.

(b) If m = 6, 7, 8 and the type is (1n, 2), then H2(O,C×) = C× ×G2.

(c) If m = 6 and the type is (23), then H2(O,C×) = C× ×G2.

(d) If m = 5 and the type is (12, 3), then H2(O,C×) = C× ×G6.

(e) If m = 6 and the type is (1, 2, 3), then H2(O,C×) = C× ×G3 ×G6.

Table 1. Some homology groups of conjugacy classes in Sm.

type of X H2(X,Z)
S5 (1 2)(3 4 5) Z⊕ Z/6
A5 (1 2 3) Z⊕ Z/6
S6 (1 2)(3 4)(5 6) Z⊕ Z/2
S6 (1 2) Z⊕ Z/2
A6 (1 2 3) Z⊕ Z/3⊕ Z/6
S7 (1 2) Z⊕ Z/2
S8 (1 2) Z⊕ Z/2
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Proof. We use GAP and RiG to compute the homology groups H2(O,Z).

These results are listed in Table 1. Now assume X is a rack and that there exists

m ∈ N≥2 such that H2(X,Z) ≃ Z⊕ Z/m1 ⊕ · · · ⊕ Z/mr. By Lemma 3.6, we have

H2(X,C×) ≃ Hom(Z⊕Z/m1⊕· · ·⊕Z/mr,C×) ≃ Hom(Z,C×)×Hom(Z/m1,C×)×

· · · ×Hom(Z/mr,C×) ≃ C× ×Gm1 × · · · ×Gmr
. �

3.4. Twisting.

There is a method, called twisting, to deform the the multiplication of a Hopf
algebra [DT]; it is formally dual to the twisting of the comultiplication [D, R]. The
relation with bosonization was established in [MO]. Here we show how to relate
two cocycles over a rack X by a twisting, in a way that the corresponding Nichols
algebras are preserved.

Let H be a Hopf algebra. Let φ : H ⊗ H → C be an invertible (with
respect to the convolution) linear map and define a new product by x ·φ y =
φ(x(1), y(1))x(2)y(2)φ

−1(x(3), y(3)), x, y ∈ H. If φ is a unitary 2-cocycle, that is
for all x, y, z ∈ H,

φ(x(1) ⊗ y(1))φ(x(2)y(2) ⊗ z) = φ(y(1) ⊗ z(1))φ(x ⊗ y(2)z(2)),(15)

φ(x ⊗ 1) = φ(1 ⊗ x) = ε(x),(16)

then Hφ (the same coalgebra but with multiplication ·φ) is a Hopf algebra.

Theorem 3.8. [MO, 2.7, 3.4] Let φ : H ⊗ H → C be an invertible unitary 2-

cocycle.

(a) There exists an equivalence of braided categories Tφ : H

H
YD →

Hφ

Hφ
YD,

V 7→ Vφ, which is the identity on the underlying vector spaces, morphisms

and coactions, and transforms the action of H on V to ·φ : Hφ⊗Vφ → Vφ,

h ·φ v = φ(h(1), v(−1))(h(2) · v(0))(0) φ
−1((h(2) · v(0))(−1), h(3)),

h ∈ Hφ, v ∈ Vφ. The monoidal structure on Tφ is given by the natural

transformation bV,W : (V ⊗W )φ → Vφ ⊗Wφ

bV,W (v ⊗ w) = φ(v(−1), w(−1))v(0) ⊗ w(0), v ∈ V,w ∈ W.

(b) Tφ preserves Nichols algebras: B(V )φ ≃ B(Vφ) as objects in
Hφ

Hφ
YD. In

particular, the Poincaré series of B(V ) and B(Vφ) are the same. �

Let us recall the argument for (b). The functor Tφ preserves the braidings; that

is, if c, resp. cφ, is the braiding in H

H
YD, resp.

Hφ

Hφ
YD, then the following diagram

commutes:

(17) (V ⊗W )φ
Tφ(c)

//

bV,W

��

(W ⊗ V )φ

bW,V

��

Vφ ⊗Wφ
cφ

// Wφ ⊗ Vφ.

Since the ideal of relations of a Nichols algebra is the sum of the kernels of the
various quantum symmetrizers, (b) follows immediately.
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Let G be a group. If H = CG, then a unitary 2-cocycle on H is equivalent to
a 2-cocycle φ ∈ Z2(G,C×), that is a map φ : G×G → C× such that

(18) φ(g, h)φ(gh, t) = φ(h, t)φ(g, ht)

and φ(g, e) = φ(e, g) = 1 for all g, h, t ∈ G.

Let σ, ζ ∈ G, Oσ, Oζ their conjugacy classes, (ρ, V ) ∈ ĈG(σ), (τ,W ) ∈ ĈG(ζ).
For ν ∈ Oσ, ξ ∈ Oζ , pick gν , hξ ∈ G such that gν ⊲ σ = ν, hξ ⊲ ζ = ξ.

Lemma 3.9. If φ ∈ Z2(G,C×), then the braiding

cφ : M(Oσ, ρ)φ ⊗M(Oζ , τ)φ → M(Oζ , τ)φ ⊗M(Oσ, ρ)φ

is given by

(19) cφ(gνv ⊗ hξw) = φ(ν, ξ)φ−1(ν ⊲ ξ, ν) ν · hξw ⊗ gνv,

v ∈ V , w ∈ W .

Proof. By (17), since bM(Oσ ,ρ),M(Oζ ,τ)(gνv ⊗ hξw) = φ(ν, ξ) gνv ⊗ hξw. �

Let now X be a subrack of a conjugacy class O in G, q a 2-cocycle on X arising
from some Yetter-Drinfeld module M(O, ρ) with dim ρ = 1 and φ ∈ Z2(G,C×).
Define qφ : X ×X → C× by

(20) qφxy = φ(x, y)φ−1(x ⊲ y, x) qxy, x, y ∈ X.

Then Lemma 3.9 and Th. 3.8 imply that

(21) The Poincaré series of B(X, q) and B(X, qφ) are equal.

Remark 3.10. If X is any rack, q a 2-cocycle on X and φ : X ×X → C×, then

define qφ by (20). It can be shown that qφ is a 2-cocycle iff

(22) φ(x, z)φ(x ⊲ y, x ⊲ z)φ(x ⊲ (y ⊲ z), x)φ(y ⊲ z, y)

= φ(y, z)φ(x, y ⊲ z)φ(x ⊲ (y ⊲ z), x ⊲ y)φ(x ⊲ z, x)

for any x, y, z ∈ X . Thus, if X is a subrack of a group G and φ ∈ Z2(G,C×), then

φ|X×X satisfies (22).

Definition 3.11. The 2-cocycles q and q′ on X are equivalent by twist if there

exists φ : X ×X → C× such that q′ = qφ as in (20).

4. Simple affine racks

Let p be a prime, t ∈ N and f ∈ Fp[X] of degree t, monic irreducible and different
from X and X− 1. Let T be the companion matrix of f and QFt

p ,f := QFt
p ,T be the

associated affine rack; this will be simply denoted by Q if no emphasis is needed.
Alternatively, set q = pt and identify Fq with Ft

p. Then the action of T corresponds
to multiplication by a, which is the class of X in Fp[X]/(f). Note that a generates
Fq over Fp.

Question 5. Find the proper subracks of Q.
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We expect that the simple affine racks will have very few subracks. In fact, they
have no abelian subracks with more than one element [AFGV1, Remark 3.13].

Proposition 4.1. If a generates F×
q , then any proper subrack of QFq,a is trivial.

Proof. Let X be a subrack of QFq,a with more than one element. Let x, y ∈ X

with x 6= y. By definition we have ϕn
x(y) ∈ X for all n ∈ N. Since ϕn

x(y) =

(1− an)x+ any, for all n ∈ N, we have that

A = {(1− an)x+ any | 0 ≤ n ≤ q − 1} ⊆ X.

Moreover, A has q elements. Indeed, suppose there exist m 6= n such that (1 −

an)x + any = (1 − am)x + amy. Then x(am − an) = y(am − an) which implies

that x = y, a contradiction. Since A ⊆ X ⊆ QFq,a and |QFq,a| = q we have that

X = QFq,a. �

In the particular case t = 1, we can say more: any proper subrack of an affine
rack with p elements is trivial.

Proposition 4.2. Let 1 6= a ∈ F×
p . Then any proper subrack of the affine rack

QFp,a is trivial.

Proof. Let x 6= y be two elements of Fp. It is enough to show that the subrack

generated by x and y is Fp. Let

Fa,m(n1, n2, ..., nm) =

m∑

j=1

(−1)j+1anj+···+nm .

Note that a+ aFa,2k(n1, n2, ..., n2k) = Fa,2k+1(n1, n2, ..., n2k, 1). Then

ϕn2k
y ϕn2k−1

x · · ·ϕn1
x (y) = y + (y − x)Fa,2k(n1, n2, ..., n2k),(23)

ϕn2k+1
y ϕn2k

x · · ·ϕn1
x (y) = x+ (y − x)Fa,2k+1(n1, n2, ..., n2k+1).(24)

Let z ∈ Fp, then

z = ϕn2k
y ϕn2k−1

x · · ·ϕn1
x (y)(25)

has at least one solution. In fact, let nj = (−1)j. Equation (23) implies that (25)

can be re-written as z = y + (y − x)(1 − a)k. Then the result follows by taking

k = (z − y)(1− a)−1(y − x)−1. �

5. Conjugacy classes in non-abelian simple groups

5.1. Alternating groups.

Theorem 5.1. [AFGV1, Th. 4.1] Let σ ∈ Am, m ≥ 5. If the type of σ is NOT

any of (32); (22, 3); (1n, 3); (24); (12, 22); (1, 22); (1, p), (p) with p prime, then the

conjugacy class of σ in Am is of type D. �
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Table 2. Conjugacy classes of sporadic groups which are not

known to be of type D; those which are NOT of type D appear

in bold.

G Classes G Classes

M11 8A, 8B, 11A, 11B Co1 3A, 23A, 23B
M12 11A, 11B J1 15A, 15B, 19A, 19B, 19C

M22 11A, 11B O′N 31A, 31B
M23 23A, 23B J3 5A, 5B, 19A, 19B
M24 23A, 23B Ru 29A, 29B
J2 2A, 3A He all of type D
Suz 3A Fi22 2A, 22A, 22B
HS 11A, 11B Fi23 2A, 23A, 23B
McL 11A, 11B HN all of type D
Co3 23A, 23B Th all of type D
Co2 2A, 23A, 23B T 2A

G Classes

Ly 33A, 33B, 37A, 37B, 67A, 67B, 67C
J4 29A, 37A, 37B, 37C, 43A, 43B, 43C
Fi′24 23A, 23B, 27B, 27C, 29A, 29B, 33A, 33B, 39C, 39D
B 2A, 16C, 16D, 32A, 32B, 32C, 32D, 34A,

46A, 46B, 47A, 47B
M 32A, 32B, 41A, 46A, 46B, 47A, 47B, 59A, 59B,

69A, 69B, 71A, 71B, 87A, 87B, 92A, 92B, 94A, 94B

5.2. Sporadic groups.

Theorem 5.2. [AFGV2, AFGV3] If G is a sporadic simple group and O is a

non-trivial conjugacy class of G NOT listed in Table 2, then O is of type D. �

5.3. Finite groups of Lie type.

Let p be a prime number, m ∈ N and q = pm. Let G be an algebraic reductive
group defined over the algebraic closure of Fq and G = G(Fq) be the finite group of
Fq-points. Let x ∈ G; we want to investigate the orbit OG

x of x in G. Let x = xsxu

be the Chevalley-Jordan decomposition of x in G; then xs, xu ∈ G. Let K = CG(xs),
a reductive subgroup of G by [Hu, Thm. 2.2], and let L be its semisimple part;
then K := K ∩ G = CG(xs), by [Bo, Prop. 9.1]. Since xu ∈ K, we conclude from
Subsection 2.4 that

OK
xu

is a subrack of OG
x .

Therefore, we are reduced to investigate the orbits Ox when x is either semisimple
(the case x = xs) or unipotent (by the reduction described).

The first step of the Strategy proposed in Subsection 2.6 consists of finding
subracks of type D of conjugacy classes of semisimple or unipotent elements. We
believe that most semisimple conjugacy classes are of type D. We give now some
evidence for this belief, using techniques with involutions and elements of a Weyl
group associated to a fixed Fq-split torus.
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Let n > 1, ξ ∈ F×
q so that ord ξ = m divides q − 1 and a ∈ F×

q . For all

x = (x1, . . . , xn) ∈ (Z/m)n such that
∑n

i=0 xi ≡ 0 (mod m) define na to be the
companion matrix of the polynomialXn−a, ξx = diag(ξx1 , . . . , ξxn) and µx = naξx.

µx =




0 . . . 0 aξxn

ξx1 0 . . . 0 0

0 ξx2 . . . 0
...

...
. . .

... 0
0 . . . . . . ξxn−1 0




∈ GL(n,Fq).

Let Xa,ξ = {µx :
∑n

i=1 xi ≡ 0 (mod m)}, a subset of the conjugacy class of
na in GL(n,Fq) (that is, the set of matrices with minimal polynomial T n − a). If
a = −1, then Xa,ξ ⊆ SL(n,Fq).

The following proposition is a generalization of [AF3, Example 3.15].

Proposition 5.3. Assume that (n, q− 1) 6= 1; that q > 3, if n = 4; and that q > 5,

if n = 2. Then the conjugacy class of na is of type D.

Proof. Pick a generator ξ of F×
q . We claim that Xa,ξ is a subrack of the

conjugacy class of na in GL(n,Fq), isomorphic to the affine rack Q(Z/(q−1))n−1,g,

with g(x1, . . . , xn−1) =
(
−
∑n−1

i=1 xi, x1, . . . , xn−2

)
. A direct computation shows

that µxµyµ
−1
x = µx⊲y, with

x ⊲ y = (x1 + yn − xn, x2 + y1 − x1, . . . , xn + yn−1 − xn−1).

Thus, the map ϕ : Xa,ξ → Q(Z/(q−1))n−1,g given by ϕ(µx) = (x1, . . . , xn−1) is a rack

isomorphism and the claim is proved. The proposition follows now from [AFGaV,

Lemma 2.2], for n > 2, or [AFGaV, Lemma 2.1], for n = 2. �

The conjugacy class of involutions in PSL(2,Fq) for q ∈ {5, 7, 9} is not of type
D. For q > 9 we have the following result.

Corollary 5.4. (a) Assume that q ≡ 1 (mod 4) and q > 9. Then the conju-

gacy class of involutions of PSL(2,Fq) is of type D.

(b) Assume that q ≡ 3 (mod 4) and q > 9. Then the conjugacy class of

involutions of PGL(2,Fq) is of type D.

Proof. (a) Let ξ ∈ Fq such that F×
q = 〈ξ〉. By Proposition 5.3 with a =

−1, the subrack X = {
(

0 −ξ−x

ξx 0

)
: x ∈ Z/(q − 1)} of the conjugacy class of

n−1 in GL(2,Fq) is isomorphic to the dihedral rack Dq−1. Let π : GL(2,Fq) →

PGL(2,Fq) be the canonical projection. Then π
(

0 −ξ−x

ξx 0

)
∈ PSL(2,Fq) for all

x ∈ Z/(q − 1) and whence π(X) is a subrack of the unique conjugacy class of

involutions in PSL(2,Fq). Now π
(

0 −ξ−x

ξx 0

)
= π

(
0 −ξ−y

ξy 0

)
iff ξx = −ξy, hence

π(X) ≃ D(q−1)/2, which is of type D if (q − 1)/2 is even and > 4.

(b) Let L = {
(

a b
−b a

)
: a, b ∈ Fq}. Then L is a quadratic field extension

of Fq and |L| = q2. Consider now the group map det : L× → F×
q given by the
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determinant. Since every element in a finite field is a sum of squares, the kernel is

a subgroup of L× of order |L×|

|F×
q |

= q2−1
q−1 . Since L× is cyclic, there exist a, b ∈ Fq

such that a2+ b2 = 1 and θ =
(

a b
−b a

)
generates ker det, i.e. it has order q+1. Note

that, as q ≡ 3 (mod 4), θ is contained in a non-split torus.

Let n = ( 0 1
1 0 ). Then the subrack X = {µx = nθx : x ∈ Z/(q + 1)} of the

conjugacy class of n in GL(2,Fq) is isomorphic to the dihedral rack Dq+1. Taking

π as in (a), we have that π(X) ≃ D(q+1)/2 is a subrack of the unique conjugacy class

of involutions in PGL(2,Fq), which is of type D if (q + 1)/2 is even and > 4. �

A similar argument as in the proof of proposition 5.3 applies with weaker hy-
pothesis to matrices whose rational form contains na.

Proposition 5.5. Let x ∈ GL(N,Fq) be a semisimple element whose rational form

x is
(
na 0
0 B1

)
. Suppose there exists B2 ∈ GL(N−n,Fq) such that B2 6= B1, B2 ∼ B1

and B1B2 = B2B1. Then the conjugacy class of x is of type D for all n 6= 2, 4; or

n = 4 and q > 3; or n = 2 and q is odd.

Proof. Pick a generator ξ of F×
q and let µx be as above. Let

Xi =
{(

µx 0
0 Bi

)
:

n∑

j=1

xj ≡ 0 (mod q − 1)
}
,

i = 1, 2 and X = X1

∐
X2. Since

( µx 0
0 Bi

)
⊲
(

µy 0
0 Bj

)
=

(
µx⊲y 0
0 Bj

)
and X1∩X2 = ∅,

we see that X is a decomposable rack and each Xi is isomorphic to an affine rack,

by the proof of Proposition 5.3. If x = (0, . . . , 0), y = (1, 0, . . . , 0), s =
( µx 0

0 B1

)
and

r =
(

µy 0
0 B2

)
, then r ⊲ (s ⊲ (r ⊲ s)) 6= s, by a straightforward computation, see the

proof of [AFGaV, Lemma 2.2], whenever the prescribed restrictions on n hold. �

Assume now that G be a Chevalley group and denote by G = G(Fq) the
group of Fq-points. Let T be a Fq-split torus in G and W = NG(T )/CG(T ) the
corresponding Weyl group. Let σ ∈ W and nσ ∈ NG(T ) be a representative of
σ. Since W stabilizes T , the adjoint action of nσ on T defines an automorphism
gσ of (Z/(q − 1))n. Indeed, without loss of generality, we may assume that T =
F×
q × · · · × F×

q and F×
q = 〈ξ〉, with ξ ∈ F×

q . Then for all t ∈ T , there exists
x ∈ (Z/(q − 1))n such that t = ξx = diag(ξx1 , . . . , ξxn), n = dimT , and the
automorphism is defined by nσξxn

−1
σ = ξgσ(x).

The following proposition is a generalization of Proposition 5.3.

Proposition 5.6. Let σ ∈ W and nσ ∈ NG(T ) be a representative of σ. Assume

there exists x ∈ (Z/(q−1))n such that x /∈ Im(id−gσ) and x−gσ(x)+g2σ(x)−g3σ(x) 6=

0. Then the conjugacy class of nσ in G is of type D.

Proof. Consider the set Xσ,ξ = {µy = nσξy : y ∈ (Z/(q − 1))n}. Then Xσ,ξ

is a (non-empty) rack isomorphic to the affine rack ((Z/(q−1))n, gσ). Indeed, since

µxµyµ
−1
x = nσξxnσξyξ

−1
x n−1

σ = nσξxnσξy−xn
−1
σ = nσξxξgσ(y−x)

= nσξgσ(y)+(1−gσ)(x) = µx⊲y,
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the map ϕ : Xσ,ξ → ((Z/(q − 1))n, gσ) given by ϕ(µx) = x defines a rack isomor-

phism. Since x /∈ Im(id−gσ), Xσ,ξ contains at least two cosets with respect to

Im(1− gσ). If we take s = µ0 and r = µx, then

r ⊲ (s ⊲ (r ⊲ s)) = µx⊲(0⊲(x⊲0)) = µx−gσ(x)+g2
σ(x)−g3

σ(x)
,

which implies that Xσ,ξ is of type D. �

6. Twisted conjugacy classes in simple non-abelian groups

In this section we consider twisted conjugacy classes in simple non-abelian
groups defined by non-trivial outer automorphisms. These can be realized as con-
jugacy classes in the following way. Pick a representative of θ in Aut(L), called also
θ, and form the semidirect product L⋊ 〈θ〉. Then the racks of type (L, 1, θ) are the
conjugacy classes of L⋊ 〈θ〉 contained in L× {θ}.

6.1. Alternating groups.

Since Am⋊Z/2 ≃ Sm, the racks of this type are the conjugacy classes in Sn not
intersecting An. We keep the notation from subsection 5.1. Assume that m ≥ 5.

Theorem 6.1. [AFGV1, Th. 4.1] Let σ ∈ Sm − Am. If the type of σ is neither

(2, 3), nor (23), nor (1n, 2), then the conjugacy class of σ is of type D. �

Notice that the racks of type (23) and (14, 2) are isomorphic. As we see, the
only example, except for the type (2, 3), is (1n, 2). We treat it in the following
Subsection.

6.2. The Fomin-Kirillov algebras.

Let X = Om
2 be the rack of transpositions in Sm, m ≥ 3. As shown in [MS],

see also [AFZ], there are two cocycles q ∈ Z2(X,C×) arising from Yetter-Drinfeld
modules over CSm and such that qii = −1 for all (some) i ∈ X . These are either

q = −1 or q = χ, the cocycle given by χ(σ, τ) =

{
1, if σ(i) < σ(j)

−1, if σ(i) > σ(j).
, if τ, σ are

transpositions, τ = (ij) and i < j. Furthermore, their classes in Z2(X,C×) are
different. Hence, we have a monomorphism C× ×G2 →֒ H2(Om

2 ,C×).

Question 6. Is H2(Om
2 ,C×) ≃ C× ×G2 for m ≥ 4?

We conjecture that the answer is yes; Proposition 3.7 (b) gives some computa-
tional support to this conjecture, and Proposition 3.2 should be useful for this.

We turn now to the Nichols algebras associated to X = Om
2 .

⋄ If q ∈ Z2(X,C×) arises from a Yetter-Drinfeld module over CSm and
qii 6= −1, then dimB(X,q) = ∞ [AFZ, Theorem 1]. In fact, assume
that m ≥ 4. Then it can be shown that dimB(X,q) = ∞ for any q ∈
C× × G2 →֒ H2(Om

2 ,C×) such that qii 6= −1, just looking at the abelian
subrack {(12), (34)}.

⋄ The Nichols algebras B(Om
2 ,−1) and B(Om

2 , χ) are finite-dimensional for
m = 3, 4, 5, see Table 6. Indeed, the Hilbert series of B(Om

2 ,−1) and
B(Om

2 , χ) are equal.
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⋄ The quadratic Nichols algebra of a braided vector space V is B̂2(V ) =

T (V )/〈kerQ2〉, cf. (6); clearly, here is an epimorphism B̂2(V ) → B(V ).
The Nichols algebras B(Om

2 ,−1) and B(Om
2 , χ) are quadratic for m =

3, 4, 5. Furthermore, B(Om
2 , χ) appears in [FK] in relation with the quan-

tum cohomology of the flag variety.

⋄ It is known if the Nichols algebras B(Om
2 ,−1) and B(Om

2 , χ) are finite-
dimensional, nor if they are quadratic, for m ≥ 6.

Question 7. Are the cocycles −1 and χ equivalent by twist? Recall that H2(Sm,C×) ≃

Z/2 for m ≥ 4, see [Schur].

A positive answer to Question 7 would explain the similarities between the
Nichols algebras B(Om

2 ,−1) and B(Om
2 , χ).

6.3. Sporadic groups.

The sporadic groups with non-trivial outer automorphisms group areM12, M22,
J2, Suz, HS, McL, He, Fi22, Fi′24, O

′N , J3, T and HN . For any group L among
these, the outer automorphisms group is Z/2 and Aut(L) ≃ L ⋊ Z/2. Hence we
need to consider the conjugacy classes in Aut(L)− L.

Theorem 6.2. [FV] Let G be one of the following sporadic simple groups: M12,

M22, J2, Suz, HS, McL, He, O′N , J3 or T . If O is the conjugacy class of a

non-trivial element in Aut(G)−G NOT listed in Table 3, then O is of type D. �

Table 3. Twisted conjugacy classes which are not known to be of

type D

Group Aut(M22) Aut(J3) Aut(HS) Aut(McL) Aut(ON)
Classes 2A 34A, 34B 2C 22A, 22B 38A, 38B, 38C

The groups Aut(Fi22), Aut(Fi′24) and Aut(HN) are being object of present
study, see [FV].

7. On twisted homogeneous racks

In this section, we fix a simple non-abelian group L, an integer t > 1 and
θ ∈ Out(L); by abuse of notation, we call also by θ a representative in Aut(L).
The representative of the trivial element is chosen as the trivial automorphism. Let
u ∈ Aut(Lt) act by

u(ℓ1, . . . , ℓt) = (θ(ℓt), ℓ1, . . . , ℓt−1), ℓ1, . . . , ℓt ∈ L.

The twisted conjugacy class of (x1, . . . , xt) ∈ Lt is called a twisted homoge-
neous rack (THR for short) of class (L, t, θ) and denoted C(x1,...,xt). Let also
Cℓ := C(e,...,e,ℓ), ℓ ∈ L. The set of twisted homogeneous racks of class (L, t, θ)
is parameterized by the set of twisted conjugacy classes of L under θ [AFGaV,
Prop. 3.3]. Namely,

(1) If (x1, . . . , xt) ∈ Lt and ℓ = xtxt−1 · · ·x2x1, then C(x1,...,xt) = Cℓ.
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(2) Cℓ = Ck iff k ∈ O
L,θ
ℓ ; hence

Cℓ = {(x1, . . . , xt) ∈ Lt : xtxt−1 · · ·x2x1 ∈ O
L,θ
ℓ }.

In [AFGaV], we have developed some techniques to check whether Cℓ is of
type D; so far, these techniques are more useful in the case θ = id. For illustration,
we quote:

• If ℓ ∈ L is quasi-real of type j, t ≥ 3 or t = 2 and ord(ℓ) ∤ 2(1 − j), then
Cℓ is of type D.

• If ℓ is an involution and t > 4 is even, then Cℓ is of type D.

• If ℓ is an involution, t is odd and OL
ℓ is of type D, then so is Cℓ.

• If (t, |L|) is divisible by an odd prime p, or if (t, |L|) is divisible by p = 2
and t ≥ 6, then Ce is of type D.

• If L = A5 or A6 and t = 2, then Ce is not of type D (checked with GAP).

In other words, at least when θ = id, the worse cases are either when ℓ is an
involution and t = 2, 4, or else when ℓ = e.

As an application of these techniques, we have the following result.

Theorem 7.1. [AFGaV] Let L be An, n ≥ 5, or a sporadic group, t ≥ 2 and

ℓ ∈ L. If Cℓ is a twisted homogeneous rack of class (L, t, id) not listed in Tables 4

and 5, then Cℓ is of type D. �

Table 4. THR Cℓ of type (An, t, θ), θ = id, t ≥ 2, n ≥ 5, which

are not known to be of type D. Those not of type D are in bold.

n ℓ Type of ℓ t
any e (1n) odd, (t, n!) = 1
5 (15) 2

5 (15) 4
6 (16) 2

5 involution (1, 22) 4, odd
6 (12, 22) odd
8 (24) odd

any order 4 (1r1 , 2r2 , 4r4), r4 > 0, r2 + r4 even 2

Table 5. THR Cℓ of type (L, t, θ), with L a sporadic group, θ = id,

which are not known to be of type D.

sporadic t Type of ℓ or

class name of OL
ℓ

any (t, |L|) = 1, t odd 1A
2 ord(ℓ) = 4

T , J2, Fi22, Fi23, Co2 odd 2A
B odd 2A, 2C
Suz any 6B, 6C
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8. Applications to the classification of pointed Hopf algebras

We say that a finite group G collapses if for any finite-dimensional pointed Hopf
algebra H , with G(H) ≃ G, necessarily H ≃ CG. Some applications of the results
on Nichols algebras presented here to the classification of Hopf algebras need the
following Lemma.

Lemma 8.1. [AFGV1, Lemma 1.4] The following statements are equivalent:

(1) If 0 6= V ∈ CG
CGYD, then dimB(V ) = ∞.

(2) If V ∈ CG
CGYD is irreducible, then dimB(V ) = ∞.

(3) G collapses. �

Theorem 8.2. [AFGV1, AFGV2] Let G be either an alternating group Am,

m ≥ 5, or a sporadic simple group, different from the Fischer group Fi22, the Baby

Monster B and the Monster M . Then G collapses. �

The proof goes as follows: by the Lemma 8.1, we need to show that dimB(V ) =
∞ for any irreducible V = M(O, ρ). If O is of type D, this follows from Theorem
2.4; and we know those classes of type D by Theorems 5.1, 5.2. The remaining
pairs (O, ρ) are treated by abelian techniques, namely one finds an abelian subrack,
computes the corresponding diagonal braiding arising from ρ and applies [H2].

However, there are finite non-abelian groups that do not collapse. Furthermore,
the classification of all finite-dimensional pointed Hopf algebras with group G is
known, when G = S3, S4 or D4t, t ≥ 3, see [AHS, GG, FG], respectively.

Appendix A. Examples of finite-dimensional Nichols algebras

Table 6 contains several examples of pairs (X,q) such that dimB(X,q) <
∞; we give the dimension, the top degree and the reference where the example
appeared3.

Appendix B. Questions

Question 1. Determine all simple racks of type D.

Question 2. For any finite indecomposable rack X, for any n ∈ N, and for any

q ∈ H2(X,GL(n,C)), determine if dimB(X,q) < ∞.

Question 3. If X collapses at 1, does necessarily X collapse?

Question 4. Compute all cocycles q ∈ Z2(X,C×) such that qii = −1.

Question 5. Is H2(Om
2 ,C×) ≃ C× ×G2 for m ≥ 4?

Question 6. Find the proper subracks of Q.

3The Nichols algebra corresponding to QZ/5,2 was actually computed by Mat́ıas Graña. The

quadratic Nichols algebra corresponding to O5

2
was computed by Jan-Erik Roos; Graña showed

that this is a Nichols algebra. The computation of the Nichols algebras corresponding to (On
2
, χ),

n = 4, 5, was done in [GG] using Deriva with the help of M. Graña.
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Table 6. Finite-dimensional B(X,q)

X rk q Relations dimB(V ) top Ref.

D3 3 -1 5 in degree 2 12 = 3.22 4 = 22 [MS]

T 4 -1 8 in degree 2,
1 in degree 6

72 9 = 32 [G1]

QZ/5,2 5 -1 10 in degree 2,
1 in degree 4

1280 = 5.44 16 = 42 [AG]

QZ/5,3 5 -1 10 in degree 2,
1 in degree 4

1280 = 5.44 16 = 42 dual of the
preceding

O4
2 6 -1 16 in degree 2 576 = 243 12 [FK, MS]

O4
2 6 χ 16 in degree 2 576 = 243 12 [GG]

O4
4 6 -1 16 in degree 2 576 = 243 12 [AG]

QZ/7,3 7 -1 21 in degree 2,
1 in degree 6

326592 = 7.66 36 = 62 [G2]

QZ/7,5 7 -1 21 in degree 2,
1 in degree 6

326592 = 7.66 36 = 62 dual of the
preceding

O5
2 10 -1 45 in degree 2 8294400 40 [FK, G2]

O5
2 10 χ 45 in degree 2 8294400 40 [GG]

Question 7. Are the cocycles −1 and χ equivalent by twist? Recall that H2(Sm,C×) ≃

Z/2 for m ≥ 4, see [Schur].
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