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Abstract. We define the action of a locally compact group G on a topological

graph E. This action induces a natural action of G on the C∗-correspondence

H(E) and on the graph C∗-algebra C∗(E). If the action is free and proper,
we prove that C∗(E) or G is strongly Morita equivalent to C∗(E/G). We

define the skew product of a locally compact group G by a topological graph

E via a cocycle c : E1 → G. The group acts freely and properly on this new
topological graph E ×c G. If G is abelian, there is a dual action on C∗(E)

such that C∗(E) o Ĝ ∼= C∗(E ×c G). We also define the fundamental group
and the universal covering of a topological graph.

1. Introduction

Topological graphs generalize discrete directed graphs. They have a richer struc-
ture, since the vertex and edge spaces may be arbitrary locally compact spaces, and
it is natural to study their symmetries. The corresponding C∗-algebras provide a
wealth of intriguing examples. Katsura proved in [Kat08] that all Kirchberg alge-
bras can be obtained from topological graphs.

In [KP99] the authors consider free actions of discrete groups G on directed
graphs E and on their associated C∗-algebras C∗(E). They prove that the crossed
product C∗(E) o G is strongly Morita equivalent to C∗(E/G), where E/G is the
quotient graph. They also consider the notion of skew product graph associated to
a cocycle c : E1 → G and the universal covering tree of a graph.

In this paper, we prove an analogous result for the reduced crossed product
for G a locally compact group acting freely and properly on a topological graph
E. Unlike [KP99], where groupoids were used extensively, the C∗-algebra C∗(E) is
defined here using a C∗- correspondence H(E) and the Cuntz-Pimsner construction
(see [Kat04]). The main ingredients of the proof are a structure theorem of Palais
about principal G-bundles, the generalized fixed point algebras of Rieffel, and the
use of multiplier bimodules introduced by Echterhoff, Raeburn, and others. We
need multiplier bimodules because we must construct a homomorphism of C∗(E/G)
into the multiplier algebra M(C∗(E)), and as an intermediate step we map the
correspondence H(E/G) into the multipliers of the correspondence H(E).

We also define the notion of fundamental group of a topological graph and the
universal covering, using a space R(E), called the geometric realization, which is
a kind of double mapping torus. In the discrete case, the geometric realization
is the usual 1-dimensional CW-complex that we associate with a graph, and the
fundamental group is free. For a topological graph E, the space R(E) could be a
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2 VALENTIN DEACONU, ALEX KUMJIAN, AND JOHN QUIGG

higher dimensional CW-complex, and π1(E) is not necessarily free, as we will see
in our examples.

Our paper is organized as follows. In section 2 we recall the notion of topological
graph and the construction of its C∗-algebra as a Cuntz-Pimsner algebra, giving
several examples. In section 3 we define group actions on topological graphs, and
prove a structure theorem about topological graphs on which a locally compact
group acts freely and properly. The fundamental group of a topological graph and
the corresponding universal covering are defined in section 4; we also consider a
number of examples. In section 5 we discuss group actions on C∗-correspondences,
recall the notion of generalized fixed point algebra, and prove the main theorem
stating that C∗(E) or G and C∗(E/G) are strongly Morita equivalent for a free
and proper action. The appendix contains basic results concerning multipliers of
correspondences which are needed in section 5.

The authors would like to thank the referee for a number of helpful comments.

2. Topological graphs and their C∗-algebras

Let E = (E0, E1, s, r) be a topological graph. Recall that E0 and E1 are locally
compact (Hausdorff) spaces, and that s, r : E1 → E0 are continuous maps such
that s is a local homeomorphism. We think of points in E0 as vertices, and of
points e ∈ E1 as edges from s(e) to r(e). A path of length n in E = (E0, E1, s, r) is
a sequence e1e2 · · · en of edges such that s(ei) = r(ei+1) for all i. We denote by En

the set of paths of length n. The space of infinite paths is denoted E∞. The maps
s and r extend naturally to En, and (E0, En, s, r) becomes a topological graph. A
vertex v ∈ E0 is viewed as a path of length 0.

We define two open subsets E0
sce, E

0
fin of E0 by

E0
sce = {v ∈ E0 : v has a neighborhood V such that r−1(V ) = ∅},

E0
fin = {v ∈ E0 : v has a neighborhood V such that r−1(V ) is compact},

and the set of regular vertices by E0
rg := E0

fin \E0
sce. It is proved in Proposition 2.8

of [Kat04] that v ∈ E0
rg if and only if v has a neighborhood such that r−1(V ) is

compact and r(r−1(V )) = V . In particular, if r is proper and surjective, we have
E0

rg = E0.
The C∗-algebra C∗(E) of a topological graph is defined as the Cuntz-Pimsner

algebra OH of the C∗-correspondence H = H(E) over the C∗-algebra A = C0(E0),
which is obtained as a completion of Cc(E

1) using the inner product

〈ξ, η〉(v) =
∑
s(e)=v

ξ(e)η(e), ξ, η ∈ Cc(E1)

and the multiplications

(ξ · f)(e) = ξ(e)f(s(e)), (f · ξ)(e) = f(r(e))ξ(e).

The Hilbert C0(E0)-module H can be identified with {ξ ∈ C0(E1) | 〈ξ, ξ〉 ∈
C0(E0)}. There exists an injective ∗-homomorphism πE : Cb(E

1) → L(H) given
by (πE(f)ξ)(e) = f(e)ξ(e) such that πE(f) ∈ K(H) if and only if f ∈ C0(E1).

For more details, see [Kat04].
Recall that a Toeplitz representation of a C∗-correspondence H over A in a

C∗-algebra C is a pair (τ, π) with τ : H → C a linear map and π : A → C a
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∗-homomorphism, such that

τ(ξa) = τ(ξ)π(a), τ(ξ)∗τ(η) = π(〈ξ, η〉), τ(ϕ(a)ξ) = π(a)τ(ξ),

where ϕ : A → L(H) is the left multiplication. The corresponding universal C∗-
algebra is called the Toeplitz algebra TH. A representation (τ, π) is covariant if
π(a) = τ (1)(ϕ(a)) for all a in the ideal ϕ−1(K(H))∩(kerϕ)⊥, where τ (1) : K(H)→ C
is such that τ (1)(θξ,η) = τ(ξ)τ(η)∗. The Cuntz-Pimsner algebraOH is universal with
respect to covariant representations, and it is a quotient of TH. Let (kH, kA) denote
the canonical Toeplitz representation of theA-correspondenceH inOH. A covariant
representation (τ, π) of H in a C∗-algebra C gives rise to a ∗-homomorphism τ×π :
OH → C such that τ = (τ × π) ◦ kH and π = (τ × π) ◦ kA.

Remark 2.1. In the case of a C∗-correspondence H(E) associated with a topologi-
cal graph as above, it is proved in Proposition 1.24 of [Kat04] that kerϕ = C0(E0

sce)
and that ϕ−1(K(H)) = C0(E0

fin), therefore the ideal ϕ−1(K(H))∩(kerϕ)⊥ coincides
with C0(E0

rg).

Example 2.2. If the vertex space E0 is discrete, then the edge space E1 is also
discrete, and E = (E0, E1, s, r) is an usual (discrete) graph. For a discrete graph E,
its C∗-algebra C∗(E) was initially defined as the universal C∗-algebra generated by
mutually orthogonal projections pv for v ∈ E0 and partial isometries te for e ∈ E1

with orthogonal ranges such that t∗ete = ps(e), tet
∗
e ≤ pr(e) and

(1) pv =
∑
r(e)=v

tet
∗
e if 0 < |r−1(v)| <∞.

If H = H(E) is the associated C∗-correspondence described above, then

ϕ−1(K(H)) = C0({v ∈ E0 : |r−1(v)| <∞}),

ker(ϕ) = C0({v ∈ E0 : |r−1(v)| = 0}),
since E0

fin = {v ∈ E0 : r−1(v) is finite} and E0
sce = {v ∈ E0 : r−1(v) = ∅} is the set

of sources. The maps

π(f) =
∑
v∈E0

f(v)pv, f ∈ C0(E0), τ(ξ) =
∑
e∈E1

ξ(e)te, ξ ∈ Cc(E1)

give a Toeplitz representation of H into C∗(E) if and only if t∗ete = ps(e) and
tet
∗
e ≤ pr(e), which is covariant if and only if (1) is satisfied. Hence, the C∗-algebra

of a discrete graph E, defined using generators and relations, is isomorphic to the
Cuntz-Pimsner algebra OH (see [FLR00, Proposition 12]) and [Kat04, Example 1]).

Example 2.3. Let E0 = E1 = T, s(z) = z, and r(z) = e2πiθz for θ ∈ [0, 1]
irrational. Then C∗(E) ∼= Aθ, the irrational rotation algebra. More generally, let
E0 = E1 = X, where X is a locally compact metric space, let s = id and let r = h
for h : X → X a homeomorphism. Then C∗(E) ∼= C0(X) o Z, since C∗(E) is
the universal C∗-algebra generated by a copy of C0(X) and a unitary u satisfying

ĥ(f) = u∗fu for f ∈ C0(X), where ĥ(f) = f ◦ h.

Example 2.4. Let n ∈ N \ {0} and let m ∈ Z \ {0}. Take E0 = E1 = T, s(z) =
zn, r(z) = zm. We get a topological graph with both s and r local homeomorphisms.
When m /∈ nZ, C∗(E) is simple and purely infinite, see [Kat08, Example A.6].
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Example 2.5. (The Cayley graph of a finitely generated locally compact group).
A locally compact group G is called finitely generated if there is a finite subset S
of G such that the closure of the subgroup generated by S is all G. Given a set
of generators S = {h1, h2, ..., hn}, define the associated Cayley graph E = E(G,S)
with E0 = G,E1 = S × G, s(h, g) = g, and r(h, g) = gh. Note that E(G,S)
becomes a topological graph and that both s and r are local homeomorphisms. For
G discrete and finitely generated, we recover the usual notion of Cayley graph. The
Cayley graph may change if we change the set of generators.

For G = (R,+) and S = {1, θ}, where θ is irrational, the corresponding Cayley
graph E has E0 = R, E1 = {1, θ} ×R, s(1, x) = x, r(1, x) = x+ 1, s(θ, x) = x, and
r(θ, x) = x+θ. Its C∗-algebra is simple and, if θ < 0, it is purely infinite; moreover,
C∗(E) ∼= O2 oα R, where αt(S1) = eitS1, αt(S2) = eitθS2 for t ∈ R and for the
standard generators S1, S2 of the Cuntz algebra O2 (see Theorem 2, section 3 in
[KK97] and [Kat02, Proposition 4.3]).

The above example should be regarded as a special case of the following.

Example 2.6. (Skew products of topological graphs). Let E = (E0, E1, s, r) be
a topological graph, let G be a locally compact group, and let c : E1 → G be
a continuous function. We call c a cocycle, and define the skew product graph
E ×c G = (E0 ×G,E1 ×G, s̃, r̃) (cf. [KP99, Rae05]), where

s̃(e, g) = (s(e), g), r̃(e, g) = (r(e), gc(e)).

Notice that E ×c G becomes a topological graph using the product topology, since
s̃ is a local homeomorphism and r̃ is continuous. The situation of a graph with one
vertex and n loops {e1, ..., en} and a set of generators S = {h1, ..., hn} of a group G
such that c(ei) = hi, i = 1, ..., n gives the Cayley graph E(G,S) as a skew product.

In particular, if E is the graph with one vertex and two edges {e, f} and G =
(R,+), the map c : {e, f} → R, c(e) = 1, c(f) = θ for θ irrational determines the
topological graph described in the above example.

If E is an arbitrary discrete graph and G = Z with c(e) = 1 for all e ∈ E1, then
E×cG is the product graph E×Z, where Z0 = Z1 = Z, with s(k) = k, r(k) = k+1.
There is an isomorphism C∗(E ×c G) ∼= C∗(E) o T (see [KP99, Proposition 2.6]).

3. Group actions on topological graphs

Definition 3.1. Let E,F be two topological graphs. A graph morphism ϕ : E → F
is a pair of continuous maps ϕ = (ϕ0, ϕ1) where ϕi : Ei → F i, i = 0, 1 such that
ϕ0 ◦ r = r ◦ ϕ1 and ϕ0 ◦ s = s ◦ ϕ1, i.e. the diagram

E0 s←−−−− E1 r−−−−→ E0

ϕ0

y ϕ1

y ϕ0

y
F 0 s←−−−− F 1 r−−−−→ F 0

is commutative.
A graph morphism has the unique path lifting property for s if ϕ0, ϕ1 are sur-

jective and for every v ∈ E0 and every f ∈ F 1 with s(f) = ϕ0(v) there is a unique
e ∈ E1 such that ϕ1(e) = f and s(e) = v. A graph morphism ϕ is a graph cover-
ing if both ϕ0, ϕ1 are covering maps. In that case, ϕ has the unique path lifting
property with respect to both s and r.
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An isomorphism of topological graphs is a graph morphism ϕ = (ϕ0, ϕ1) such
that ϕi is a homeomorphism for i = 0, 1. It follows that ϕ−1 = ((ϕ0)−1, (ϕ1)−1)
is also a graph morphism. We denote by Aut(E) the group of automorphisms of a
topological graph E.

A locally compact group G acts on E if there are continuous maps λi : G×Ei →
Ei, and we write λi(g, x) = λig(x) for i = 0, 1, such that g 7→ λg is a group

homomorphism fromG into Aut(E). The action λ is called free if λ0
g(v) = v for some

v ∈ E0 implies g = 1G. Note that in this case the action of G is also free on the edges
of E. The action is called proper if the maps G×E0 → E0×E0, (g, v) 7→ (λ0

g(v), v)

and G×E1 → E1×E1, (g, e) 7→ (λ1
g(e), e) are proper. In fact, by Proposition 2.1.14

in [ADR00], it is sufficient to require properness of the first map. We will frequently
write g · e for λ1

g(e), and similarly for the action on vertices.

Definition 3.2. Let P,X be locally compact Hausdorff spaces, and let G be a

locally compact group. A map P
q−→ X is called a principal G-bundle if there is a

free and proper action of G on P and q induces an identification of P/G with X.

Note that we make no assumption regarding local triviality. Principal bundles are
thoroughly discussed in [Pal61] and [Hus94] using various definitions. By [RW98,
Remark 4.64] the notion of principal G-bundle in [Hus94] is equivalent to our notion
determined by a free and proper action.

Given a principal G-bundle P
q−→ X and a continuous function f : Y → X,

we may view the pull-back f∗(P ) = {(y, p) ∈ Y × P : f(y) = q(p)} as a principal

G-bundle f∗(P )
π1−→ Y where the action of G is given by g · (y, p) = (y, g · p).

The following result may be found in [Hus94, Theorem 4.4.2] (see also the dis-
cussion preceding [Pal61, Proposition 1.3.4]).

Lemma 3.3. Suppose we are given principal G-bundles Pi
qi−→ Xi for i = 1, 2 and

a pair of continuous maps f : X1 → X2, f̃ : P1 → P2 such that f̃ is equivariant and
q2f̃ = fq1. Then θf : P1 → f∗(P2) given by θf (p) = (q1(p), f̃(p)) is an isomorphism
of G-bundles.

The following is a structure theorem for topological graphs equipped with a free
and proper action of a locally compact group: the quotient is a topological graph,
and moreover the original graph can be reconstructed from the quotient graph and
certain additional data.

Theorem 3.4. Let (F 0, F 1, s, r) be a topological graph and G be a locally compact

group. Given a principal G-bundle P
q−→ F 0 and an isomorphism of pull-backs

θ : s∗(P ) ∼= r∗(P ), we may construct a topological graph (E0, E1, s̃, r̃) with a free
and proper action of G by setting E0 := P and E1 := s∗(P ) (with structure maps
defined in the obvious way). Conversely, every topological graph (E0, E1, s̃, r̃) on
which G acts freely and properly is isomorphic to one arising in this way.

Proof. First suppose we are given P , q, and θ. Define s̃ : s∗(P )→ P by s̃ = π2, i.e.,
s̃(e, v) = v, and r̃ : s∗(P )→ P by r̃ = π2◦θ. To see that s̃ is a local homeomorphism,
fix a point in ẽ = (e, v) ∈ s∗(P ). Since s is a local homeomorphism, there is an open
set U ⊂ F 1 containing e such that the restriction s|U is injective. It follows that the
restriction s̃|π−1

1 (U) is also injective, and hence that s̃ is a local homeomorphism.
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The following commutative diagram illustrates the above construction:

r∗(P )

π2

zzttttttttt

π1

��333333333333333 E1 = s∗(P )

s̃=π2

&&NNNNNNNNNN

π1

������������������

θ
∼=

oo

ffffffffffffff
r̃

ssfffffffffff

E0 = P

q

��

E0 = P

q

��
F 0 F 1

r
oo

s
// F 0

Since π1 ◦ θ = π1, θ has the following form:

θ(e, v) = (e, r̃(e, v)) for (e, v) ∈ s∗(P ).

The converse essentially follows from Lemma 3.3 above; the only non-obvious bit
is showing that the quotient is a topological graph. So, suppose G acts freely and
properly on a topological graph E = (E0, E1, s̃, r̃). Let F i = Ei/G be the quotient
spaces, with quotient maps qi : Ei → F i, for i = 0, 1. Since the G-action on E
is compatible with the range and source maps, we have the following diagram of
principal G-bundles:

E0

q0

��

E1r̃oo s̃ //

q1

��

E0

q0

��
F 0 F 1

r
oo

s
// F 0,

where r, s : F 1 → F 0 are continuous, and s is open. We must show that F =
(F 0, F 1, s, r) is a topological graph, and that there is an isomorphism of pull-backs
θ : s∗(E0) → r∗(E0) such that E is isomorphic to the topological graph with the
same vertex space E0, but with edge space s∗(E0), source map π2, and range map
π2 ◦ θ. By Lemma 3.3 there are G-bundle isomorphisms θr, θs making the following
diagram commute (without the top arrow θ):

r∗(E0)

π2

{{xxxxxxxx

π1

$$

s∗(E0)

π2

##GGGGGGGGG
θ
∼=

oo_ _ _ _ _ _ _

π1

zz

E0

q0

��

E1r̃oo s̃ //

q1

��

θr
∼=

ccFFFFFFFF
θs
∼=

;;xxxxxxxx
E0

q0

��
F 0 F 1

r
oo

s
// F 0.

Of course we define the G-bundle isomorphism θ so that the top triangle (and hence
the entire diagram) commutes.

It only remains to show that s : F 1 → F 0 is locally injective. Let e ∈ F 1, and
put v = s(e). Fix u ∈ E0 with q0(u) = v, so that (e, u) ∈ s∗(E0). Since E is a
topological graph, we can find open neighborhoods U of e in F 1 and V of u in E0

such that π2 : s∗(E0)→ E0 is injective on

(U × V ) ∩ s∗(E0).

Since q0 : E0 → F 0 is open, we can shrink U if necessary so that s(U) ⊂ q0(V ).
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Let e1, e2 ∈ U , and assume that

s(e1) = s(e2) = v′.

Choose u′ ∈ V such that q0(u′) = v′. Then (e1, u
′), (e2, u

′) ∈ (U × V ) ∩ s∗(E0), so
we must have e1 = e2. �

Example 3.5. If we are given a finitely generated locally compact group G with
generating set S, then G acts freely and properly on its Cayley graph E = E(G,S)
by λ0

g(g
′) = gg′ and λ1

g(h, g
′) = (h, gg′). The quotient graph E/G has |S| loops and

one vertex.

Example 3.6. If E = (E0, E1, s, r) is a topological graph, G is a locally compact
group, and c : E1 → G is a continuous function, then ϕ : E ×c G → E, ϕ(g, x) =
x is a principal G-bundle map. Indeed, G acts freely and properly on E ×c G
by λ0

g(v, h) = (v, gh) and λ1
g(e, h) = (e, gh). The source and range maps are

equivariant, and the quotient graph is isomorphic to E.
The following result characterizes skew products:

Corollary 3.7. The topological graph constructed in Theorem 3.4 from an isomor-
phism θ : s∗(P ) ∼= r∗(P ) is G-equivariantly isomorphic to a skew product F ×cG if
and only if the G-bundle P over F 0 is trivial.

Proof. The forward direction is trivial, so assume that the G-bundle q : P → F 0

is trivial, and let E be the topological graph constructed from an isomorphism
θ : s∗(P ) → r∗(P ). The pull-back of a trivial bundle is trivial, so most of what
we have to do is quite straightforward; the only slightly non-obvious bit is that the
isomorphism s∗(P ) ∼= F 1×G of G-bundles can be promoted to a topological-graph
isomorphism E ∼= F ×c G for a suitable cocycle c.

Let ϕ0 : P → F 0×G be a G-bundle isomorphism. We must show that there are:

• a G-bundle isomorphism ϕ1 : E1 → F 1 ×G, and
• a cocycle c : F 1 → G

such that ϕ = (ϕ0, ϕ1) : E → F ×c G is an isomorphism of topological graphs.
The diagram

(2)

P

q

��

ϕ0

∼= ##GGGGGGGGG E1

π1

��

ϕ1

∼={{wwwwwwwww
ϕ1

∼= ##GGGGGGGGG
r̃oo s̃=π2 // P

q

��

ϕ0

∼=zzvvvvvvvvv

F 0 ×G

π1
{{wwwwwwwww

F 1 ×G

π1
##GGGGGGGGG

r′oo F 1 ×G

π1
{{wwwwwwwww

s×id // F 0 ×G

π1 ##GGGGGGGGG

F 0 F 1
r

oo
s

// F 0,

where
r′ : (F ×c G)1 = F 1 ×G→ F 0 ×G = (F ×c G)0

is the range map for the skew product, given by

r′(e, g) = (r(e), gc(e)),

illustrates the hypothesis and conclusion. Keep in mind that E0 = P and E1 =
s∗(P ). We are given the map ϕ0, and since it is a G-bundle isomorphism the
extreme left and right triangles commute.
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It is an elementary fact about pull-backs that there is a G-bundle isomorphism
ϕ1 : s∗(P ) → F 1 × G making the right half of the diagram (2) commute. We can
now define r′ : F 1 ×G→ F 0 ×G so that the left half of (2) commutes. It remains
to show that there is a continuous map c : F 1 → G such that r′ has the form

r′(e, g) = (r(e), gc(e)).

Since

π1 ◦ r′ = r ◦ π1 : F 1 ×G→ F 0,

we have π1(r′(e, 1)) = r(e). Define c : F 1 → G by

c(e) = π2(r′(e, 1)).

Then c is continuous, and we have

r′(e, g) = r′(g · (e, 1))

= g · r′(e, 1)

= g · (r(e), c(e))
= (r(e), gc(e)). �

Lemma 3.8. If we are given principal G-bundles Pi
qi−→ Xi for i = 1, 2 and a

pair of continuous maps f : X1 → X2, f̃ : P1 → P2 such that f̃ is equivariant and
q2f̃ = fq1, and compact sets K ⊂ X1 and L ⊂ P2, then (q1)−1(K) ∩ f̃−1(L) is a
compact subset of P1.

Proof. Observe that f∗(P2) is a closed subset of X1×P2 and hence (K×L)∩f∗(P2)
is compact. Therefore,

q−1
1 (K) ∩ f̃−1(L) = (θf )−1((K × L) ∩ f∗(P2))

is also compact. �

Corollary 3.9. Let a locally compact group G act freely and properly on a topo-
logical graph E = (E0, E1, s, r), let q1 : E1 → E1/G be the quotient map, and let
K ⊂ E1/G be compact. Then:

(1) For every compact subset L ⊂ E0, both intersections

q−1
1 (K) ∩ r−1(L) and q−1

1 (K) ∩ s−1(L)

are compact.
(2) There exists d ≥ 0 such that∣∣q−1(K) ∩ s−1(v)

∣∣ ≤ d for all v ∈ E0.

Proof. (1) follows immediately from Lemma 3.8. For (2), note first of all that the
conclusion is unaffected by replacing E with an isomorphic topological graph, so
by Theorem 3.4 we may assume that E is constructed from a topological graph
F , a principal G-bundle q : P → F 0, and an isomorphism θ : s∗(P ) → r∗(P ).
Thus E1 = s∗(P ), with quotient maps π1 : s∗(P ) → F 1 on edges and q : P → F 0

on vertices, and source map π2 : s∗(P ) → P . Note that for v ∈ P , if we put
u = q(v) ∈ F 0 then we have

π−1
1 (K) ∩ s̃−1(v) = {(e, v) ∈ s∗(P ) : e ∈ K} =

(
K ∩ s−1(u)

)
× {v}.

Thus ∣∣π−1
1 (K) ∩ s̃−1(v)

∣∣ =
∣∣K ∩ s−1(u)

∣∣.
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Since s : F 1 → F 0 is a local homeomorphism and K is compact, the cardinalities
of the intersections K ∩ s−1(u) for u ∈ F 0 are bounded above by some fixed real
number. �

Remark 3.10. If G is discrete and G acts freely and properly on E, then the
morphism q : E → E/G is a graph covering, since G acts properly discontinuously
(see 4.69 in [RW98]).

Remark 3.11. If E and G are discrete and G acts freely on E, then by Theo-
rem 2.2.2 in [GT01], there is a cocycle c : (E/G)1 → G such that (E/G)×c G ∼= E
in an equivariant way. This result can be obtained from Corollary 3.7, since any
principal G-bundle over E0 is trivial. In general, not every free and proper action
on a topological graph is associated to a skew product.

Recall that by [Kat06, Proposition 8.9] a topological graph E is minimal iff every
orbit space Orb(v, e) (see [Kat06, Definition 4.9]) is dense in E0, where v ∈ E0 and
e is a negative orbit of v. If E0 = E0

rg, a negative orbit of v is an infinite path
e = e1e2 · · · ∈ E∞ ending at v and

Orb(v, e) = {r(e′) | e′ ∈ Em, s(e′) = s(en) for some n}.

Theorem 3.12. Let E be a minimal topological graph and let q : E → F be a graph
covering. Suppose that E0 is not discrete and E0 = E0

rg. Then F is also minimal,

F 0 is not discrete and F 0 = F 0
rg. In particular, both C∗(E) and C∗(F ) are simple.

Proof. Indeed, the unique path lifting property ensures that every orbit space in F
is dense. The second part follows from Corollary 8.13 in [Kat06]. �

Corollary 3.13. Let E be a minimal topological graph and suppose that E0 is not
discrete and E0 = E0

rg. If the discrete group G acts freely and properly on E, then
C∗(E/G) is simple.

Example 3.14. Now let E = E(G,S) be as in Example 2.5 where G = R and
S = {1, θ}, with θ is irrational. Then E0 = R, E1 = {1, θ} × R. Translation by Z
gives a free and proper action on both E0 and E1 which intertwines the structure
maps r, s. Hence, translation induces a free and proper action of Z on E. Since E
is a minimal topological graph, E0 is not discrete and E0 = E0

rg, we have by the
above corollary that C∗(E/Z) is simple.

4. The fundamental group of a topological graph

In this section, we define the fundamental group of a topological graph E =
(E0, E1, s, r) and the notion of a universal covering of E, using a single topological
space R(E) called the geometric realization. We need to assume that the geometric
realization has a universal covering. In this section we need not assume that the
source map is a local homeomorphism, even though in all of our examples this is
the case.

For each e ∈ E1 we formally denote the reversed edge by e, where s(e) = r(e)

and r(e) = s(e). The set of reversed edges is denoted E
1
. A walk in E is a sequence

w = e1 · · · en where ei ∈ E1 ∪ E1
such that s(ei) = r(ei+1) for i = 1, ..., n− 1. We

define s(w) := s(en) and r(w) := r(e1). A vertex will be considered as a trivial

walk. A walk w is reduced if it does not contain the subword ee for any e ∈ E1∪E1
.
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Denote by Erw the space of reduced walks, with product topology. Note that E0 is
viewed as a subset of Erw. For w = e1 · · · en ∈ Erw, the reverse walk w is en · · · e1.

The following definition is modeled on [BH99, Definition III.G.3.1].

Definition 4.1. An E-path c = (w0, c1, w1, ..., ck, wk) over a partition 0 = t0 ≤
... ≤ tk = 1 of the interval [0, 1] consists of continuous maps ci : [ti−1, ti] → E0

and reduced walks wi ∈ Erw such that r(wi) = ci+1(ti) for i = 0, 1, ..., k − 1 and
s(wi) = ci(ti) for i = 1, 2, ..., k. The initial point of c is x = s(w0); its terminal point
is y = r(wk). We say that c joins x to y. If w0 and wk are trivial walks (vertices),
they can be dropped in the notation for c. In particular, a map c : [0, 1]→ E0 can
be considered as an E-path.

Definition 4.2. A topological graph E is said to be connected if given any two
vertices x, y ∈ E0, there is an E-path c joining x and y.

Definition 4.3. The geometric realization of a topological graph E is the topologi-
cal space R(E) obtained from the disjoint union E1× [0, 1]tE0 by identifying (e, 0)
with s(e) and (e, 1) with r(e) (a kind of double mapping torus). We will identify
E0 with a subspace of R(E) in the obvious way. Also, we embed E1 in R(E) by
e ∈ E1 7→ (e, 1

2 ).

Remark 4.4. Notice that if E is connected, then R(E) is path connected. Let
ϕ : E → F be a graph morphism. Then ϕ yields a natural map

E1 × [0, 1] t E0 → F 1 × [0, 1] t F 0

which then induces a map R(ϕ) : R(E) → R(F ). Moreover, for i = 0, 1 the
following diagram commutes:

Ei −−−−→ R(E)

ϕi

y R(ϕ)

y
F i −−−−→ R(F )

where the horizontal maps are the canonical embeddings given in Definition 4.3.
Observe that R(ϕ) is continuous; moreover, R(ϕ) is a covering if ϕ is.

Remark 4.5. If the group G acts on the topological graph E, then G acts on R(E)
by g · (e, t) = (λ1

g(e), t) for e ∈ E1, t ∈ [0, 1], and by g · v = λ0
g(v) for v ∈ E0. Since

λig commute with s and r for i = 0, 1, the action is well defined.

Definition 4.6. Let E = (E0, E1, s, r) be a a connected topological graph. We
define the fundamental group of E by π1(E) := π1(R(E)). We say that E is simply
connected if π1(E) is trivial (i.e. R(E) is simply connected). We say that a graph

morphism p : Ẽ → E is a universal covering if p is a covering and Ẽ is connected
and simply connected (or briefly that Ẽ is a universal cover).

Remark 4.7. The fundamental group π1(E) acts freely on Ẽ, and the orbit space
is isomorphic to E. Any subgroup H of π1(E) will determine an intermediate

covering of E, by taking the graph Ẽ/H. Recall that the fundamental group of a
finite graph E is the free group with |E1| − |E0|+ 1 generators, see [KP99, Lemma
4.10].

Proposition 4.8. Let E be a connected topological graph and suppose that R =
R(E) is locally path-connected and semi-locally simply connected. Then R has a
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universal covering space R̃. Moreover, R̃ ∼= R(Ẽ) where Ẽ is a universal cover of
E.

Proof. By [Mas91, Theorem 10.2] R has a universal covering space R̃. Let π : R̃→
R be the canonical map, let Ẽ0 = π−1(E0), and let Ẽ1 = π−1(E1×{1/2}). In order
to define the range and the source maps, we use the unique path lifting property
of the map π. Let ẽ ∈ Ẽ1, then π(ẽ) = (e, 1/2) for some e ∈ E1. Join (e, 1/2) with
the image of (e, 0) in R by the path t 7→ (e, 1

2 (1 − t)), t ∈ [0, 1]. Lift this path to

a path in R̃, and define s(ẽ) to be the endpoint of the lifted path, which belongs

to Ẽ0. The range map is obtained similarly by joining (e, 1/2) with the image of
(e, 1). �

Corollary 4.9. Consider a connected topological graph E. If both r, s : E1 → E0

are finite-to-one covering maps and E0 is locally contractible (each point has a
local base of contractible neighborhoods), then R(E) is also locally contractible. In
particular, E has a universal cover.

Proof. It suffices to show that R(E) is locally contractible since the hypotheses of
the above proposition will be satisfied. A point (e, t) in the image of E1 × (0, 1)
has a local base of contractible neighborhoods of the form V ×W , where V is a
contractible neighborhood of e in E1 and W is a contractible neighborhood of t in
(0, 1). For the image of v ∈ E0 in R(E), take V ⊂ E0 a contractible neighborhood
of v which is evenly covered by the maps s and r. Then we claim that the image
N of s−1(V ) × [0, ε) ∪ r−1(V ) × (1 − ε, 1] in R(E) is a contractible neighborhood
of the image of v in R(E) for any 0 < ε < 1/2. Indeed, s−1(V ) is a disjoint union
V1 ∪ ... ∪ Vp , and r−1(V ) is a disjoint union U1 ∪ ... ∪ Uq of homeomorphic copies
of V . Let S be the star with p+ q branches obtained by gluing p+ q copies of [0, ε)
at 0. Then N is homeomorphic to S × V , which is contractible. �

It would be nice to have a weaker condition on E that would ensure the existence
of the universal cover.

Remark 4.10. In order to obtain other coverings of a graph E, we may consider
a subgroup H of the fundamental group π1(E) which will act on R̃, and take the

corresponding topological graph of the quotient space R̃/H, constructed as in the
proof of Proposition 4.8.

Remark 4.11. The fundamental group of (E0, E1, s, r) is isomorphic to the fun-
damental group of the opposite graph (E0, E1, r, s), obtained by interchanging the
maps s and r. The natural embeddings described in 4.3 induce maps π1(E0, v)→
π1(E) and π1(E1, e)→ π1(E) for fixed v ∈ E0 and e ∈ E1.

Example 4.12. Consider the topological graph E with E0 = E1 = T and source
and range maps s(z) = z, r(z) = e2πiθz for θ irrational. The geometric realization is
homeomorphic to the 2-torus T2, hence the fundamental group π1(E) is isomorphic

to Z2. The universal covering graph is Ẽ = (Ẽ0, Ẽ1, s, r), where Ẽ0 = Ẽ1 = R×Z,

with s(y, k) = (y, k), r(y, k) = (y + θ, k + 1). The action of Z2 on Ẽ is given by

(j,m) · (y, k) = (j + y+mθ, k+m), and Ẽ/Z2 ∼= E. Any other connected covering

of E is of the form Ẽ/H, where H is a subgroup of Z2.
More generally, let X be a compact space which admits a universal covering

space X̃, and let h : X → X be a homeomorphism. The geometric realization of
the corresponding topological graph E with E0 = E1 = X, s = id and r = h is
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homeomorphic to the mapping torus of h, obtained from X × [0, 1] by identifying

(x, 1) with (h(x), 0). The universal covering graph Ẽ has Ẽ0 = Ẽ1 = X̃ × Z. The

source and range maps are given by s(y, k) = (y, k), r(y, k) = (h̃(y), k + 1), where

h̃ : X̃ → X̃ is a lifting of h, y ∈ X̃ and k ∈ Z. The map h induces an automorphism
h∗ of π1(X), and the fundamental group of E is isomorphic to the semi-direct

product π1(X) o Z defined using h∗. The action of π1(X) o Z on X̃ × Z is given

by (g,m) · (y, k) = (g · h̃m(y), k +m).

Example 4.13. Let again E0 = E1 = T with source and range maps s(z) =
zn, r(z) = zm for n,m positive integers. The geometric realization R(E) is obtained
from the cylinder E1 × [0, 1], where the two boundary circles are identified using
the source and range maps. Alternatively, we may start with a rectangle, such that
the left and right edges are labeled by a. The top edge E1 × {0} is divided into
n segments called b, and the bottom edge E1 × {1} is divided into m segments
also called b. By making the identifications, we get the geometric realization R(E).
Note that here the arrows are for identification purposes.

Figure 1. The case n = 2,m = 3.

The segments a, b become generators in the fundamental group π1(R(E)), which
is isomorphic to the Baumslag-Solitar group

B(n,m) = 〈a, b | abna−1 = bm〉.
For n = 1 or m = 1, this group is a semi-direct product and it is amenable. For
n 6= 1,m 6= 1 and n,m relatively prime, it is not amenable (see Example E.11 in
[BO08]).

The universal covering space of R(E) is the Cayley complex R̃ of B(n,m), ob-
tained from the Cayley graph by filling out the rectangles (see, for example page 122
in [LS77]). It is the cartesian product T × R, where T is the Bass-Serre tree of
B(n,m), viewed as an HNN-extension. Recall that, given a group G, a subgroup
H ⊂ G, and a monomorphism τ : H → G, then the HNN extension G ∗H τ is
generated by G and a letter a such that aha−1 = τ(h) for h ∈ H (see for example
[Bau93]). In our case, G = 〈b〉 ∼= Z, H = 〈bn〉 ∼= nZ, and τ(bn) = bm.

The free action of the group B(n,m) on R̃ is the extension to the 2-cells of the
usual left action on the Cayley graph. A piece of the Cayley complex of B(2, 3)
together with the action of the generators is illustrated in Figure 2.

The 1-skeleton is the directed Cayley graph of B(2, 3), where the generators a, b
multiply on the right. The group action is given by left multiplication. In the
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Figure 2. Cayley complex for B(2, 3).

corresponding tree T , each vertex has 5 edges. The vertex set T 0 is identified with
the left cosets g〈b〉 ∈ B(2, 3)/〈b〉, and the edge set T 1 with the left cosets g〈b2〉 ∈
B(2, 3)/〈b2〉. The source and range maps are given by s(g〈b2〉) = g〈b〉, r(g〈b2〉) =
ga−1〈b〉 for g ∈ B(2, 3).

Using Proposition 4.8, we can describe the universal covering graph Ẽ of E.
We have Ẽ0 ∼= T 0 × R, Ẽ1 ∼= T 1 × R with s̃(t, y) = (s(t), ny), r̃(t, y) = (r(t),my)

for t ∈ T 1 and y ∈ R. The group B(n,m) acts freely and properly on Ẽ, and

the quotient graph Ẽ/B(n,m) is isomorphic to E. In particular, note that the

topological graph Ẽ is not a skew product. In the next section, we show that
C∗(Ẽ) or B(n,m) is strongly Morita equivalent to C∗(E).

5. Group actions on C∗-correspondences

Definition 5.1. LetG be a locally compact group, and letH be a C∗-correspondence
over A. We say that G acts on H if there is a map

G×H → H, (g, ξ) 7→ g · ξ
such that g 7→ g · ξ is continuous and ξ 7→ g · ξ is linear, and a continuous action of
G on A by ∗-automorphisms such that

〈g · ξ, g · η〉 = g · 〈ξ, η〉, g · (ξa) = (g · ξ)(g · a), g · (ϕ(a)ξ) = ϕ(g · a)(g · ξ),
where ϕ : A→ L(H) defines the left multiplication.

Remark 5.2. There is an action of G on L(H) given by

(g · T )(ξ) = g · (T (g−1 · ξ)),
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such that g 7→ g · T is continuous with respect to the strict topology on L(H). We
have g · (θξ,η) = θg·ξ,g·η, which gives an action on K(H). Indeed,

g · (θξ,η)(ζ) = g · (ξ〈η, g−1 · ζ〉) = (g · ξ)〈g · η, ζ〉 = (θg·ξ,g·η)(ζ).

An action of G on the C∗-correspondence H defines an action on the Toeplitz
algebra TH by g ·Tξ = Tg·ξ, and on the Cuntz-Pimsner algebra OH, since all defining
relations are equivariant.

The full crossed product HoG can be defined by HoG = H⊗ϕ (AoG), where
ϕ : A → L(A o G) is the embedding of A in the multiplier algebra of the crossed
product AoG, regarded as a Hilbert module over itself.

Note that G acts onHoG by g·(ξ⊗f) = g·ξ⊗(ugfu
−1
g ), where ξ ∈ H, f ∈ AoG,

and g ·a = ugau
−1
g . Here u : G→ UM(AoG) is the canonical map into the unitary

multipliers. The crossed product HoG becomes a C∗-correspondence over AoG
in a natural way.

Similarly, the reduced crossed productHorG can be defined as a C∗-correspondence
over Aor G; moreover, there is a natural action of G on Hor G defined as above.

Remark 5.3. This crossed product H oG is isomorphic to the one defined using
a completion of Cc(G,H), as in [Kas88] and [HN08]. The isomorphism is induced
by the function

H⊗ Cc(G,A)→ Cc(G,H)

which sends ξ ⊗ f to the map g 7→ ξf(g). It is proved in [HN08, Theorem 2.10]
that if G is amenable, then

OHoG ∼= OH oG.

Note that we also consider actions and crossed products by non-amenable groups.

Proposition 5.4. If G acts on the topological graph E = (E0, E1, s, r), then G
acts on the C∗-correspondence H = H(E) and hence on C∗(E).

Proof. Define g · ξ(e) = ξ(g−1e) for ξ ∈ Cc(E1), and g · f(v) = f(g−1v) for f ∈
C0(E0). Then this action is compatible with the bimodule structure since s and r
are equivariant. �

Definition 5.5. Recall from [Rie90] that the action α of a locally compact group
G on a C∗-algebra A is proper if there is a dense α-invariant ∗-subalgebra A0 of A
such that for every a, b ∈ A0 the functions

x 7→ aαx(b) and x 7→ ∆(x)−1/2aαx(b)

are integrable and there exists a (right) inner product 〈·, ·〉r with values in the
subalgebra of M(A), which Rieffel denotes by M(A0), comprising those elements
that multiply A0 into itself, such that

c〈a, b〉r =

∫
G

cαx(a∗b)dx for all c ∈ A0.

For such an action,

Aα := span{〈a, b〉r : a, b ∈ A0} ⊂M(A)

is called the generalized fixed-point algebra. Define a (left) inner product on A0

with values in Aoα,r G by

`〈a, b〉(x) = ∆(x)−1/2aαx(b∗).
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The set

I := span{`〈a, b〉 : a, b ∈ A0}
is an ideal in Aoα,r G, and the closure Z of A0 in the norm ‖a‖2 := ‖〈a, a〉r‖ is an
I −Aα imprimitivity bimodule. The action is called saturated if I = Aoα,r G.

We review now the averaging process of [KQR08, Section 2], which was built upon
work in [OP78, OP80, Qui92, QR95]. Let a locally compact group G act freely and
properly on a locally compact Hausdorff space T , and let γ be the associated action
of G on C0(T ):(

γg(f)
)
(t) = f(g−1 · t) for g ∈ G, f ∈ C0(T ), t ∈ T.

Also let α be an action of G on a C∗-algebra A, and suppose that we have an
equivariant nondegenerate1 homomorphism ϕ : C0(T ) → M(A). For g ∈ G let αg
denote the canonical extension of αg to M(A), and write M(A)α = {a ∈ M(A) :
αg(a) = a for all g ∈ G} (not to be confused with Rieffel’s generalized fixed-point
algebras discussed above). It was shown in [KQR08] that

A0 := spanϕ(Cc(T ))Aϕ(Cc(T ))

is a dense ∗-subalgebra of A, and that there is a linear map Φ : A0 →M(A)α such
that

ω(Φ(a)) =

∫
G

ω(αg(a)) dg for all a ∈ A0, ω ∈ A∗.

We write Φα when confusion is possible. [KQR08] also shows that Φ(A0) is a
∗-subalgebra of M(A), and so its norm closure, denoted by Fix(A,α, ϕ), is a C∗-
subalgebra.

[Rie04, Theorem 5.7] implies that the action α is proper and saturated with
respect to A0, and so by [Rie90] the reduced crossed product A ×α,r G is Morita
equivalent to a generalized fixed-point algebra Aα. It was shown in [KQR08, Propo-
sition 3.1] that Fix(A,α, ϕ) coincides with the algebra Aα of [Rie90].

We record a few properties of this averaging process, which can be found in
[KQR08, Section 2]:

• If a ∈ A0 and b ∈M(A)α then ab ∈ A0 and Φ(ab) = Φ(a)b.
• If f ∈ Cc(T ) and a ∈ A0 then the function g 7→ ϕ(f)αg(a) belongs to
Cc(G,A) and ∫

G

ϕ(f)αg(a) dg = ϕ(f)Φ(a).

• If (B, β) is another action, and ψ : C0(T ) → M(B) and σ : A → M(B)
are nondegenerate and G-equivariant, and if the canonical extension σ :
M(A) → M(B) satisfies σ ◦ φ = ψ, then σ restricts to a nondegenerate
homomorphism

σ| : Fix(A,α, ϕ)→M(Fix(B, β, ψ)).

Moreover,

Φβ ◦ σ = σ ◦ Φα.

• For fixed f, h ∈ Cc(T ) the map

a 7→ Φ(ϕ(f)aϕ(h)) : A0 →M(A)

is norm continuous.

1recall that this means that ϕ(C0(T ))A = A
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For the proof of Theorem 5.6 below, we will need to make extensive use of the
multiplier bimodules of [EKQR06]; the relevant facts are collected in Appendix A.

Theorem 5.6. If a locally compact group G acts freely and properly on a topological
graph E, then C∗(E) or G and C∗(E/G) are strongly Morita equivalent.

Proof. Since G acts freely and properly on E0 and there is a nondegenerate equivari-
ant homomorphism C0(E0) → M(C∗(E)), it follows from [Rie04] and Lemma 4.1
in [HRW05] that the corresponding action α of G on C∗(E) is proper and saturated
with respect to the ∗-subalgebra A0 = Cc(E

0)C∗(E)Cc(E
0) of C∗(E). Therefore

the reduced crossed product C∗(E)orG is strongly Morita equivalent to the general-
ized fixed point algebra C∗(E)α. Thus it suffices to show C∗(E)α ∼= C∗(E/G), and
for this we will construct an injective homomorphism from C∗(E/G) to M(C∗(E))
whose image is C∗(E)α.

As before, denote the quotient topological graph by F = E/G, so that F 0 =
E0/G and F 1 = E1/G. It will also be convenient to denote both quotient maps
E0 → F 0 and E1 → F 1 by q (and no confusion will occur since the particular q that
is intended will be clear from the context), and to use the following abbreviations:

• A = C0(E0);
• B = C0(F 0);
• X = H(E);
• Y = H(F ).

Of course, our homomorphism C∗(F )→M(C∗(E)) will be of the form τ × π for a
Cuntz-Pimsner covariant Toeplitz representation (τ, π) of Y in M(C∗(E)).

We will construct (τ, π) : Y → M(C∗(E)) by, roughly speaking, first mapping
the B-correspondence Y into the multiplier bimodule M(X), then composing with
the canonical Toeplitz representation (kX , kA) of the A-correspondence X in C∗(E).
Actually, this needs a little tweaking; our strategy is more accurately indicated by
the diagram

(3) Y
(τ,π) //____

(µ,ν)

��

M(C∗(E))

MA(X).

(kX ,kA)

88qqqqqqqqqq

Note the appearance in the above diagram of the “A-multiplier” bimoduleMA(X)
(see Definition A.8 and Remark A.10); this is necessary because the canonical
Toeplitz representation (kX , kA) can be degenerate — see Example A.1.

Our proof is rather long, and to improve readability we break it into the following
steps:

(1) construct a correspondence homomorphism (µ, ν) as in Diagram 3;
(2) define (τ, π) to make Diagram 3 commute, and show that it is a Toeplitz

representation;
(3) show that the Toeplitz representation (τ, π) is Cuntz-Pimsner covariant;
(4) show that the associated homomorphism τ × π : C∗(F ) → M(C∗(E)) is

injective;
(5) show that the image of τ × π is C∗(E)α.

We take each step in order:
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Step 1. Clearly, we should define (µ, ν) by composing with the quotient map q.
On B this obviously does the right thing:

ν : B →M(A), ν(f) := f ◦ q.

On Y , things are a little more delicate: for ξ ∈ Cc(F 1) and f ∈ Cc(E0) define
µ(ξ) · f : E1 → C by (

µ(ξ) · f
)
(e) = ξ(q(e))f(s(e)).

Then µ(ξ) · f ∈ Cc(E1) by Lemma 3.9.
We must show that we can extend µ to get a correspondence homomorphism

(µ, ν) : Y →MA(X), and we will accomplish this by:

• extending to a correspondence homomorphism into M(X), and then
• showing that it actually takes values in MA(X).

We first need to know that for ξ ∈ Cc(F 1) the map

f 7→ µ(ξ) · f : Cc(E
0)→ Cc(E

1)

extends to an adjointable map A → X, i.e., an element of M(X). For technical
purposes, we need the following

Claim: If ξ, η ∈ Cc(F 1) and v ∈ E0, then

〈ξ, η〉(q(v)) =
∑
s(e)=v

ξ(q(e))η(q(e)).

To see this, just observe that, for every v′ ∈ F 0, no matter which element v ∈
q−1(v′) we choose, the set of values{

ξ(q(e))η(q(e)) : s(e) = v
}

coincides with the set of values{
ξ(e′)η(e′) : s(e′) = v′

}
,

because G acts freely and the source map s : E1 → E0 is G-equivariant, and we
have proved the claim.

We use this to show that the linear map

f 7→ µ(ξ) · f : Cc(E
0)→ X

is bounded, and hence extends uniquely to a bounded linear map

µ(ξ) : A→ X.

For v ∈ E0 we have

〈µ(ξ) · f, µ(ξ) · f〉(v) =
∑
s(e)=v

|µ(ξ)(q(e))|2|f(v)|2

= 〈ξ, ξ〉(q(e))|f(v)|2

≤ ‖ξ‖2‖f‖2,

so

(4) ‖µ(ξ) · f‖ ≤ ‖ξ‖‖f‖,

verifying the boundedness.
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We need to show that the linear map µ(ξ) : A → X is adjointable. For η ∈
Cc(E

1) define µ(ξ)∗ · η : E0 → C by(
µ(ξ)∗ · η

)
(v) =

∑
s(e)=v

ξ(q(e))η(e),

where the sum is finite by Corollary 3.9. An argument similar to the proof of
[Kat04, Lemma 1.5] shows that µ(ξ)∗ · η ∈ Cc(E0). We have∣∣(µ(ξ)∗ · η

)
(v)
∣∣2 ≤ ∑

s(e)=v

|ξ(q(e))|2
∑
s(e)=v

|η(e)|2

= 〈ξ, ξ〉(q(v))〈η, η〉(v)

≤ ‖ξ‖2‖η‖2,
so

‖µ(ξ)∗ · η‖ ≤ ‖ξ‖‖η‖.
Thus the map

η 7→ µ(ξ)∗ · η : Cc(E
1)→ Cc(E

0)

extends uniquely to a bounded linear map

µ(ξ)∗ : X → A.

For f ∈ Cc(E0), η ∈ Cc(E1), and v ∈ E0 we have

〈µ(ξ) · f, η〉(v) =
∑
s(e)=v

ξ(q(e))f(v)η(e).

= f(v)
(
µ(ξ)∗ · η

)
(v),

so
〈µ(ξ) · f, η〉 = 〈f, µ(ξ)∗ · η〉,

and it follows by continuity that µ(ξ)∗ : X → A is an adjoint of µ(ξ). Therefore
µ(ξ) ∈M(X).

We now have a linear map µ : Cc(F
1)→M(X), and then the estimate (4) shows

µ is bounded, hence extends uniquely to a bounded linear map µ : Y → M(X).
We can now show that the pair (µ, ν) is a Toeplitz representation. First we show
that for ξ, η ∈ Y we have

〈µ(ξ), µ(η)〉 = ν(〈ξ, η〉),
and by continuity the following computation is sufficient: for ξ, η ∈ Cc(F

1) and
f ∈ Cc(E0) and v ∈ E0 we have(

〈µ(ξ), µ(η)〉f
)
(v) =

(
µ(ξ)∗ · µ(η) · f

)
(v)

=
∑
s(e)=v

ξ(q(e))
(
µ(η) · f

)
(e)

=
∑
s(e)=v

ξ(q(e))η(q(e))f(s(e))

= 〈ξ, η〉(q(v))f(v)

=
(
ν(〈ξ, η〉)f

)
(v).

We next show that for f ∈ B and ξ ∈ Y we have

µ(f · ξ) = ν(f) · µ(ξ),
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and again by continuity the following computation suffices: for f ∈ Cc(F
0), ξ ∈

Cc(F
1), h ∈ Cc(E0), and e ∈ E1 we have(

µ(f · ξ) · h
)
(e) = (f · ξ)(q(e))h(s(e))

= f(r(q(e)))ξ(q(e))h(s(e))

= f(q(r(e)))
(
µ(ξ) · h

)
(e)

= ν(f)(r(e))
(
µ(ξ) · h

)
(e)

=
(
ν(f) ·

(
µ(ξ) · h

))
(e)

=
((
ν(f) · µ(ξ)

)
· h
)

(e).

We thus have a homomorphism (µ, ν) from the B-correspondence Y to theM(A)-
correspondence M(X), and it remains to show that for ξ ∈ Y we actually have
µ(ξ) ∈MA(X), i.e., for f ∈ A we have

f · µ(ξ) ∈ X

(because µ(ξ)·f ∈ X automatically since µ(ξ) is a module multiplier). By continuity
it suffices to show that if ξ ∈ Cc(F 1) and f ∈ Cc(E0) then

f · µ(ξ) ∈ Cc(E1).

For h ∈ Cc(E0) and e ∈ E1 we have((
f · µ(ξ)

)
· h
)

(e) =
(
f ·
(
µ(ξ) · h

))
(e)

= f(r(e))
(
µ(ξ) · h

)
(e)

= f(r(e))ξ(q(e))h(s(e)),

so the multiplier f · µ(ξ) of X coincides with the element of Cc(E
1) given by

e 7→ f(r(e))ξ(q(e))

(which has compact support by Corollary 3.9).

Step 2. By Corollary A.14 the Toeplitz representation

(kX , kA) : X → C∗(E)

extends to a Toeplitz representation

(kX , kA) : MA(X)→MA(C∗(E)),

because kA is nondegenerate.
Now define (τ, π) : Y →MA(C∗(E)) to make diagram (3) commute, i.e.,

τ := kX ◦ µ and π := kA ◦ ν.

Then (τ, π) is a Toeplitz representation, being the composition of the correspon-
dence homomorphism (µ, ν) and the Toeplitz representation (kX , kA).

Step 3. Cuntz-Pimsner covariance of (τ, π) will follow from an analogous property
of the correspondence homomorphism (µ, ν). Our strategy is illustrated by the
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diagram

(5) Brg

ν′rg //

ϕB,rg

��

πrg

&&LLLLLLLLLLL MA(Arg)

kA,rg

wwooooooooooo

ϕA,rg

��

MA(C∗(E))

K(Y )
µ(1)

//

τ(1)
88rrrrrrrrrr

MA(K(X)),

k
(1)
X

ggOOOOOOOOOOO

which requires explanation. We define Brg = C0(F 0
rg), and we let ϕB,rg denote

the restriction to the ideal Brg of the natural homomorphism ϕB : B → L(Y )
implementing the left module multiplication, and similarly for Arg and ϕA,rg. Also
similarly for the restrictions πrg of π : B → MA(C∗(E)) and kA,rg of kA : A →
C∗(E). The bars in the right-hand triangle of (5) denote the unique A-strictly
continuous extensions guaranteed by Lemma A.5 and Corollary A.7. For the bottom
arrow, note that the correspondence homomorphism µ : Y → MA(X) naturally
induces a homomorphism µ(1) : K(Y )→ K(MA(X)), and by Remark A.10 we have
K(MA(X)) ⊂MA(K(X)).

The part of (5) requiring the most explanation is ν′rg. We have defined a homo-
morphism ν : B →M(A), and we denote the restriction to Brg by

νrg : Brg →M(A).

For the purposes of the rest of (5), what we need is to have a homomorphism into
MA(Arg).

The problem is that MA(Arg) doesn’t embed naturally in M(A). However, we
will show that νrg actually maps into the C∗-subalgebra

MA,Arg(A) := {f ∈M(A) : fA ⊂ Arg},

of M(A). Since every f ∈ MA,Arg
(A) vanishes on E0 \ E0

rg, the restriction map
f 7→ f |E0

rg
gives an embedding of this subalgebra into MA(Arg), and we define ν′rg

so that the diagram

Brg
νrg //

ν′rg $$IIIIIIIII
MA,Arg(A)

K k

xxqqqqqqqqqqq

MA(Arg).

commutes.
The desired Cuntz-Pimsner covariance of (τ, π) follows from commutativity of

the left triangle of (5) (see Remark 2.1), which we will deduce from that of the
outer square and the other three triangles.
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The top triangle. The top triangle of (5) coincides with the lower left triangle of
the diagram

(6) Brg
νrg //

ν′rg

##GGGGGGGGGGGGGGGGGGG

πrg

��5555555555555555555555555555555
MA,Arg(A)

K k

yyssssssssssssssssssss

kA|

����������������������������������

MA(Arg)

kA,rg

��
MA(C∗(E)),

in which kA| denotes the restriction of kA : M(A)→MA(C∗(E)) to the subalgebra
MA,Arg(A). Once we have verified that νrg maps Brg into MA,Arg(A), it will suffice
to observe that all the other triangles in (6) commute: the top triangle of (6)
commutes by definition of ν′rg, the outer triangle commutes by definition of πrg,
and the lower-right triangle commutes by a routine check of the definitions.

We must show that if f ∈ C0(F 0
rg) and g ∈ C0(E0) then

ν(f)g = (f ◦ q)g ∈ C0(E0
rg).

We have ν(f)g ∈ C0(E0) since ν(f) is bounded and g ∈ C0(E0). We must show
that ν(f)g = 0 on E0 \E0

rg, equivalently if ν(f)g is nonzero at an element v ∈ E0,

then we must have v ∈ E0
rg. So, we must show that v is in the image of the range

map r̃ : E1 → E0, and that there is a neighborhood U of v such that r̃−1(U) is
compact, i.e., v ∈ E0

fin.
By Lemma 3.3, we may assume that E1 = r∗(E0), i.e., that the diagram

E0

q

��

E1r̃oo

q

��
F 0 F 1

r
oo

coincides with a pull-back

E0

q

��

E1 = r∗(E0)
π2oo

π1

��
F 0 F 1

r
oo

Since ν(f)(v) 6= 0 and f ∈ C0(F 0
rg), we have q(v) ∈ F 0

rg. Thus we can choose

e ∈ F 1 such that r(e) = q(v). Then (e, v) ∈ E1 = r∗(E0) and v = π2(e, v), showing
that v is in the image of the range map on E1.

To see that v ∈ E0
fin, start with a compact neighborhood U of v in E0, and put

V = q(U), which is a compact neighborhood of q(v) in F 0. Shrink U if necessary
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so that W := r−1(V ) is compact in F 1. We will show that π−1
2 (U) is compact.

Suppose π2(e, u) ∈ U , i.e., u ∈ U and r(e) = q(u). Then e ∈W . Thus

(e, u) ∈ (W × U) ∩ r∗(E0),

which is compact. We have verified the inclusion νrg(Brg) ⊂MA,Arg
(A).

The right triangle. Cuntz-Pimsner covariance of the canonical homomorphism
(kX , kA) is expressed by the commutative diagram

Arg

kA,rg

vvnnnnnnnnnnnnnn

ϕA,rg

��

C∗(E)

K(X),
k
(1)
X

hhPPPPPPPPPPPP

and it follows from A-strict continuity that the right triangle of (5) commutes.

The bottom triangle. For ξ, η ∈ Y we have

k
(1)
X

(
µ(1)(θξ,η)

)
= k

(1)
X

(
µ(ξ)µ(η)∗

)
= kX(µ(ξ))kX(µ(η))∗ (by Corollary A.14)

= τ(ξ)τ(η)∗

= τ (1)(θξ,η).

The outer square. We need to show that if f ∈ C0(F 0
rg), then

ϕA,rg ◦ ν′rg(f) = µ(1) ◦ ϕB,rg(f).

As in the commutative diagram (6) we can show

φA,rg ◦ ν′rg(f) = φA| ◦ νrg(f) = φA(ν(f)).

Also, ϕB,rg(f) = ϕB(f). Thus we must show

ϕA(ν(f)) = µ(1)(ϕB(f)).

Since f ◦ r ∈ C0(F 1), we can approximate f ◦ r uniformly by a function h ∈
Cc(F

1), and by [Kat04, Lemmas 1.15 and 1.16] there are ξi, ηi ∈ Cc(F 1) for 1 =
1 . . . n such that

• h =

n∑
1

ξiηi;

• πF (h) =

n∑
1

θξi,ηi ;

• for each i we have ξi(e)ηi(e
′) = 0 for all e 6= e′ in F 1 with s(e) = s(e′).
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For ζ ∈ Cc(E1) and e ∈ E1 we have(
µ(1)(θξi,ηi)ζ

)
(e) =

(
µ(ξi)µ(ηi)

∗ζ
)
(e)

= ξi(q(e))
(
µ(ηi)

∗ζ
)
(s(e))

= ξi(q(e))
∑

s(e′)=s(e)

ηi(q(e′))ζ(e′)

= ξi(q(e))
∑

s(q(e′))=s(q(e))

ηi(q(e′))ζ(e′)

= ξi(q(e))ηi(q(e))ζ(e).

Thus (
µ(1)(πF (h)ζ

)
(e) =

n∑
1

ξi(q(e))ηi(q(e))ζ(e)

= h(q(e))ζ(e).

By our choice of h we have(
ν(f) · ζ

)
(e) = ν(f)(r(e))ζ(e)

= f ◦ q(r(e))ζ(e)

= f ◦ r(q(e))ζ(e)

≈ h(q(e))ζ(e).

Let K := supp ζ. The above approximation is uniform over ζ in the subspace

CK(E1) := {ξ ∈ Cc(E1) : supp ξ ⊂ K},

so by the elementary Lemma 5.7 below we have

ν(f) · ζ ≈ µ(1)(πF (h))ζ in X.

Now, by definition we have

ν(f) · ζ = ϕA(ν(f))ζ,

so we get

ϕA(ν(f))ζ ≈ µ(1)(πF (h))ζ.

Since f ◦ r ≈ h, we have ϕB(f) ≈ πF (h), so

µ(1)(ϕB(f))ζ ≈ µ(1)(πF (h))ζ

≈ ϕA(ν(f))ζ.

Thus ‖µ(1)(ϕB(f))ζ − ϕA(ν(f))ζ‖ is arbitrarily small, so we must have

µ(1)(ϕB(f))ζ = ϕA(ν(f))ζ.

Since ζ was an arbitrary element of Cc(E
1), which is dense in X, we have shown

that the outer square commutes.
In the above argument we used the following lemma:

Lemma 5.7. For any compact subset K ⊂ E1, on the subspace CK(E1) of X the
Hilbert-module norm from X is equivalent to the uniform norm.
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Proof. The uniform norm on CK(E1) is of course smaller than the Hilbert-module
norm from X. On the other hand, by Lemma 3.9 (ii) we can let d be an upper
bound for the cardinalities of the intersections K ∩ s−1(v) for v ∈ E0. Then for
any v ∈ E0 we have ∑

s(e)=v

|ξ(e)|2 ≤ d‖ξ‖2u,

where ‖ · ‖u denotes the uniform norm. �

It now follows that the left triangle of (5) commutes, and hence that the Toeplitz
representation (τ, π) : Y →M(C∗(E)) is Cuntz-Pimsner covariant.

Step 4. To see that τ × π : C∗(F )→M(C∗(E)) is injective, we apply the Gauge-
Invariant Uniqueness Theorem [Kat04, Theorem 4.5]. For this we need to show
that:

(1) π : B →M(C∗(E)) is injective, and
(2) for all z ∈ T there is an automorphism σz of (τ × π)(C∗(F )) such that

σz(τ(ξ)) = zτ(ξ) for ξ ∈ Cc(F 1) and σz(π(f)) = π(f) for f ∈ Cc(F 0).

For (1), just note that both ν : B → M(A) and kA : M(A) → M(C∗(E)) are
injective (the latter because kA : A→ C∗(E) is), and hence so is kA ◦ ν.

For (2), we extend the gauge automorphism γz of C∗(E) to an automorphism γz
of the multiplier algebra M(C∗(E)), and note that by strict and A-strict continuity
we have

• γz ◦ kX = zkX on MA(X), and
• γz ◦ kA = kA on M(A).

Step 5. Finally, we need to show that the image (τ × π)(C∗(F )) coincides with
the generalized fixed-point algebra of C∗(E) under the action α of G. We have
an action β of G on C0(E0) corresponding to the free and proper action on E0,
and a G-equivariant nondegenerate homomorphism kA : A = C0(E0) → C∗(E) ⊂
M(C∗(E)), so we can form the generalized fixed-point algebra

C∗(E)α = Fix(C∗(E), α, kA),

and we will show that it coincides with (τ×π)(C∗(F )). We begin with the inclusion

Fix(C∗(E), α, kA) ⊂ (τ × π)(C∗(F )),

which will occupy us for some time.
For n ∈ N = {0, 1, 2, . . . } let En denote the space of paths in E of length n (with

the relative product topology). Then by [Kat04], En is naturally a topological graph
with vertex space E0, and the associated A-correspondence H(En) is isomorphic
to the n-fold balanced tensor product

X ⊗A · · · ⊗A X,

which we denote simply by Xn. We let knX : Xn → C∗(E) be the representation
corresponding to the n-fold tensor power of kX . Then

C∗(E) = span{knX(Cc(E
n))kmX (Cc(E

m))∗ : n,m ∈ N}.

Our hypotheses on E, namely that G acts freely and properly, carry over to En.
We use the same notational conventions as for the quotient graph F = E/G, and
we write τn = knX ◦ µ.
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Now let f, h ∈ Cc(E0) and a ∈ C∗(E). We must show that

Φ
(
kA(f)akA(h)

)
∈ (τ × π)(C∗(F )).

We may assume that

a = knX(ξ)kmY (η)∗,

where ξ ∈ Cc(En) and η ∈ Cc(Em). By the elementary Lemma 5.8 below, we can
find finitely many functions ξi ∈ Cc(Fn), ηj ∈ Cc(Fm), fi, gj ∈ Cc(E0) such that

f · ξ ≈
∑
i

µ(ξi) · fi and η ≈
∑
j

gj · µ(ηj).

Then for each i, j, again by Lemma 5.8 there exist finitely many fijl ∈ Cc(E0), ηijl ∈
Cc(F

m) such that

µ(ηj) · fi ≈
∑
l

fijl · µ(ηijl).

We have

kA(f)a = kA(f)knX(ξ)kmX (η)∗

= knX(f · ξ)kmX (η)∗

≈
∑
ij

knX
(
µ(ξi) · fi

)
kmX
(
gj · µ(ηj)

)∗
=
∑
ij

knX(µ(ξi))kA(fi)kmX (µ(ηj))
∗kA(gj)

=
∑
ij

knX(µ(ξi))
(
kmX (µ(ηj))kA(fi)

)∗
kA(gj)

=
∑
ij

knX(µ(ξi))
(
kmX
(
µ(ηj) · fi

))∗
kA(gj)

≈
∑
ijl

knX(µ(ξi))k
m
X

(
fijl · µ(ηijl)

)∗
kA(gj)

=
∑
ijl

knX(µ(ξi))τ
m(ηijl)

∗kA(fijlgj).

Now, we can choose h′ ∈ Cc(E0) such that

h′f = f and h′ · µ(ξi) = µ(ξi) for all i.

Then we have

Φ
(
kA(f)akA(h)

)
= Φ

(
kA(h′)kA(f)akA(h)

)
≈
∑
ijl

Φ
(
kA(h′)knX(µ(ξi))τ

m(ηijl)
∗kA(fijlgj)

)
=
∑
ijl

Φ
(
knX(µ(ξi))τ

m(ηijl)
∗kA(fijlgj)

)
=
∑
ijl

τn(ξi)τ
m(ηijl)

∗Φ
(
kA(fijlgj)

)
.



26 VALENTIN DEACONU, ALEX KUMJIAN, AND JOHN QUIGG

Since τn(ξi)τ
m(ηijl)

∗ ∈ (τ × π)(C∗(F )) and

Φ ◦ kA(Cc(E
0)) = kA ◦ Φβ(Cc(E

0))

⊂ kA ◦ ν(Cc(F
0))

= π(Cc(F
0))

⊂ (τ × π)(C∗(F )),

it follows that Φ(kA(f)akA(h)) ∈ (τ × π)(C∗(F )).
The above argument used the following elementary lemma:

Lemma 5.8. In the norm of X,

Cc(E
1) ⊂ span

{
µ(Cc(F

1)) · Cc(E0)
}
∩ span

{
Cc(E

0) · µ(Cc(F
1))
}
.

Proof. By Theorem 3.4 we may assume that E1 = s∗(E0). Let θ : s∗(E0)→ r∗(E0)
be the isomorphism of Theorem 3.4. Note that

µ(η) · f = (η ⊗ f)|s∗(E0) and f · µ(η) = (η ⊗ f) ◦ θ,

where (η ⊗ f)(e, v) = η(e)f(v) for (e, v) ∈ F 1 × E0.
Let ξ ∈ Cc(E1). Then there is ξ′ ∈ Cc(F 1 × E0) such that

ξ = ξ′|s∗(E0),

because s∗(E0) is a closed subset of F 1 × E0. Then there are finitely many ηi ∈
Cc(F

1), fi ∈ Cc(E0) such that

ξ′ ≈
∑
i

(ηi ⊗ fi).

Thus

ξ ≈
∑
i

(ηi ⊗ fi)|s∗(E0) =
∑
i

µ(ηi) · fi.

This shows the inclusion in the first set. For the other one, since ξ ◦ θ−1 ∈
Cc(r

∗(E0)), there is ζ ∈ Cc(F 1 × E0) such that

ξ ◦ θ−1 = ζ|r∗(E0),

and then as above we can approximate

ζ ≈
∑
i

(ηi ⊗ fi),

so that

ξ ◦ θ−1 ≈
∑
i

(ηi ⊗ fi)|r∗(E0),

and hence

ξ ≈
∑
i

(ηi ⊗ fi) ◦ θ =
∑
i

fi · µ(ηi). �

We have shown that Fix(C∗(E), α, kA) ⊂ (τ × π)(C∗(F )), and we turn to the
opposite inclusion. We need the following easy lemma.

Lemma 5.9. For all f ∈ Cc(F 0) there exists h ∈ Cc(E0) such that ν(f) = Φβ(h).
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Proof. Put M = supp f , a compact subset of F 0. Since the quotient map q : E0 →
F 0 is a continuous open surjection, it is a standard fact that there exists a compact
set K ⊂ E0 such that q(K) = M . Choose h1 ∈ Cc(E0) such that h1(v) 6= 0 for all
v ∈ K. Then Φβ(h1) 6= 0 on q−1(M), and there is a unique h2 ∈ Cc(F 0) such that
Φβ(h1) = ν(h2). Then h2 6= 0 on M , so there exists h3 ∈ Cc(F 0) such that

h3 =
f

h2
on M.

Then f = h2h3, so

ν(f) = ν(h2)ν(h3)

= Φβ(h1)ν(h3)

= Φβ
(
h1ν(h3)

)
,

so we can take h = h1ν(h3). �

To finish, it suffices to show that τ(ξ) and π(f) are in Fix(C∗(E), α, kA) for all
ξ ∈ Cc(F 1) and f ∈ Cc(F 0). For ξ, choose h ∈ Cc(F 0) such that ξ = ξ · h. By
Lemma 5.9 we can choose h1 ∈ Cc(E0) such that ν(h) = Φβ(h1). We have

τ(ξ) = τ(ξ · h)

= τ(ξ)π(h)

= τ(ξ)kA(ν(h))

= τ(ξ)kA(Φβ(h1))

= τ(ξ)Φ(kA(h1))

= Φ
(
τ(ξ)kA(h1)

)
= Φ

(
kX(µ(ξ))kA(h1)

)
= Φ

(
kX(µ(ξ) · h1)

)
.

Now, by Corollary 3.9 we have µ(ξ) · h1 ∈ Cc(E1), so we can choose h2 ∈ Cc(E0)
such that

µ(ξ) · h1 = h2 · µ(ξ) · h1,

and then we can factor h2 = h3h4 with h3, h4 ∈ Cc(E0). Then

τ(ξ) = Φ
(
kX
(
h3h4 · µ(ξ) · h1

))
= Φ

(
kA(h3)kX

(
h4 · µ(ξ)

)
kA(h1)

)
.

Since h4 · µ(ξ) ∈ Cc(E1) (again by Corollary 3.9), we have

kX
(
h4 · µ(ξ)

)
∈ C∗(E),

and therefore τ(ξ) ∈ Fix(C∗(E), α, kA).
Our strategy for f ∈ Cc(F

0) is similar, but things are somewhat easier this
time: factor f = fh1 with h1 ∈ Cc(F

0), then choose h2 ∈ Cc(E
0) such that
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ν(h1) = Φβ(h2), then factor h2 = h3h4h5 with hi ∈ Cc(E0). We have

π(f) = π(fh1)

= π(f)π(h1)

= π(f)kA(ν(h1))

= π(f)kA(Φβ(h2))

= π(f)Φ(kA(h3h4h5))

= Φ
(
π(f)kA(h3h4h5)

)
= Φ

(
kA(ν(f))kA(h3h4h5)

)
= Φ

(
kA(h3)kA(fh3)kA(h5)

)
,

which is in Fix(C∗(E), α, kA) because kA(fh3) ∈ C∗(E). �

Let E be a topological graph and let c : E1 → G be a continuous map. Recall
that G acts freely and properly on G ×c E. Since (G ×c E)/G ∼= E, we have by
Theorem 5.6:

Corollary 5.10. The C∗-algebras C∗(E×cG)orG and C∗(E) are strongly Morita
equivalent. In particular, for a finitely generated locally compact group G with gen-
erators S = {h1, h2, ..., hn} and Cayley graph E(G,S), we get that C∗(E(G,S))orG
is strongly Morita equivalent to the Cuntz algebra On.

Remark 5.11. If G is abelian, there is an action αc of Ĝ on C∗(E) such that

(αcχξ)(e) = 〈χ, c(e)〉ξ(e)

for ξ ∈ Cc(E1) and χ ∈ Ĝ. Then

C∗(E) oαc Ĝ ∼= C∗(E ×c G).

For G non-abelian, we need to use the notion of coaction. This will be investigated
in [KQR10].

Appendix A. multipliers of correspondences

In Section 5 we make extensive use of the multiplier bimodules of [EKQR06,
Chapter 1]. The bimodules in [EKQR06] were called right-Hilbert A−B bimodules,
which are also commonly referred to as A − B correspondences, where A and B
are C∗-algebras. In most of this paper we are interested in correspondences over
a single C∗-algebra, but occasionally we need the added generality of allowing A
and B to be possibly different. Warning: there is a nondegeneracy issue; in the
literature, A−B correspondences are often (usually?) allowed to be degenerate, in
the sense that the closed span of A ·X might be smaller than X, but in [EKQR06]
the right-Hilbert bimodules are required to be nondegenerate. This will cause no
problem here, though, because the correspondences associated to topological graphs
are all nondegenerate, so that the results of [EKQR06] may be applied freely.

To emphasize, throughout this appendix we will assume that all our correspon-
dences are nondegenerate.
A and B are the coefficient algebras of the correspondence X, and we will some-

times denote the correspondence by AXB to indicate what the coefficient algebras
are. Note that a Hilbert B-module is also a C−B correspondence.
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We recall briefly the theory of multiplier bimodules; see [EKQR06, Chapter 1]
for more details. A multiplier of AXB is by definition an adjointable map from
B to X, and M(X) denotes the set of all multipliers of X. Thus by definition
we have M(X) = L(B,X). Note that the definition of M(X) does not involve
the left A-module structure at all; it is, in essence, a Hilbert B-module concept.
However, M(X) is an L(X) − M(B) correspondence, hence an M(A) − M(B)
correspondence because of our assumption that X is nondegenerate as a left A-
module. The restriction of the right M(B)-module action to B is just the evaluation
of adjointable maps; i.e., if m ∈M(X) and b ∈ B then we write m · b to mean the
value of the adjointable map m : B → X at the element b of its domain. There is
an embedding of X in M(X) such that the adjointable map associated to ξ ∈ X is

b 7→ ξ · b for b ∈ B.

M(X) has both an L(X)-valued inner product

L(X)〈m,n〉 = mn∗ for m,n ∈M(X)

and an M(B)-valued inner product

〈m,n〉M(B) = 〈m,n〉 = m∗n.

If either m or n lies in X, then

L(X)〈m,n〉 ∈ K(X) and 〈m,n〉 ∈ B,

because, more generally, composing an adjointable operator on either side with
a compact operator gives a compact operator. The restriction of the left inner
product L(X)〈·, ·〉 to X gives the rank-one operators:

L(X)〈ξ, η〉 = K(X)〈ξ, η〉 = θξ,η,

and the restriction of the right inner product to X is the given one. The left and
right module actions of multipliers of the coefficient algebras A and B, respectively,
on an element m ∈M(X) are as follows: if n ∈M(A) then n ·m is the element of
M(X) defined by

(n ·m) · b = n · (m · b) for b ∈ B,
and if n ∈M(B) then m · n is defined by

(m · n) · b = m · (nb) for b ∈ B.

Of course, if n ∈ B then m · n ∈ X.
The strict topology on M(X) is generated by the seminorms

m 7→ ‖T ·m‖ and m 7→ ‖m · b‖ for T ∈ K(X), b ∈ B.

The operations on the M(A)−M(B) correspondence M(X) are separately strictly
continuous, and M(X) is the strict completion of X.

Given another correspondence CYD and homomorphisms π : A → M(C) and
θ : B → M(D), a linear map ψ : X → M(Y ) is a π − θ compatible correspondence
homomorphism if the two conditions

〈ψ(ξ), ψ(η)〉M(D) = θ(〈ξ, η〉B);

ψ(a · ξ) = π(a) · ψ(ξ)

hold. Note that ψ will automatically satisfy

ψ(ξ · b) = ψ(ξ)θ(b).
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π and θ are the coefficient homomorphisms of ψ, and sometimes we write πψθ for
the correspondence homomorphism to indicate what the coefficient homomorphisms
are.

A correspondence homomorphism πψθ is nondegenerate if π and θ are nonde-
generate and

span{ψ(X) ·D} = Y,

in which case πψθ extends uniquely to a strictly continuous homomorphism

πψθ : M(A)M(X)M(B) → M(C)M(Y )M(D).

(In fact, as for C∗-algebras, the extension is unique as just a correspondence ho-
momorphism, and is automatically strictly continuous, although we will not need
this fact.) If A = B, C = D, and π = θ we will write

(ψ, π) = πψθ,

and if in addition Y = C is a correspondence over itself in the canonical way, and if
both ψ and π map into C (and not just M(C)), then (ψ, π) reduces to the familiar
concept of a Toeplitz representation of the A-correspondence X into C.

If

πψθ : AXB →M(CYD)

is a nondegenerate homomorphism, then there is a unique nondegenerate homo-
morphism

ψ(1) : K(X)→M(K(Y )) = L(Y )

such that

ψ(1)(θξ,η) = ψ(ξ)ψ(η)∗ for ξ, η ∈ X,
and then, as usual, by nondegeneracy ψ(1) extends uniquely to a homomorphism

ψ(1) : L(X)→ L(Y ).

Note that even if (ψ, π) is degenerate, there is still a homomorphism ψ(1) : K(X)→
K(M(Y )) ⊂ M(K(Y )), but then there may not be an extension ψ(1) to L(X)
(although we will define a partial extension, under additional hypotheses, in Corol-
lary A.14).

C-multipliers. Unfortunately, we must deal with possibly degenerate homomor-
phisms of correspondences, and for this reason we have been lead to develop a
generalization of the “C-multipliers” of [EKQR06, Section 1.4].

Example A.1. We can see why degeneracy is an issue for us already in the case
of (discrete) directed graphs: let E be the directed graph with a single non-loop
edge, i.e.,

u• •veoo

We have:

• C∗(E) = M2;
• X = H(E) = C · χ{e};
• kX(χ{e}) = ( 0 1

0 0 );
• kX(X)C∗(E) = ( ∗ ∗0 0 ),

so the canonical Toeplitz representation (kX , kA) is degenerate (where A = C2).
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Remark A.2. Of course, there are situations in which degeneracy is not an issue;
for example, if the correspondence X is actually an imprimitivity bimodule (so
that ϕA : A → K(X) is an isomorphism), then every Cuntz-Pimsner covariant
Toeplitz representation (ψ, π) of X to a C∗-algebra B for which π is nondegenerate
is automatically nondegenerate as a correspondence homomorphism, i.e., ψ(X)B =
B, by [KQR97, Lemma 5.1]. Note also that whenever E is a topological graph with
s and r both surjective and r proper, then kX : X → C∗(E) will be nondegenerate,
hence will extend uniquely to the multiplier bimodule M(X).

The following is similar to that in [EKQR06]. To prepare for the general frame-
work introduced below, we begin with some prefatory comments. First, to establish
context, we recall that the “C-multipliers” in [EKQR06] involved tensor products:
if A and C are C∗-algebras, then [EKQR06] defined MC(A⊗C) to be all multipliers
of A⊗C that multiply 1⊗C into A⊗C. Here we need a generalization to situations
where there are no tensor products.

Definition A.3. Let κ : C →M(A) be a nondegenerate homomorphism.

(1) A C-multiplier of A is a multiplier m ∈M(A) such that

κ(C)m ∪mκ(C) ⊂ A,
and MC(A) denotes the set of all C-multipliers of A.

(2) The C-strict topology on MC(A) is generated by the seminorms

m 7→ ‖κ(c)m‖ and 7→ ‖mκ(c)‖ for c ∈ C.

Often C will be a nondegenerate C∗-subalgebra of M(A) and κ will be the
inclusion map.

The following generalizes [EKQR06, Proposition A.5]:

Lemma A.4.

(1) The C-strict topology on MC(A) is stronger than the relative strict topology
from M(A).

(2) MC(A) is a C∗-subalgebra of M(A), and multiplication and involution are
separately C-strictly continuous on MC(A).

(3) MC(A) is the C-strict completion of A;
(4) MC(A) is an M(C)-subbimodule of M(A).

Proof. (1) Let mi → 0 C-strictly in MC(A). We must show that if a ∈ A then
‖ami‖ and ‖mia‖ both tend to 0. By the Hewitt-Cohen factorization theorem (see,
for example, [RW98, Proposition 2.33]) we can factor a = a′κ(c) for some a′ ∈ A
and c ∈ C, and then

‖ami‖ = ‖a′κ(c)mi‖ ≤ ‖a′‖‖κ(c)mi‖ → 0,

and similarly for mia.
(2) It follows straight from the definitions that MC(A) is a C∗-subalgebra. Let

mi → 0 C-strictly in MC(A), and let n ∈ M(A). We must show that min → 0
C-strictly in MC(A), and it will follow similarly that nmi → 0 C-strictly. For c ∈ C
we have

‖κ(c)min‖ ≤ ‖κ(c)mi‖‖n‖ → 0

because mi → 0 C-strictly, and

‖minκ(c)‖ → 0
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because nκ(c) ∈ A and mi → 0 strictly by (1).
It is even easier to verify that m∗i → 0 C-strictly.
(3) We first show that A is C-strictly dense in MC(A). Let m ∈MC(A), and let

{ei} be an approximate identity for C. We will show that κ(ei)m→ m C-strictly.
For c ∈ C we have

‖κ(c)(κ(ei)m−m)‖ = ‖κ(cei − c) ·m‖ ≤ ‖cei − c‖‖m‖ → 0,

while

‖(κ(ei)m−m)κ(c)‖ = ‖κ(ei)mκ(c)−mκ(c)‖ → 0

because κ(ei)→ 0 strictly in M(A).
Now we verify the C-strict completeness. Let {mi} be a C-strictly Cauchy net

in MC(A). Then it is also strictly Cauchy, so converges strictly to some m ∈M(A)
by strict completeness. We will show that m ∈ MC(A) and mi → m C-strictly.
Let ε > 0 and c ∈ C. Choose i0 such that

‖κ(c)(mi −mj)‖ ≤ ε for all i, j ≥ i0.

Then for all a ∈ A with ‖a‖ ≤ 1 we have ‖(mj −m)a‖ → 0, so for all i ≥ i0 we
have

‖κ(c)(mi −m)a‖ = lim
j
‖κ(c)(mi −mj)a‖ ≤ lim sup

j
‖κ(c)(mi −mj)‖ ≤ ε,

and hence ‖κ(c)(mi−m)‖ ≤ ε. It follows that ‖κ(c)(mi−m)‖ → 0. Since κ(c)mi ∈
A for all i, we have κ(c)m ∈ A. Similarly, ‖(mi −m)κ(c)‖ → 0 and mκ(c) ∈ A.
Thus m ∈MC(A), and the above arguments then show that mi → m C-strictly.

(4) We have

κ(M(C))MC(A)κ(C) ⊂ κ(M(C))A ⊂ A

and

κ(C)κ(M(C))MC(A) ⊂ κ(C)MC(A) ⊂ A,

so κ(M(C))MC(A) ⊂MC(A), and similarly for MC(A)κ(M(C)). �

The whole point of C-multipliers is to extend degenerate homomorphisms. The
following generalizes [EKQR06, Proposition A.6]:

Lemma A.5. Let κ : C → M(A), σ : D → M(B), π : A → MD(B), and
λ : C →M(σ(D)) be homomorphisms, with κ, σ, and λ nondegenerate, such that

π(κ(c)a) = λ(c)π(a) for c ∈ C, a ∈ A.

Then π extends uniquely to a C-strict to D-strictly continuous homomorphism π :
MC(A)→MD(B).

Moreover, for n ∈M(C) and m ∈MC(A) we have

π(κ(n)m) = λ(n)π(m) and π(mκ(n)) = π(m)λ(n).

Note that, in the above lemma, M(σ(D)) is identified with the idealizer of σ(D)
in M(B) (and this is valid since σ is nondegenerate), and λ and κ denote the
canonical extensions to the multiplier algebras (which exist by nondegeneracy).
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Proof. We first show that π is C-strict to D-strictly continuous. Let mi → 0 C-
strictly in A, and let d ∈ D. By the Hewitt-Cohen factorization theorem we can
factor σ(d) = σ(d′)λ(c) for some d′ ∈ D and c ∈ C, and then

‖σ(d)π(mi)‖ = ‖σ(d′)λ(c)π(mi)‖
= ‖σ(d′)π(κ(c)mi)‖
≤ ‖d′‖‖κ(c)mi‖
→ 0,

and similarly for π(mi)σ(d).
Thus, by completeness there is a unique C-strict to D-strictly continuous linear

extension π : MC(A) → MD(B). Since the algebraic operations on MC(A) and
MD(B) are separately continuous for the C-strict and D-strict topologies, respec-
tively, π is a ∗-homomorphism.

The other part follows from continuity and density. �

Remark A.6. (1) In fact, the above extension π is unique as a homomorphism,
but we will not need this.

(2) The above lemma could be the starting point for an investigation of what
one might call “decorated C∗-algebras” (where A is “decorated” by C and B is
decorated by D). However, we will not pursue this any further here.

One of our applications of the above result is described by the following special
case, in which we will actually need π to take values in B itself:

Corollary A.7. Let I be an ideal of A, and let π : A → B be a nondegenerate
homomorphism. Then the restriction πI of π to I extends uniquely to an A-strictly
continuous homomorphism πI : MA(I)→MA(B).

Proof. Apply Lemma A.5 with A, I playing the role of C,A, with the canonical
homomorphism ρ : A → M(I) playing the role of κ, with D = A and σ = λ = π,
and with πI playing the role of π. Since

πI(I) ⊂ B ⊂MA(B),

the hypotheses of the lemma are satisfied. �

C-multiplier bimodules. The preceding subsection was really only a prelude
for the current one, where we generalize the C-multiplier bimodules of [EKQR06,
Section 1.4] for tensor products.

In addition to the preceding nondegenerate homomorphism κ : C → M(A),
suppose that we also have a nondegenerate A-correspondence X, and let ϕA :
A → L(X) be the associated homomorphism. Then we can compose to get a
nondegenerate homomorphism

ϕC := ϕA ◦ κ : C → L(X),

where ϕA denotes the canonical extension of ϕA : A → L(X) to M(A), so X
becomes a nondegenerate C − A correspondence. Similarly on the right, so X
becomes a nondegenerate C-bimodule (but not a correspondence, because the A-
valued inner product cannot be turned into a C-valued one). Since M(X) is an
M(A)-correspondence, by composing with κ we get an M(C)-bimodule structure
on M(X) (but again, not a correspondence).
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Definition A.8. Let X be a nondegenerate A-correspondence, and let κ : C →
M(A) be a nondegenerate homomorphism.

(1) A C-multiplier of X is a multiplier m ∈M(X) such that

κ(C) ·m ∪m · κ(C) ⊂ X,
and MC(X) denotes the set of all C-multipliers of X.

(2) The C-strict topology on MC(X) is generated by the seminorms

m 7→ ‖κ(c) ·m‖ and m 7→ ‖m · κ(c)‖ for c ∈ C.

The C-multiplier algebra MC(A) from the preceding subsection is the special
case of MC(X) where X = A regarded as an A-correspondence in the usual way.

The following generalizes [EKQR06, Lemma 1.40]:

Lemma A.9.

(1) The C-strict topology is stronger than the relative strict topology on MC(X).
(2) MC(X) is an MC(A)-correspondence with respect to the restrictions of the

operations of the M(A)-correspondence M(X), and the operations are sep-
arately C-strictly continuous.

(3) K(MC(X)) ⊂MC(K(X)).
(4) MC(X) is the C-strict completion of X.
(5) MC(X) is an M(C)-subbimodule of M(X).

Proof. Many of the arguments are quite similar to those in the proof of Lemma A.4.
(1) If mi → 0 C-strictly in MC(X), we must show that if T ∈ K(X) and a ∈ A

then both ‖Tmi‖ and ‖mi ·a‖ tend to 0, and the argument is similar to Lemma A.4.
(2) If n ∈ MC(A) and m ∈ MC(X) then n ·m is in M(X) because M(X) is an

M(A)-correspondence; we must show that it is in MC(X). For c ∈ C, note that
κ(c)n ∈ A, so because κ : C →M(A) is nondegenerate we can factor κ(c)n = aκ(c′)
with a ∈ A and c′ ∈ C, and then we have

κ(c) · (n ·m) = (κ(c)n) ·m = (aκ(c′)) ·m = a · (κ(c′) ·m) ∈ X
because κ(c′) ·m ∈ X.

On the other hand, we have

(n ·m) · κ(c) = n · (m · κ(c)) ∈ X
because m · κ(c) ∈ X and n ∈M(A).

The M(A)-valued inner product on M(X) restricts to one on MC(X); we must
show that for m,n ∈ MC(X) the inner product 〈m,n〉 is in MC(A). For c ∈ C we
have

〈m,n〉κ(c) = 〈m,n · κ(c)〉 ∈ A,
because n · κ(c) ∈ X and 〈M(X), X〉 ⊂ A, and similarly κ(c)〈m,n〉 ∈ A.

The separate continuity is similar to Lemma A.4. For example, if mi → 0 C-
strictly in MC(X), n ∈MC(X), and c ∈ C, then

‖〈mi, n〉κ(c)‖ = ‖〈mi, n · κ(c)〉‖ → 0

because n · κ(c) ∈ X, mi → 0 strictly by (1), and the operations in M(X) are
separately strictly continuous, while

‖κ(c)〈mi, n〉‖ = ‖〈mi · κ(c∗), n〉‖ → 0

because ‖mi · κ(c∗)‖ → 0.
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(3) Here the only issue is keeping straight where everything is: we have

MC(X) ⊂M(X) ⊂ L(A,X),

and for m,n ∈ MC(X) the rank-one operator θm,n = mn∗ is therefore an element
of L(X) = M(K(X)). We need to know that mn∗ is a C-multiplier of K(X). So,
take c ∈ C. Since m ∈MC(X) we have

φC(c)m ∈ X = K(A,X),

so

φC(c)mn∗ ∈ K(X).

Similarly, φC(c∗)n ∈ K(X,A), so n∗ΦC(c) ∈ K(A,X), and hence

mn∗ΦC(c) ∈ K(X).

Thus we have shown that mn∗ ∈MC(K(X)).
(4) and (5) are similar to Lemma A.4. For example,(

κ(M(C)) ·MC(X)
)
· κ(C) ⊂ κ(M(C)) ·X ⊂ X,

because C acts nondegenerately on X, while

κ(C) ·
(
κ(M(C)) ·MC(X)

)
⊂ κ(C) ·MC(X) ⊂ X. �

Remark A.10. It will be useful to explicitly note the following special case of (3)
above: taking C = A and κ = idA we get

K(MA(X)) ⊂MA(K(X)).

Note that

MA(X) = {m ∈M(X) : φA(a)m ∈ X for all a ∈ A},
so that, unlike M(X), the set MA(X) depends upon the left module map φA.

The following generalizes [EKQR06, Proposition 1.42]:

Proposition A.11. Let X and Y be nondegenerate correspondences over A and
B, respectively, let κ : C → M(A) and σ : D → M(B) be nondegenerate homo-
morphisms, let (ψ, π) : X → MD(Y ) be a correspondence homomorphism, and let
λ : C →M(σ(D)) be a nondegenerate homomorphism, such that

π(κ(c)a) = λ(c)π(a) for c ∈ C, a ∈ A.

Then (ψ, π) extends uniquely to a C-strict to D-strictly continuous correspondence
homomorphism (ψ, π) from the MC(A)-correspondence MC(X) to the MD(B)-
correspondence MD(Y ).

Proof. We take π : MC(A) → MD(B) as in Lemma A.5. The unique existence
of ψ is proved similarly to Lemma A.5: one shows first that ψ is C-strict to D-
strictly continuous, so that by completeness there is a unique continuous linear
extension, which must be a correspondence homomorphism by separate continuity
of the operations. �

Remark A.12. Again, the above proposition could be the start of an investigation
of what one might call “decorated correspondences”, where C decorates the A-
correspondence X, etc.

Here is the Toeplitz version of Proposition A.11:
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Corollary A.13. Let X be a nondegenerate A-correspondence, let κ : C →M(A)
and σ : D → M(B) be nondegenerate homomorphisms, let (ψ, π) : X → B be a
Toeplitz representation, and let λ : C → M(σ(D)) be a nondegenerate homomor-
phism, such that

π(κ(c)a) = λ(c)π(a) for c ∈ C, a ∈ A.
Then (ψ, π) extends uniquely to a C-strict to D-strictly continuous Toeplitz repre-
sentation (ψ, π) from the MC(A)-correspondence MC(X) to MD(B).

Proof. Apply Proposition A.11 with Y = B, regarded as a B-correspondence in the
usual way. �

Corollary A.14. Let X be a nondegenerate A-correspondence, and let (ψ, π) :
X → B be a Toeplitz representation with π nondegenerate. Then:

(1) (ψ, π) extends uniquely to an A-strictly continuous Toeplitz representation
(ψ, π) from the M(A)-correspondence MA(X) to MA(B).

(2) ψ(1) : K(X) → B extends uniquely to an A-strictly continuous homomor-

phism ψ(1) : MA(K(X))→MA(B).
Moreover, we have:

(a) ψ(1)(n · m) = π(n)ψ(1)(m) and ψ(1)(m · n) = ψ(1)(m)π(n) for all
n ∈M(A) and m ∈MA(K(X));

(b) ψ(1)(mn∗) = ψ(m)ψ(n)∗ for all m,n ∈MA(X).

Proof. (1) Apply Corollary A.13 with C = D = A, κ = λ = idA, and σ = π.
(2) First we need to justify the meaning of (b): for m,n ∈ MA(X) we need to

know that mn∗ ∈ MA(K(X)). But this follows easily from work we have already
done: since X is a K(X) − B imprimitivity bimodule, arguments similar to those
in the proof of Lemma A.9 (2) show that the left-hand inner product on MA(X)
takes values in MA(K(X)).

To prove (2), we apply Corollary A.5 with C,A,B,D replaced by A,K(X), B,A,
respectively; recall that for a ∈ A and T ∈ K(X) we have

ψ(1)(ϕ(a)T ) = π(a)ψ(1)(T ).

Now everything in (2) except for (b) follows from Corollary A.5. Then (b) follows
from separate continuity of the operations, density of A, X, and K(X) in M(A),
MA(X), and MA(K(X)), respectively, and the corresponding property of ψ(1). �

Example A.15. We should justify our need for (2) in above corollary: if (kX , kA) is
the canonical Toeplitz representation of the correspondence X = H(E) associated

to a topological graph E, then k
(1)
X : K(X) → C∗(E) can be degenerate. For

example, let E be the directed graph in Example A.1. Then

k
(1)
X (K(X)) = ( ∗ 0

0 0 ) ,

so

k
(1)
X (K(X))C∗(E) = ( ∗ 0

0 0 )M2 = ( ∗ ∗0 0 ) ,

and so k
(1)
X is degenerate.

Remark A.16. Although we will have no use for it in the main body of this paper,
we point out that all of the above can be done with an “asymmetric” version of the
C-multiplier bimodules; namely allowing correspondences with different left and
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right coefficient algebras. It takes no extra effort to establish the more general
concepts and results. Since we feel that they may be useful elsewhere, we record
here the asymmetric versions:

Definition A.17. Let X be a nondegenerate A−B correspondence, and let κC :
C →M(A) and κD : D →M(B) be nondegenerate homomorphisms.

(1) A C,D-multiplier of X is a multiplier m ∈M(X) such that

κC(C) ·m ∪m · κD(D) ⊂ X,

and MC,D(X) denotes the set of all C,D-multipliers of X.
(2) The C,D-strict topology on MC,D(X) is generated by the seminorms

m 7→ ‖κC(c) ·m‖ and m 7→ ‖m · κD(d)‖ for c ∈ C, d ∈ D.

Lemma A.18.

(1) The C,D-strict topology is stronger than the relative strict topology on
MC,D(X).

(2) MC,D(X) is an MC(A) − MD(B) correspondence with respect to the re-
strictions of the operations of the M(A) −M(B) correspondence M(X),
and the operations are separately continuous for the C,D-strict, C-strict,
and D-strict topologies.

(3) MC,D(X) is the C,D-strict completion of X.
(4) MC,D(X) is an M(C)−M(D) subbimodule of M(X).

Proposition A.19. Let X and Y be nondegenerate A − B and P − Q corre-
spondences, respectively, let κC : C → M(A), κD : D → M(B), κR : R →
M(P ), and κS : S → M(Q) be nondegenerate homomorphisms, let πψθ : AXB →
MR(P )MR,S(Y )MS(Q) be a correspondence homomorphism, and let λC : C →M(κR(R))
and λD : D → M(κS(S)) be nondegenerate homomorphisms, such that for c ∈ C,
a ∈ A, b ∈ B, and d ∈ D we have

π(κC(c)a) = λC(c)π(a) and θ(κD(d)b) = λD(d)θ(b).

Then πψθ extends uniquely to a C,D-strict to R,S-strictly continuous correspon-
dence homomorphism πψθ from the MC(A)−MD(B) correspondence MC,D(X) to
the MR(P )−MS(Q) correspondence MR,S(Y ).
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