arxiv:1007.4418v2 [cs.IT] 18 Feb 2011

Distributed Source Coding of Correlated Gaussian
Sources

Yasutada Oohama

Abstract—We consider the distributed source coding system method to evaluate an outer bound of the rate distortiororegi
of L correlated Gaussian sourcesY;,l = 1,2,---,L which \wagneret al. [11] gave a complete solution to this problem
are noisy observations of correlated Gaussian remote SOW6 4 the case of Gaussian information sources and quadratic

Xp,k=1,2,---, K. We assume thatY'” = *(Y1,Ys, ---,Yz) is . . : .
an observation of the source vectorXX = (X1, Xo,---, Xx), distortion by proving that the sum rate part of the inner lwbun

having the form Y~ = AXX 4N~ where AisaLx K matrixand ©Of Berger [B]. and Tung[5] is optimal. Waref al. ﬂﬂ] gave a
N¥ =%(Ni,Na,---,Nyp) is a vector of L independent Gaussian new alternative proof of the sum rate part optimality. Irteoif
random variables also independent of X*. In this system L  a recent progress made by those three works, the multitatmin
correlated Gaussian observations are separately compress by  goyrce coding problem still largely remains open.

L encoders and sent to the information processing center. We - . . s .
study the remote source coding problem where the decoder at As a practical situation of the distributed source coding

the center attempts to reconstruct the remote sourceX*. We System, we can consider a case where the distributed erscoder
consider three distortion criteria based on the covariancenatrix ~ can not directly access the source outputs but can access
of the estimation error on X, For each of those three criteria theijr noisy observations. This situation was first studigd b
‘r’ézig‘;r"ﬁeii‘pi'f'tth'g“Cegszngfl‘;”terLb‘;‘:]’adz°f t?e r\;avt: g‘jé‘;”fh”e Yamamoto and Ito[[13]. They call the investigated coding

. s = =17, . . .
multiterminal source coding problem where the decoder wisks system the Commu_nlcatl_on_ system with a r.emote source.
to reconstruct the observation Y> = X% + N*. To investigate Subsequently, a similar distributed source coding systes w

this problem we shall establish a result which provides a song studied by Flynn and Gray [14].
connection between the remote source coding problem and the In this paper we consider the distributed source coding

multiterminal source coding problem. Using this result, wedrive system of L correlated Gaussian sourcgs! = 1,2,---, L
. . . . . ) ) )
Sf(\)/gglnrlew partial solutions to the multiterminal source oding which are noisy observations ofy, k:_ — 1.2, -,K._ We
o . o assume that” = *(Y;,Ys, ---,Yz) is an observation of
Index Terms—Multiterminal source coding, rate distortion ha source vectorY® — (X1, Xs,- -+, Xk), having the
) 3 ) 1

region, CEO problem. form Y = AXK + NI whereA is a L x K matrix and

NL =Ny, Ny, -+, Np) is a vector ofL independent Gaus-
[. INTRODUCTION sian random variables also independenkdt. In this system

Distributed source coding systems of correlated informé- correlated Gaussian observations are separately corefress
tion sources are a form of communication system which Ry L encoders and sent to the information processing center.
significant from both theoretical and practical points adwi \We study the remote source coding problem where the decoder
in multi-user source networks. The first fundamental theod} the center attempts to reconstruct the remote salirce
in those coding systems was established by Slepian and WoliVe consider three distortion criteria based on the covari-
[1]. They considered a distributed source coding system @fce matrix of the average estimation error &f‘. The
two correlated information sources. Those two sources diét criterion is called the distortion matrix criterion,here
separately encoded and sent to a single destination, whé@ estimation error must not exceed an arbitrary presgribe
the decoder wishes to decode the original sources. In ®@variance matrix in the meaning of positive semi definite.
above distributed source coding systems we can considef second criterion is called the vector distortion ciater
situation where the source outputs should be reconstructddere for a fixed positive vectab”™ = (Dy, Dy, -+, D)
with average distortions smaller than prescribed levetis T and for eachk = 1,2,---, K, the diagonal(k, k) element
situation yields a kind of multiterminal rate distortiorethiry in  of the covariance matrix is upper bounded by. The third
the framework of distributed source coding. The rate diitor criterion is called the sum distortion criterion, where trece
region is defined by the set of all rate vectors for whichf the covariance matrix must not exceed a prescribed pesiti
the source outputs are reconstructed with average disterti level D. For each distortion criterion the rate distortion region
smaller than prescribed levels. The determination proldém is defined by a set of all rates vectors for which the estimmatio
the rate distortion region is often called the multiternhingrror does not exceed an arbitrary prescribed distortiogl.le
source coding problem. For the first distortion criterion, i.e., the distortion miat

The multiterminal source coding problem was intensivel§fiterion we derive explicit inner and outer bounds of the

studied by[[2]{12]. Wagner and Anantharam][10] gave a nef@te distortion region. Those two bounds have a form of
positive semi definite programming with respect to covar&an
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criterion our outer bound includes that of Ooharnal [22] assmurce coding problem. Using this relation and our resuits o
special case by lettingg = L andA = I. In the case of sum the remote source coding problem, we drive new three outer
distortion criterion we derive more explicit outer boundtieé bounds of the rate distortion regions for each of three disio
rate distortion region having a form of water filling solutio criteria.
In this case we further show that if the prescribed distartio In the case of vector distortion criterion, we can obtain a
level D does not exceed a certain threshold, the inner atmiver bound of the sum rate part of the rate distortion region
outer bounds match and derive two different thresholds. Thg using the established outer bound in this case. This bound
first threshold improves the threshold obtained by Oocharhas a form of positive semidefinite programming. By some
[23],[24] in the case o = L, A = I;,. The second threshold analytical computation we can show that this lower bound is
improves the first one for some cases but neither subsumesehaal to the lower bound obtained by Waagal. [12] and
other. tight whenZ = 2. Our method to derive this result essentially

When K = 1, the distributed source coding system treatediffers from the method of Wangt al. [12]. It is also quite
in this paper becomes the quadratic Gaussian CEO probldifierent from that of Wagneet al. [11]. Hence in the case
investigated by[[12]/T15]-[18]. The system in the casgkof= of two terminal Gaussian sources there exists three differe
L and sum distortion criterion was studied by Pandéyal. proofs of the optimality of the sum rate part of the inner babun
[19]. They derived lower and upper bounds of the minimurof Berger [4] and Tung[5].
sum rate in the rate distortion region. Several partial tsmhg In the case of sum distortion criterion we derive an explicit
in the case ofK = L, A = I, and sum distortion criterion threshold such that for the distortion levé) below this
were obtained by [20]-[24]. The case &f = L, A = I, and threshold the outer bound coincides with the inner bound. An
vector distortion criterion was studied By [22]. important feature of the multiterminal rate distortion iplem

Recently, Yang and Xiong[[26] have studied the sanie that the rate distortion region remains the same for any
problem. They have derived two outer bounds of the ratdoice of covariance matriX y. and diagonal covariance
distortion region in the case of sum rate distortion critleri matrix X = satisfying¥y . = Xy +X yz. Using this feature,
WhenK = L, A = I, the first outer bound does not coincideve find a pair(Xx:, X z) which maximizes the threshold
with the outer bound obtained by Oohamal[Z1]}[24]. Whesubject toXy: = X yr + X yer.
tAA = Iy, they have obtained the second outer bound tighter| et (YE) 2 (Ya,Ys,---, YL, Y1) be a cyclic shift of the
than the first one. This bound is the same as that of og6urceY” = (V1,Ys,Ys, ---,Y7). We say that the source
result of this paper. WhehAA = Ik, Yanget al. [27] have yZ has the cyclic shift invariant property if the covariance
derived a threshold on the distortion lev@l such that forD  matrix 2, vz of 7(Y'') is the same as the covariance matrix
below this threshold their second outer bound is tight. Thet,,, of Y~. WhenY '~ has the cyclic shift invariant property,
threshold also improves that of Oohamal [23],[24] in the edsewe investigate the sum rate part of the rate distortion regio
K =L, A= 1I,. Comparing the formula of our first thresholdwe derive an explicit upper bound of the sum rate part from
with that of and Yanget al. [27], we can see that we have nahe inner bounds of the rate distortion region. On a lower
obvious superiority of either to the other. On the other hanBound of the sum rate part we derive a new explicit bound by
our second threshold is better than their threshold for somfaking full use of the cyclic shift invariance property®§ ..
nontrivial cases. We further derive an explicit sufficient condition for thaver

In this paper, in the case df = L andA = I, we study bound to coincide with the upper bound. We show that the
the multiterminal source coding problem where the decodeiver and upper bounds match if the distortion does not ekcee
wishes to reconstruct the observatibry = X* + N*. Simi- 3 threshold which is a function dfy. and find an explicit
larly to the case of remote source coding problem, we considgrm of this threshold. As a corollary of this result, in thase
three types of distortion criteria based on the covarianggim of vector distortion criterion we obtain the optimal sumerat
of the estimation error orY’*. Based on the above threewhenY'” is cyclic shift invariant andD’ hasL components

criteria, three rate distortion regions are defined. with an identical valueD below a certain threshold depending
The remote source coding problem is often referred to ggly on &y«

the indirect distributed source coding problem. On the iothe

hand, the multiterminal source coding problem in the frame |[I. PROBLEM STATEMENT AND PREVIOUS RESULTS

w_ork_ of distributed source coding is often caIIe_d the dlreg_{' Formal Statement of Problem

distributed source coding problem. As shown in the paper . _

of Wagneret al. [1T] and in the recent work by Wangt In this subse_ct|on we presenta_formal statement of problem.
al. [12], we have a strong connection between the direct a;{groughout this Apaper all logarithms areA taken to the base
indirect distributed source coding problems. To investighe natural. LetAx = {1,2,--- K} and Ay = {1,2,---,L}.
determination problem of the three rate distortion regitms Let Xx,k € Ax be correlated zero mean Gaussian random
the multiterminal source coding problem we shall estabdishvariables. For eaclk € Ak, Xj takes values in the real
result which provides a strong connection between the remépe R. We write aK~ dimensional random vector as* =
source coding problem and the multiterminal source codingX1, X2, -+, Xx). We denote the covariance matrix &
problem. This result states that all results on the ratedisn by X yx. Let Y = Y(Yy,Ys, ---,Yr) be an observation of
region of the remote source coding problem can be convertbé source vectoX X, having the formy? = AXK + N%,

into those on the rate distortion region of the multiterrhinavhere A is a L x K matrix and N = *(Ny, No,---, Nz)
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Fig. 1. Distributed source coding system fdr correlated Gaussian
observations

element. Let,; be a givenK x K covariance matrix which
serves as a distortion criterion. We call this matrix a diso
matrix.

For a given distortion matrix,, the rate vector(R,
Rg,"',RLQ is X4-admissible if there exists a sequence

{8, Q5 o )y | such that

limsupRl(n) < Ry, forleAp,

n—oo
: 1
117rln_>solip wixr_ %K S Xd,
where A; < A; means thatd; — A; is a positive semi-
definite matrix. LetR 1, (X4|X xxy ) denote the set of alll;-
admissible rate vectors. We often have a particular inténes
the minimum sum rate part of the rate distortion region. To

is a vector of L independent zero mean Gaussian random

variables also independent &F". Forl € Ay, o}, stands for
the variance ofN;. Let {(X1(t), Xa(t), -, Xk (¢))}52, be

a stationary memoryless multiple Gaussian source. For each

t =12, XE(@t) 24X, (1), Xa(t), -, Xi(t)) has the
same distribution as¥’. A random vector consisting of
independent copies of the random varialllg is denoted by

X5 2 (X5(1), X4(2), -, Xp(n)).

For eacht = 1,2,---, YL(t) 2 Y(Yi(t), Ya(t),---,YL(t)) is
a vector of L correlated observations of X (¢), having the
form YE(t) = AXE(t) + NE(t), where NE(t),t = 1,2, -,
are independent identically distributed (i.i.d.) Gaussendom
vector having the same distribution ag§”. We have no
assumption on the number of observatidnswhich may be
L>KorL<K.

The distributed source coding system fér correlated

1>

examine this quantity, we set
L
Rsum,L(Ed|EXKYL) {Z Rl} .
=1

We consider two types of distortion criterion. For eachatist
tion criterion we define the determination problem of therat
distortion region.

Problem 1. Vector Distortion Criterion: Fix K x K
invertible matrixI" and positive vectorD® (D1, Dg,---
, D). For givenl” and DX, the rate vectofR;, R, - - -, Rr)

min
(R1,R2,--+,RL)
ERL(D,D¥ S kyL)

is (T, DX)-admissible if there exists a sequencé(<p§"),
wén)7 Ty ga(L"), (m))}e_ such that

limsup R"™ < Ry, forl € Ay,

n—00

lim sup [I‘ (%EX}_XK) tr}

n—oo

< Dy, fOFkGAK,
kk

Gaussian observations treated in this paper is shown in Righere[C],; stands for thei, j) element of the matrixC. Let
. In this coding system the distributed encoder functiorg, (I, DX | yxy 1) denote the set of a(ll, D¥)-admissible

1,1 € A are defined byol(”) :R™ — M; = {1,2,---, M;}.

For eachl € Ap, set Rl(”) 2 %long, which stands for

the transmission rate of the encoder functi,@ft’i‘). The joint

decoder functiony™ = (™, i ... (M) is defined by
(n))

n A n n
o ):(wi )7¢§ )’...7 {r
My x - x My = Rk € Ak
For X% = (X, X,, ---, Xg), set

(YY) 2 (G (Y1), 08 (Va), -, (Y L)),
X7 [eV et
i | X | o [ e vt
xi] e em )

die 2B X - X2 1< k< K,
diw SEB(Xp — X, X — Xp), 1 <k £k <K,

where||a|| stands for the Euclid norm of dimensional vector
a and (a, b) stands for the inner product betweanand b.
LetX, . 4« be a covariance matrix withy in its (k, k')

rate vectors. Wher" is equal to theK x K identity ma-
trix I, we omitT in Rp(T', D|Xxxyz) to simply write
RL(D|Xxxyr). Similar notations are used for other sets
or quantities. The sum rate part &, (I, DX|Sxxy1) is

defined by
L
=1

Problem 2. Sum Distortion CriterionFix K x K positive
definite invertible matriX® and positiveD. For givenl” and D,
the rate vecto( Ry, R, -- -, Ry) is (T', D)-admissibleif there

exists a sequendg!™”, o\, -+, o M)} | such that

1>

min
(R1,R2,--,RL)
ERL(ND"[Syky1)

Rsum,L(Fv DK|EXKYL)

limsup R"™ < Ry, forl € Ay,

n—r00

lim sup tr [r (%EXILXK) tr} <D.

n—oo

The sum rate part dR ., (I', D|Xx«xy:) is defined by

o

1>

min
(R1,R2,--,RrL)
ERL(T,D|ExkyrL)

Rsum,L(Fa D|EXKYL)



Let Sk (D¥) be a set of allk x K covariance matrices whoseDefine

(k, k) element do not exceeB)y, for k € Ax. Then we have L .
EX}(D/L = (EXK —‘,—tAE;\]LA)_

K —
RL(T, D™ |[Exxyr) = U Rr(ZalExryr){1) and set
'S tTeSk (DK)
A
RL(T,D|Exxyr) = U RL(Sa|Sxxye). (2)  d¥TSxxye'T) = ([Sxxye T, [[Exr |y Tlas,
te[[84tT)<D o IS xrye Tkk) -

Furthermore, we have We can show thaR{™ (S4|S yxyz ), RU™(T, DL yryr),

Ri(T,D|Exxyr) = U R (T, DE|Syxyr). (3) andﬁgn) (I, D|¥ xxyr) satisfy the following property.
S K Dy<D Property 1:

5 (in) . . .
In this paper we establish explicit inner and outer bounds oft) TheseR, " (Xu[Xy sy ) is notvoid if and only if, -

R1(Z4|Sxxye). Using the above bounds and equatidds (1) =~ ~X"IV"", (in) . . o .
and [2), we give new outer bounds &f, (T, D|Syxyz) and  P) Tr;(e Seﬂ;’L I, D |§XKYL) is not void if and only if
RL(FaDK|EXKYL)- D® >d A(l—‘ ExKlyL F).
c) The setRS“)(F,DmxxyL) is not void if and only if
D > tI‘[FEXK‘thF].
On inner bounds ofR . (X4|Exxyr), Rr(T, DY X gy
In this subsection we present inner bounds Rf (X4 ), andR (I, D|Syxyz), we have the following result.
Sxxyr), Ro(D, DY [Exxye), and Rp(T,D [Sxxyr).  Theorem 1 (BergerJ4] and Tund][5])For anyX, >
Those inner bounds can be obtained by a standard technlgggK‘YL we have
developed in the field of multiterminal source coding.
Forl € Ay, letU; be a random variable taking values in the 7€(L‘“ (Ba|Zxryr) CRL(Zq|Exxyr).
real lineR. For any subse$ C Ay, we introduce the notation K " .
Us = (U )ies. In particularUy, = UF = (U, Us, -+, Uy). For anyl’ and anyD" > d* (I'Yxx|y.'T’), we have
Define

B. Inner Bounds and Previous Results

REV(T, DX |Sxnye) CRL(T, DX [Sxnye).
G(2q) 2 {U* : U" is a Gaussian

random vector that satisfies
Us = Ys = XK = Yge — Use, RV, D|Sxxyr) € RL(T, D|Sxrye).
Ul vt 5 XK

For anyI’ and anyD > tr[I'Yyxy.'T], we have

The above three inner bounds can be regarded as variants

forany S € Az and of the inner bound which is well known as that of Berder [4]
Yxr _ypwry 2 Nd and Tung [5].
for some linear mapping WhenK =1 andL x 1 column vectorA has the formd =
¥RV 5 RE. ) t1t - -_1], the system conside_red here become_s the quadratic
Gaussian CEO problem. This problem was first posed and
and set investigated by Viswanathan and Berger][15]. They further

_ 2 2 A
R(‘“)(Ed|EXKyL) assumed yr = o°I;. Setos, = Xx and

£ conv {R" : There exists a random vector Roum(D|o%,0?) 2 1iLm inf Roum (DX xyr).
— 00

Ul € G(24) such that ) ) )
Viswanathan and Bergelr [l15] studied an asymptotic form of

> Ry > I(Us; Ys|Use) Rgum(D|o2%,02) for small D. Subsequently, Oohama ]16]
les determined an exact form oRsum(D|o%,c?). The region
foranyS C Ay}, R (D|% xy:) was determined independently by Oohama [17]

and Prabhakaramet al. [18]. Wang et al[12] obtained the
same characterization &fs,m 1. (D|X xy ) as that of Oohama
ﬁg“)(F,DKmXKyL) [17] in a new alternative method. Their method is based
on the order of the variances associated with the minimum

where cony A} stands for the convex hull of the sdt Set

A mean square error (MMSE) estimation. Unlike the method of
- conv o trg (DK)RL(Z”I|2XKYL) ’ Oohamal[17], the method of Waret al. [12] is not directly
¢ ® applicable to the characterization of the entire rate disto
R, DS xwyr) regionR (D[S xyL).
In the case wheré&l = L =2 andI' = A = [,, Wagneret
2 conv Rr(ZalZxryr) p. al. [11] determinedR2(D?| £ x2y2). Their result is as follows.

tr[rzdtr



Theorem 2 (Wagner et al_[L1])For any D? > d*([Syz|

b) Suppose that” ¢ Az (Xg). If TL’rs:O still belongs to
y2]), we have

A (34), then
Ro(D?|S x2y2) = RUV (D[S x2y2) > = J
2 X2y 2 X2y2?)- Is5(] d|a7°S|7°S<)|rS:0 S(TS|7°SC)|TS:0

Their method for the proof depends heavily on the specific =0.

property of L = 2. It is hard to generalize it to the case of
L > 3.

In the case wherédX = L andI’ = A = [;, Oohama _ N2 7% .
[20]-[24] derived inner and outer bounds &f. (D[S xry ). fs = Js(rslrse) = Is(1Bal, rsirse).
Oohamal[211],[[213],[[24] also derived explicit sufficient a@dn By definition, it is obvious thalfs, S C Ay are nonnegative.
tion_s for inn(.er. and outer bounds to match. [n![22], Oohamge can show thaf 2 {fs}sca, satisfies the followings:
derived explicit outer bounds dR; (X4 |Sxryr), Rr(DF B -
|ExLyL) andRL(D |ExLyL) a) f(]) =0

’ ' < C BCA;.

The determination problem 0® . (D|Syxy.) in the case E; ;A N JJ:B LO;A _ff_ Ar
where A is a generalk x L matrix andl’ = I was studied ATIB = JANE T JAUB: o
by Yang and Xiong[[26] and Yangt al. [27]. Relations In_generaI(AL,f) |s/§:alled_ago-polymatrmdlf the nonneg-
between their results and our results of the present pagler Ve functionp on 27+ satisfies the above three properties.
be discussed in the next section. Similarly, we set

Property 3: Fix r* € Az (34). ForS C Ap, set

I1l. MAIN RESULTS fs = srslrse) = Jstrsirse), f = {fs}sgAL '

A. Inner and Outer Bounds of the Rate Distortion Region Then (A, f) also has the same three properties as those of
In this subsection we state our result on the charactevizsiti (A7, f) and becomes a co-polymatroid.

of Rp(Za |Sxxye), Ro(l,DE |Lxkyer), and Ri(T, D To describe our result oR (24X xxyz), Set

|Xxxyr). To describe those results we define several func-

tions and sets. For each € Ay and forr, > 0, let

N;(r;) be a Gaussian random variable with mean 0 and

varianceoy, /(1 —e~"). We assume tha;(r;),l € A, are

independent. When, = 0, we formally think that the inverse

valuecrg,}o) of the variance ofV;(0) is zero. Let¥ y.(,1) be

a covariance matrix of the random vector

R(Lout) (93 rt |2XKYL)

A
= {RL > Ry > Jg(0,rs|rse)
ics
foranyS C Ap. },
R (Sa|Exxye)

A (out) L
NL(TL) :NAL(TAL):{Nl(Tl)}leA~ - U RL (|Ed|,7° |EXKYL)7
rleAL(Sq)
Whenrg = 0, we formally define 72(in) (rL)
L
1 A L1 A
XNse(rse) = BNE(rE) o0 = {RE Y R > Js (rslrse)

les
foranyS C Ar. },

R (SalSxrye)

Fix nonnegative vector”. Forf > 0 and forS C A, define

[T

sl les
Js(0,rs|rse) = 5 log" , .
277 | 0[2k + AT (4| Leonvd | REVGHSxeye)
rLEAL(Sq)
ik + AT oy A| T e .
Al ‘ X NErE) zg We can show thaR '™ (45 v xy ) andR "™ (£4]8 x ry1)
Js (rslrse) = B} log ‘2_1}( Ayt A‘ » satisfy the following property. .
X Nse(rse) Property 4: The sets R{™ (S4Sxxyz) and RY™ (3,

|¥xxye) are not void if and only ifS; = X xx|yr.

Our result on inner and outer bounds Bf, (X4 xxyz)
is as follows.

Theorem 3:For anyX >~ Yxx|yr, We have

whereS® = A; — S andlog™ [z] 2 max{logx,0}. Set

-1
AL(Sq) £ {rL >0 {E;(lK +‘AEZ‘V1L(TL)A} = Ed}.

We can show that forS C Az, Jg(|X4], rs|rse) and
Js(rg|rse) satisfy the following two properties.

Property 2:

a) If rl € AL(34), then for anyS C Ay,

Js(|Bal, rs|rse) < Js(rs|rse).

RV (R4 Sxxyr) = REV (SalSxrys)
C RL(Zd|Exxyr) C RE™ (Z4|Exry).
Proof of this theorem is given in Section V. This result

includes the result of Oohama]22] as a special case bydettin
K = L andT' = A = I;. From this theorem we can



derive outer and inner bounds &, (T, DX| Y xxy.) and

R.(T,D|Xxxye). To describe those bounds, set
RE™ (D, DX |Sxnye)

£ U R (S| Sxreys),
IS, TeSk (DK)

R, DX |Syxyr)

£ conv U

IS tTeSk (DE)
RN, DS xryr)

A ou
= U REY (Sl Sxrye),
tr[[S4 T <D

RU™(T, DS yryr)

£ conv U

R (SalBxreye) ¢

RV (SalSxreyr)

tr[[S4t0]<D
Set
A(rF) & {zd Sa = (Sk +tA2jv1L(rL)A)‘1} ,
O, DK L)L max  [D4],
Sa:Sa€AL(r"),
'S, reSk (D)
o(T, D,r") 2 max [Z4] .
Ed:EdE.AL(TL),
tr[[S4'T]<D
Furthermore, set
Br(T, D¥)
£ {rf 2 0: DEEk + AT sy A) 7T € Sk(DF) }
BL(Fv D)
AN

& {rL >0 tr[[(Sxh + AN 1y A) 7T < D},

)

It can easily be verified thaR (""" (T,

T, DX[Syryr), RO, D|2XKW), and R{™ (T, D|
Y xxy) satisfies the following property.

Property 5:

a) The setR{™(I', D[Sy xy2) and R (I, DK|S yx

yx) are not void if and only ifD* > d*(I'S xxy'T).
b) The setR\™ (T, D|Syxyz) andR" (T, DSy x yz)

are not void if and only ifD > tr[I'Y x x|y ‘T].
c)
R, DK S g xeyr)

_ U R(Lout) (Q(F, DK, TL), TL|EXKYL) ,
rleB(I',DK)

R, DX|Syryr)

= conv U

rleBr(I',DX)
R, DS xryr)

= U R0, Db,
TLEBL(F,D)

Rgn) (TL|EXKYL) )

|EXKYL)1

DX [Sxryr), R

RU™(T, DS yxyr)

= conv U

rLeBL(T,D)

RV (k)

The following result is obtained as a simple corollary from
TheorenB.
Corollary 1: For anyI’ and anyDX > dK(FEXKWL‘F),
we have
REM (0, DX [Sxys) = REY (L, DX Exneyr)
C RL(T, DX|Sxxyr) € R, DX |Syryr).
For anyI" and anyD > tr[I'Y x x|y T}, we have

RiV(L, DIExrye) = REV (L, DI xryr)
C RL(T, D|Sxxyz) C R, D|Syryr).

Those result includes the result of Oohamd [22] as a speciall
case by lettingk = L andI" = A = I. Next we compute
9(T', D,rL) to derive a more explicit expression N(LO“”(F
, D|X xxy1). This expression will be quite useful for finding a
sufficient condition for the outer bouﬂa(LO“t)(F ,D|E¥xKyL)

to be tight. Letay, = ax(r?),k € Ax be K eigenvalues of
the matrix

I (3 + AT oy 4) T

Let ¢ be a nonnegative number that satisfy

Z{ _O‘k

T4a, =D
Define

w(, D, rt

K
) & 0|2 [T{E=a 1" +a;"}.
k=1

The functionw(T, D,r%) has an expression of the so-called
water filling solution to the following optimization probte
max

K

. 4

Erar>1,k€EAK, H fk ( )
YK &<p k=L

Then we have the following theorem.
Theorem 4:For anyI" and any positiveD, we have

0T, D,r) = w(l', D, r").

w(T,D,rt) = 1|7

A more explicit expression oR(LO“t)(F,DmXKyL) using
w(T, D, rk) is given by

R, DS xryer)

2 U RO, D)t Sxuye).
rLleBL(T',D)

Proof of this theorem will be given in Section V. The above
expression of the outer bound includes the result of Oohama
[22] as a special case by letting = L andT = A = I;.

In the next subsection we derive a matching condition for
R\, D|Syxy2) to coincide withR (T, D|S yxyz).



Two other outer bounds oR . (D|X xxy =) were obtained Then we have
by Yang and Xiong[[26]. They derived the first outer bound for _ R oy B
generall, x K matrix A. This outer bound denoted by{™""( [C@TT,r5)kr = ||al||2g71\,l(1 —e ) + (P71 Torgy)
D|Sxxy) does not coincide witlR ™" ( D|S yxy.) when = xi(C7'T,ry) = |la|[* 2=e 2. (5)
K = L and A = I;. When A is semi orthogonal, i.e., M
YAA = Ik, Yang and Xiong[[26] derived the second outelf (i',i”) # (k, k), then the value of
bound R\™ (D[S yxy.) tighter than R™ (D|S xayL). CT-'T, 5]

The outer boundR ™" (D|Syxy2) is the same as our outer A

bound R\ ( D|Sxxy.) although it has a form differ- = [T 2 T T
ent from that of our outer bound. They further derived a L
matching condition foﬂi(L‘)ut)(DmXKyL) to coincide with +Z
Rr(D|Xxxyr). Their matching condition and its relation

to our matching condition will be presented in the nexdoes not depend on. Note that the matrixC(I' 17, r%) has
subsection. the same eigenvalue set as that of

CM k) =T N2 + AL

(1= e20) [M@;T) (@570

J

-1
iy AT

We recall here thaty, = oy (r"), k € Ax are K eigenvalues
For L > 3, we present a sufficient condition fGR (out) (F, of the above two matrices. Letynin = tmin(r") andamax =
D| ¥xxyr) C R(‘“) (D|Xxxyz). We consider the followmg Qmax (r?) be the minimum and maximum eigenvalues among

B. Matching Condition Analysis

condition ond(T, D, rb). ag, k € Ag. The matrixC(T 1T, L) for T € Ok (ay, k), has
Condition: For anyl € Ar, e"2"6(T", D,r") is a monotone a structure that th¢k, k) element of this matrix is only one
decreasing function of; > 0. element which depends on and this element is a monotone

We call this condition the MD condition. The following isincreasing function of; > 0. Properties on eigenvalues of
a key lemma to derive the matching condition. This lemma fgatrices having the above structure were studied in deyail b

due to Oohamd[21][[23]. Oochama[[21][[2B]. The following lemma is a variant of his
Lemma 1 (Oohamd [21[[23])1f 6(T', D, rL) satisfies the result.
MD condition onB.( T, D), then Lemma 2 (Oohamd [21].[23]): For each(l, k) € AL x Ak

. and eacHl’ € Ok (ay, k), we have the followings.
R(Lm) (I, D|Exxyr) =Rr(l', D|Exxyr) - )
= RN, DISyxyn). < flau|? (1= e2) + (DT, 7)) < omax(rh),
l
Based on Lemmé&l1, we derive a sufficient condition for 804] 804] 2||ay||?
f(T, D,r") to satisfy the MD condition. ar, = 0 forj € Ax, Z o  enigl
l

Let aj, be the(l, k) element ofA. Seta; 2 [anap - ak)

anda, = a; I, Let Ok be the set of allk x K orthogonal
matrices. For(l, k) € Ar X Ak, let Ok (a;, k) be a set of all
T € Ok that satisfy

T 1 1 amax(r?) _ €%

= — . < L

), = {15 920 (e~ ) 2208 < T ©
’ forl e Ag,

ForT € Ok(ay, k), we consider the following matrix:

The following is a key lemma to derive a sufficient condition
for the MD condition to hold.
Lemma 3:1f aupin (%) and apmay (r”) satisfy

on BL(T', D), thend(T', D, r*) satisfies the MD condition on
BL(T, D).

—1 Ly 2 tptp—1 /51— 4t 1 -1
Cr—T,r") ="T'T (EX AENL( L)A)F T Proof of LemmdB will be stated in Section V. Set
L
. A
:tT‘F’lE;(F’lT—i-ZU%NL(l—e*QTl)t(le)(le). C*I'Tym) = lim C(T'T,rh),

[]—)OO
X (FflT) hm xie(T™ T,y )
Let r[Ll] S - 1t - -7 and set ’ Ui !
= [T (Syk + PAS L A) T T e

(DT, rﬁ])
A ot ol 1 Fork € Ak, we denote thék, k) element ofC* (I~ T, ;) by
= [T T T]kk ¢ty = cip(T71T, ). When(j,j') € A% and(j, ') # (k. k),
— e~ 2 [%(a;T)(a;T)] the (4,5') element of C*(I'~'T,r,) does not depend on,.
a’ (3 (3 kk . —1
iz We denote it byc;;, = c;, (I'"'T"). Furthermore, set
= -1 L * * * * *
Xue (U1 ) [l T (T 7). Crip) = (T IT) [Ch1 " Chr—1Ckh1 " Chic)-



By definition we have where

a2 iy 1 [alT]2
* I\—lT A F I\—lT _ ||al|| . 'r é k .
K = 8 R UM TlalT 2
Define The matching conditioi (11) by Yareg al. [27] also improves
ar 2 i Qe (F), 0% 2 i min (1), that of Oochamd [23],[24] in the case &f = L, A = I;,. When
L —o0 L oo I' = Ik, forl € Az, we have
ol (1) £ lim max (7)) for 1 € Ap,. |5y (1)1 2
B I+ =7
Ti= max T1G: o TP
By definition, amax anda ¥ in @re the maximum and minimum Te(’;i“(gl gy Xp(T) — ———
eigenvalues of =1 (S +'AX ;L A )I L, respectively. By 1 A"
Lemmal2, we have >  max T =7, (12)
Te(koEA(E k) Xi(T)
Oémln( ) < amln( ) < ammv forle ALa (7) o
(T T, TH) <7 <o, forle AL, (8) On the other hand, for € A;, we have
The following lemma provides an effective lower bound of ¥, = max ma { *1 [alT]zz}
e?o%, /|laul>. TEOx kEAk (1) ||a:T|
Lemma 4:For any(l,k) € A x Ax andT € Oy (ay, k), - 1 [aT)3
we have = keax Teor \ Xi(T) JjalT[2
~ o112
_ - T1;
C* T 1T,'f' X r 1T _ ||al|| > 1 [al k 13
kk( l) Xk( ) GQTLGJQVL — ]?el?(); TEOK(az,k) *( ) ||alT||2 ( )
ey (D)2
* = max — =1,
2 O‘min(rl) + a;‘nax(”) - Oémm(rl) k€A K TG(’)K(az k) Xk(T) -
> tin () + ||CZ[1€](F71T)||2 Thus, we haveY;> Y, and T;> X,. Comparing the two
- Fax — Omin (1) inequalities [(I2) and{13), we can see that the improvement

of T; from Y, is quite differnt from that of(’; from Y,. Hence

Proof of this lemma will be given in Section V. Set - Y ~
we have no obvious superiority &f; or T, to the other.

| @ D)1

1+ Next we derive another matching condition, which is better
-1\ & (Oax)? . i .
()= jmax EAOEBIER than the second matching conditignl(10) in Theokém 5 and the
TeOK(al’§ ) Xe(D—1T) — 7’“%;“ matching condition(111) of Yanet al.[27] for some nontrivial

WhenT' = Ik, we simply writeY;(Ix) = Y,. From Lemmas cases. Set A 0% N
i *

[I{4 and an elementary computation we obtain the following. T = Ta ||2,7- = z%lin 7.
Theorem 5:1f we have ! g

. From Lemmagl1{i3 and an elementary computation we obtain
tr[FEXKD/L IN<D<

+min T (T (9)

k. leAr the following.
Theorem 6:If we have
then
. (s t
RV, DS yyr) = RV (D, DS xuyr) tr[[Exrye T
ou K 1
= RL(D, D|Exxys) = RO, D[S xryr). <D< ——+5= {,/1+4amax 1}, (14)
max max
Using [8), we obtairil;(I"'"!) > 1/a% .. Hence we have the then
following matching condition simpler thafl(9):
K+1 R™(T, D|x =R\, DIy
[FEXK|YL <D< + ' (10) L ( |Xxryr) (oft) ( [Xxryr)
Otfnax =Ri(T,D|Sxxyr) = R, DS xryr).

Proof of Theoren{]5 will be stated in Section V. When . . .
K = L,A = I, the matching condition[(10) is the sam Proof of Theoreni]6 will be stated in Section V. Wheh

as that of Oohama [23[,[24]. It is obvious that in the case comes largey; andamin approaqh to the maximum and
K — I, A — I, the matching conditior[19) improves that 01m|n|mum eigenvalues of ;. , respectively. Hence we have

Oohama . Yangt al. have obtained a matchin
[2B]i[24] @t al. [27] g { Tr o o - 1} ~ ool (15)

condition onR,(D|X xxy ) by an argument quite similar to
that of Oohamal[23]. The matching condition by Yaeigal. R _ N

[27] is as follows: which implies that there exists a sufficiently largesuch that
1 1 1

+ min Ty, (11) < <= {«/1+4amaxf —1}. (16)

*
leAr Qmax am Qmax

11m
T*—+00 204;12”(

tI’[ExKlyL] <D S -
Omax



Let Yyr gyt be a covariance matrix with; in its 1,1

________________ element.

Nl; For a givenX,, the rate vecto( Ry, Ra, -+, Ry) IS Xg4-
§ § Y, o oM (Y1) admissibleif there exists a sequendgp!™, o\ - SO(Ln)a
§ D o1 P(M)}2 , such that
I N2§ - Y, limsupRl(n) <Ry, forlec Ay,

] ] Y, Py (Y2) Y, e

5 : (n) (n) |~ limsup +% oL = 2.

X2 }/2 Py gf) . n~>oop n YL_YL D g
; Y Let R.(X4|Xyz) denote the set of alb;-admissible rate
H . L

Ny : vectors. We consider two types of distortion criterion. Each
i Y, SD(LR)(YL) distortion criterion we define the determination problenhuf
g D YL o™ rate distortion region.

Problem 3. Vector Distortion CriterionFor given L x L
Fig. 2. Distributed source coding system forcorrelated Gaussian sourcesinvertible matrix ' and D* > 0, the rate vector Ry, Ro,
-+, Rr) is (T, DL)-admissibleif there exists a sequence

v {((p(n)a So(n)a ) 90(")’ (b(n))}zo: such that
On the other hand, it follows from the definition af;, that ! E o !

we have forl € AL: limsup R(n) < Rl, forl e AL,
n—oo
¥, < max max —— < (17) lim sup [r (%EYL ?L)tr} <Dy, forleAr.
~ reok keAx Xi(T) ~ af n—oo - 1

Thus we can see frorfi(16) arld[17) that for sufficiently lardeet R (I', D* |y denote the set of alll', D*)-admissible
7*, the matching conditior {14) in Theore 6 is better thaidt€ vectors. The sum rate part of the rate distortion region
the second matching conditioR {10) in TheorEm 5 and tig€fined by

matching condition[(11) of Yangt al. [27]. A L
Rsum,L(Fv DL|EYL) = (R II%IHD R1) { Rl} .
IV. APPLICATION TO THEMULTITERMINAL SOURCE GR;(’F,ZBL\’E;) =1

CODING PROBLEM Problem 4. Sum Distortion CriteriorFor givenL x L invert-

In this section we consider the case whdte= L and ible matrixI" and D > 0, the rate vectot Ry, Ra, -+, Ry) is
A = Ip. In this case we havé’’ = X% + N; Gaussian (T, D)-admissiblef there exists a sequendép'™, o ...
random variablesy;, I € A, are L-noisy components of () ¢} such that
the Gaussian random vectdf”. We study the multitermi- B

nal source coding problem for the Gaussian observations limjupR(”) <Ry, forle Ay,
Y;,l € A. The random vectorX” can be regarded as a ." > L .
“hidden” information source ofY’“. Note that (X' Y*) lim sup tr [F (EEYL_YL) F] =D.

satisfiesYs — X~ — Y. for any S C Ay. e o
Let R.(T, D|3y:) denote the set of all admissible rate

vectors. The sum rate part of the rate distortion region is

A. Problem Formulation and Previous Results defined by

The distributed source coding system fdér correlated L
Gaussian source treated here is shown in [Hig. 2. Definitions Ry, (T, D|Xy 1) = min { Rl}.
of encoder functiong,;,l € Ay are the same as the previous (Bu,Rep Re) | 1

T X . . ERL(T,D|Ey L)
definitions. The decoder functiopi™ is defined by
Relations betweerRy (X4|Xy 1), Ri(T, D¥|Ey1), and

¢ = (6 68", o) R.(T, D|Zy1) are as follows.
g s M x Mp o RY LE A Ri(CDHSy) = | Re(SalSye), (18)
ForY? = (Y, Yy, ---, Yp), set 34 TeSL (DY)
R N RL(T,D|SyL) = Ri(Sa|Syr). (19)
7 et e
. Y " (oM (Y N
b = 92 (#(YT) , Furthermore, we have
N : Ru(M,DISyr)= | R, DYSys).  (20)
Y (n) ¢ (n)(y L L, v , y
L o (PM(YT)) S Di<D

~ é _ ~ 2
fl” R ElY; ?’z|| 1< { <L, We first present inner bounds &7 (24 | Sy ), R (I, DX
dy =EY, =Y, Y, =Y, ), 1<1#1 <L |~y), and R.(T, D|Zy.). Those inner bounds can be
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obtained by a standard technique of multiterminal sourceTheorem 8 (Oohamal(9])Fori = 1,2, we have

coding. Define

G(24) £ {U% : U" is a Gaussian
random vector that satisfies
Us —» Yy — XL = Yge = Uge
Ul -yl - x*
foranyS c Ay and
EyL_¢(UL) j Ed
for some linear mapping
¢: R - REY
and set
RE™ (Z4|Zyr)
2 conv {RL : There exists a random vector
UL € G(24) such that
> R > 1(Us; Ys|Use)
=5
foranyS C Ap. },

RV, DY |Syr )

£ conv U

I'S4treSp(DE)
R, DISyr)

£ conv U

tr[IS4tT) <D

RV (SalSy2) 3

R (84[8y1)

Then we have the following result.
Theorem 7 (Bergei]4] and Tund@|[5])For any positive
definite X4, we have

R (SalSys) € Ri(SalSye).
For any invertiblel’ and anyD” > 0, we have
ﬁ%n)(r,Dﬂzw) C Ry(T, D¥[Syr).
For any invertiblel" and anyD > 0, we have

RV, D|Syr) € RL(T, D|Sy2).

Ri2(Di|By2) = R?)Q(Dl|2y2),
where
. A
RZ,Q(DZ|EY2) =
0,2 2
{(Rl,RQ) ‘R > %1og+ [(1 —pz)ﬁll (1 + 1fp2 S)} ,

Rs_; > $log 2]

S

for some0 < s <1 }

Since R} ,(Di|Xy2), | = 1,2 serve as outer bounds of
R2(D?|Xy2), we have

Ra(D?[Sy2) C Ry o(D1|By2) N R 5(Da|Ty2).  (21)

Wagneret al. [11] derived the condition where the outer bound
in the right hand side of(21) is tight. To describe their tesu
set

D2 {(D1,D2) : D1, D3 >0,
Wagneret al. [11] showed that ifD? ¢ D, we have
Ra(D?|Sy2) = R} o(D1[Sy2) N RS o(DalSy2).

Next we consider the case d? € D. In this case by an
elementary computation we can show tVEﬁ“) (D?|%y2) has
the following form:

Ry (D?|Sy2)
= Ri2(D1[By2) N R 5(Do|Byz) N R 5 (D?[Sy2),
where
R 2(D?|Ty2)
= {(31,32) R+ Ry > RiEZH,Q(DQIEw)},
R

sum,2

(D?[Sy=)

>

min {Ry + Rz}
(R1,R2)ERS™ (D2[Sy2)

1_,2 2 2 2.2\ 2 402
—%log[ 2 '{Uicgﬁr\/(gi(gg) +<1—792)2H'

The boundary ofR{™ (D?|Sy-2) consists of one straight line

The inner boundR ™ (D*[y:) for T = I, is well known segment defined by the boundary ®Bf; ,(D?|%y2) and two
as the inner bound of Bergerl [4] and Tung [5]. The above threarved portions defined by the boundaries/of ,(D1|Sy2)

inner bounds are variants of this inner bound.

and Rj ,(D2|Xyz2). Accordingly, the inner bound estab-

Optimality of ﬁéi“)(DﬂEW) was first studied by Oohamalished by Berger[[4] and Tundl[5] partially coincides with

[9]. Let
2
o1 pPo102
pPo102 0'%

Ey2:|: ], p€10,1).

Forl =1,2, set

A
Ria(DifEy2) = ) Ra(D?|Ey2).
D3 ;>0

Oohamal[9] obtained the following result.

R2(D?|Xy2) at two curved portions of its boundary.
Wagneret al. [11] have completed the proof of the opti-
mality of 7%§I“>(D2|zyz) by determining the sum rate part
Reum 2(D?|Xy2). Their result is as follows.
Theorem 9 (Wagner et al_[L1])For anyD? € D, we have
Raum 2(D?|By2) = R{Y, 5(D?[Sy)

sum,2

_ 1 1—p? oial 0202 \? 42
(o G )]
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According to Wagneret al. [11], the results of Oohama From [26), we have
[16], [17] play an essential role in deriving their resulheir ~
method for the proof depends heavily on the specific property %EyL,yL = A" (%
of L = 2. It is hard to generalize it to the case bf> 3. N
Recently, Wanget al. [12] have given an alternative proof =4 (Z XL
of Theorem[®. Their method of the proof is quite different
from the previous method employed by Ooharnal [16]] [LGonversely, we fix{(¢{", 05", -, ¢, (™)} |, arbi-
and Wagneeet al. [11] and also has a great advantage that ftarily. For eachn = 1,2, - - -, using the estimatioif’L of Y
is also applicable to the characterization/of,,, (D% |y2) given by
for L > 3. Their result and its relation to our result in the
present paper will be discussed in the next subsection. §">(¢<n> (YL))
n | e (™ (v )
B. New Outer Bounds of Positive Semidefinite Programming :
In this subsection we state our results on the characteriza- ¢(Ln)(90(") (YL))
tions OfRL(Ed|EyL), RL(F, DL|EYL), andRL(I‘, D|EYL).
Before describing those results we derive an importantiogla |, «onstruct an estimatioXL of X© by @4). Then using
between remote source coding problem and multitermin@) and [24), we obtaif {25). Hence we have the relafich (26)
source ching problem. We first observe that by an eIementaryl-he following proposition provides an important strong
computation we have connection between remote source coding problem and mul-
Xt = Ayr 4 N*| (22) titerminal source coding problem.

- . . . <5 Proposition 1: For any positive definiteZ;, we have
where A = (X, +ENL)*1ENL and N* is a zero mean

Gaussian random vector with covariance malii, = (£} Ri(Za|Syr) = Re(A(Sa+ B)'AlSxryr).

+E;V1L)‘1. The random vectoN ” is independent of . Set
For any invertiblel’ and anyD” > 0, we have

VA4 bt _

BEA 'Y P A =Sy + S0 2 S, y 3

bt 2 4(B) N[B] [Bl1r) B Ri(T, D¥[Bye) = Ry (TA™H, D 4+ b5 [Sxrye).
- 11, 22577, LL),

BATHT For any invertiblel and anyD > 0, we have

~ A ~ ~ ~ ~_ ~

bY = Y([B11, [Blaz, -+, [Blr)- R (T, D|Sye) =R (TA™Y, D+ tr[B)|Sxryr).

Frgn.”n [22), we have the following relation betwedh™ and Proof: Suppose thatRl € Ry (A(Sq + B)'A[Syryr).

Y _ N Then there exist§(o\™, i, -+, o™ ™)1 such that
XL _ Ayl +NL, 23) $(e1 s pn s op s VI
oL _ o li W < Ry, forl e A
whereN" is a sequence af independent copies df” and I?HS;pR < fu, forie Ar,
is independent oiY_'L. Now, we fix {(o\™, oi", .- ,_ ‘P(Ln_)’ limsup 15, 1 < AN+ B)'A.
(M)} | arbitrarily. For eachn = 1,2, -, the estimation n—o0
oL L.
X of X" is given by Using g(L, we construct an estimatioYrL of YZ by YL:
™ (e (YY) A=1X". Then from [2ZV), we have
(n) ¢ (n)(yL
oL Yy (™M (YT)) .
X = 2 ] . 11msup%EYL7f,L
: n—oo
B (™ (Y1) = limsup A™* (%EXL_XL) tA' - B
n—oo
Using this estimation, we construct an estimatin of Y- < AT'A(Sa + B)'A'AT - B =34,

L oL _ i i
by ¥ = A7 X", which is equivalent to which implies thatR% € Ry (A(Sq + B)'A|Sxryr). Thus

x" = av’, (24)
From [23) and[(24), we have

RL(ZalSyr) 2 RL(A(Sa+ B) AlSyrye)

L I - is proved. Next we prove the reverse inclusion. Suppose that
Xt -X"=AY*-Y )+ N" (25) RL € Ry (S4|Syr). Then there existé(o\™, oi™ -, o™,
oL, _ 5 L L #™)}>2 | such that
SinceY is a function ofY~, Y — Y~ is independent of

N". Based on[(25), we computeX , . to obtain limsup R™ < Ry, forl e Ay,

n—oo

%EXL_XL :A(%EYL_YL)tA‘FENL (26) limsupizyL_YL jzd

n—roo
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Using YL, we construct an estimatiof(L of Xt by XL: assume thav;(r;),l € A, are independent. When = 0, we
A}?’L_ Then from [2B), we have formally think that the inverse value;ll(o) of V;(0) is zero. Let

i L Yyr( ) be a covariance matrix of the random veckor(r’).
1 sup nYxrox* Whenrg = 0, we formally define

_ 1 A1 t A B _ AN
_111€ri)solipA(EEYL7?L) A+X5e EV;c(Tsc) 2 Zvi(rL)
< A%, A+ N5, = A(S4 + B)UAY,
which implies thatR" € Ry (A(X4 + B)*A |Sxzy:). Thus,
Re(SalSye) € Re(A(Zq+ B) Al xry)

rs=0 ’

Fix nonnegative vector”. Ford > 0 and forS C Ay, define

L
Sy + B [ e

i al. &+ 1=1
; . Js(0,75|rse) = 5 log ,
is proved. Next we prove the second equality. We have the 2 0%y .| z;i + E\_/slc(rsc)
following chain of equalities:
R, DHSy) = | Re(SalSye) ] A1 SR TR,
IS tTeSn(DL) Js (rs|rse) = = log
~ ~ 2 ‘E—l +E_1
= U  RuTA(Sa+ B)'A[Sxiye) R
I'sytreS(DL) Set
= U RL(A(Sq+ B)'A[Sxryr)

~ A o - —1

AL 24rt >0 [2 T > } <3\,
PA~1A(S4+B) ALA-1T 2(Za) {T B ve T Svien] =2
it L
e reor (b Define four regions by

e U RL(A(Ed + B)tAlzxLyL) (out) A _
FA—IA”(Ed+B)tAt(FA—1) RL (0, TL|EyL) = {RL . Z Rl Z lS (0, TS|TSC)
eSL(D*+b") les
= U RL(2d|ExLyL) for anyS C Aj. } ,
Bu=ASAB) A Sy r, REV Sy 2 REV(Sa+ Bl rH Sy,
FTA-'S,Y(TA-Y)eSL(DE +bh) rLedr (Sq)
=R (TA Y, DY + b5 |Sxyr). w A
2 [Exeye) R (rF|Sye) = {RE > Ry > Jg (rslrse)
Thus the second equality is proved. Finally we prove thalthir 1es
equality. We have the following chain of equalities: foranyS C Ar. },
RL(T,D|Syr) = R (Xa|Xyr) in A in
tr[mym - R (£4/8y2) £ conv U R&MEESy)
~ ~ rLe A
= U RuTACa+B) ASyxiye) . ey .
tr[[8.* 1] <D The functions and sets defined above have properties shown
B < ¢ 5 in the following.
- U R Ri(A(Za + B) AlExrye) Property 6:
brirA _‘ig?ﬁ;ﬁg‘%“‘ Tl a) For any positive definit€,, G(X4) = G(A(Zq+ B)tA).
- RL(A(Sq+ B)'A|S ” -
- U e St JARExLye) b) For any positive definit&,, we have
tr[l A A(Ed+B)~A (TA™H)] . . - -
<D+ur(B] ) REY(SalSye) = REV(A(Sa + B)' A[Sxryn).
= Rr(Xq|X o -
.- U r(ZalXxeye) c) For any positive definitéZ; and anyS C Ay, we have
Ed:A(Zd+B)tA>EXL‘yL; . ~ 1
t[PAT S, (DA™Y <D+t B] Js([Ba+ Bl,rslrse) = J5(|A(Ea + B) Al rslrse),
=Rr(TA™, D+ tr[B]|[Zxryr). Js(rslrse) = Js(rs|rse).
Thus the third equality is proved. B d) For any positive definite,, AL(Z4) = AL(A(Za +
Propositio L implies that all results on the rate distortie- B)tA).
gions for the remote source coding problems can be converte‘g For any positive definit&,;, we have
into those on the multiterminal source coding problemshin t o B
following we derive inner and outer boundsBf, (X4 3y- ), R(L"‘“)(Edmw) = R(L"‘“)(A(Zd + B)'AlSxryeL),
L i it : : ~ ~
Rr(T,D*|Eyz), and R.(I', D|Xyx) using Propositiori]1. RQ“)(EdIEyL) _ Rgn) (A(Sq+ B) A[Sxeye).

We first derive inner and outer bounds Bf; (X4/3y ). For N
eachl € A, and forr, > 0, let Vi(r;), L € A, be a Gaussian From Theoreni3, Propositidd 1 and Propéily 6, we have

random variable with mean 0 and variangg /(e*" —1). We  the following.
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Theorem 10: For any positive definité:;, we have c) For any invertiblel’ and anyD” > 0, we have

Ry (ZalEye) = REY (SalSyr) RY™(T, DE[Sy1)
C RL(Sa[Syr) € RE™(Sa[Sye). =RE"WMAT DY + b S yyr),
Next, we derive inner and outer bounds7f, (I, DX |2y-.. ) R, D |Sy2)
andRL(F,D|EyL). Set _ Rgn)(FA_l,DL T [;L|EXLyL).
iy 2 . —1 —1 —1
Ap(r?) = {¥a: Za = (By1 + EVL(rL)) b For any invertiblel" and anyD > 0, we have
g, D)L max  |Sg+ B, (out)
( ) Ed:EdEAL(T‘L), | ¢ | RL (F7~l)|ZYL) .
IS, TeS, (DY) = RE"TA, D+ tr[B]|Sxryr),
0T, D7) 2 max |94+ B|. R, DIDy2)
Ed:ZdEAL(TL), (in) < -
1[4 T <D =R, "(TA, D+ tr[B]|Excyr).
Furthermore, set From Corollary[1, Propositiof] 1 and Propefly 7, we have
B (T, D*) the following theorem.
Theorem 11: For any invertibld” and anyD > 0, we have
é {T‘L 2 0: F(E;i 4 E‘—/]I.‘(TL))fltI\ c SL(DL)} , . Yy Inv | » YL > Wi \
By(T. D) REM (T, DH[Sy2) = REV (L, D*[Syr)
’ C Ri(T, DE|2y 1) € R, DL[Sy1).
Stz 000 [Ny + 500 7 T] < D) € Re(l, D7[Eye) € Ry (T, D Eye)

For any invertiblel" and anyD > 0, we have
REM(L, D|Sy) = RE™(L, D[Sye)
C RL(T, D|Syr) € RY™(T, D[Sy2).

Define four regions by

R, D[Sy L)

2 U R(Lout)(é(l",DL,TL),TL|EyL),

rLeBL (T, DY) The outer boundR ™" (", DX|%y-. ) has a form of positive
Rg“)(F DYSy) §em|def|n|te programming. To find a matching gondmon for

' inner and outer bounds to match, we must examine a property
of the solution to this positive semidefinite programming. O

4 (in)/ L
= conv U Rp“(r7[Bye) o the sum rate part of the rate distortion region in the case
rbeBL(I',D") of vector distortion criterion we have the following cowmly
Rf“t) (T, D|Syz) from Theoreni 1.
A out) Corollary 2: For anyD* > 0, we have
= U REVEE D) Sy, oo }
TLGBL(F,D) Rsum,L(D |EYL) < Rsum-,L(D |ZYL)
R (T, D[Sy ) < RO, p(D"[Sye),
) where
2 conv U R&MEHSye)
h R (DE|Sy.)
rleBr(I',D) sum, L Y
It can easily be verifie(_:i that the functions an.d sets defined2 o mh}l B %1Og|[+ EYLE;}‘(TL)|
above have the properties shown in the following. (BT L L)
Property 7: €SL(D")
a) For any invertibld" and anyD” > 0, we have B min 1 [Xyer|
RE(C, D[y ) etz 2 [l
5(n) m -1 L | jL BacSL(DM):
:RL (FA 7.D +b |ExLyL). Zd:(Z;L+Z;L(TL))7
For any invertiblel’ and anyD > 0, we have 1 ISy + B| L
- (in) = min — —_— + Z i,
RUM(T, D|Syr) (" Za): 2 7 [Ba+ Bl =
~ (in) < q ~ EdGSL(DL),
=R, 'TA,D+tr[Bl|¥xcyr). Sa=(S7L+E0L )
L
b) For anyr™~ > 0, we have Rilu)m,L(DLWYL)
A (L A t A L
i€ A(rt) & A(Eid2+ B)'A e A(r"), A . 1. [Sye+ B +2L:r
o(r. D", r") = | 4| T OCAT DY), "5 2 B &

} o 3 Zi?S‘L(PlL), )
(T, D,rt) = ‘A‘ O(CA~L, D, rL). Saz (B S0k )
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A lower bound of Reyy 1. (DY|2y2) in a form of positive Theorenh, we derive a matching condition vaﬁ“) (Fﬁfl,
semidefinite programming was first obtained by Wantgal. D + tr[B]|Xx.y:) to coincide with R(L(’“t)(rjl—l’ D +
[12]. Their lower bound denoted b , (DE|Sy.) is as tr[B]|Sxzy). For simplicity of our analysis we use the

sum, L
follows. Let L & (81,05,---,01) be a positive vector whose second simplified matching conditidn {10) in Theofém 5. Note
components;, [ € Ay belong to(0,0%,]. Let Diag.(6*) be that
a~((ld)|agonal matrlx. whosel,l) element isé;,l € Ar. Then t(rﬁ_1)_1(2; +ZJ}1L)(FA_1)_1
Ry . (D¥|2y.) is given by N N .
’ =TA ' (2 + 2 ) 1A =B (28)
BY (DL[Dy1) N
sum, L Y . , By (28), the second matching condition in Theofdm 5, thelthir
1 % B 1 i iti i
A min 1 |Eyr + B n Z Log o | equality of Propositiofl1, and Propefdly 7 part c), we essabli
6L | 2 ¥4 + B| = 2 o the following.
$a€8L (DY), B Theorem 12:Let .. be the minimum eigenvalue of
(516(0,0’12\11],l€AL, - 1
(z;'+B~1)~!=Diag(s") B=T (Syr +ZneE5:Enz) T

By simple computation we can show théé}l)mﬂL(DL|EyL) If we have
= RY_(DL|Sy.). Although the lower bound?”)  ( 0<D< (L4 D — tr [T(Ene + Ene X350 Sne) T,

sum, L sum, L,

DY |3y 1) of Wang et al. [12] is equal to our lower bound

. L~ th
jom,L( D¥|$y1), their method to denvé%i}l)mﬂ DE|Sy 1) en . »
is essentially different from our method. They derived the Rg’“)(F,DmyL) = RS“)(F,DmyL)
lower bound by utilizing the semidefinite partial order of — Ri(T, D|Syr) = R(I/out)(F7D|ZYL).

the covariance matrices associated with MMSE estimation.
Unlike our method, the method of Wareg al. is not directly An important feature of the multiterminal rate distortion
applicable to the characterization of the entire rate disto Problem is that the rate distortion regioR. (I, D|Xyr)

region. remains the same for any choice of covariance mairix
When L = 2, Wanget al. [12] solved the positive semidef- and diagonal covariance matiixy . satisfyingslyr = yr+

inite programming describin@sgm ,( D?|%y-) to obtain the ¥ yz. Using this feature and Theordm] 12, we find a good pair

following result. ’ (Xxz, X ne) to provide an explicit strong sufficient condition

Lemma 5 (Wang et all[L2])For any covariance matrix for Ri™ (T, D[Zyr) and R (T, D|Zyw) to match.
Yy, there exist a paif¥ x-, ¥ 52 ) of covariance and diagonal In the following argument we consider the case whrie

covariance matrices such th8: = ¥ y2 + X2 and the following positive definite diagonal matrix:
(1 u
R s (D?[Ey2) = R, »(D?|y). w0
3 i Y2
From Corollary(? and LemmBl 5, we have the following r— ' el +o). (29)
corollary. .
Corollary 3:
A0 (2 W e 0
Rsum,2(D |Ey2) = Rsum,2(D |Ey2) LA I I )
— Ruwma(D?|Sys) = RSEEH,Q(DQIEw)- Setv* = (v1,72, -+, 7L) € [1,+00)~. We cally* the weight

vector. Sincel is specified by the weight vectoy”, we
Our method to derivagjmz(D2|EY2) < Reum.2(D?|Sy2) write Rz (I, D|Sy.) as Rz (yY, D|Sy.). Similar notations
in Corollary[2 essentially differs from the method of Waeig are adopted for other regions.
al. [12] to deriveRSL)m 5(D?|Zy2) < Rsum,2(D?|Zy2). Our We choose: vz so thatt vz = 602, SetX vz e I'Syel
method to obtain CoréllarﬁIS is also quite different fromtthaand . 2 'Yy .T. Then, we have
of Wagneret al. [11] to prove Theorem]9. Hence, Corollary

- yet

provides the second alternative proof of Theofém 9.  B=4Ip+6"%., (30)
Sy =Sy —61L.

C. Matching Condition Analysis Let Dmin 2 m<m<---<n 2 Nmax D€ the ordered list

In this subsection, we derive a matching condition fasf I eigenvalues o2y . and let 7, 2 m<i<- <
t . . . i = = =
_R(Lou )(FaD[EYL) to coincide with RS“’(F,_DIEM- US- i, £ fiax be the ordered list of. eigenvalues ofly.. Set
ing the derived matching condition we derive more explicit A ;
. " . - e Ymax = Maxi<i<r Vi SINCNminlr, X Xyr = Nmaxlr, We
matching condition wheil' is a positive semidefinite diagonal, o
matrix. Furthermore we apply this result to the analysis o R
matching condition in the case of vector distortion crieri Neind L = Mminl2 =< By e = Dmaxl? = Y20 Imax L,
By the third equality of Propositiof] 1, the determinatio . .
problem of Rz (I', D|Xy ) can be converted into the deterFIrom which we obtain
mination problem ofR; (TA~!, D + tr[B]| X xry). Using Nemin < Tmin < Tmax < Y Tmax- (31)



We choose’ so that0 < ¢ < 7jmin. Then, by [3D), we have

52
fimin = 0 + ——,
Thmax — 0
~ ~ L 52 (32)
tr[B] = tr [1 + 62531 | = Lo+ >y
1=1"
From [32), we have
L
i - (L +1)5? &2
L+ 1)k, —tr[B] =0 + — - =
( ) [ ] Tmax — 5 ; m — 5
Ls? =R
- -3 -
Tmax — 0 ; m — 0
52 52
>0+ L———(L—-1)———
=0 7Tlmax -0 ( )ﬁmin -6
~ ﬁmax
=1L max \ =~ ¢ 1
77 (nmax - 5 )
_(L - 1)"7min (NL:; - 1) . (33)

By an elementary computation we can show that the right

member of [(3B) takes the maximum value

(\/Z— m)z ~77max77n~1in
Tlmax — TJmin

1 ﬁmaxﬁmin

(\/Z + \/L — 1)2 . 7Tlmax - flmin

at
6 _ (\/Z Y L— 1)ﬁmaxﬁmin
\/Zﬁmax -V L— 17Tlmin

Furthermore, takind (31) into account, we obtain

U R R Tl
= [ i) 2 [nin — Vo Tnad

Thmax?min

7Tlmax - ﬁmin

- =2
Tlmax — Ymax?min
Hence if

TImax"min

1
0 < D S ° — )
(\/E + L — 1)2 Nmax — ’Ymgxxnmin

then the matching condition holds. Summarizing the above
argument, we obtain the following corollary from Theorem

12

15

then we have[(34) for any weight vectot ¢ [1,00)". If
Ymax = 1 and

1 Thmax?min

(\/z—l— \/L — 1)2 . Thmax — nmin,

0<D<

then we have

REY(D[Sys) = RE™ (D[ Sy)
= Ri(D|Sys) = Ri™ (D[Sye).
Fix v € [1,+00)® arbitrarily. Consider the regiof r(

vF|2y1) and the minimum distortioD, (v%, RF|Yy) in-
duced byR (v, D|Zy.). Those are formally defined by

A
Rr(v"Ey1) = {(R", D) : R* € Rp(v", D[Sy1)}

Di(v*, R¥|Syr) £ inf {D: (R*, D) € Rp(+*|Sy2)}
Similarly, we define

RV (3 [Eye)

£ {(R",D): R € REV (45, DISy) }

R (F[Sye)

& {(RL,D) 'R € R}“”(%,D@w)},

DY (/" R"[Sy+)

2 inf{D . (RF,D) e RS“)(7L|EW)},

DY (1", R [Sy)

2 inf{D . (RL, D) e Rg"““(ﬂzw)}.

From Theoreni_11 and Corollafy} 4, we obtain the following
corollary.

Corollary 5: For anyR* > 0 and anyy” € [1, +00)", we
have

DR’ (/*, R [Sy1) 2 Dy (v", R¥|Sy1)
> DY (vF, RE[Sy).
For eachy® € [1,+0)L, if we have

1

0<DWHE RLSy) < —— i,
L |YL)_(\/Z+m)277

Corollary 4: Let v% € [1,4+00)F be a weight vector and then

let Vinax= maxi<i<r, Vi If

TlmaxTmin

1
0 < D S ° — )
(\/E + L — 1)2 Thmax — 'Ymgxxnmin

then we have

RV (v, DISyr) = REV (v5, D[Sy2)

=R1(v5, D|Sye) = RV (L, DISy2).  (34)

In particular, if

1
O<D<—'77mina

T (VL+VL=1)?

Dy (4", R*y) = DL(y", R¥|Zy+)
= DY (7", RE[Sy).
We apply Corollanfb to the derivation of matching condi-
tion in the case of vector distortion criterion. We consittex
region R, (Xy+) and the distortion rate regioRy, (R"|Xy 1)

induced by R(D*|Xy.). Those two regions are formally
defined by

Ri(Sye) 2 {(RY, DY) : RY € Rp(D"|Sy1)},
DL(R¥|Syr) 2 {D¥: (RY, DY) € Ry (Syr)} .
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Similarly, we define D3

in A in
R (5y.) 2 {(RL,DL) . R e R >(DL|2yL)},

in A in
D (RE|Sy L) 2 {DL . (R, DY) e RY )(zyL)}.

Although the distortion rate region is merely an alterna- (¥, %,%5)
tive characterization of the rate distortion region, the- fo I
mer is more convenient than the latter for our analysis
of matching condition. We examine a part of the bound-
ary of D" (RS, 1) which coincides with the bound-
ary of D(RY|Xy.). By definition of Dy (v*, R¥|2y 1) and
D™ (yL, RE|Sy 1), we have

L Ae09nipe=a
(=
= Beovg M0

; (in) (3 (u) .3 3 (+) ;
Fig. 3. D3 ' (R?|Zys), I’ (v°) n{D? > 0}, and D3" ' (¢3) in the
Dy, (VL, RL|EyL) = . L E Yi Dl, (35) case of L = 3. In this figure we are in a position so that we can view the
b EDL(R IZye) iz supporting hyperplanﬁé“)(fy?’) as a horizontal line.

D (yE RE|SyL) = i Z% D;. (36) -
€DV (REIZy L) 15 D; (¢) N Dy (RE|Sy 1), where
Consider the following two hyperplanes: Di(Cr) A U H(Lu) (+5)
L
UACOE {DL 1D iD= DL(VLaRL|EYL)}7 _ T U 1 (4.
lil 1§ (v2)n{ DL >0} CD (Cr) ’
0 () {DL ZV?DZ Dy ’RL|ZYL)}' When L = 3, we showD{"™ (R3|Sy:), DS (¢s), and

(W) .3 3 in Ei
I N{D? > 0} in Fig.[3.
It can easily be verified that the regioR.(R|Sy.) is 3 (7)) D7 20y J

a closed convex set. Then by 39)l;(y") becomes a o _ . _
Supporting hyperplane oD, (RL|Sy.) and everyDE e D. Sum Rate Characterization for the Cyclic Shift Invariant

I, (v5)N DL (RE|Sy2) is on the boundary 6Py (RL|Sy.). Source

On the other hand, by its definition the reg@@“) RY|Sy1L) In this subsection we further examine an explicit charac-
is also a closed convex set. Then HII(SG])(” () be- terization of Ryum,.( D|Ey:) When the source has a certain
comes a supporting hyperplane Bf™ (R-|Sy.) and every Symmetrical property. Let

Dt e (vE)n D™ (RE|Sy.) is on the boundary of 1 2 v | o L
DI (RL|Sy1). Set T <T(1) 7(2) - (1) - T(L)>
. A 1 Dnins be a cyclic shift onA, that is,
(VL+VL -1y (1) =2,7(2) =3, 7(L—1) = L,r(L) = 1.
Te(CL) = {7 € [1,400)- : DS (45 RE[Syr) < <L}. Let pxs, (@4) = Dxoxacxs (1,03, 21) be a probabil-

Then by Corollary[B, for anyy: € 7.(C.), we have ity density function ofX ~. The sourceX * is said to be cyclic
H(Lu) (v£) = T (%), which together WithD(Li“)(RL Syr) shift invariant if we have

c _DL(RL |¥y.) implies that everyD! ¢ H(Lu)(’yL)ﬂ Pxa, (Tr(aL) = DXy Xoox, (T2, 3, T, 21)

DI (RL|Sy.) must belong toll,(v2)N Dy(RE[SyL).
Hence thisDZ must be on the boundary @, (R [Xy1).

It can easily be verified that an existenceH)%‘)(yL) satis- forany(zi,2s, ---,zz) € X, In the following argument we

fying v* € 71.(¢z) is equivalent toH(“)( Ly n{DF > o} assume thatX  satisfies the cyclic shift invariant property.
D(+ (1), where a We further assume tha¥;,l € A, are i.i.d. Gaussian random

variables with mean 0 and varianeeThen, the observation
“ N L Yyl = X% + NP also satisfies the cyclic shift invariant
D7 (¢) = D" : D" > O,ZDz <L property. We assume that the covariance maftix. of N*
=1 is given byel;. ThenA and B are given by
Summarizing the above argument, we establish the following

=PX1Xs-- X1, (171, L2y s L1, IL)

A= (S +1) 7, B=c(IL+e53L) .

Theorem 13:The distortion rate regio®, (R*|Xy2) and Fix r > 0, let Ny(r), | € Ay be L i.i.d. Gaussian random vari-
its inner boundD!™ (RE|Sy.) share their boundaries atables with mean 0 and varianeg(1 — e~2"). The covariance
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matrix ¥,y for the random vectoN (r) is given by Proof of Property/B part a) is easy. We omit the detail. Proof
of Property(8 part b) will be given in Section V. Set

1— 6727"
e R (D|Sy:) £ J(D,r")
Let w1 € A be L eigenvalues of the matriXy. and let 1 L
B = Bi(r),1 € Ar, be L eigenvalues of the matrix =3 log | Sy + Ble*! Hﬁl(T)
=1

~ 1 —e2r ~
t —1 - - 1
i <2XL — 1L> A Diog {4 [ 1] 1),

€

[
M=

=1

Using the eigenvalues dfy., §i(r),l € A; can be written RO L(DIZy1) o min J(D. 7).
as ) sum, r>r*(D+tr[B])
Bi(r) = 1 ll _ £ (1 — i) e—%} _ Then we have the following.
€ H H Theorem 14:Assume that the sourc&” and its noisy

. L wL 4 . o X
Let ¢ be a nonnegative number that satisfies versionY”~ = X* 4+ N* are cyclic shift invariant. Then, we

have
L
1 u
S (e - 87 + 87} = D+ u[B), R, 1 (D[Sy1) < Rawm 1 (D|Sy) < B, (D[Sy1).
=1 Proof of this theorem will be stated in Section V. We next
Define examine a necessary and sufficient condition Rﬂ;’m_’L(D
|~y1) to coincide WithRgﬁzn_’L( D|3yw). It is obvious that
&(D,r) 2 H {le=87"" 48"} this condition is equivalent to the condition that the fiioit
=1 J(D,r), r > r* = r*(D + tr[B]), attains the minimum at
The functionw(D, r) has an expression of the so-called water Set
filling solution to the following optimization problem: [min = TN 1, fmax = MAX f11.
1<I<L 1<I<L
L .
&(D,r) = max H&' (37) Let iy € Ar be the largest integer such that,.. = u, and

&ii>1,leNL,

- = letl; = I1(r) € Az be the largest integer such that
11 &i<D+tr[B] "

B, (r) = max Gi(r).

Set 1<I<L
F(D.m 2 11 e2LT|z;YL + B] The following is a basic lemma to derive our necessary
I(Dr) = 28 w(D,r) ’ and sufficient matching condition onRSu)myL(DmyL) =
R, L(DISy2).

_ 1_e=2r N\ '
m(r) 2 tr |A7T <Z)_(1L + -c IL> tA—1

€

Lemma 6: The function.J (D, ), r € [r*(D + tr[B]), o)
attains the minimum at = r* if and only if
By definition we have

1/d -
| —=J(D
i L 2 ( T_( 7T)>r-r*
T‘—(T) = . (38) 2r* | 2r" € € 2r* €
=1 ) fze e ] - () [ ]
- 2
Since w(r) is a monotone decreasing function of there I=1 {eQT* -1+ ﬁ}
exists a uniquer such thatr(r) = D + tr[B], we denote - ! (39)
it by *(D+ tr[B]). We can show tha(D,r) satisfies the —
following property. Proof of Lemmd_b will be given in Section V. Note that for
Property 8: anyl € Ar, we have
a) ForD > 0, . . -
) le |:627" -1 4 i:| _ (1 _ i) |:62r — 14+ i:|
(r,r,---,r) € BL(A™', D + tr[B]) i Hy Ky
— o o € € o €
L >e e’ -1+ ——(1-—)|e" =14 —
& 7(r) < D+ tr[B] & r >r*(D + tr[B]), Hio Pty Pty
-1 1 1
. . T P B >e| ———). (40)
O(D,r*) = A7 |5 + fIL . Hiy M1y

o . . From [39) in Lemmd&J6 and_(#0), we can see that [, is a
b) The functions(D, ) is a convex function of € [r*(D+  sufficient matching condition foR(). , (D [Sy1) = R, | (
tr[B]), 00). D|Sy1). Let i be the second largest eigenvaluessf. and
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b — .
%e‘"ﬂ\ /b: a(@La) Furthermore, the curv® = Rgum .(D|Xy ) has the follow

ing parametric form:
SeerB|0(rE) L
1
eeB-(rH N HLreer _
Bi R l1210g{€ [e 1]—!—1},
a —
0 __& 1 __& 0
L v ¢ S _me (W
ll_i.pl_ D:ZB(T)_tr[B]:Z (62r_1)_|_6
2 [V T, =1 "t = M
for r € [s(e), 00).
Fig. 4. The graph ob = a(e*”" — a). Since Dy (€) is a monotone increasing function ef to

choosee arbitrary close tou,,;, is a choice yielding the

best matching condition. Note here that we can not choose
let/ € AL be the largest integer such that= ;. From the ¢ = 4., becauser(r) becomes infinity in this case. Letting
graph ofb = a(e?”” — a) shown in Fig[%, we can see that ¢ arbitrary close toumi, and considering the continuities of
Din(e) and the functions in the right hand side bf1(43) with

1 [1 T . ] < 12 respect toe, we have the following.
2 H Hmax 2 Theorem 16:We suppose that'” is cyclic shift invariant.
or equivalent to If 0 <D < Dih(fmin), then we have
* ! R, 1 (D[Sy1) = Rawm 1 (D|Sy 1) = B, 1 (D[Sy1).
1> [1—e<f+ )} (41)
K Pmax Furthermore, the curv® = Ry, .(D|Xy2) has the follow-

is a necessary and sufficient condition for= ;. Hence [4]1) ing parametric form:

is a sufficient matching condition. Next, we derive another L )
simple matching condition. Note that = Z 5 © {Nmm e 1] + 1},
o o € € o € L
‘ [e b m} (1 /ul) {e b ml] D=Y" 2TMN1“““ , for 7 € [s(pmin), 00).
2r* 2r* € 1 2r* =1 lul <o + Mmm
>e [e -1+ — Ze ]
Hrmax Let 17 2 (1,1,---,1) be aL dimensional vector whose
= §62r* {e%* -1 1 (1 _ 4 )] ) L components are all 1. We consider the characterization
4 3 Hmax of Reum (D - 1£]2y1). From Theoreni16, we obtain the

following corollary.

Hence, if we have I : o
Corollary 6: Suppose thal"* is cyclic shift invariant. If

. 1 4 0 < D < 1D (pmin), then we have
e —1> = (1 i ) , (42) == th (Hmin)
e R}, (D 1%[Sy)
then the condition[{39) holds. Fere (0, pimin), define = Ry (D-15[Sy0) = RéEL L(D-15[Zy0).
1 1 1 + - R. L
s(e) A Slogdl+mind [1—e(=+ 7 Furthgrmore, the _curveR . Roum, (D - 1%|Ey1) has the
2 B Hmax following parametric form:

1 . 4e 1T L Ml oo
g _,LLmax . Rzgilog{ﬂmin [e _1}—’_1}’

Then the condition[(41) ol [(42) is equivalent & > s(e). L fmin
Furthermore, this condition is equivalent@o< D < Dy (e), -1 Z 112" , for 7 € [s(pmin), 00).

- 1 min

where s

Dun(€ Z ﬁl p [e25©) —1] + ¢ $(timin) = 0 and Dy, (0) = tr[Xyc]. This implies thatR =

Rsum,(D-1%|Sy1) is determined for ald < D < +tr[Sy.].

Summarizing the above argument we have the following. Wagneret al. [11] determinedR = Rsym (D - 1%|Sy2) in a

Theorem 15:We suppose that™” is cyclic shift invariant. special case wher8y . satisfiegXy.]; = o forl € A;, and
Fix € € (0, ftmin) arbitrary. If0 < D < Dy, (e), then we have [Syr]y = co?,0 < e < 1forl#1" € Ar. In this special case

Yy has two distinct eigenvaules. Hence our result includes

(D|Xyr). their result as a special case.

Here we consider the case whexrg.. has at most two
€ eigenvalues. In this case we hajie= ji,i,. Then we have

Mh

=1

1
Riu)m,L

(D|Syx) = Reum.(D|Syr) = R

sum, L
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Yang and Xiong|[[2b] determine®, (D - 142y 2) in Proof: For eachl € Ay — S, we chooséV; so that it takes a
the case wher&y . has two distinct eigenvalues. Wargal. constant value. In this case we ha\f@) =0forle A —S.
[12] determinedRsum. 1. (D-1%|3y1) for another case dfy-..  Then by Lemm&ls, for any € Ak, we have
The class of information sources satisfying the cyclic tshif W(Z | ZE5 W s)
invariant property is different from the class of infornuati RI< R TS

sources investigated by Yang and Xiohgl[25] and Wahal.

—1
n t 1 t
[12] although we have some overlap between them. = 9 log 4 (2me) [Q (EXK + AE Ns(r (n))A> Q} -(46)
kk

We choose an orthogonal matrix € O so that
V. PROOFS OF THERESULTS

- t 1 t
A. Derivation of the Outer Bounds Q (E L AE Ns(r <">)A> Q
In this subsection we prove the results on outer bounds lsécomes the following diagonal matrix:
the rate distortion region. We first state two important leamsm O
which are mathematical cores of the converse coding theorem A1
Forl e Ay, set . . . A2
. Q ZXK + AEN - (n)) Q= ) . (47)
A n) A .
Wi = oY), r" = —1(Y ;3 W XK. (44) 0
" A
K
ForQ € O, setzX 2 QXX. For Then we have the following chain of inequalities:
K
we set W h(X) — h(Z5|Ws) < H(X") = S (2] 25 Ws)
k=1
Z" 2 QXN = (QX"(1),QX¥(2), -, QX" (n)). o

)
T A < 5 log [(2me)" [xx |
Furthermore, forX = (X%(1), X%¥(2), ---, X%(n)), we

K
set n 1 - t 1 t
A +3-gon{ 5 [o(Z + 4 a) )}
o —

o x" 2 (QXK(1),QXK(2),---, QXK (n)),

K
(c) n n
We have the following two lemmas. = 5 log [T+ > 5 log A
Lemma 7:For anyk € Ax and any@ € O, we have k=1
n n
~ ~ K = —10g|EXK|+—10g E_K +tAE_ (n) A‘
WZy| ZGgW") <h(Zk — Zi | 20y — Zyy) 2 2 Ns(r§”)
_1 -1 on _
< glog{(%re) {Q (%E;I&XK) tQ} }, T2 log |1+ Yrct Ay Ns(r (”))A '
Mk Step (a) follows from the rotation invariant property of the
whereh(-) stands for the differential entropy. (conditional) differential entropy. Step (b) follows frodg).
Lemma 8:For anyk € Ak and anyQ € Ok, we have  Step (c) follows from[{4l7). u
P We first prove the inclusio® ., (Sq| Lyxyz) € R (24
MZy|ZjyW") |X yxy) stated in Theorer] 3. Using Lemni@d ¥[8l 10 and a
n -1 standard argument on the proof of converse coding theorems,
2 5 log (2me) [Q (EXK + tAE_ (n))A) tQ] we can prove the above inclusion.
i Foe Proof of Ry, (Sa|Sxryr) € R (SalSxryz): We first

Proofs of Lemmakl7 arld 8 will be stated in Appendixes Abserve that

and B, respectively. The following lemma immediately falko We =Ys— X5 5 Vg = Wee (48)
from Lemmagl7 anfl8.
Lemma 9:For any X y«y: and for any(gog 7 cpé"), o hold for any subsefS of Aj. As.sume(Rl,RQ, ( RL)(n)
<p(") »(™), we have RL(Z4|Xxxye). Then, there exists a sequengde;™, »5 ",
b ™ pmyee such that
(%EXK—XK) = EXK + tAE;,j\L( <n>)A lim sup R(n) < R;,l e,
From LemmdB, we obtain the following lemma. lim sup — E k_ sk = Za.
Lemma 10:For anyS C Ay, we have n—oo T -
We set
K, n t Ax—
I(X7;Ws) < 2 log \I 4 %x AZN (r “‘))A (45) = hmsuprl( ) = = limsup — I(YZ,W5|XK) (50)

n—roo n—oo
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For any subsetS C A, we have the following chain of By letting n — oo in (83) and [[(Eb) and taking_(#9) into

inequalities: account, we have for any C Ay
SR > log My > Y H(Wh) > H(Ws| W) ST R > Jg(18al ,rslrse), (57)
les les les les
= (X" Ws|Wse) + HWg|Wse X ) and
@ X Ws W) + 3 H(W XK Sk + AT oA = S0 (58)
les
O (XS Ws W) + 3 HWi XK From (57) and[(B8)R . (Sa[Sxryr) € RE™ (SalSxnys)
= is concluded. |
Proof of Theoreni]4We choose an orthogonal matrixe
(©) K n)
= (X" Ws|Wse) +”Zﬁ , (51) Ok so that
les
t —1 t—1t
where steps (a),(b) and (c) follow fror_{48). We estimate a Qr- (EXK T AZNL(THA) e
lower bound ofI(X*; Wg|Ws.). Observe that N 0
1
(X" Ws|Wse) = IIX™; WE) = I(X ™ Wse). (52) | >
Since an upper bound df{ X g.; Ws.) is derived by Lemma
[0, it suffices to estimate a lower bound KX *; WF). We O aK

have the following chain of inequalities: Then we have
I( X5 WE) = h(XE) — yx®wt —1
( )= h(X ) = MXTIWT) Qr (EXK + tAE;V;(TL)A) Tt

> (XE) — B(XH|1X™) > h(XE) - (XK - XT) 0
n K n —1
> 5 log [(2me)"™ [Sxx|] — 3 log [(271'6) inK XKH @y o
E =
glog 1'4’{' (53) N (59)
EEXK*XK‘ O 1
R3¢
Combining [52), [(BB), and Lemnia]l0, we have
For X, € A(r"), set
(XS Ws|Wse) +n Y™ . L
leS Yq= QU T'Q, &= [Ed} "
_n [Lese® " [Sxx] Since
=3 IS T = T(SLL +tAS L, AT
2 I+ExrtAT! oy A LY k%K ¢ (Exe veen AT
sclTge
- ? - B9, andtr[I'2,'T] < D, we have
" Tege?i” > ol forke A
:§log les . fk_Oék , 10r k € Ag,
ik + AT o Al[ET x| K : 60
[P AR ) ’ noX XN > & =tr[Za] = tr[PzT] < D. (60)
k=1
Note here thaf (X" Ws|Wse)+n>,cq7 Z”) is nonnegative. o .
Hence, we have Furthermore, by Hadamard’s inequality we have
K (n) B K K
IXS WslWse) +n ) [Zal = [P1?Zal < 1172 T (Saliw = 1017 T & (62)
i€S k=1 k=1
(n)|,.(n)
> ndg ( nEXK x5 Ts | Tse ) : (54) Combining [60) and{81), we obtain
Combining [51) and{34), we obtain oI, D,rl) = max 124]
Ed:ZdEflL(rL),
SR > Lo ([5xn gen|r8rE) (55) ulrEaTI<D
K
les
© < |12 max H{k =w(, D,rb).
for S C Az. On the other hand, by Lemma 9, we have Srar>1,kEAK, 100
Zk:l EkSD
t — 1y— 5
EXK + AZ AL (r <">)A - "EXK X (56) The equality holds whelx; is a diagonal matrix. [ |



Proof of Theoreni_14Assume that(Ry, Rs, ---,Rr) € Step (a) follows from[(64). Step (b) follows from {62). Step (
RL(D|ZYL) Then, there exists a sequen({gpgn)7<pg")7 follows from the definition ofSS;. FromY',,, we construct
7(p(L" , 0™} such that an estimationX,, of X,, by X, = AY,,. Then for
(n) j=0,1,---,L —1, we have the following:
lim sup R, " <R le AL
n—00 2X,l\ + 2Nl (r (n) )
5 E <5 S1<D (62) TI(AL) TI(AL)
msup Yy, vy, =Y %] < Wyt Lyt
for somex,. T (AL) Noiap)(Tia,))
, () () Y1y ) ©ig-1
F(()r) eachj = 0,1,---,L — 1, we use(gaTj(l),<ij(2),~-~, SIS U SR Xa, X i,
<pT’]‘(L)) for the encoding of Y1,Y2,---,Y ). Forl € Ap B [~ (1 ) )t ~ }*
and forj =0,1,---,L — 1, set =4 nEYAL*YmAL) A+ X, v, (66)
N ( ) )é 1 . I Steps (a) and (c) follow from the cyclic shift invariant pesty
Wii = Ta(z)(Yl) = 1Y Wi X7). of X, and X 4, , respectively. Step (b) follows from Lemma
n L L
In particular, 9. From [6), we have
L—-1
TO,l Tl n ( b l| l)’ € AL L 720 XA TJ(AL)( -(,—?R(AL))
Furthermore, set = .
— NS . t A
e = <r(-,’?ﬂ°§-,"2’,---,r§72), for j = 0,1,--,L—1, S I A (v, v, At S m,
—1
(n) é l Z (n) () L—1
r\ = L a -1 1 -
L= = 4 L a2 Ya, Y. iay) A+ Zx v,
By the cyclic shift invariant property oX',, andY,,, we - =0 .
haveforj:01---L—1, ~ 1L*11 -
I = A f : ZEYAL—YTJ'(AL) +B A (67)
Z =3 = (63) L\
LI
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Step (a) follows form that AX* A + Yxy,lva,) " IS cOnvex

Forj=0,1,---,L—1and forl € A, set with respect toX. On the other hand, we have
A A —
Y1 =brw(0ri) (Y1), 07i2)(Y2), s 0riy(YL)), l Z Sy, 3!
: L Xy STONS LGN
Y j=0 Nesap) Triag)
. NI ZE _ 1 &1 —e 2"
Yoo = |. =3x, T ZZT I
R =1
YL @) __, 1_ o2+,
By the cyclic shift invariant property o¥ ,,, we have = EXAL + € L

EY,-Y,;, Yy —Y,u)
=E(Y,0)~Y;.Y. o)~ Y,r)

for (1,I') € A2 and forj =0,1,---,L — 1. For X4 = [dy],
set
. A — | = i
T/ (Ed) = [de (l)‘rj(l')]a d = Z d (Ed)
7=0
Then, we have
1 L—-1
1
hrgsogpf 2 S Y=Y i)
7=0
L—-1
@) 1 1 .
N h,?l_ilip L= nEYT](AL)_YTj(AL)
(b) 1 L—-1 -
< = 77 (Ed) (é) Yd-
L~

(64) (68)

B 1_ e_QT(n)
oL+ <f IL.

Step (a) follows from thal — e~2% is a concave function of
a. Combining [[67) and(88), we obtain

_ 1—e 2™
o (f .

Z A
TJ (Ar)
from which we obtam
1 L—1
1 N
i3 Z w2y, Yiam, T B
J:

-1
(65) A (69)

0
- 1—e2r™
t 4 {z;(;L + <7€

)}
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Next we derive a lower bound of the sum rate part. F@et

eachj = 0,1,---,L — 1, we have the following chain of N b B A ¢ AT -
inequalities: Y= QEd Qa By = QB Q7§l = [Ed + B} I
From and , we have
ST aRM™ > > log My > > H(W;y) [Bi)l [24)
leAL leA leAL & =B (r),l €Ay,
> HWriar)) = 1 XA Wriag)) + HWraay| X ) L - A 75
N I(Ar) L I(Ar) (Ar) L Zflztr [Ed—i—B} — tr[Sy+ B] < D + tr[B]. (75)
- I(XAL? TJ(AL Z H ]l|XAL =1
l€As From m) we have
= I(Xa i Weiay) + Y 1Y A, Wil Xa,) L
leAr =tr[¥y + B <D +tr|B
(b) (n) Z Bl Z: e ] 7]
- I(XAL;WTj(AL))+nLT -
- r*(D + tr[B]). (76)
QO n ‘EXAL h by Hadamard’s i lity we h
> —log + nLr Furthermore, by Hadamard’s mequalty we have
2 iy . L
RK XAL_XTj(AL) ~
S %4+ B| = HEd-i-B]u =1Ia @
1 AXy, "A+Ex,, i, + nLr™ = =t
= —log — — nlr _ .
2 1 Combinin and(47), we obtain
A (;EYALJ”(AL)) YA+ Tx, m, | g [75) and((77)
S, + B Sa+ Bl < = &(D, 78
log ‘ AL +nLr™, (70) [%a | fzﬁzgllal)éAL, H& “(D,r) (78)
iy, 4 B‘ SE & <D+tr[B]
n A=Y
Lo Hence, from[(7R),[(76), and{78), we have
Step (a) follows from[{48). Step (b) follows fror {65). Step L .
(c) follows from [53). From[{70), we have SR> min e[ 1Ey + B
r>r*(D+tr[B]) 2 w(D,r)
(n) _ (n) = i J = R,
Z R Z Z R rZT*%?)l}?tr[B])l(Djr) Rbum,L(D|EYL)7
leAr J 0leAr .
completing the proof. [ |
1 Lill }EYAL +B‘
> — Z— log + Lr™ o
L = 2 1%y, v +B B. Derivation of the Inner Bound
n A i .
" e In this subsection we proVES“)(Ed Xxxyr) C Ri(34
@1 }EYAL T B‘ |¥xxye) stated in Theorerf] 3.
= gloe L) oot of R (2,42 C Ri(S4D Si
1 L—l1 (ml')OO (6] ( d| XKYL) C L( d| XKYL) Ince
T ZEEYAL ¥, T B REM( Ed|EXKyL) c Z%(EAEXKW) is prgx)ed by Theorem
j=0 [, it suffices to showR ;™ (X4|Xxxyr) =R} (XX xxyr)

(in) C
Step (a) follows from that- log |~ + B| is convex with respect to proveR,, (Ed|EXKYL) RL(Ed|EXKYL) We assume

to 3. Letting n — oo in (69) and [71L) and taking(65) into NatR" € R(m) (Z4|Xxxye). Then, there exists nonnegative
account, we have vectorr’ such that

—1
(Bxk +1ATR nyAd) 22

R
Z Rl 2 — lOg —_—_ + L'f‘, (72) a.nd
2 |4+ B
leAr ZR[ > Js(rglrse) forany S C Ay. (79)
N ~ 1—e2r 17t €S
Yy+B= |PAID — )1 A 73 . .
At { { Xa, T ( € ) L} } (73) LetV;,l € Ay be L independent zero mean Gaussian random
tr[Sq + B] = tr[Sq] + tr[B] < D + tr[B]. (74) Vvariables with variance%/l. Define Gaussian random variables
U;,l € A by U; = X; + N; + V,. By definition it is obvious
Now we choose an orthogonal matiix € O, so that that
g X< O Ul 5yl 5 xK
O Us =Yg = XK = Yge — Uge (80)
h for any S C A
~ 1— e—2r ~ 62 y L
Q'A {ExiL + (f) IL} A'Q = . - For givenr, > 0,1 € Ag, chooseo? so thato} =
' ox, /(€ — 1) When r; > 0. Whenr, = 0, we choosel,
O B, so thatU; takes constant value zero. In the above choice the



covariance matrix ofv Lt
linear functionwy of U* by

ltAE 1

§(0%) = (S + AT oy )
SetX’ =y (U) and
dkk = [HXk — Xyl } 1<k<K,

NEL(rL)

Uk,

dow S F [(Xk _ Xk) (Xk, _ Xk)} A<k4kK <K

Let ¥« ¢« be a covariance matrix withy in its (k, k')
element. By simple computations we can show that

P (2)_(
and that for anyS C Ay,

tAEI

NEL(rl)

Js(rs|rse) = [(Ys; Us|Usge).

R (5418 xryr) € RV (SySxryr) is concluded.  m
C. Proofs of the Results on Matching Conditions
We first observe that the condition
-1
[I‘ (Zxk +1AZRL 0)4) tr] <D
is equivalent to
Ko
> —~ < D. (83)
o o)
Proof of Lemmdl3let Ax = {1,2,---, K} and letS C

Ak be a set of integers that satisfiaa;1 > £ in the definition

At <%y,

of (T, D, r*). Then,d(T', D, r*) is computed as

0T, D,r")

_ 1
T (K—[spE-IST (H
JjES

1

Qj

Fix [ € Ay arbitrarily and set¥; e 2r;—

)

D-Y —

kes

Qg

(81)

(82)
From [80) and[(81), we hav&'” € G(X4). Thus, from [8R)

K—|5]
1 )

log (', D, r%).

Computing the partial derivative oF; by r;, we obtain

or = or a; D Zaik a?
kesS
(a) 0 1 K-S 1
> (ﬁ> — | |1 — | +2
jes N9/ | % Z ar Y
L kEANk—S
(o)1 ] .
jes I _ij ij
(b) (80@) -a7 Olmax ox,e”" i
S\ o of llau|?
> <%> UJQVzezm _ Qmax ( 1
B jes 6” L ||a’l||2 a5 Gmax
2 .27
IN© Omax 1 1
> L — —
N [ ||dl||2 Gmin (amax amin)] Z
Jes

(

or,

&> (84)
l
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+VE becomes: . (,.y. Define the Step (a) follows from the following inequality which is egui

alent to [83):
1
D — -
,; a(rt)
Step (b) follows from LemmA]2. Hence, Hy {84) and Lemma
@, 57 is nonnegative if
- >0,
[lau[? < )
completing the proof. |
Proof of Lemmd14: Without loss of generality we may

assumek = 1. For Te Ok(ay, k), the matrixC*(T 1T, r;)
has the form:

2 627"1 1 1

amax

min Qmin Qmax

(T T n el 1T)
cHriT,r 11 ,
) l |O22 'T)
where C3,(I'~!T) is a ( x (K — 1) matrix with
i (D717, (K, k’) € (AK — {1})2 in its (k,k") ele-
ment. SinceC*(T~'T,r;) =< af,..(r)Ikx, we must have
C3,(P7'T) = o (1) Ic—1. Then we have
(7T, m)| ety (D71
C*T T, ) < | 11 85
( Tl) - th[ ](F 1T) (TI)IK 1 ( )

Let A be the minimum eigenvalue of the matrix in the right
hand side of[(85). Then, by (B5), we haxe> o, (r;) and
A satisfies the following:

(/\ - CTI(F71T7 Tl))(/\ - O‘mdx(”))
—|leiy (@ ~1T)|)? = 0. (86)
From [86), we have
e} (01T) P2
amax(m) )\

_ ey, (0
: a:;aXm) )
e (012

O‘;knax — Omin (TL)

(DT ) = A+

)7

> ay,

min

2 Q'min (TL) +

)

completing the proof. |
Next we prove Theoreni$ 5 ahH 6. For simplicity of notation
we set

Ly A 1 I\ A 1 Lo 1
= b fnd fnd
= e ) e T i
Then the condition[{6) in Lemnid 3 is rewritten as
L 0.2 627"1
a(rt [_a(r ) - 1} < A . 87
U6 T Tadp &0

Proof of Theorenid5For (I,k) € Ar x Ak, we choose
T € Ok(ay, k). By Lemma%, we have

2 a(ri)b*|| et |17
> [XZ - ]

1 —
a(rl)

2
oN,©

[lau[?

-1
a(rl) — b* ] - (89
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It follows from (87), [88), and Lemmnid 3 that if for aye A, Proof of Theoreni]6: The inequality [B) in Lemmal3 is

there existk € Ax andT € Ok(a;, k) such that rewritten as
_ L
o) [ ] < [y a<rL>b*ch[km2] 1 alr) = b < e .
b(rk) = | a(rl) a(rl) — b*
(89) From [93), we can see that if we have
holds forr® € B(T', D), then (', D,r’) satisfies the MD a(rh)
condition onB( T, D). Since the left hand side df{B9) is a [a(r") - b(TL)]W <7 (95)

monotone decreasing function bfr*) andb(r’) > b*,
on BL(T', D), thend(T', D, r*) satisfies the MD condition on

* * -1
o) [a(TL) B 1} _ l . 1 a(r*)b ||Ck[k]||2] B (I, D). On the other hand, fronfi.{B3), we obtain

* Xk — - *
b k CL(TL) CL(TL) —-b (@0) a(’I’L) <D- (K- l)b(TL). (96)
implies [89). Observe thaf (P0) is equivalent to Under [98), we have
a(rt) . 1 G(TL)b*”CZ[k]H alrlY — b(rE a(r’)
ar) [ b 1} ' le Ca(rl) a(rk) bt =1 [ar™) =b(r)] (rt)
oL D — (K — 1)b(r")
o (02 1) i - -l <0 @) < [D - Kbt =0

Hence the following is a sufficient condition fdr {95) to hold
D — (K — 1)b(rF)
b(rk)
Solving [97) with respect td, we obtain

Solving [@1) with respect ta(r”), we have

* 1 ok _ L
NP .l L S [D — Kb(r")]
Xk — ||Ck[k]|| Xp —b ||Ck[k]||
1_|_ b* 2 C* 2
= b+ *( 1”*’“““]”2. (92)
Xp —b ||Ck[k]||
On the other hand, by (83), we have

a(r*) <D — (K —1)b(r*) < D — (K — 1)b*. (93) function of b(r*) and b(r®) > 1/aj,,. by Lemmal2, the

<7 (97)

D < Kb(rt) + % [\/bz(rL) + 47*b(rL) — b(rL)} . (98)

] condition
Then we have the following. I 1
1+ ()2 eq |12 D5 ot g {VIFda - 1
D S Kb* + * - *k[k] - max max
Xp —b ||Ck[k]|| is a sufficient condition for{(35) to hold. [ |
1+ (b*)?||c;;[k]||2 Next, we prove Lemm@l6. To prove this lemma we prepare

& D—(K—-1)b" <b +

a lemma shown below.

*_ p* * 2 -
Xk €5 Lemma 11:A necessary and sufficient condition fok(

= (92 holds under(@3). D,r) to take the maximum at = r* is
= (@2 holds forrt € B(I, D). d
&< (@0 holds forrl € B(I', D). (51(&7“)) > 0.

= (89 holds forr* € B(T', D).

. H . . ~ é ~
Hence, if for anyl € Ay, there existh € Ax andT € Ox( Proof: For simplicity of notation we seff(r) = J(D ,r).
a;, k) such that Suppose that
1y B
dJ(r)
1 4 NCw @ DI <7> > 0. (99)
D < K 4 (ohax)? -
- * * —1 29 -
fmax X (TTIT) - w Under [99), we assume thd{r) does not take the minimum

max

. o N atr = r*. Then there exists > 0 and# > r* such that
then ¢(I', D, r~) satisfies the MD condition olS.( I', D). j(7) < J(r*) —¢. SinceJ(r) is a convex function of > r*,

Thus, by Lemmall, we have
D<= (e 4+ (L= 7)) < 7 (F) + (1= 7))
Cf‘”" 1y e ST =)+ (=)L) =_i<r*> — e (100)
+}Q}\2 max e IIIZZXW(P“T)\P for any T € (0, 1]. From [I00), we obtain
reon(anr Xp(I1T) — —F—

T S0t 7 —rt) = I (101)

is a sufficient matching condition. [ | (7 — r*) =

Since the right hand side of (98) is a monotone increasing



for any 7 € (0,1]. By letting 7 — 0 in (Z01), we have

dJ(r)
dr -

which contradicts [[99). Hence unddr{99j(r) takes the
minimum atr = r*. It is obvious that wher(—dﬁ([)) <0,

J(r) does not take the minimum at=r*. [ |

Proof of Lemmdl6We first derive expression af(D,r)
using 8; = Bi(r), I € Ar in a neighborhood of = r*. Let
S(r)={l: Bi(r) < B, (r)}. By definition,L —|S(r)| is equal
to the multiplicity of the3;, (). In particular, forr = r*, we
have

<———7
r—r*

T=r

1 1
B ~ Iojse \ P 2

leS(r>

N
) Bi(r*)
(102)

Sinces;(r),l € Ay, are strictly monotone increasing function
of r, there exists small positive numbérsuch that for any

r € [r*,r* +0), we have
S(r) =S,
1 - 1

Bu(r) ~ L—1S(r)]

D +tr[B] — Z %

lesS(r)

< for k¢ S(r*).

L
Br(r)

The functionw(D, r),r € [r*,r* + §) is computed as

1
o(D,r) = { 11
’ (T=TSG) NS
1eS(r) Bilr)
L=|S(r)]
1
x [ D+t[B] - > )

leS(r*)
In the following we use the simple notatiorts and S for
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e2r” [eQT*— 1+ i} — (1 — L) [62’”*— 1+ L}

M Hiy Hiy

L
=1

> 0.

2 € 2
r* _€
{e 1—|—m}

Step (a) follows from[(102).

VI. CONCLUSION

We have considered the distributed source coding of cor-
related Gaussian sourcé$,! € Ay which are L observa-
tions of K remote sources\,,k € Ax. We have studied
the remote source coding problem where the decoder wish
to reconstructX® and have derived explicit outer bounds
R, DE|Sxrye) and R (T, D|Syryr) of Ri(

I, DYYxxyr) and Rz (T, D|X xxy 1), respectively. Those
outer bounds are described in a form of positive semi definite
programming. On the outer bouﬂd(L"“t)(F,DmxxyL), we
have shown that it has a form of the water filling solution.
Using this form, we have derived two different matching
conditions forR ™ ( I, D|Sxxy+) to coincide with R (

[, D|Sxryr).

In the case ofK = L,A = I;, we have considered
the multiterminal source coding problem where the decoder
wishes to reconstruct’* = X' + NI, Using the strong
relation between the remote source coding problem and
the multiterminal source coding problem, we have obtained
the outer bound® ™" (T, DX|$y2) andR\™"(T', D|Sy2),
of R.([,DL|2y ) and R (T, D|Sy.), respectively. Fur-
thermore, using this relation, we have obtained the match-
ing condition fOrR(L?Ut)(F,D|EyL) to coincide with R (

[, D|Syz).

In the remote source coding problem, finding an explicit
condition forR(L(’“t)(F,DHEXKW) to be tight is left to us
as a future work. Similarly, in the multiterminal source oad
problem, finding an explicit condition de(L‘”“)(F, DY |2y 1)

B,(r*) and S(r*), respectively. Computing the derivative ofl® be tight is also left to us as a future work. To investigate

J (D,r) atr = r*, we obtain

: (%i(m))

r=r*

1 < 6)2 1 L—19] 1
= 5= L——) |z - = |tL
ee?r ; w) | B Dy ulB) =Y LA
les
2
(@ 1 < e) {1 ﬁzl}
= - 1—— ——=|+L
ee?” ZGZS w) B B}
L 2
1 € 1 Bl}
= 1——) |[=—=—22+L
ee?” §< Ml) {51 B
€ 2r* €
:i (1) [ -1+ ]
=1 {eQT* -1+ ir
Hi
_ € 2r* _€_
_(1 ’“1)[6 1+“11] +

2
-

those problems we must examine the solutions to the problems
of positive semi definite programming describing those two
outer bounds. Those analysis are rather mathematicalgmsbl

in the field of convex optimization.

APPENDIX
Proof of Property(B part b)Since
- 1
J(D,r)=Lr —logw(D,r) + 5 log|Xy: + B|,

it suffices to prove the concavity dbgw(D, r) with respect
to r > r*. We first observe thdbgw(D, r) has the following
expression:

L
> log&

=1

logw(D,r) = max
Zlel & <D+tr[B],

&iPu(r)>1

For eachj € {1,2}, let §l(j),l = 1,2,-,L be L positive
numbers that attaifog@(D,r0)). Let t,t, be a pair of



nonnegative numbers such that+ ¢t = 1. Then we have
t1log (D, M) + tylog@(D, r?))
L
= Z (t1 1og§§1) + tolog {i(?))
=1

(a) &

<) log
=1

Step (a) follows from the concavity of the logarithm funciso
Since

(e +ta5). (103)

i€ e?"

w—emle?r — 1]+ ¢
L€ i€
w—e e —1]+e€

{Bu(r)}~

{Bi(r)}~* is a convex function of- > r*. Then we have

ng + 106 > 6 {0} + )}

> {Bi(trrD + tor@H}—1 (104)

forl=1,2,---, L. Furthermore, we have

] =

L L
(he + 126 ) =t > V40> ¢ < D. (105)
=1

=1 =1

From [10%), [(I0b), and the definition tfg (D, r), we have

L
Zlog (tlél(l) + t2€l(2)) <logw (D,m{” + t27’§2)) .
=1

(106)
From [103) and[{106), we have
t1log@(D, M) + tylog (D, r?)
<logw (D,m{” + t2r§2)) ,
completing the proof. [ |

A. Proof of Lemm&l7
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Expression ofF(X|Q) using the above density functions is
the following.

Fu(ZIQ) = sup  h(ZklZ)
PRK | xK*
Ygk 3%
= sup _—/QZK(ZK)IquZk\ZK (Zk|Z[Kk])dZK
Pl (K]
Yirk 3%
UK
~ sup —/QZK(ZK) log qui(ZK)de.
PxK|xK: qzﬁ]zw]
Yir 3%

The following two properties oty (X|Q) are useful for the
proof of Lemmd.
Lemma 12:F,(X]Q) is concave with respect ta.
Lemma 13:

Fi(31Q) = 5 log { (2me) [@2 @), }.

We first prove Lemm@&l7 using those two lemmas and next
prove Lemma§ 12 arld 113.

Proof of Lemm&]7We have the following chain of inequal-
ities:
~ K

WZi| ZEWE) < WZy - Zi | 2] - Zyy)

< STh(Zult) - Zult) | ZE () — Ziy(1)

{(%e) (3 xr) Q) kk} .

Step (a) follows from the definition of’(X|Q). Step (b)
follows from LemmaIR. Step (c) follows from Lemnha]13.
[ |

Proof of Lemm&_JI2For given covariance matrices(®)

In this appendix we prove Lemnfa 7. To prove this lemmand £V, let pﬁ?L'XK and pginK be conditional densities

we need some preparations. Foe A i and forQe Ok, set

A . .
Fip(2]Q) = sup  h(Zk — Z|Zly — Zfy).

PYK|xK:
YyKk_xx 3%

To computeF(X|Q), define two random variables by
XKL xK_XK 7KL gK_ 7K

Note that by definition we have’® = QX Let pyx gx

(2%, z%) be a density function of X, X¥). Let ¢ x 7«

(2K, 25) be a density function of Z*, ZK) induced by the
orthogonal matrix@, that is,

~ A ~
7k 7K (ZKv ZK) = PigzrrQzK (tQZKa tQZK)-

achievingF, (2(©|Q) and Fi,(2(M]Q), respectively. Fop <
a < 1, define a conditional density parameterized witlpy

(@) (0) €]

pj(K|XK:(1_O‘)pXK|XK XK XK

+ ap

(@)

XEKEXK

Let p be a density function of X, X¥) defined by

(pg;)(‘xl(, pg?;)(). Let ng;‘) be a covariance matrix computed

from the densitwg?f)(. Since

(@)

0 1
) )

:(1_%ﬂp§K<+OpXK7

we have

(107)



Let¢'®) . be a density function ofZ%, ZX) induced by the

ZKZ . .
orthogonal matrix@, that is,

a K\ A (« ~
q(ZIQZK (ZKv ZK) = pEQ)ZKtQZK (tQZKu tQZK)'

By definition it is obvious that

[e% 0 1
q(Zﬁ =(1- a)q(Zi + aq(Zi-

Then we have
(1-a)Fe(29Q) + aF(2M|Q)
(0) (ZK)

_ 0) (K Uzx
= _(1_04)/QZK(Z )IOgW
LN

4K
[K]

1) (LK

(1) K QZK(Z )
—a [ gz (2 )1og7(1)
(=fy)

dzK
i,

) g5 (%)
& () (=)
Zh

= _/q(ZOQ(ZK) 1qu(2i)|25,§] (Zk|Z{,§])dZK

(b)
< F, ((1 —a)x® 4 042(1)‘ Q) .

d="

INE
|
N’Q
S
> Q
—~
N

x
S~—

27

Step (a) follows from the fact thaj;, and q(Z(i) yield the

same moments of the quadratic foﬂngq(ZGL). Step (b) is a
well known formula on the determinant of matrix. Step (c)
follows from X ¢, < ¥. Thus

Fi(2|Q) < %log {(2we) [QE7Q] Zkl}

is concluded. Reverse inequality holds by letting y« be
Gaussian with covariance matrix u

B. Proof of Lemm&]8

In this appendix we prove Lemrhi& 8. We write an orthogonal
matrix Q € Ok as Q = [qxx’], Where gxr Stands for the
(k, k") element of@. The orthogonal matrixQ transforms
XK into ZK= QXX SetQ = Q'A and letgy; be the(k, 1)
element of Q*A. The following lemma states an important
property on the distribution of Gaussian random vectdr.

Step (a) follows from log sum inequality. Step (b) followsrhis lemma is a basis of the proof of Lemifa 8.

from the definition ofF} (X]Q) and [107).
Proof of Lemma& I3Let

FoUe - p— P
(2me)z | ;x|
and let @ &
0, alelly) = 25
(k] 455 (Z[Izﬁ])

be a conditional density function induced bﬁ)(-). We first

observe that

97,12 (261205

K
/qZK(Z J1og 75

= dz% > 0.
9 21, (2171

From [108), we have the following chain of inequalities:

MZIZ45) = = [ 4z () o8z, (an A"

IN

G
qZK(zK)logq(Zku{;](zﬂz[Kk])de
@, K
Uy (27)
K ZK
qzx(27)log -5
S (=)

dzE
iz
(@)

/
/
_ / 47 () 1og ') (%)= "
/
/
/

qzx (27)log 9z, ln

g5 (") log g7 (%) d=

G G
g5 (%) log q(Z[K:] (2adz"

Lemma 14:For anyk € Ak, we have the following.

L .

1 1 .

Zk:—— E ka/Zk'+_ E q—];l}/l—i-Nk, (109)
Jkk K2k Ik 1= ON,

where
L

~2
- q

gk = [QEX" Q] + ) 55, (110)
=1 7N

vee, k' € Ag — {k} are suitable constants anid, is a zero
mean Gaussian random variables with variagieke For each
k € Ak, Ny is independent o, k' € A —{k} andY},l €

Ar.
Proof: Without loss of generality we may assurhe= 1.
SinceYt = AXE + NE, we have

soeo [ Bxx YyxtA
xRy AY yx AV A+ Ty
SinceZ¥ = QXX, we have

o _[eExst@ Quykta
zrY tAEthQ AZXKtA+ENL ’

The density functiompzxy: (25, y*) of (ZX,YF) is given
by
pZKYL(ZKayL)
1 Lty L sl [ZK}
o 2 2Ky L | L

Yy
(2me) 5" |Sgncye|?

)

wherezg}(w has the following form:
g1 _ [Q(Sk + AT A)'Q QAN L
2 —SyeAQ Syeo 1
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For (k, k') € A% andl € Ak, set is a zero mean Gaussian random variable with varlariee
and is independent di’K andY . This completes the proof

Vik! = [Q(EXk + " ASTL A)tQ] k! of LemmalT4%. [ |
[Qz‘l . Z leCIk/l _ The _foIIowmgs are two variants of the entropy power
kk, (111) inequality.
=1 Nl Lemma 15:Let U;,7 = 1,2,3 be n dimensional random
2 _1otan-t] — _ 4k vectors with densities and It be a random variable taking
Bri [Q NL} 2 . - S
onN, values in a finite set. We assume tHdt is independent of

Now, we consider the following partition ot Uy, Uz, andT. Then, we have

ZKYL
1 (2h(U24Us|UT) » 1 2h(U2|ULT) 2h(Us)
2_ Q(EX}( —l—tAE A) Q QtAZ 27rce — 27rce + 2 e
ZKyr = -y AtQ Yy L Lemma 16:Let U,, i = 1,2,3 be n random vectors with

g11[tgro densities. LetT},75 be random variables taking values in
B [912 G22:| ’

finite sets. We assume that those five random variables form

a Markov chain(Ty,U;) — Uz — (T,Us) in this order.
where g1, g12, and G2 are scalar/k + L — 1 dimensional Then, we have

column vector, and K + L — 1) x(K + L — 1) matrix, | MU AU U T T)

respectively. It is obvious from the above partitionx)giw 27e
that we have > ﬁe%h(Ul\UsTl) + ﬁe%h(Uz\Ust),
L -
- Proof of Lemm&lI8By LemmalI#, we have
gn =vu = [QELQ], + ) 3t ’
~ oy, (112) G
g2 =t [v12- - ik Piifra- - Bur] - Zy = _gﬂ ;kvkkfzk/ + g_ Z TZYl + Ny, (116)

It is well known thatX}}

iy has the following expression:

where N, is a vector ofn independent copies of zero mean

S T {911 912] Gaussian random variables with variang%. For eachk €
ZEYE T g12] G2 Ak, Ny is independent oz, k' € Ax —{k} andY,l €
B { 1|t 012] {g11| t012 ] Ar. Set
- 1 012|Gag — — 1
gi1 912| L-1 1i| 212t (]11 912912 h(n) 4 h(Zk|Z k] )
711 J12
” {012 1[171 } : Furthermore, fol € Ay, deflne
Set q

L
Slé{lvl—i_lv"'aL}?\Pl \Ijl YSL ézq

B \

. A 1 1
Ny = [21|t2{1<]tyL] [—1—_912} =z1+ . {tZ[IﬁtyL} g12.

. (113) Applying LemmalTh (ol[116), we have
2h(™)
Then, we have e > 1 1 %h(q,1|z[z§]7WL)+L' 117)
21 2me (grr)? 2me Tk

K

~ t _—
(AR e {yL} = [z1] le(tyL] {%’gf;ﬂ Z[If] On the quantityy (¥4 |z k],WL) in the right member of(117),
' yt we have the following chain of equalities:

o T h(W | Z {5, W)
— fn el [l Y N
012|G22 — 2=g12'g12 - = I(Uy; XK Z 0, WF) + h(I | X5, Z, WF)
Y
(a) K L K 7L
From [I11){IIB), we have = 1 ZR|Z (), WE) + h(| X5, W)
L& L = I(¥y; Zk|Zk],WL) + h(T | X, W)
e DI R DL = MZi| Z [y, WF) = h(Zk| V1, Zfyy, W")
7 . Fh(T | X5 W
1 1 b
=zt — > vz — ™ DLy @5 Y aht —h(zyw, Z{) + h(T | XE W)
1 N
= = nh™ = Zlog [2me(gr) ] + h(W | XK W) (118)
It can be seen froni(114) and (115) that the random variable 2
N, defined by Step (a) follows from thatZ® can be obtained fromX

by the invertible matrixQ. Step (b) follows from the Markov

L L
1 1 .

N, 27+ Sz -—Y 4 qu Y, chain p . .
911 j=2 g = GNL Zk—>(\Ifl,Z[k])—>Y — W=,



From [1I8), we have

2 () (1]
ﬁe%mng]ww _ e27Te g - o RROIXE W),
(119) 2

2me
Substituting [(TI9) into[(117), we obtain

eZh(") e2h(") 1 1 S 1 3]
> O RmIXEWh L (120)
27e 2re grr 2me Jkk [4]

Solving [120) with respect té— we obtain

2me !

(5]
th(n) 1

—1
gkk——enh@l')‘“vWﬂ S @) @
2me

2me

Next, we evaluate a lower bound ef"(¥11X™.W") Note
that for! = 1,2,---, L — 1 we have the following Markov
chain:

(7]

[8]
(Wspar, ©141(Ys,,,)) = X5 — (Wl, %Y;) . (122) o
Ny

Based on[{122), we apply Lemrial16 o-c= (ViIX™.W")  [10]
fori=1,2,---,L—1.Then, forl=1,2,---,L—1, we have
the following chains of inequalities : [11]

1
graet Y [12]
_ Le%h<\I’l+1+%yl’XK,WSL+1,WZ> [13]
2me
2 Al K
> Le%h(‘I’Hl‘XK’WSzH) + Le h( NZY ’X Wl) 1l
— 27e 2me 15
. [15]
—27‘ "
_ L (vl we ) g @ (123) (6]
2me Nz
Using [I23B) iteratively fori = 1,2,---, L — 1, we have (K —
L 2h(wx<wh) > qu o2 (124) (18]
ome’ P Kl o,
[19]
Combining [11ID),[(121), and_(1R4), we have
_ [20]
e?h(") i I 1— e—2rl(") !
e = [Q¥ ke kk""qu
N, [21]
-1
= |Q (E K +tA% ! (n) A) tQ:| )
{ X Nap (rap) kk [22]
completing the proof. |
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