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Distributed Source Coding of Correlated Gaussian
Sources
Yasutada Oohama

Abstract—We consider the distributed source coding system
of L correlated Gaussian sourcesYl, l = 1, 2, · · · , L which
are noisy observations of correlated Gaussian remote sources
Xk, k = 1, 2, · · · ,K. We assume thatY L = t(Y1, Y2, · · · , YL) is
an observation of the source vectorXK = t(X1, X2, · · · , XK),
having the form Y L = AXK+NL, whereA is aL×K matrix and
NL = t(N1, N2, · · · , NL) is a vector of L independent Gaussian
random variables also independent ofXK . In this system L
correlated Gaussian observations are separately compressed by
L encoders and sent to the information processing center. We
study the remote source coding problem where the decoder at
the center attempts to reconstruct the remote sourceXK . We
consider three distortion criteria based on the covariancematrix
of the estimation error on XK . For each of those three criteria
we derive explicit inner and outer bounds of the rate distortion
region. Next, in the case ofK = L and A = IL, we study the
multiterminal source coding problem where the decoder wishes
to reconstruct the observation Y L = XL + NL. To investigate
this problem we shall establish a result which provides a strong
connection between the remote source coding problem and the
multiterminal source coding problem. Using this result, wedrive
several new partial solutions to the multiterminal source coding
problem.

Index Terms—Multiterminal source coding, rate distortion
region, CEO problem.

I. I NTRODUCTION

Distributed source coding systems of correlated informa-
tion sources are a form of communication system which is
significant from both theoretical and practical points of view
in multi-user source networks. The first fundamental theory
in those coding systems was established by Slepian and Wolf
[1]. They considered a distributed source coding system of
two correlated information sources. Those two sources are
separately encoded and sent to a single destination, where
the decoder wishes to decode the original sources. In the
above distributed source coding systems we can consider a
situation where the source outputs should be reconstructed
with average distortions smaller than prescribed levels. This
situation yields a kind of multiterminal rate distortion theory in
the framework of distributed source coding. The rate distortion
region is defined by the set of all rate vectors for which
the source outputs are reconstructed with average distortions
smaller than prescribed levels. The determination problemof
the rate distortion region is often called the multiterminal
source coding problem.

The multiterminal source coding problem was intensively
studied by [2]-[12]. Wagner and Anantharam [10] gave a new
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method to evaluate an outer bound of the rate distortion region.
Wagneret al. [11] gave a complete solution to this problem
in the case of Gaussian information sources and quadratic
distortion by proving that the sum rate part of the inner bound
of Berger [4] and Tung [5] is optimal. Wanget al. [12] gave a
new alternative proof of the sum rate part optimality. In spite of
a recent progress made by those three works, the multiterminal
source coding problem still largely remains open.

As a practical situation of the distributed source coding
system, we can consider a case where the distributed encoders
can not directly access the source outputs but can access
their noisy observations. This situation was first studied by
Yamamoto and Ito [13]. They call the investigated coding
system the communication system with a remote source.
Subsequently, a similar distributed source coding system was
studied by Flynn and Gray [14].

In this paper we consider the distributed source coding
system ofL correlated Gaussian sourcesYl, l = 1, 2, · · · , L
which are noisy observations ofXk, k = 1, 2, · · · ,K. We
assume thatY L = t(Y1, Y2, · · · , YL) is an observation of
the source vectorXK = t(X1, X2, · · · , XK), having the
form Y L = AXK + NL , whereA is a L × K matrix and
NL = t(N1, N2, · · · , NL) is a vector ofL independent Gaus-
sian random variables also independent ofXK . In this system
L correlated Gaussian observations are separately compressed
by L encoders and sent to the information processing center.
We study the remote source coding problem where the decoder
at the center attempts to reconstruct the remote sourceXK .

We consider three distortion criteria based on the covari-
ance matrix of the average estimation error onXK . The
first criterion is called the distortion matrix criterion, where
the estimation error must not exceed an arbitrary prescribed
covariance matrix in the meaning of positive semi definite.
The second criterion is called the vector distortion criterion,
where for a fixed positive vectorDK = (D1, D2, · · · , DK)
and for eachk = 1, 2, · · · ,K, the diagonal(k, k) element
of the covariance matrix is upper bounded byDk. The third
criterion is called the sum distortion criterion, where thetrace
of the covariance matrix must not exceed a prescribed positive
levelD. For each distortion criterion the rate distortion region
is defined by a set of all rates vectors for which the estimation
error does not exceed an arbitrary prescribed distortion level.

For the first distortion criterion, i.e., the distortion matrix
criterion we derive explicit inner and outer bounds of the
rate distortion region. Those two bounds have a form of
positive semi definite programming with respect to covariance
matrices. Using this results, for each of the second and third
distortion criteria we derive explicit inner and outer bounds
of the rate distortion region. In the case of vector distortion
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criterion our outer bound includes that of Oohama [22] as a
special case by lettingK = L andA = IL. In the case of sum
distortion criterion we derive more explicit outer bound ofthe
rate distortion region having a form of water filling solution.
In this case we further show that if the prescribed distortion
level D does not exceed a certain threshold, the inner and
outer bounds match and derive two different thresholds. The
first threshold improves the threshold obtained by Oohama
[23],[24] in the case ofK = L,A = IL. The second threshold
improves the first one for some cases but neither subsumes the
other.

WhenK = 1, the distributed source coding system treated
in this paper becomes the quadratic Gaussian CEO problem
investigated by [12], [15]-[18]. The system in the case ofK =
L and sum distortion criterion was studied by Pandyaet al.
[19]. They derived lower and upper bounds of the minimum
sum rate in the rate distortion region. Several partial solutions
in the case ofK = L, A = IL, and sum distortion criterion
were obtained by [20]-[24]. The case ofK = L, A = IL, and
vector distortion criterion was studied by [22].

Recently, Yang and Xiong [26] have studied the same
problem. They have derived two outer bounds of the rate
distortion region in the case of sum rate distortion criterion.
WhenK = L,A = IL, the first outer bound does not coincide
with the outer bound obtained by Oohama [21]-[24]. When
tAA = IK , they have obtained the second outer bound tighter
than the first one. This bound is the same as that of our
result of this paper. WhentAA = IK , Yang et al. [27] have
derived a threshold on the distortion levelD such that forD
below this threshold their second outer bound is tight. Their
threshold also improves that of Oohama [23],[24] in the caseof
K = L,A = IL. Comparing the formula of our first threshold
with that of and Yanget al. [27], we can see that we have no
obvious superiority of either to the other. On the other hand,
our second threshold is better than their threshold for some
nontrivial cases.

In this paper, in the case ofK = L andA = IL, we study
the multiterminal source coding problem where the decoder
wishes to reconstruct the observationY L = XL +NL. Simi-
larly to the case of remote source coding problem, we consider
three types of distortion criteria based on the covariance matrix
of the estimation error onY L. Based on the above three
criteria, three rate distortion regions are defined.

The remote source coding problem is often referred to as
the indirect distributed source coding problem. On the other
hand, the multiterminal source coding problem in the frame
work of distributed source coding is often called the direct
distributed source coding problem. As shown in the paper
of Wagner et al. [11] and in the recent work by Wanget
al. [12], we have a strong connection between the direct and
indirect distributed source coding problems. To investigate the
determination problem of the three rate distortion regionsfor
the multiterminal source coding problem we shall establisha
result which provides a strong connection between the remote
source coding problem and the multiterminal source coding
problem. This result states that all results on the rate distortion
region of the remote source coding problem can be converted
into those on the rate distortion region of the multiterminal

source coding problem. Using this relation and our results on
the remote source coding problem, we drive new three outer
bounds of the rate distortion regions for each of three distortion
criteria.

In the case of vector distortion criterion, we can obtain a
lower bound of the sum rate part of the rate distortion region
by using the established outer bound in this case. This bound
has a form of positive semidefinite programming. By some
analytical computation we can show that this lower bound is
equal to the lower bound obtained by Wanget al. [12] and
tight whenL = 2. Our method to derive this result essentially
differs from the method of Wanget al. [12]. It is also quite
different from that of Wagneret al. [11]. Hence in the case
of two terminal Gaussian sources there exists three different
proofs of the optimality of the sum rate part of the inner bound
of Berger [4] and Tung [5].

In the case of sum distortion criterion we derive an explicit
threshold such that for the distortion levelD below this
threshold the outer bound coincides with the inner bound. An
important feature of the multiterminal rate distortion problem
is that the rate distortion region remains the same for any
choice of covariance matrixΣXL and diagonal covariance
matrixΣNL satisfyingΣY L = ΣXL+ΣNL . Using this feature,
we find a pair(ΣXL , ΣNL) which maximizes the threshold
subject toΣY L = ΣXL +ΣNL .

Let τ(Y L)
△
= (Y2, Y3, · · · , YL, Y1) be a cyclic shift of the

sourceY L = (Y1, Y2, Y3, · · · , YL). We say that the source
Y L has the cyclic shift invariant property if the covariance
matrixΣτ(Y L) of τ(Y L) is the same as the covariance matrix
ΣY L of Y L. WhenY L has the cyclic shift invariant property,
we investigate the sum rate part of the rate distortion region.
We derive an explicit upper bound of the sum rate part from
the inner bounds of the rate distortion region. On a lower
bound of the sum rate part we derive a new explicit bound by
making full use of the cyclic shift invariance property ofΣY L .
We further derive an explicit sufficient condition for the lower
bound to coincide with the upper bound. We show that the
lower and upper bounds match if the distortion does not exceed
a threshold which is a function ofΣY L and find an explicit
form of this threshold. As a corollary of this result, in the case
of vector distortion criterion we obtain the optimal sum rate
whenY L is cyclic shift invariant andDL hasL components
with an identical valueD below a certain threshold depending
only onΣY L

II. PROBLEM STATEMENT AND PREVIOUS RESULTS

A. Formal Statement of Problem

In this subsection we present a formal statement of problem.
Throughout this paper all logarithms are taken to the base

natural. LetΛK
△
= {1, 2, · · · ,K} and ΛL

△
= {1, 2, · · · , L}.

Let Xk, k ∈ ΛK be correlated zero mean Gaussian random
variables. For eachk ∈ ΛK , Xk takes values in the real
line R. We write aK dimensional random vector asXK =
t(X1, X2, · · · , XK). We denote the covariance matrix ofXK

by ΣXK . Let Y L
△
= t(Y1, Y2, · · · , YL) be an observation of

the source vectorXK , having the formY L = AXK + NL,
whereA is a L × K matrix andNL = t(N1, N2, · · · , NL)
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Fig. 1. Distributed source coding system forL correlated Gaussian
observations

is a vector ofL independent zero mean Gaussian random
variables also independent ofXK . For l ∈ ΛL, σ2

Nl
stands for

the variance ofNl. Let {(X1(t), X2(t), · · · , XK(t))}∞t=1 be
a stationary memoryless multiple Gaussian source. For each

t = 1,2, · · · , XK(t)
△
= t(X1(t), X2(t), · · · , Xk(t)) has the

same distribution asXK . A random vector consisting ofn
independent copies of the random variableXk is denoted by

Xk
△
= (Xk(1), Xk(2), · · · , Xk(n)).

For eacht = 1, 2, · · ·, Y L(t) △
= t(Y1(t), Y2(t), · · · , YL(t)) is

a vector ofL correlated observations ofXK(t), having the
form Y L(t) = AXK(t) +NL(t), whereNL(t), t = 1, 2, · · ·,
are independent identically distributed (i.i.d.) Gaussian random
vector having the same distribution asNL. We have no
assumption on the number of observationsL, which may be
L ≥ K or L < K.

The distributed source coding system forL correlated
Gaussian observations treated in this paper is shown in Fig.
1. In this coding system the distributed encoder functions

ϕl, l ∈ ΛL are defined byϕ(n)
l : Rn 7→ Ml

△
= {1, 2, · · · ,Ml} .

For eachl ∈ ΛL, set R(n)
l

△
= 1

n
logMl , which stands for

the transmission rate of the encoder functionϕ(n)
l . The joint

decoder functionψ(n) = (ψ
(n)
1 , ψ

(n)
2 , · · · , ψ(n)

K ) is defined by

ψ(n) △
= (ψ

(n)
1 , ψ

(n)
2 , · · · , ψ(n)

K ),

ψ
(n)
k : M1 × · · · ×ML 7→ R

n, k ∈ ΛK .

For XK = (X1, X2, · · · , XK), set

ϕ(n)(Y L)
△
= (ϕ

(n)
1 (Y 1), ϕ

(n)
2 (Y 2), · · · , ϕ(n)

L (Y L)),

X̂
K

=








X̂1

X̂2

...
X̂K








△
=









ψ
(n)
1 (ϕ(n)(Y L))

ψ
(n)
2 (ϕ(n)(Y L))

...

ψ
(n)
K (ϕ(n)(Y L))









,

dkk
△
= E||Xk − X̂k||2, 1 ≤ k ≤ K,

dkk′
△
= E〈Xk − X̂k,Xk′ − X̂k′ 〉, 1 ≤ k 6= k′ ≤ K,

where||a|| stands for the Euclid norm ofn dimensional vector
a and 〈a, b〉 stands for the inner product betweena and b.
Let Σ

XK−X̂
K be a covariance matrix withdkk′ in its (k, k′)

element. LetΣd be a givenK ×K covariance matrix which
serves as a distortion criterion. We call this matrix a distortion
matrix.

For a given distortion matrixΣd, the rate vector(R1,
R2, · · · , RL) is Σd-admissible if there exists a sequence
{(ϕ(n)

1 , ϕ
(n)
2 , · · · , ϕ(n)

L , ψ(n))}∞n=1 such that

lim sup
n→∞

R
(n)
l ≤ Rl, for l ∈ ΛL ,

lim sup
n→∞

1
n
Σ

XK−X̂
K � Σd ,

whereA1 � A2 means thatA2 − A1 is a positive semi-
definite matrix. LetRL(Σd|ΣXKY L) denote the set of allΣd-
admissible rate vectors. We often have a particular interest in
the minimum sum rate part of the rate distortion region. To
examine this quantity, we set

Rsum,L(Σd|ΣXKY L)
△
= min

(R1,R2,···,RL)

∈RL(Γ,DK |Σ
XKY L )

{
L∑

l=1

Rl

}

.

We consider two types of distortion criterion. For each distor-
tion criterion we define the determination problem of the rate
distortion region.

Problem 1. Vector Distortion Criterion: Fix K × K
invertible matrixΓ and positive vectorDK = (D1, D2, · · ·
, DK). For givenΓ andDK , the rate vector(R1, R2, · · · , RL)
is (Γ, DK)-admissible if there exists a sequence{(ϕ(n)

1 ,

ϕ
(n)
2 , · · · , ϕ(n)

L , ψ(n))}∞n=1 such that

lim sup
n→∞

R(n) ≤ Rl, for l ∈ ΛL,

lim sup
n→∞

[

Γ
(

1
n
Σ

XK−X̂
K

)
tΓ
]

kk
≤ Dk , for k ∈ ΛK ,

where[C]ij stands for the(i, j) element of the matrixC. Let
RL(Γ, D

K |ΣXKY L) denote the set of all(Γ, DK)-admissible
rate vectors. WhenΓ is equal to theK × K identity ma-
trix IK , we omit Γ in RL(Γ, D|ΣXKY L) to simply write
RL(D|ΣXKY L). Similar notations are used for other sets
or quantities. The sum rate part ofRL(Γ, D

K |ΣXKY L) is
defined by

Rsum,L(Γ, D
K |ΣXKY L)

△
= min

(R1,R2,···,RL)

∈RL(Γ,DK |Σ
XKY L )

{
L∑

l=1

Rl

}

.

Problem 2. Sum Distortion Criterion:Fix K ×K positive
definite invertible matrixΓ and positiveD. For givenΓ andD,
the rate vector(R1, R2, · · · , RL) is (Γ, D)-admissibleif there
exists a sequence{(ϕ(n)

1 , ϕ
(n)
2 , · · · , ϕ(n)

L , ψ(n))}∞n=1 such that

lim sup
n→∞

R(n) ≤ Rl, for l ∈ ΛL,

lim sup
n→∞

tr
[

Γ
(

1
n
Σ

XK−X̂
K

)
tΓ
]

≤ D.

The sum rate part ofRL(Γ, D|ΣXKY L) is defined by

Rsum,L(Γ, D|ΣXKY L)
△
= min

(R1,R2,···,RL)
∈RL(Γ,D|Σ

XKY L )

{
L∑

l=1

Rl

}

.
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Let SK(DK) be a set of allK×K covariance matrices whose
(k, k) element do not exceedDk for k ∈ ΛK . Then we have

RL(Γ, D
K |ΣXKY L) =

⋃

ΓΣd
tΓ∈SK(DK)

RL(Σd|ΣXKY L),(1)

RL(Γ, D|ΣXKY L) =
⋃

tr[ΓΣd
tΓ]≤D

RL(Σd|ΣXKY L). (2)

Furthermore, we have

RL(Γ, D|ΣXKY L) =
⋃

∑

K
k=1Dk≤D

RL(Γ, D
K |ΣXKY L). (3)

In this paper we establish explicit inner and outer bounds of
RL(Σd|ΣXKY L). Using the above bounds and equations (1)
and (2), we give new outer bounds ofRL(Γ, D|ΣXKY L) and
RL(Γ, D

K |ΣXKY L).

B. Inner Bounds and Previous Results

In this subsection we present inner bounds ofRL(Σd
|ΣXKY L), RL(Γ, D

L |ΣXKY L), and RL(Γ, D |ΣXKY L).
Those inner bounds can be obtained by a standard technique
developed in the field of multiterminal source coding.

For l ∈ ΛL, letUl be a random variable taking values in the
real lineR. For any subsetS ⊆ ΛL, we introduce the notation
US = (Ul)l∈S . In particularUΛL

= UL = (U1, U2, · · · , UL).
Define

G(Σd)
△
=
{
UL : UL is a Gaussian

random vector that satisfies

US → YS → XK → YSc → USc ,

UL → Y L → XK

for anyS ⊆ ΛL and
ΣXK−ψ(UL) � Σd

for some linear mapping

ψ : RL → R
K . }

and set

R̂(in)
L (Σd|ΣXKY L)

△
= conv

{
RL : There exists a random vector

UL ∈ G(Σd) such that
∑

l∈S

Rl ≥ I(US ;YS |USc)

for anyS ⊆ ΛL. } ,

where conv{A} stands for the convex hull of the setA. Set

R̂(in)
L (Γ, DK |ΣXKY L)

△
= conv







⋃

ΓΣd
tΓ∈SK(DK)

RL(Σd|ΣXKY L)






,

R̂(in)
L (Γ, D|ΣXKY L)

△
= conv







⋃

tr[ΓΣd
tΓ]≤D

RL(Σd|ΣXKY L)






.

Define

ΣXK |Y L

△
= (Σ−1

XK + tAΣ−1
NLA)

−1

and set

dK(ΓΣXK |Y L
tΓ)

△
=
(
[ΓΣXK |Y L

tΓ]11, [ΓΣXK |Y L
tΓ]22,

· · · , [ΓΣXK |Y L
tΓ]KK

)
.

We can show that̂R(in)
L (Σd|ΣXKY L), R̂(in)

L (Γ, DL|ΣXKY L),
andR̂(in)

L (Γ, D|ΣXKY L) satisfy the following property.
Property 1:

a) The setR̂(in)
L (Σd|ΣXKY L) is not void if and only ifΣd ≻

ΣXK |Y L .

b) The setR̂(in)
L (Γ, DK |ΣXKY L) is not void if and only if

DK > dK(Γ ΣXK |Y L
tΓ).

c) The setR̂(in)
L (Γ, D|ΣXKY L) is not void if and only if

D > tr[ΓΣXK |Y L
tΓ].

On inner bounds ofRL(Σd|ΣXKY L), RL(Γ, D
L|ΣXKY L

), andR̂L(Γ, D|ΣXKY L), we have the following result.
Theorem 1 (Berger [4] and Tung [5]):For anyΣd ≻

ΣXK |Y L , we have

R̂(in)
L (Σd|ΣXKY L) ⊆ RL(Σd|ΣXKY L).

For anyΓ and anyDK > dK(ΓΣXK |Y L
tΓ), we have

R̂(in)
L (Γ, DK |ΣXKY L) ⊆ RL(Γ, D

K |ΣXKY L).

For anyΓ and anyD > tr[ΓΣXK |Y L
tΓ], we have

R̂(in)
L (Γ, D|ΣXKY L) ⊆ RL(Γ, D|ΣXKY L).

The above three inner bounds can be regarded as variants
of the inner bound which is well known as that of Berger [4]
and Tung [5].

WhenK = 1 andL×1 column vectorA has the formA =
t[11 · · ·1], the system considered here becomes the quadratic
Gaussian CEO problem. This problem was first posed and
investigated by Viswanathan and Berger [15]. They further

assumedΣNL = σ2IL. Setσ2
X

△
= ΣX and

Rsum(D|σ2
X , σ

2)
△
= lim inf

L→∞
Rsum,L(D|ΣXY L).

Viswanathan and Berger [15] studied an asymptotic form of
Rsum(D|σ2

X , σ
2) for small D. Subsequently, Oohama [16]

determined an exact form ofRsum(D|σ2
X , σ

2). The region
RL(D|ΣXY L) was determined independently by Oohama [17]
and Prabhakaramet al. [18]. Wang et al.[12] obtained the
same characterization ofRsum,L(D|ΣXY L) as that of Oohama
[17] in a new alternative method. Their method is based
on the order of the variances associated with the minimum
mean square error (MMSE) estimation. Unlike the method of
Oohama [17], the method of Wanget al. [12] is not directly
applicable to the characterization of the entire rate distortion
regionRL(D|ΣXY L).

In the case whereK = L = 2 andΓ = A = I2, Wagneret
al. [11] determinedR2(D

2| ΣX2Y 2). Their result is as follows.
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Theorem 2 (Wagner et al. [11]):For anyD2 > d2([ΣX2|

Y 2 ]), we have

R2(D
2|ΣX2Y 2) = R̂(in)

2 (D2|ΣX2Y 2).

Their method for the proof depends heavily on the specific
property ofL = 2. It is hard to generalize it to the case of
L ≥ 3.

In the case whereK = L and Γ = A = IL, Oohama
[20]-[24] derived inner and outer bounds ofRL(D|ΣXLY L).
Oohama [21], [23], [24] also derived explicit sufficient condi-
tions for inner and outer bounds to match. In [22], Oohama
derived explicit outer bounds ofRL(Σd |ΣXLY L), RL(D

L

|ΣXLY L), andRL(D |ΣXLY L).
The determination problem ofRL(D|ΣXKY L) in the case

whereA is a generalK × L matrix andΓ = IK was studied
by Yang and Xiong [26] and Yanget al. [27]. Relations
between their results and our results of the present paper will
be discussed in the next section.

III. M AIN RESULTS

A. Inner and Outer Bounds of the Rate Distortion Region

In this subsection we state our result on the characterizations
of RL(Σd |ΣXKY L), RL(Γ, D

K |ΣXKY L), and RL(Γ, D
|ΣXKY L). To describe those results we define several func-
tions and sets. For eachl ∈ ΛL and for rl ≥ 0, let
Nl(rl) be a Gaussian random variable with mean 0 and
varianceσ2

Nl
/(1− e−2rl). We assume thatNl(rl), l ∈ ΛL are

independent. Whenrl = 0, we formally think that the inverse
valueσ−1

N(0) of the variance ofNl(0) is zero. LetΣNL(rL) be
a covariance matrix of the random vector

NL(rL) = NΛL
(rΛL

) = {Nl(rl)}l∈Λ.

WhenrS = 0, we formally define

Σ−1
NSc(rSc)

△
= Σ−1

NL(rL)

∣
∣
∣
rS=0

.

Fix nonnegative vectorrL. For θ > 0 and forS ⊆ ΛL, define

JS(θ, rS |rSc)
△
=

1

2
log+







∏

l∈S

e2rl

θ
∣
∣
∣Σ−1

XK + tAΣ−1
NSc (rSc)A

∣
∣
∣






,

JS (rS |rSc)
△
=

1

2
log







∣
∣
∣Σ−1
XK + tAΣ−1

NL(rL)
A
∣
∣
∣

∏

l∈S

e2rl

∣
∣
∣Σ−1
XK + tAΣ−1

NSc(rSc)A
∣
∣
∣






,

whereSc = ΛL − S and log+[x]
△
= max{logx, 0}. Set

AL(Σd)
△
=

{

rL ≥ 0 :
[

Σ−1
XK + tAΣ−1

NL(rL)A
]−1

� Σd

}

.

We can show that forS ⊆ ΛL, JS(|Σd|, rS |rSc) and
JS(rS |rSc) satisfy the following two properties.

Property 2:

a) If rL ∈ AL(Σd), then for anyS ⊆ ΛL,

JS(|Σd|, rS |rSc) ≤ JS(rS |rSc).

b) Suppose thatrL ∈ AL(Σd). If rL
∣
∣
rS=0

still belongs to
AL(Σd), then

JS(|Σd|, rS |rSc)|rS=0
= JS(rS |rSc)|rS=0

= 0.

Property 3: Fix rL ∈ AL(Σd). For S ⊆ ΛL, set

fS = fS(rS |rSc)
△
= JS(|Σd|, rS |rSc).

By definition, it is obvious thatfS , S ⊆ ΛL are nonnegative.

We can show thatf
△
= {fS}S⊆ΛL

satisfies the followings:

a) f∅ = 0.
b) fA ≤ fB for A ⊆ B ⊆ ΛL.
c) fA + fB ≤ fA∩B + fA∪B.

In general(ΛL, f) is called aco-polymatroidif the nonneg-
ative functionρ on 2ΛL satisfies the above three properties.
Similarly, we set

f̃S = f̃S(rS |rSc)
△
= JS(rS |rSc) , f̃ =

{

f̃S

}

S⊆ΛL

.

Then (ΛL, f̃) also has the same three properties as those of
(ΛL, f) and becomes a co-polymatroid.

To describe our result onRL(Σd|ΣXKY L), set

R(out)
L (θ, rL|ΣXKY L)

△
=
{
RL :

∑

i∈S

Rl ≥ JS (θ, rS |rSc)

for anyS ⊆ ΛL. } ,
R(out)
L (Σd|ΣXKY L)

△
=

⋃

rL∈AL(Σd)

R(out)
L (|Σd|, rL|ΣXKY L) ,

R(in)
L (rL)

△
=
{
RL :

∑

l∈S

Rl ≥ JS (rS |rSc)

for anyS ⊆ ΛL. } ,
R(in)
L (Σd|ΣXKY L)

△
= conv







⋃

rL∈AL(Σd)

R(in)
L (rL|ΣXKY L)






.

We can show thatR(in)
L (Σd|ΣXKY L) andR(out)

L (Σd|ΣXKY L)
satisfy the following property.

Property 4: The setsR(in)
L (Σd|ΣXKY L) and R(out)

L (Σd
|ΣXKY L) are not void if and only ifΣd ≻ ΣXK |Y L .

Our result on inner and outer bounds ofRL(Σd|ΣXKY L)
is as follows.

Theorem 3:For anyΣd≻ ΣXK |Y L , we have

R(in)
L (Σd|ΣXKY L) = R̂(in)

L (Σd|ΣXKY L)

⊆ RL(Σd|ΣXKY L) ⊆ R(out)
L (Σd|ΣXKY L).

Proof of this theorem is given in Section V. This result
includes the result of Oohama [22] as a special case by letting
K = L and Γ = A = IL. From this theorem we can
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derive outer and inner bounds ofRL(Γ, D
K | ΣXKY L) and

RL(Γ,D|ΣXKY L). To describe those bounds, set

R(out)
L (Γ, DK |ΣXKY L)

△
=

⋃

ΓΣd
tΓ∈SK(DK)

R(out)
L (Σd|ΣXKY L),

R(in)
L (Γ, DK |ΣXKY L)

△
= conv







⋃

ΓΣd
tΓ∈SK(DK)

R(in)
L (Σd|ΣXKY L)






,

R(out)
L (Γ, D|ΣXKY L)

△
=

⋃

tr[ΓΣd
tΓ]≤D

R(out)
L (Σd|ΣXKY L),

R(in)
L (Γ, D|ΣXKY L)

△
= conv







⋃

tr[ΓΣd
tΓ]≤D

R(in)
L (Σd|ΣXKY L)






.

Set

A(rL)
△
=
{

Σd : Σd � (Σ−1
XK + tAΣ−1

NL(rL)A)
−1
}

,

θ(Γ, DK , rL)
△
= max

Σd:Σd∈AL(rL),

ΓΣd
tΓ∈SK(DK)

|Σd| ,

θ(Γ, D, rL)
△
= max

Σd:Σd∈AL(rL),

tr[ΓΣd
tΓ]≤D

|Σd| .

Furthermore, set

BL(Γ, DK)
△
=
{

rL ≥ 0 : Γ(Σ−1
XK + tAΣ−1

NL(rL)
A)−1tΓ ∈ SK(DK)

}

,

BL(Γ, D)
△
=
{

rL ≥ 0 : tr[Γ(Σ−1
XK + tAΣ−1

NL(rL)A)
−1tΓ] ≤ D

}

.

It can easily be verified thatR(out)
L (Γ, DK |ΣXKY L), R(in)

L (

Γ, DK |ΣXKY L), R(out)
L (Γ, D|ΣXKY L), and R(in)

L (Γ, D|
ΣXKY L) satisfies the following property.

Property 5:

a) The setsR(in)
L (Γ, DK |ΣXKY L) andR(out)

L (Γ, DK |ΣXK

Y L) are not void if and only ifDK > dK(ΓΣXK |Y L
tΓ).

b) The setsR(in)
L (Γ, D|ΣXKY L) andR(out)

L (Γ, D|ΣXK Y L)
are not void if and only ifD > tr[ΓΣXK |Y L

tΓ].
c)

R(out)
L (Γ, DK |ΣXKY L)

=
⋃

rL∈BL(Γ,DK)

R(out)
L (θ(Γ, DK , rL), rL|ΣXKY L) ,

R(in)
L (Γ, DK |ΣXKY L)

= conv







⋃

rL∈BL(Γ,DK)

R(in)
L (rL|ΣXKY L)






,

R(out)
L (Γ, D|ΣXKY L)

=
⋃

rL∈BL(Γ,D)

R(out)
L (θ(Γ, D, rL), rL|ΣXKY L) ,

R(in)
L (Γ, D|ΣXKY L)

= conv







⋃

rL∈BL(Γ,D)

R(in)
L (rL)






.

The following result is obtained as a simple corollary from
Theorem 3.

Corollary 1: For anyΓ and anyDK > dK(ΓΣXK |Y L
tΓ),

we have

R(in)
L (Γ, DK |ΣXKY L) = R̂(in)

L (Γ, DK |ΣXKY L)

⊆ RL(Γ, D
K |ΣXKY L) ⊆ R(out)

L (Γ, DK |ΣXKY L).

For anyΓ and anyD > tr[ΓΣXK |Y L
tΓ], we have

R(in)
L (Γ, D|ΣXKY L) = R̂(in)

L (Γ, D|ΣXKY L)

⊆ RL(Γ, D|ΣXKY L) ⊆ R(out)
L (Γ, D|ΣXKY L).

Those result includes the result of Oohama [22] as a special
case by lettingK = L andΓ = A = IL. Next we compute
θ(Γ, D, rL) to derive a more explicit expression ofR(out)

L (Γ
, D|ΣXKY L). This expression will be quite useful for finding a
sufficient condition for the outer boundR(out)

L (Γ , D|ΣXKY L)
to be tight. Letαk = αk(r

L), k ∈ ΛK beK eigenvalues of
the matrix

Γ−1
(

Σ−1
XK + tAΣ−1

NL(rL)
A
)

tΓ−1.

Let ξ be a nonnegative number that satisfy

K∑

k=1

{
[ξ − α−1

k ]+ + α−1
k

}
= D.

Define

ω(Γ, D, rL)
△
= |Γ|−2

K∏

k=1

{
[ξ − α−1

k ]+ + α−1
k

}
.

The functionω(Γ, D, rL) has an expression of the so-called
water filling solution to the following optimization problem:

ω(Γ, D, rL) = |Γ|−2 max
ξkαk≥1,k∈ΛK ,
∑

K
k=1 ξk≤D

K∏

k=1

ξk. (4)

Then we have the following theorem.
Theorem 4:For anyΓ and any positiveD, we have

θ(Γ, D, rL) = ω(Γ, D, rL).

A more explicit expression ofR(out)
L (Γ, D|ΣXKY L) using

ω(Γ, D, rL) is given by

R(out)
L (Γ, D|ΣXKY L)

△
=

⋃

rL∈BL(Γ,D)

R(out)
L (ω(Γ, D, rL), rL|ΣXKY L).

Proof of this theorem will be given in Section V. The above
expression of the outer bound includes the result of Oohama
[22] as a special case by lettingK = L andΓ = A = IL.
In the next subsection we derive a matching condition for
R(out)
L (Γ, D|ΣXKY L) to coincide withRL(Γ, D|ΣXKY L).
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Two other outer bounds ofRL(D|ΣXKY L) were obtained
by Yang and Xiong [26]. They derived the first outer bound for
generalL×K matrixA. This outer bound denoted by̌R(out)

L (

D|ΣXKY L) does not coincide withR(out)
L ( D|ΣXKY L) when

K = L and A = IL. When A is semi orthogonal, i.e.,
tAA = IK , Yang and Xiong [26] derived the second outer
bound R̃(out)

L (D|ΣXKY L) tighter than Ř(out)
L (D|ΣXKY L).

The outer bound̃R(out)
L (D|ΣXKY L) is the same as our outer

bound R(out)
L ( D|ΣXKY L) although it has a form differ-

ent from that of our outer bound. They further derived a
matching condition forR̃(out)

L (D|ΣXKY L) to coincide with
RL(D|ΣXKY L). Their matching condition and its relation
to our matching condition will be presented in the next
subsection.

B. Matching Condition Analysis

For L ≥ 3, we present a sufficient condition forR(out)
L (Γ,

D| ΣXKY L) ⊆ R(in)
L (D|ΣXKY L). We consider the following

condition onθ(Γ, D, rL).
Condition: For anyl ∈ ΛL, e−2rlθ(Γ, D, rL) is a monotone

decreasing function ofrl ≥ 0.
We call this condition the MD condition. The following is

a key lemma to derive the matching condition. This lemma is
due to Oohama [21], [23].

Lemma 1 (Oohama [21],[23]):If θ(Γ, D, rL) satisfies the
MD condition onBL( Γ, D), then

R(in)
L (Γ, D|ΣXKY L) = RL(Γ, D|ΣXKY L)

= R(out)
L (Γ, D|ΣXKY L).

Based on Lemma 1, we derive a sufficient condition for
θ(Γ, D, rL) to satisfy the MD condition.

Let alk be the(l, k) element ofA. Setal
△
= [al1al2 · · · alK ]

andâl
△
= alΓ

−1. Let OK be the set of allK ×K orthogonal
matrices. For(l, k) ∈ ΛL × ΛK , let OK(âl, k) be a set of all
T ∈ OK that satisfy

[âlT ]j =

{
||âl||, if j = k,
0, if j 6= k.

For T ∈ OK(âl, k), we consider the following matrix:

C(Γ−1T, rL)
△
= tT tΓ−1(Σ−1

XK + tAΣ−1
NL(rL)

A)Γ−1T

= tT tΓ−1Σ−1
XKΓ−1T +

L∑

l=1

1
σ2
Nl

(1− e−2rl)t(âlT )(âlT ).

Let rL[l]
△
= r1 · · · rl−1rl+1 · · · rL and set

ηk(Γ
−1T, rL[l])

△
=
[
tT tΓ−1Σ−1

XKΓ−1T
]

kk

+
∑

i6=l

1
σ2
Ni

(1− e−2ri) [t(âiT )(âiT )]kk ,

χlk(Γ
−1T, rL[l])

△
= ||âl||2 1

σ2
Nl

+ ηk(Γ
−1T, rL[l]).

Then we have

[C(Γ−1T, rL)]kk = ||âl||2 1
σ2
Nl

(1− e−2rl) + ηi(Γ
−1T, rL[l])

= χlk(Γ
−1T, rL[l])− ||âl||2 1

σ2
Nl

e−2rl . (5)

If (i′, i′′) 6= (k, k), then the value of

[C(Γ−1T, rL)]i′i′′

= [tT tΓ−1Σ−1
XKΓ−1T ]i′i′′

+

L∑

j=1

1
σ2
Nj

(1− e−2rj ) [t(âjT )(âjT )]i′i′′

does not depend onrl. Note that the matrixC(Γ−1T, rL) has
the same eigenvalue set as that of

C(Γ−1, rL) = tΓ−1(Σ−1
XK + tAΣ−1

NL(rL)A)Γ
−1.

We recall here thatαk = αk(r
L), k ∈ ΛK areK eigenvalues

of the above two matrices. Letαmin = αmin(r
L) andαmax =

αmax(r
L) be the minimum and maximum eigenvalues among

αk, k ∈ ΛK . The matrixC(Γ−1T, rL) for T ∈ OK(âl, k), has
a structure that the(k, k) element of this matrix is only one
element which depends onrl and this element is a monotone
increasing function ofrl ≥ 0. Properties on eigenvalues of
matrices having the above structure were studied in detail by
Oohama [21],[23]. The following lemma is a variant of his
result.

Lemma 2 (Oohama [21],[23]): For each(l, k) ∈ ΛL×ΛK
and eachT ∈ OK(âl, k), we have the followings.

αmin(r
L)

≤ ||âl||2 1
σ2
Nl

(1− e−2rl) + ηlk(Γ
−1T, rL[l]) ≤ αmax(r

L),

∂αj
∂rl

≥ 0, for j ∈ ΛK ,
K∑

j=1

∂αj
∂rl

=
2||âl||2
e2rlσ2

Nl

.

The following is a key lemma to derive a sufficient condition
for the MD condition to hold.

Lemma 3: If αmin(r
L) andαmax(r

L) satisfy
(

1

αmin(rL)
− 1

αmax(rL)

)

· αmax(r
L)

αmin(rL)
≤

e2rlσ2
Nl

||âl||2
(6)

for l ∈ ΛL,

on BL(Γ, D), thenθ(Γ, D, rL) satisfies the MD condition on
BL(Γ, D).

Proof of Lemma 3 will be stated in Section V. Set

C∗(Γ−1T, rl)
△
= lim
rL
[l]
→∞

C(Γ−1T, rL),

χ∗
k(Γ

−1T )
△
= lim

rL
[l]
→∞

χlk(Γ
−1T, rL[l])

= [tT tΓ−1
(
Σ−1
XK + tAΣ−1

NLA
)
Γ−1T ]kk.

Fork ∈ ΛK , we denote the(k, k) element ofC∗(Γ−1T, rl) by
c∗kk = c∗kk(Γ

−1T, rl). When(j, j′) ∈ Λ2
K and(j, j′) 6= (k, k),

the (j, j′) element ofC∗(Γ−1T, rl) does not depend onrl.
We denote it byc∗jj′ = c∗jj′ (Γ

−1T ). Furthermore, set

c
∗
k[k] = c

∗
k[k](Γ

−1T )
△
= [c∗k1 · · · c∗kk−1c

∗
kk+1 · · · c∗kK ].
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By definition we have

c∗kk(Γ
−1T, rl) = χ∗

k(Γ
−1T )− ||âl||2

e2rlσ2
Nl

.

Define

α∗
max

△
= lim

rL→∞
αmax(r

L), α∗
min

△
= lim

rL→∞
αmin(r

L),

α∗
max(ri)

△
= lim

rL
[l]
→∞

αmax(r
L) for l ∈ ΛL.

By definition,α∗
max andα∗

min are the maximum and minimum
eigenvalues oftΓ−1(Σ−1

XK + tAΣ−1
NLA )Γ−1, respectively. By

Lemma 2, we have

αmin(r
L) ≤ α∗

min(rl) ≤ α∗
min, for l ∈ ΛL, (7)

χlk(Γ
−1T, rL[l]) ≤ χ∗

k(Γ
−1T ) ≤ α∗

max, for l ∈ ΛL. (8)

The following lemma provides an effective lower bound of
e2rlσ2

Nl
/||âl||2.

Lemma 4:For any(l, k) ∈ ΛL × ΛK andT ∈ OY (âl, k),
we have

c∗kk(Γ
−1T, rl) = χ∗

k(Γ
−1T )− ||âl||2

e2rlσ2
Nl

≥ α∗
min(rl) +

||c∗
k[k](Γ

−1T )||2

α∗
max(rl)− α∗

min(rl)

≥ αmin(r
L) +

||c∗
k[k](Γ

−1T )||2

α∗
max − αmin(rL)

.

Proof of this lemma will be given in Section V. Set

Υl(Γ
−1)

△
= max

k∈ΛK

T∈OK(alΓ
−1,k)

1 +
||c∗

k[k](Γ
−1T )||2

(α∗
max)

2

χ∗
k(Γ

−1T )− ||c∗
k[k]

(Γ−1T )||2

α∗
max

.

WhenΓ = IK , we simply writeΥl(IK) = Υl. From Lemmas
1-4 and an elementary computation we obtain the following.

Theorem 5:If we have

tr[ΓΣXK |Y L
tΓ] < D ≤ K

α∗
max

+ min
l∈ΛL

Υl(Γ
−1) (9)

then

R(in)
L (Γ, D|ΣXKY L) = R̂(in)

L (Γ, D|ΣXKY L)

= RL(Γ, D|ΣXKY L) = R(out)
L (Γ, D|ΣXKY L).

Using (8), we obtainΥl(Γ−1) ≥ 1/α∗
max. Hence we have the

following matching condition simpler than (9):

tr[ΓΣXK |Y L
tΓ] < D ≤ K + 1

α∗
max

. (10)

Proof of Theorem 5 will be stated in Section V. When
K = L,A = IL, the matching condition (10) is the same
as that of Oohama [23],[24]. It is obvious that in the case of
K = L,A = IL, the matching condition (9) improves that of
Oohama [23],[24]. Yanget al. [27] have obtained a matching
condition onRL(D|ΣXKY L) by an argument quite similar to
that of Oohama [23]. The matching condition by Yanget al.
[27] is as follows:

tr[ΣXK |Y L ] < D ≤ K

α∗
max

+ min
l∈ΛL

Υ̃l, (11)

where

Υ̃l
△
= max

T∈OK

max
k∈ΛK

{
1

χ∗
k(T )

[alT ]
2
k

||alT ||2
}

.

The matching condition (11) by Yanget al. [27] also improves
that of Oohama [23],[24] in the case ofK = L,A = IL. When
Γ = IK , for l ∈ ΛL, we have

Υl = max
k∈ΛK

T∈OK(al,k)

1 +
||c∗

k[k](T )||2

(α∗
max)

2

χ∗
k(T )−

||c∗
k[k]

(T )||2

α∗
max

≥ max
k∈ΛK

T∈OK(al,k)

1

χ∗
k(T )

△
= Υl. (12)

On the other hand, fori ∈ ΛL, we have

Υ̃l = max
T∈OK

max
k∈ΛK

{
1

χ∗
k(T )

[alT ]
2
k

||alT ||2
}

= max
k∈ΛK

max
T∈OK

{
1

χ∗
k(T )

[alT ]
2
k

||alT ||2
}

≥ max
k∈ΛK

max
T∈OK(al,k)

{
1

χ∗
k(T )

[alT ]
2
k

||alT ||2
}

(13)

= max
k∈ΛK

max
T∈OK(al,k)

1

χ∗
k(T )

= Υl.

Thus, we haveΥl≥ Υl and Υ̃l≥ Υl. Comparing the two
inequalities (12) and (13), we can see that the improvement
of Υl fromΥl is quite differnt from that of̃Υl fromΥl. Hence
we have no obvious superiority ofΥl or Υ̃l to the other.

Next we derive another matching condition, which is better
than the second matching condition (10) in Theorem 5 and the
matching condition (11) of Yanget al. [27] for some nontrivial
cases. Set

τl
△
=

σ2
Nl

||âl||2
, τ∗

△
= min

l∈ΛL

τl.

From Lemmas 1-3 and an elementary computation we obtain
the following.

Theorem 6:If we have

tr[ΓΣXK |Y L
tΓ]

< D ≤ K

α∗
max

+
1

2α∗
max

{√

1 + 4α∗
maxτ

∗ − 1
}

, (14)

then

R(in)
L (Γ, D|ΣXKY L) = R̂(in)

L (Γ, D|ΣXKY L)

= RL(Γ, D|ΣXKY L) = R(out)
L (Γ, D|ΣXKY L).

Proof of Theorem 6 will be stated in Section V. Whenτ∗

becomes large,α∗
max andα∗

min approach to the maximum and
minimum eigenvalues ofΣ−1

XL , respectively. Hence we have

lim
τ∗→+∞

1

2α∗
max

{√

1 + 4α∗
maxτ

∗ − 1
}

= +∞, (15)

which implies that there exists a sufficiently largeτ∗ such that

1

α∗
max

≤ 1

α∗
min

<
1

2α∗
max

{√

1 + 4α∗
maxτ

∗ − 1
}

. (16)
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X1 Y1

X2 Y2

...

XL YL

Y 1

N1

Y 2

N2

Y L

NL

✲ ❄❤

✲ ❄❤

✲ ❄❤

ϕ
(n)
1

ϕ
(n)
1 (Y 1)

ϕ
(n)
2

ϕ
(n)
2 (Y 2)

...

ϕ
(n)
L

ϕ
(n)
L (Y L)

✲ ✲
❏
❏
❏
❏❏❫✲ ✲ ✲

✲ ✲ ✁
✁
✁
✁
✁
✁✕
φ(n)✲








Ŷ 1

Ŷ 2

...
Ŷ L








Fig. 2. Distributed source coding system forL correlated Gaussian sources

On the other hand, it follows from the definition of̃Υl that
we have forl ∈ ΛL,

Υ̃l ≤ max
T∈OK

max
k∈ΛK

1

χ∗
k(T )

≤ 1

α∗
min

. (17)

Thus we can see from (16) and (17) that for sufficiently large
τ∗, the matching condition (14) in Theorem 6 is better than
the second matching condition (10) in Theorem 5 and the
matching condition (11) of Yanget al. [27].

IV. A PPLICATION TO THEMULTITERMINAL SOURCE

CODING PROBLEM

In this section we consider the case whereK = L and
A = IL. In this case we haveY L = XL + NL; Gaussian
random variablesYl, l ∈ ΛL are L-noisy components of
the Gaussian random vectorXL. We study the multitermi-
nal source coding problem for the Gaussian observations
Yl, l ∈ Λ. The random vectorXL can be regarded as a
“hidden” information source ofY L. Note that (XL, Y L)
satisfiesYS → XL → YSc for anyS ⊆ ΛL.

A. Problem Formulation and Previous Results

The distributed source coding system forL correlated
Gaussian source treated here is shown in Fig. 2. Definitions
of encoder functionsϕl, l ∈ ΛL are the same as the previous
definitions. The decoder functionφ(n) is defined by

φ(n) = (φ
(n)
1 , φ

(n)
2 , · · · , φ(n)L )

φ
(n)
l : M1 × · · · ×ML 7→ R

n, l ∈ ΛL.

For Y L = (Y 1, Y 2, · · · , Y L), set

Ŷ
L
=








Ŷ 1

Ŷ 2

...
Ŷ L








△
=









φ
(n)
1 (ϕ(n)(Y L))

φ
(n)
2 (ϕ(n)(Y L))

...

φ
(n)
L (ϕ(n)(Y L))









,

d̃ll
△
= E||Y l − Ŷ l||2, 1 ≤ l ≤ L,

d̃ll′
△
= E〈Y l − Ŷ l,Y l′ − Ŷ l′〉 , 1 ≤ l 6= l′ ≤ L.

Let Σ
Y L−Ŷ

L be a covariance matrix with̃dll′ in its (l, l′)
element.

For a givenΣd, the rate vector(R1, R2, · · · , RL) is Σd-
admissibleif there exists a sequence{(ϕ(n)

1 , ϕ
(n)
2 , · · · , ϕ(n)

L ,
ψ(n))}∞n=1 such that

lim sup
n→∞

R
(n)
l ≤ Rl, for l ∈ ΛL ,

lim sup
n→∞

1
n
Σ

Y L−Ŷ
L � Σd.

Let RL(Σd|ΣY L) denote the set of allΣd-admissible rate
vectors. We consider two types of distortion criterion. Foreach
distortion criterion we define the determination problem ofthe
rate distortion region.

Problem 3. Vector Distortion Criterion:For givenL × L
invertible matrix Γ and DL > 0, the rate vector(R1, R2,
· · · , RL) is (Γ, DL)-admissible if there exists a sequence
{(ϕ(n)

1 , ϕ
(n)
2 , · · · , ϕ(n)

L , φ(n))}∞n=1 such that

lim sup
n→∞

R(n) ≤ Rl , for l ∈ ΛL ,

lim sup
n→∞

[

Γ
(

1
n
Σ

Y L−Ŷ
L

)
tΓ
]

ll
≤ Dl , for l ∈ ΛL.

Let RL(Γ, D
L|ΣY L) denote the set of all(Γ, DL)-admissible

rate vectors. The sum rate part of the rate distortion regionis
defined by

Rsum,L(Γ, D
L|ΣY L)

△
= min

(R1,R2,···,RL)

∈RL(Γ,DL|Σ
Y L )

{
L∑

l=1

Rl

}

.

Problem 4. Sum Distortion Criterion:For givenL×L invert-
ible matrixΓ andD > 0, the rate vector(R1, R2, · · · , RL) is
(Γ, D)-admissibleif there exists a sequence{(ϕ(n)

1 , ϕ
(n)
2 , · · · ,

ϕ
(n)
L , φ(n))}∞n=1 such that

lim sup
n→∞

R(n) ≤ Rl, for l ∈ ΛL,

lim sup
n→∞

tr
[

Γ
(

1
n
Σ

Y L−Ŷ
L

)
tΓ
]

≤ D.

Let RL(Γ, D|ΣY L) denote the set of all admissible rate
vectors. The sum rate part of the rate distortion region is
defined by

Rsum,L(Γ, D|ΣY L)
△
= min

(R1,R2,···,RL)
∈RL(Γ,D|Σ

Y L )

{
L∑

l=1

Rl

}

.

Relations betweenRL(Σd|ΣY L), RL(Γ, D
L|ΣY L), and

RL(Γ, D|ΣY L) are as follows.

RL(Γ, D
L|ΣY L) =

⋃

ΓΣd
tΓ∈SL(DL)

RL(Σd|ΣY L), (18)

RL(Γ, D|ΣY L) =
⋃

tr[ΓΣd
tΓ]≤D

RL(Σd|ΣY L). (19)

Furthermore, we have

RL(Γ, D|ΣY L) =
⋃

∑

L
l=1Dl≤D

RL(Γ, D
L|ΣY L). (20)

We first present inner bounds ofRL(Σd |ΣY L), RL(Γ, D
L

|ΣY L), and RL(Γ, D|ΣY L). Those inner bounds can be
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obtained by a standard technique of multiterminal source
coding. Define

G̃(Σd)
△
=
{
UL : UL is a Gaussian

random vector that satisfies

US → YS → XL → YSc → USc

UL → Y L → XL

for anyS ⊂ ΛL and
ΣY L−φ(UL) � Σd

for some linear mapping

φ : RL → R
L. }

and set

R̂(in)
L (Σd|ΣY L)

△
= conv

{
RL : There exists a random vector

UL ∈ G̃(Σd) such that
∑

i∈S

Rl ≥ I(US ;YS |USc)

for anyS ⊆ ΛL. } ,

R̂(in)
L (Γ, DL|ΣY L)

△
= conv







⋃

ΓΣd
tΓ∈SL(DL)

R̂(in)
L (Σd|ΣY L)






,

R̂(in)
L (Γ, D|ΣY L)

△
= conv







⋃

tr[ΓΣd
tΓ]≤D

R̂(in)
L (Σd|ΣY L)






.

Then we have the following result.
Theorem 7 (Berger [4] and Tung [5]):For any positive

definiteΣd, we have

R̂(in)
L (Σd|ΣY L) ⊆ RL(Σd|ΣY L).

For any invertibleΓ and anyDL > 0, we have

R̂(in)
L (Γ, DL|ΣY L) ⊆ RL(Γ, D

L|ΣY L).

For any invertibleΓ and anyD > 0, we have

R̂(in)
L (Γ, D|ΣY L) ⊆ RL(Γ, D|ΣY L).

The inner bound̂R(in)
L (DL|ΣY L) for Γ = IL is well known

as the inner bound of Berger [4] and Tung [5]. The above three
inner bounds are variants of this inner bound.

Optimality of R̂(in)
2 (D2|ΣY 2) was first studied by Oohama

[9]. Let

ΣY 2 =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]

, ρ ∈ [0, 1).

For l = 1, 2, set

Rl,2(Dl|ΣY 2)
△
=

⋃

D3−l>0

R2(D
2|ΣY 2).

Oohama [9] obtained the following result.

Theorem 8 (Oohama [9]):For l = 1, 2, we have

Rl,2(Dl|ΣY 2) = R∗
l,2(Dl|ΣY 2),

where

R∗
l,2(Dl|ΣY 2)

△
=

{

(R1, R2) :Rl ≥ 1
2 log

+
[

(1− ρ2)
σ2
l

Dl

(

1 + ρ2

1−ρ2 · s
)]

,

R3−l ≥ 1
2 log

[
1
s

]

for some0 < s ≤ 1
}

.

Since R∗
l,2(Dl|ΣY 2), l = 1, 2 serve as outer bounds of

R2(D
2|ΣY 2), we have

R2(D
2|ΣY 2) ⊆ R∗

1,2(D1|ΣY 2) ∩R∗
2,2(D2|ΣY 2). (21)

Wagneret al. [11] derived the condition where the outer bound
in the right hand side of (21) is tight. To describe their result
set

D △
=
{

(D1, D2) : D1, D2 > 0,

max
{
D1

σ2
1
, D2

σ2
2

}

≤ min
{

1, ρ2 min
{
D1

σ2
1
, D2

σ2
2

}

+ 1− ρ2
}}

.

Wagneret al. [11] showed that ifD2 /∈ D, we have

R2(D
2|ΣY 2) = R∗

1,2(D1|ΣY 2) ∩R∗
2,2(D2|ΣY 2).

Next we consider the case ofD2 ∈ D. In this case by an
elementary computation we can show thatR̂(in)

2 (D2|ΣY 2) has
the following form:

R̂(in)
2 (D2|ΣY 2)

= R∗
1,2(D1|ΣY 2) ∩R∗

2,2(D2|ΣY 2) ∩R∗
3,2(D

2|ΣY 2) ,

where

R∗
3,2(D

2|ΣY 2)

△
=
{

(R1, R2) : R1 +R2 ≥ R
(u)
sum,2(D

2|ΣY 2)
}

,

R
(u)
sum,2(D

2|ΣY 2)

△
= min

(R1,R2)∈R̂
(in)
2 (D2|Σ

Y 2 )

{R1 +R2}

= 1
2 log

[

1−ρ2

2 ·
{

σ2
1σ

2
2

D1D2
+

√
(
σ2
1σ

2
2

D1D2

)2

+ 4ρ2

(1−ρ2)2

}]

.

The boundary ofR̂(in)
2 (D2|ΣY 2) consists of one straight line

segment defined by the boundary ofR∗
3,2(D

2|ΣY 2) and two
curved portions defined by the boundaries ofR∗

1,2(D1|ΣY 2)
and R∗

2,2(D2|ΣY 2). Accordingly, the inner bound estab-
lished by Berger [4] and Tung [5] partially coincides with
R2(D

2|ΣY 2) at two curved portions of its boundary.
Wagneret al. [11] have completed the proof of the opti-

mality of R̂(in)
2 (D2|ΣY 2) by determining the sum rate part

Rsum,2(D
2|ΣY 2). Their result is as follows.

Theorem 9 (Wagner et al. [11]):For anyD2 ∈ D, we have

Rsum,2(D
2|ΣY 2) = R

(u)
sum,2(D

2|ΣY 2)

= 1
2 log

[

1−ρ2

2 ·
{

σ2
1σ

2
2

D1D2
+

√
(
σ2
1σ

2
2

D1D2

)2

+ 4ρ2

(1−ρ2)2

}]

.
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According to Wagneret al. [11], the results of Oohama
[16], [17] play an essential role in deriving their result. Their
method for the proof depends heavily on the specific property
of L = 2. It is hard to generalize it to the case ofL ≥ 3.
Recently, Wanget al. [12] have given an alternative proof
of Theorem 9. Their method of the proof is quite different
from the previous method employed by Oohama [16], [17]
and Wagneret al. [11] and also has a great advantage that it
is also applicable to the characterization ofRsum,L(D

L|ΣY 2)
for L ≥ 3. Their result and its relation to our result in the
present paper will be discussed in the next subsection.

B. New Outer Bounds of Positive Semidefinite Programming

In this subsection we state our results on the characteriza-
tions ofRL(Σd|ΣY L), RL(Γ, D

L|ΣY L), andRL(Γ, D|ΣY L).
Before describing those results we derive an important relation
between remote source coding problem and multiterminal
source coding problem. We first observe that by an elementary
computation we have

XL = ÃY L + ÑL , (22)

where Ã = (Σ−1
XL +Σ−1

NL)
−1Σ−1

NL and ÑL is a zero mean
Gaussian random vector with covariance matrixΣÑL = (Σ−1

XL

+Σ−1
NL)

−1. The random vector̃NL is independent ofY L. Set

B
△
= Ã−1ΣÑL

tÃ−1 = ΣNL +ΣNLΣ−1
XLΣNL ,

bL
△
= t([B]11, [B]22, · · · , [B]LL) ,

B̃
△
= ΓBtΓ ,

b̃L
△
= t([B̃]11, [B̃]22, · · · , [B̃]LL).

From (22), we have the following relation betweenXL and
Y
L:

X
L = ÃY L + Ñ

L
, (23)

whereÑ
L

is a sequence ofn independent copies of̃NL and
is independent ofY L. Now, we fix {(ϕ(n)

1 , ϕ
(n)
2 , · · · , ϕ(n)

L ,
ψ(n))}∞n=1, arbitrarily. For eachn = 1, 2, · · ·, the estimation

X̂
L

of XL is given by

X̂
L
=









ψ
(n)
1 (ϕ(n)(Y L))

ψ
(n)
2 (ϕ(n)(Y L))

...

ψ
(n)
L (ϕ(n)(Y L))









.

Using this estimation, we construct an estimationŶ
L

of Y L

by Ŷ
L
= Ã−1

X̂
L
, which is equivalent to

X̂
L
= ÃŶ

L
. (24)

From (23) and (24), we have

X
L − X̂

L
= Ã(Y L − Ŷ

L
) + Ñ

L. (25)

SinceŶ
L

is a function ofY L, Ŷ
L − Y

L is independent of
Ñ

L
. Based on (25), we compute1

n
Σ

XL−X̂
L to obtain

1
n
Σ

XL−X̂
L = Ã

(
1
n
Σ

Y L−Ŷ
L

)
tÃ+ΣÑL . (26)

From (26), we have

1
n
Σ

Y L−Ŷ
L = Ã−1

(
1
n
Σ

XL−X̂
L − ΣÑL

)
tÃ−1

= Ã−1
(

1
n
Σ

XL−X̂
L

)
tÃ−1 −B. (27)

Conversely, we fix{(ϕ(n)
1 , ϕ

(n)
2 , · · · , ϕ(n)

L , φ(n))}∞n=1, arbi-

trarily. For eachn = 1, 2, · · ·, using the estimation̂Y
L

of Y L

given by

Ŷ
L
=









φ
(n)
1 (ϕ(n)(Y L))

φ
(n)
2 (ϕ(n)(Y L))

...

φ
(n)
L (ϕ(n)(Y L))









,

we construct an estimation̂X
L

of XL by (24). Then using
(23) and (24), we obtain (25). Hence we have the relation (26).

The following proposition provides an important strong
connection between remote source coding problem and mul-
titerminal source coding problem.

Proposition 1: For any positive definiteΣd, we have

RL(Σd|ΣY L) = RL(Ã(Σd +B)tÃ|ΣXLY L).

For any invertibleΓ and anyDL > 0, we have

RL(Γ, D
L|ΣY L) = RL(ΓÃ

−1, DL + b̃L|ΣXLY L).

For any invertibleΓ and anyD > 0, we have

RL(Γ, D|ΣY L) = RL(ΓÃ
−1, D + tr[B̃]|ΣXLY L).

Proof: Suppose thatRL ∈ RL(Ã(Σd + B)tÃ|ΣXLY L).
Then there exists{(ϕ(n)

1 , ϕ
(n)
2 , · · · , ϕ(n)

L , ψ(n))}∞n=1 such that

lim sup
n→∞

R(n) ≤ Rl, for l ∈ ΛL ,

lim sup
n→∞

1
n
Σ

XL−X̂
L � Ã(Σd +B)tÃ.

Using X̂
L

, we construct an estimation̂Y
L

of Y L by Ŷ
L
=

Ã−1
X̂
L

. Then from (27), we have

lim sup
n→∞

1
n
Σ

Y L−Ŷ
L

= lim sup
n→∞

Ã−1
(

1
n
Σ

XL−X̂
L

)
tÃ−1 −B

� Ã−1Ã(Σd +B)tÃtÃ−1 − B = Σd ,

which implies thatRL ∈ RL(Ã(Σd +B)tÃ|ΣXLY L). Thus

RL(Σd|ΣY L) ⊇ RL(Ã(Σd +B)tÃ|ΣXLY L)

is proved. Next we prove the reverse inclusion. Suppose that
RL ∈ RL(Σd|ΣY L). Then there exists{(ϕ(n)

1 , ϕ
(n)
2 , · · · , ϕ(n)

L ,
φ(n))}∞n=1 such that

lim sup
n→∞

R(n) ≤ Rl, for l ∈ ΛL ,

lim sup
n→∞

1
n
Σ

Y L−Ŷ
L � Σd.
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Using Ŷ
L

, we construct an estimation̂X
L

of XL by X̂
L
=

ÃŶ
L

. Then from (26), we have

lim sup
n→∞

1
n
Σ

XL−X̂
L

= lim sup
n→∞

Ã
(

1
n
Σ

Y L−Ŷ
L

)
tÃ+ΣÑL

� ÃΣd
tÃt +ΣÑL = Ã(Σd +B)tÃt ,

which implies thatRL ∈ RL(Ã(Σd +B)tÃ |ΣXLY L). Thus,

RL(Σd|ΣY L) ⊆ RL(Ã(Σd +B)tÃ|ΣXLY L)

is proved. Next we prove the second equality. We have the
following chain of equalities:

RL(Γ, D
L|ΣY L) =

⋃

ΓΣd
tΓ∈SL(DL)

RL(Σd|ΣY L)

=
⋃

ΓΣd
tΓ∈SL(DL)

RL(ΓÃ(Σd +B)tÃ|ΣXLY L)

=
⋃

ΓÃ−1Ã(Σd+B)tÃtÃ−1tΓ

−ΓBtΓ∈SL(DL)

RL(Ã(Σd +B)tÃ|ΣXLY L)

=
⋃

ΓÃ−1Ã(Σd+B)tÃt(ΓÃ−1)

∈SL(DL+b̃L)

RL(Ã(Σd +B)tÃ|ΣXLY L)

=
⋃

Σ̂d=Ã(Σd+B)tÃ≻Σ
XL|Y L ,

ΓÃ−1Σ̂d
t(ΓÃ−1)∈SL(DL+b̃L)

RL(Σ̂d|ΣXLY L)

= RL(ΓÃ
−1, DL + b̃L|ΣXLY L).

Thus the second equality is proved. Finally we prove the third
equality. We have the following chain of equalities:

RL(Γ, D|ΣY L) =
⋃

tr[ΓΣd
tΓ]≤D

RL(Σd|ΣY L)

=
⋃

tr[ΓΣd
tΓ]≤D

RL(ΓÃ(Σd +B)tÃ|ΣXLY L)

=
⋃

tr[ΓÃ−1Ã(Σd+B)tÃtÃ−1tΓ]

−tr[ΓBtΓ]≤D

RL(Ã(Σd +B)tÃ|ΣXLY L)

=
⋃

tr[ΓÃ−1Ã(Σd+B)tÃt(ΓÃ−1)]

≤D+tr[B̃]

RL(Ã(Σd +B)tÃ|ΣXLY L)

=
⋃

Σ̂d=Ã(Σd+B)tÃ≻Σ
XL|Y L ,

tr[ΓÃ−1Σ̂d
t(ΓÃ−1)]≤D+tr[B̃]

RL(Σ̂d|ΣXLY L)

= RL(ΓÃ
−1, D + tr[B̃]|ΣXLY L).

Thus the third equality is proved.
Proposition 1 implies that all results on the rate distortion re-

gions for the remote source coding problems can be converted
into those on the multiterminal source coding problems. In the
following we derive inner and outer bounds ofRL(Σd|ΣY L),
RL(Γ, D

L|ΣY L), and RL(Γ, D|ΣY L) using Proposition 1.
We first derive inner and outer bounds ofRL(Σd|ΣY L). For
eachl ∈ ΛL and forrl ≥ 0, let Vl(rl), l ∈ ΛL be a Gaussian
random variable with mean 0 and varianceσ2

Nl
/(e2rl −1). We

assume thatVl(rl), l ∈ ΛL are independent. Whenrl = 0, we
formally think that the inverse valueσ−1

Vl(0)
of Vl(0) is zero. Let

ΣV L(rL) be a covariance matrix of the random vectorV L(rL).
WhenrS = 0, we formally define

Σ−1
VSc(rSc)

△
= Σ−1

V L(rL)

∣
∣
∣
rS=0

.

Fix nonnegative vectorrL. For θ > 0 and forS ⊆ ΛL, define

J̃S(θ, rS |rSc)
△
=

1

2
log+









|ΣY L +B|
L∏

l=1

e2ri

θ|ΣY L |
∣
∣
∣Σ−1

Y L +Σ−1
VSc(rSc)

∣
∣
∣









,

J̃S (rS |rSc)
△
=

1

2
log

∣
∣
∣Σ−1

Y L +Σ−1
V L(rL)

∣
∣
∣

∣
∣
∣Σ−1

Y L +Σ−1
VSc(rSc)

∣
∣
∣ .

Set

ÃL(Σd)
△
=

{

rL ≥ 0 :
[

Σ−1
Y L +Σ−1

V L(rL)

]−1

� Σd

}

.

Define four regions by

R(out)
L (θ, rL|ΣY L)

△
=
{
RL :

∑

l∈S

Rl ≥ J̃S (θ, rS |rSc)

for anyS ⊆ ΛL. } ,
R(out)
L (Σd|ΣY L)

△
=

⋃

rL∈ÃL(Σd)

R(out)
L (|Σd +B|, rL|ΣY L) ,

R(in)
L (rL|ΣY L)

△
=
{
RL :

∑

l∈S

Rl ≥ JS (rS |rSc)

for anyS ⊆ ΛL. } ,

R(in)
L (Σd|ΣY L)

△
= conv







⋃

rL∈ÃL(Σd)

R(in)
L (rL|ΣY L)






.

The functions and sets defined above have properties shown
in the following.

Property 6:

a) For any positive definiteΣd, G̃(Σd) = G(Ã(Σd+B)tÃ).

b) For any positive definiteΣd, we have

R̂(in)
L (Σd|ΣY L) = R̂(in)

L (Ã(Σd +B)tÃ|ΣXLY L).

c) For any positive definiteΣd and anyS ⊆ ΛL, we have

J̃S(|Σd +B|, rS |rSc) = JS(|Ã(Σd +B)tÃ|, rS |rSc),

J̃S(rS |rSc) = JS(rS |rSc).

d) For any positive definiteΣd, ÃL(Σd) = AL(Ã(Σd +
B)tÃ).

e) For any positive definiteΣd, we have

R(out)
L (Σd|ΣY L) = R(out)

L (Ã(Σd +B)tÃ|ΣXLY L) ,

R(in)
L (Σd|ΣY L) = R(in)

L (Ã(Σd +B)tÃ|ΣXLY L).

From Theorem 3, Proposition 1 and Property 6, we have
the following.
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Theorem 10: For any positive definiteΣd, we have

R(in)
L (Σd|ΣY L) = R̂(in)

L (Σd|ΣY L)

⊆ RL(Σd|ΣY L) ⊆ R(out)
L (Σd|ΣY L).

Next, we derive inner and outer bounds ofRL(Γ,D
K |ΣY L)

andRL(Γ,D|ΣY L). Set

ÃL(r
L)

△
= {Σd : Σd � (Σ−1

Y L +Σ−1
V L(rL))

−1} ,

θ̃(Γ, DL, rL)
△
= max

Σd:Σd∈ÃL(rL),

ΓΣd
tΓ∈SL(DL)

|Σd +B| ,

θ̃(Γ, D, rL)
△
= max

Σd:Σd∈ÃL(rL),

tr[ΓΣd
tΓ]≤D

|Σd +B| .

Furthermore, set

B̃L(Γ, DL)
△
=
{

rL ≥ 0 : Γ(Σ−1
Y L +Σ−1

V L(rL))
−1tΓ ∈ SL(DL)

}

,

B̃L(Γ, D)
△
=
{

rL ≥ 0 : tr
[

Γ(Σ−1
Y L +Σ−1

V L(rL)
)−1tΓ

]

≤ D
}

.

Define four regions by

R(out)
L (Γ, DL|ΣY L)

△
=

⋃

rL∈B̃L(Γ,DL)

R(out)
L (θ̃(Γ, DL, rL), rL|ΣY L),

R(in)
L (Γ, DL|ΣY L)

△
= conv







⋃

rL∈B̃L(Γ,DL)

R(in)
L (rL|ΣY L)






,

R(out)
L (Γ, D|ΣY L)

△
=

⋃

rL∈B̃L(Γ,D)

R(out)
L (θ̃(Γ, D, rL), rL|ΣY L),

R(in)
L (Γ, D|ΣY L)

△
= conv







⋃

rL∈B̃L(Γ,D)

R(in)
L (rL|ΣY L)






.

It can easily be verified that the functions and sets defined
above have the properties shown in the following.

Property 7:
a) For any invertibleΓ and anyDL > 0, we have

R̂(in)
L (Γ, DL|ΣY L)

= R̂(in)
L (ΓÃ−1, DL + b̃L|ΣXLY L).

For any invertibleΓ and anyD > 0, we have

R̂(in)
L (Γ, D|ΣY L)

= R̂(in)
L (ΓÃ−1, D + tr[B̃]|ΣXLY L).

b) For anyrL ≥ 0, we have

Σd ∈ Ã(rL) ⇔ Ã(Σd +B)tÃ ∈ A(rL),

θ̃(Γ, DL, rL) =
∣
∣
∣Ã
∣
∣
∣

−2

θ(ΓÃ−1, DL, rL),

θ̃(Γ, D, rL) =
∣
∣
∣Ã
∣
∣
∣

−2

θ(ΓÃ−1, D, rL).

c) For any invertibleΓ and anyDL > 0, we have

R(out)
L (Γ, DL|ΣY L)

= R(out)
L (ΓÃ−1, DL + b̃L|ΣXLY L),

R(in)
L (Γ, DL|ΣY L)

= R(in)
L (ΓÃ−1, DL + b̃L|ΣXLY L).

For any invertibleΓ and anyD > 0, we have

R(out)
L (Γ, D|ΣY L)

= R(out)
L (ΓÃ−1, D + tr[B̃]|ΣXLY L),

R(in)
L (Γ, D|ΣY L)

= R(in)
L (ΓÃ−1, D + tr[B̃]|ΣXLY L).

From Corollary 1, Proposition 1 and Property 7, we have
the following theorem.

Theorem 11: For any invertibleΓ and anyD > 0, we have

R(in)
L (Γ, DL|ΣY L) = R̂(in)

L (Γ, DL|ΣY L)

⊆ RL(Γ, D
L|ΣY L) ⊆ R(out)

L (Γ, DL|ΣY L).

For any invertibleΓ and anyD > 0, we have

R(in)
L (Γ, D|ΣY L) = R̂(in)

L (Γ, D|ΣY L)

⊆ RL(Γ, D|ΣY L) ⊆ R(out)
L (Γ, D|ΣY L).

The outer boundR(out)
L (Γ, DL|ΣY L) has a form of positive

semidefinite programming. To find a matching condition for
inner and outer bounds to match, we must examine a property
of the solution to this positive semidefinite programming. On
the sum rate part of the rate distortion region in the case
of vector distortion criterion we have the following corollary
from Theorem 11.

Corollary 2: For anyDL > 0, we have

R
(l)
sum,L(D

L|ΣY L) ≤ Rsum,L(D
L|ΣY L)

≤ R
(u)
sum,L(D

L|ΣY L),

where

R
(u)
sum,L(D

L|ΣY L)

△
= min

rL:(Σ−1

Y L
+Σ−1

V L(rL)
)−1

∈SL(DL)

1

2
log |I +ΣY LΣ−1

V L(rL)
|

= min
(rL,Σd):

Σd∈SL(DL),

Σd=(Σ−1

Y L
+Σ−1

V L(rL)
)−1

1

2
log

|ΣY L |
|Σd|

= min
(rL,Σd):

Σd∈SL(DL),

Σd=(Σ−1

Y L
+Σ−1

V L(rL)
)−1

{

1

2
log

|ΣY L +B|
|Σd +B| +

L∑

l=1

ri

}

,

R
(l)
sum,L(D

L|ΣY L)

△
= min

(rL,Σd):

Σd∈SL(DL),

Σd�(Σ−1

Y L
+Σ−1

V L(rL)
)−1

{

1

2
log

|ΣY L +B|
|Σd +B| +

L∑

l=1

ri

}

.
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A lower bound ofRsum,L(D
L|ΣY L) in a form of positive

semidefinite programming was first obtained by Wanget al.
[12]. Their lower bound denoted bỹR(l)

sum,L(D
L|ΣY L) is as

follows. Let δL
△
= (δ1, δ2, · · · , δL) be a positive vector whose

componentsδl, l ∈ ΛL belong to(0, σ2
Nl
]. Let Diag.(δL) be

a diagonal matrix whose(l, l) element isδl, l ∈ ΛL. Then
R̃

(l)
sum,L(D

L|ΣY L) is given by

R̃
(l)
sum,L(D

L|ΣY L)

△
= min

(δL,Σd):

Σd∈SL(DL),
δl∈(0,σ2

Nl
],l∈ΛL,

(Σ−1
d

+B−1)−1�Diag.(δL)

{

1

2
log

|ΣY L +B|
|Σd +B| +

L∑

l=1

1

2
log

σ2
Nl

δl

}

.

By simple computation we can show thatR̃(l)
sum,L(D

L|ΣY L)

= R
(l)
sum,L(D

L|ΣY L). Although the lower boundR̃(l)
sum,L(

DL|ΣY L) of Wang et al. [12] is equal to our lower bound
R

(l)
sum,L( D

L|ΣY L), their method to derivẽR(l)
sum,L( D

L|ΣY L)
is essentially different from our method. They derived the
lower bound by utilizing the semidefinite partial order of
the covariance matrices associated with MMSE estimation.
Unlike our method, the method of Wanget al. is not directly
applicable to the characterization of the entire rate distortion
region.

WhenL = 2, Wanget al. [12] solved the positive semidef-
inite programming describing̃R(l)

sum,2( D
2|ΣY 2) to obtain the

following result.
Lemma 5 (Wang et al. [12]):For any covariance matrix

ΣY 2 , there exist a pair(ΣX2 , ΣN2) of covariance and diagonal
covariance matrices such thatΣY 2 = ΣX2 +ΣN2 and

R̃
(l)
sum,2(D

2|ΣY 2) = R
(u)
sum,2(D

2|ΣY 2).

From Corollary 2 and Lemma 5, we have the following
corollary.

Corollary 3:

R̃
(l)
sum,2(D

2|ΣY 2) = R
(l)
sum,2(D

2|ΣY 2)

= Rsum,2(D
2|ΣY 2) = R

(u)
sum,2(D

2|ΣY 2).

Our method to deriveR(l)
sum,2(D

2|ΣY 2) ≤ Rsum,2(D
2|ΣY 2)

in Corollary 2 essentially differs from the method of Wanget
al. [12] to deriveR̃(l)

sum,2(D
2|ΣY 2) ≤ Rsum,2(D

2|ΣY 2). Our
method to obtain Corollary 3 is also quite different from that
of Wagneret al. [11] to prove Theorem 9. Hence, Corollary
3 provides the second alternative proof of Theorem 9.

C. Matching Condition Analysis

In this subsection, we derive a matching condition for
R(out)
L (Γ, D|ΣY L) to coincide with R(in)

L (Γ, D|ΣY L). Us-
ing the derived matching condition we derive more explicit
matching condition whenΓ is a positive semidefinite diagonal
matrix. Furthermore we apply this result to the analysis of
matching condition in the case of vector distortion criterion.

By the third equality of Proposition 1, the determination
problem ofRL(Γ, D|ΣY L) can be converted into the deter-
mination problem ofRL(ΓÃ

−1, D + tr[B̃]| ΣXLY L). Using

Theorem 5, we derive a matching condition forR(in)
L (ΓÃ−1,

D + tr[B̃]|ΣXLY L) to coincide with R(out)
L (ΓÃ−1, D +

tr[B̃]|ΣXLY L). For simplicity of our analysis we use the
second simplified matching condition (10) in Theorem 5. Note
that

[
t(ΓÃ−1)−1(Σ−1

XL +Σ−1
NL)(ΓÃ

−1)−1
]−1

= ΓÃ−1(Σ−1
XL +Σ−1

NL)
−1t(ΓÃ−1) = B̃. (28)

By (28), the second matching condition in Theorem 5, the third
equality of Proposition 1, and Property 7 part c), we establish
the following.

Theorem 12:Let µ∗
min be the minimum eigenvalue of

B̃ = Γ
(
ΣNL +ΣNLΣ−1

XLΣNL

)
tΓ.

If we have

0 < D ≤ (L+ 1)µ∗
min − tr

[
Γ(ΣNL +ΣNLΣ−1

XLΣNL)tΓ
]
,

then

R(in)
L (Γ, D|ΣY L) = R̂(in)

L (Γ, D|ΣY L)

= RL(Γ, D|ΣY L) = R(out)
L (Γ, D|ΣY L).

An important feature of the multiterminal rate distortion
problem is that the rate distortion regionRL(Γ, D|ΣY L)
remains the same for any choice of covariance matrixΣXL

and diagonal covariance matrixΣNL satisfyingΣY L = ΣXL+
ΣNL . Using this feature and Theorem 12, we find a good pair
(ΣXL , ΣNL) to provide an explicit strong sufficient condition
for R(in)

L (Γ, D|ΣY L) andR(out)
L (Γ, D|ΣY L) to match.

In the following argument we consider the case whereΓ is
the following positive definite diagonal matrix:

Γ =










γ1 0
γ2

. . .

0 γL










, γl ∈ [1,+∞). (29)

SetγL
△
= (γ1, γ2, · · · , γL) ∈ [1,+∞)L. We callγL the weight

vector. SinceΓ is specified by the weight vectorγL, we
write RL(Γ, D|ΣY L) as RL(γ

L, D|ΣY L). Similar notations
are adopted for other regions.

We chooseΣNL so thatΣNL = δΓ−2. SetΣ̃XL

△
= ΓΣXLΓ

and Σ̃Y L

△
= ΓΣY LΓ. Then, we have

B̃ = δIL + δ2Σ̃−1
XL ,

Σ̃XL = Σ̃Y L − δIL.

}

(30)

Let ηmin
△
= η1 ≤ η2 ≤ · · · ≤ ηL

△
= ηmax be the ordered list

of L eigenvalues ofΣY L and let η̃min
△
= η̃1 ≤ η̃2 ≤ · · · ≤

η̃L
△
= η̃max be the ordered list ofL eigenvalues of̃ΣY L . Set

γmax
△
= max1≤l≤L γi. SinceηminIL � ΣY L � ηmaxIL, we

have

ηminIL � ηminΓ
2 � Σ̃Y L � ηmaxΓ

2 � γ2maxηmaxIL,

from which we obtain

ηmin ≤ η̃min ≤ η̃max ≤ γ2maxηmax. (31)
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We chooseδ so that0 < δ < η̃min. Then, by (30), we have

µ∗
min = δ +

δ2

η̃max − δ
,

tr[B̃] = tr
[

δIL + δ2Σ̃−1
XL

]

= Lδ +
L∑

l=1

δ2

η̃i − δ
.







(32)

From (32), we have

(L+ 1)µ∗
min − tr[B̃] = δ +

(L+ 1)δ2

η̃max − δ
−

L∑

l=1

δ2

η̃l − δ

= δ +
Lδ2

η̃max − δ
−
L−1∑

l=1

δ2

η̃l − δ

≥ δ + L
δ2

η̃max − δ
− (L − 1)

δ2

η̃min − δ

= Lη̃max

(
η̃max

η̃max − δ
− 1

)

−(L− 1)η̃min

(
η̃min

η̃min − δ
− 1

)

. (33)

By an elementary computation we can show that the right
member of (33) takes the maximum value

(
√
L−

√
L− 1)2 · η̃maxη̃min

η̃max − η̃min

=
1

(
√
L+

√
L− 1)2

· η̃maxη̃min

η̃max − η̃min

at

δ =
(
√
L−

√
L− 1)η̃maxη̃min√

Lη̃max −
√
L− 1η̃min

.

Furthermore, taking (31) into account, we obtain

η̃maxη̃min

η̃max − η̃min
=
[
η̃−1
min − η̃−1

max

]−1 ≥
[
η−1
min − γ−2

maxη
−1
max

]−1

=
ηmaxηmin

ηmax − γ−2
maxηmin

.

Hence if

0 < D ≤ 1

(
√
L+

√
L− 1)2

· ηmaxηmin

ηmax − γ−2
maxηmin

,

then the matching condition holds. Summarizing the above
argument, we obtain the following corollary from Theorem
12.

Corollary 4: Let γL ∈ [1,+∞)L be a weight vector and
let γmax= max1≤l≤L γl. If

0 < D ≤ 1

(
√
L+

√
L− 1)2

· ηmaxηmin

ηmax − γ−2
maxηmin

,

then we have

R(in)
L (γL, D|ΣY L) = R̂(in)

L (γL, D|ΣY L)

= RL(γ
L, D|ΣY L) = R(out)

L (γL, D|ΣY L). (34)

In particular, if

0 < D ≤ 1

(
√
L+

√
L− 1)2

· ηmin,

then we have (34) for any weight vectorγL ∈ [1,∞)L. If
γmax = 1 and

0 < D ≤ 1

(
√
L+

√
L− 1)2

· ηmaxηmin

ηmax − ηmin
,

then we have

R(in)
L (D|ΣY L) = R̂(in)

L (D|ΣY L)

= RL(D|ΣY L) = R(out)
L (D|ΣY L).

Fix γL ∈ [1,+∞)L arbitrarily. Consider the regionRL(
γL|ΣY L) and the minimum distortionDL(γ

L, RL|ΣY L) in-
duced byRL(γ

L, D|ΣY L). Those are formally defined by

RL(γ
L|ΣY L)

△
=
{
(RL, D) : RL ∈ RL(γ

L, D|ΣY L)
}
,

DL(γ
L, RL|ΣY L)

△
= inf

{
D : (RL, D) ∈ RL(γ

L|ΣY L)
}
.

Similarly, we define

R(in)
L (γL|ΣY L)

△
=
{

(RL, D) : RL ∈ R(in)
L (γL, D|ΣY L)

}

,

R(out)
L (γL|ΣY L)

△
=
{

(RL, D) : RL ∈ R(out)
L (γL, D|ΣY L)

}

,

D
(u)
L (γL, RL|ΣY L)

△
= inf

{

D : (RL, D) ∈ R(in)
L (γL|ΣY L)

}

,

D
(l)
L (γL, RL|ΣY L)

△
= inf

{

D : (RL, D) ∈ R(out)
L (γL|ΣY L)

}

.

From Theorem 11 and Corollary 4, we obtain the following
corollary.

Corollary 5: For anyRL ≥ 0 and anyγL ∈ [1,+∞)L, we
have

D
(u)
L (γL, RL|ΣY L) ≥ DL(γ

L, RL|ΣY L)

≥ D
(l)
L (γL, RL|ΣY L).

For eachγL ∈ [1,+∞)L, if we have

0 < D
(u)
L (γL, RL|ΣY L) ≤ 1

(
√
L+

√
L− 1)2

· ηmin,

then

D
(u)
L (γL, RL|ΣY L) = DL(γ

L, RL|ΣY L)

= D
(l)
L (γL, RL|ΣY L).

We apply Corollary 5 to the derivation of matching condi-
tion in the case of vector distortion criterion. We considerthe
regionRL(ΣY L) and the distortion rate regionDL(RL|ΣY L)
induced byR(DL|ΣY L). Those two regions are formally
defined by

RL(ΣY L)
△
=
{
(RL, DL) : RL ∈ RL(D

L|ΣY L)
}
,

DL(RL|ΣY L)
△
=
{
DL : (RL, DL) ∈ RL(ΣY L)

}
.
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Similarly, we define

R(in)
L (ΣY L)

△
=
{

(RL, DL) : RL ∈ R(in)
L (DL|ΣY L)

}

,

D(in)
L (RL|ΣY L)

△
=
{

DL : (RL, DL) ∈ R(in)
L (ΣY L)

}

.

Although the distortion rate region is merely an alterna-
tive characterization of the rate distortion region, the for-
mer is more convenient than the latter for our analysis
of matching condition. We examine a part of the bound-
ary of D(in)(RL|ΣY L) which coincides with the bound-
ary of D(RL|ΣY L). By definition ofDL(γ

L, RL|ΣY L) and
D

(u)
L (γL, RL|ΣY L), we have

DL(γ
L, RL|ΣY L) = min

DL∈DL(RL|Σ
Y L )

L∑

l=1

γ2iDl, (35)

D
(u)
L (γL, RL|ΣY L) = min

DL∈D
(in)
L

(RL|Σ
Y L )

L∑

l=1

γ2l Dl. (36)

Consider the following two hyperplanes:

ΠL(γ
L)

△
=

{

DL :

L∑

l=1

γ2lDl = DL(γ
L, RL|ΣY L)

}

,

Π
(u)
L (γL)

△
=

{

DL :

L∑

l=1

γ2lDl = D
(u)
L (γL, RL|ΣY L)

}

.

It can easily be verified that the regionDL(RL|ΣY L) is
a closed convex set. Then by (35),ΠL(γL) becomes a
supporting hyperplane ofDL(RL|ΣY L) and everyDL ∈
ΠL(γ

L)∩ DL(RL|ΣY L) is on the boundary ofDL(RL|ΣY L).
On the other hand, by its definition the regionD(in)

L (RL|ΣY L)

is also a closed convex set. Then by (36),Π
(u)
L (γL) be-

comes a supporting hyperplane ofD(in)
L (RL|ΣY L) and every

DL ∈Π(u)
L (γL)∩ D(in)

L (RL|ΣY L) is on the boundary of
D(in)
L (RL|ΣY L). Set

ζL
△
=

1

(
√
L+

√
L− 1)2

ηmin,

TL(ζL)
△
=
{

γL ∈ [1,+∞)L : D
(u)
L (γL, RL|ΣY L) ≤ ζL

}

.

Then by Corollary 5, for anyγL ∈ TL(ζL), we have
Π

(u)
L (γL) = ΠL(γ

L), which together withD(in)
L (RL |ΣY L)

⊆ DL(RL |ΣY L) implies that everyDL ∈ Π
(u)
L (γL)∩

D(in)
L (RL|ΣY L) must belong toΠL(γL)∩ DL(RL|ΣY L).

Hence thisDL must be on the boundary ofDL(RL |ΣY L).
It can easily be verified that an existence ofΠ

(u)
L (γL) satis-

fying γL ∈ TL(ζL) is equivalent toΠ(u)
L (γL) ∩{DL ≥ 0}

⊆ D(+)
L (ζL), where

D(+)
L (ζL)

△
=

{

DL : DL ≥ 0,
L∑

l=1

Dl ≤ ζL

}

.

Summarizing the above argument, we establish the following.

Theorem 13:The distortion rate regionDL(RL|ΣY L) and
its inner boundD(in)

L (RL|ΣY L) share their boundaries at

ζ

ζ

ζ D

DD

0

γ( , , ) 1

23

1 γ2

1( , ,1 1)

γ3

Π ( )γ3 { }D 3

(R3 ΣY3)

0

ζ =
5 6

min
+2

η1

3(in)

(u)

3

3

3

3

3 ( )ζ 3
(+)

3

Fig. 3. D
(in)
3 (R3|Σ

Y 3), Π
(u)
L

(γ3) ∩ {D3 ≥ 0}, and D
(+)
3 (ζ3) in the

case ofL = 3. In this figure we are in a position so that we can view the
supporting hyperplaneΠ(u)

3 (γ3) as a horizontal line.

D∗
L(ζL) ∩D(in)

L (RL|ΣY L), where

D∗
L(ζL)

△
=

⋃

γL∈TL(ζL)

Π
(u)
L (γL)

=
⋃

Π
(u)
L

(γL)∩{DL≥0}⊆D
(+)
L

(ζL)

Π
(u)
L (γL).

When L = 3, we showD(in)
3 (R3|ΣY 3), D(+)

3 (ζ3), and
Π

(u)
3 (γ3) ∩{D3 ≥ 0} in Fig. 3.

D. Sum Rate Characterization for the Cyclic Shift Invariant
Source

In this subsection we further examine an explicit charac-
terization ofRsum,L( D|ΣY l) when the source has a certain
symmetrical property. Let

τ =

(
1 2 · · · l · · · L

τ(1) τ(2) · · · τ(l) · · · τ(L)

)

be a cyclic shift onΛL, that is,

τ(1) = 2, τ(2) = 3, · · · , τ(L − 1) = L, τ(L) = 1.

Let pXΛL
(xΛL

) = pX1X2···XL
(x1, x2, · · · , xL) be a probabil-

ity density function ofXL. The sourceXL is said to be cyclic
shift invariant if we have

pXΛL
(xτ(ΛL)) = pX1X2···XL

(x2, x3, · · · , xL, x1)
= pX1X2···XL

(x1, x2, · · · , xL−1, xL)

for any(x1, x2, · · · , xL) ∈ XL. In the following argument we
assume thatXL satisfies the cyclic shift invariant property.
We further assume thatNl, l ∈ ΛL are i.i.d. Gaussian random
variables with mean 0 and varianceǫ. Then, the observation
Y L = XL + NL also satisfies the cyclic shift invariant
property. We assume that the covariance matrixΣNL of NL

is given byǫIL. ThenÃ andB are given by

Ã =
(
ǫΣ−1

XL + IL
)−1

, B = ǫ
(
IL + ǫΣ−1

XL

)
.

Fix r > 0, letNl(r), l ∈ ΛL beL i.i.d. Gaussian random vari-
ables with mean 0 and varianceǫ/(1− e−2r). The covariance
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matrix ΣNL(r) for the random vectorNL(r) is given by

ΣNL(r) =
1− e−2r

ǫ
IL.

Let µl, l ∈ ΛL be L eigenvalues of the matrixΣY L and let
βl = βl(r), l ∈ ΛL beL eigenvalues of the matrix

tÃ

(

Σ−1
XL +

1− e−2r

ǫ
IL

)

Ã.

Using the eigenvalues ofΣY L , βl(r), l ∈ ΛL can be written
as

βl(r) =
1

ǫ

[

1− ǫ

µl
−
(

1− ǫ

µl

)2

e−2r

]

.

Let ξ be a nonnegative number that satisfies

L∑

l=1

{[ξ − β−1
l ]+ + β−1

l } = D + tr[B].

Define

ω̃(D, r)
△
=

L∏

l=1

{
[ξ − β−1

l ]+ + β−1
l

}
.

The functionω̃(D, r) has an expression of the so-called water
filling solution to the following optimization problem:

ω̃(D, r) = max
ξlβl≥1,l∈ΛL,

∑L
l=1 ξl≤D+tr[B]

L∏

l=1

ξl. (37)

Set

J̃(D, r)
△
=

1

2
log

[

e2Lr |ΣY L +B|
ω̃(D, r)

]

,

π(r)
△
= tr

[

Ã−1

(

Σ−1
XL +

1− e−2r

ǫ
IL

)−1
tÃ−1

]

.

By definition we have

π(r) =

L∑

l=1

1

βl(r)
. (38)

Since π(r) is a monotone decreasing function ofr, there
exists a uniquer such thatπ(r) = D + tr[B], we denote
it by r∗(D+ tr[B]). We can show that̃ω(D, r) satisfies the
following property.

Property 8:

a) ForD > 0,

(r, r, · · · , r
︸ ︷︷ ︸

L

) ∈ BL(Ã−1, D + tr[B])

⇔ π(r) ≤ D + tr[B] ⇔ r ≥ r∗(D + tr[B]),

ω̃(D, r∗) = |Ã|−2

∣
∣
∣
∣
Σ−1
XL +

1− e−2r∗

ǫ
IL

∣
∣
∣
∣

−1

.

b) The functioñω(D, r) is a convex function ofr ∈ [r∗(D+
tr[B]),∞).

Proof of Property 8 part a) is easy. We omit the detail. Proof
of Property 8 part b) will be given in Section V. Set

R
(u)
sum,L(D|ΣY L)

△
= J̃(D, r∗)

=
1

2
log

[

|ΣY L +B|e2Lr∗
L∏

l=1

βl(r)

]

=

L∑

l=1

1

2
log
{µl
ǫ

[
e2r∗ − 1

]
+ 1
}

R
(l)
sum,L(D|ΣY L)

△
= min

r≥r∗(D+tr[B])
J̃(D, r).

Then we have the following.
Theorem 14:Assume that the sourceXL and its noisy

versionY L = XL + NL are cyclic shift invariant. Then, we
have

R
(l)
sum,L(D|ΣY L) ≤ Rsum,L(D|ΣY L) ≤ R

(u)
sum,L(D|ΣY L).

Proof of this theorem will be stated in Section V. We next
examine a necessary and sufficient condition forR

(l)
sum,L(D

|ΣY L) to coincide withR(u)
sum,L( D|ΣY L). It is obvious that

this condition is equivalent to the condition that the function
J̃ (D, r), r ≥ r∗ = r∗(D + tr[B]), attains the minimum at
r = r∗. Set

µmin
△
= min

1≤l≤L
µl, µmax

△
= max

1≤l≤L
µl.

Let l0 ∈ ΛL be the largest integer such thatµmax = µl0 and
let l1 = l1(r) ∈ ΛL be the largest integer such that

βl1(r) = max
1≤l≤L

βl(r).

The following is a basic lemma to derive our necessary
and sufficient matching condition onR(l)

sum,L(D|ΣY L) =

R
(u)
sum,L(D|ΣY L).
Lemma 6:The functionJ̃ (D, r) , r ∈ [r∗(D + tr[B]),∞)

attains the minimum atr = r∗ if and only if

1

2

(
d

dr
J̃ (D, r)

)

r=r∗

=
L∑

l=1

e2r
∗
[

e2r
∗ − 1 + ǫ

µl

]

−
(

1− ǫ
µl1

) [

e2r
∗ − 1 + ǫ

µl1

]

[

e2r∗ − 1 + ǫ
µl1

]2

≥ 0. (39)

Proof of Lemma 6 will be given in Section V. Note that for
any l ∈ ΛL, we have

e2r
∗

[

e2r
∗ − 1 +

ǫ

µl

]

−
(

1− ǫ

µl1

)[

e2r
∗ − 1 +

ǫ

µl1

]

≥ e2r
∗

[

e2r
∗ − 1 +

ǫ

µl0

]

−
(

1− ǫ

µl1

)[

e2r
∗ − 1 +

ǫ

µl1

]

≥ ǫ

(
1

µl0
− 1

µl1

)

. (40)

From (39) in Lemma 6 and (40), we can see thatl0 = l1 is a
sufficient matching condition forR(l)

sum,L(D |ΣY L) = R
(u)
sum,L(

D|ΣY L). Let µ̃ be the second largest eigenvalue ofΣY L and
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µ

β ( )r ∗
l0

1_ ε
l 0µ1_ ε

l
e r∗2

e r∗2
2
1

β ( )r ∗
l

e r∗4
4
1

+µ1_ ε
l µ1_ ε

l 02
1

0

ab ( _a)=
b

e r∗2

a

e r ∗2ε

e r ∗2ε

Fig. 4. The graph ofb = a(e2r
∗
− a).

let l̃ ∈ ΛL be the largest integer such thatµ̃ = µl̃. From the
graph ofb = a(e2r

∗ − a) shown in Fig. 4, we can see that

1

2

[

1− ǫ

µ̃
+ 1− ǫ

µmax

]

≤ 1

2
e2r

∗

or equivalent to

e2r
∗ − 1 ≥

[

1− ǫ

(
1

µ̃
+

1

µmax

)]

(41)

is a necessary and sufficient condition forl0 = l1. Hence (41)
is a sufficient matching condition. Next, we derive another
simple matching condition. Note that

e2r
∗

[

e2r
∗ − 1 +

ǫ

µl

]

−
(

1− ǫ

µl1

)[

e2r
∗ − 1 +

ǫ

µl1

]

≥ e2r
∗

[

e2r
∗ − 1 +

ǫ

µmax
− 1

4
e2r

∗

]

=
3

4
e2r

∗

[

e2r
∗ − 1− 1

3

(

1− 4ǫ

µmax

)]

.

Hence, if we have

e2r
∗ − 1 ≥ 1

3

(

1− 4ǫ

µmax

)

, (42)

then the condition (39) holds. Forǫ ∈ (0, µmin), define

s(ǫ)
△
=

1

2
log

{

1 + min

{[

1− ǫ

(
1

µ̃
+

1

µmax

)]+

,

1

3

[

1− 4ǫ

µmax

]+
}}

.

Then the condition (41) or (42) is equivalent tor∗ ≥ s(ǫ).
Furthermore, this condition is equivalent to0 ≤ D ≤ Dth(ǫ),
where

Dth(ǫ)
△
=

L∑

l=1

1

βl(s(ǫ))
− tr[B] =

L∑

l=1

µlǫ

µl
[
e2s(ǫ) − 1

]
+ ǫ

.

Summarizing the above argument we have the following.
Theorem 15:We suppose thatY L is cyclic shift invariant.

Fix ǫ ∈ (0, µmin) arbitrary. If 0 ≤ D ≤ Dth(ǫ), then we have

R
(l)
sum,L(D|ΣY L) = Rsum,L(D|ΣY L) = R

(u)
sum,L(D|ΣY L).

Furthermore, the curveR = Rsum,L(D|ΣY L) has the follow-
ing parametric form:

R =

L∑

l=1

1

2
log
{µl
ǫ

[
e2r − 1

]
+ 1
}

,

D =

L∑

l=1

1

βl(r)
− tr[B] =

L∑

l=1

µlǫ

µl(e2r − 1) + ǫ

for r ∈ [s(ǫ),∞).







(43)

SinceDth(ǫ) is a monotone increasing function ofǫ, to
chooseǫ arbitrary close toµmin is a choice yielding the
best matching condition. Note here that we can not choose
ǫ = µmin becauseπ(r) becomes infinity in this case. Letting
ǫ arbitrary close toµmin and considering the continuities of
Dth(ǫ) and the functions in the right hand side of (43) with
respect toǫ, we have the following.

Theorem 16:We suppose thatY L is cyclic shift invariant.
If 0 ≤ D ≤ Dth(µmin), then we have

R
(l)
sum,L(D|ΣY L) = Rsum,L(D|ΣY L) = R

(u)
sum,L(D|ΣY L).

Furthermore, the curveR = Rsum,L(D|ΣY L) has the follow-
ing parametric form:

R =

L∑

l=1

1

2
log

{
µl
µmin

[
e2r − 1

]
+ 1

}

,

D =

L∑

l=1

µlµmin

µl(e2r − 1) + µmin
, for r ∈ [s(µmin),∞).







Let 1L
△
= (1, 1, · · · , 1) be aL dimensional vector whose

L components are all 1. We consider the characterization
of Rsum,L(D · 1L|ΣY L). From Theorem 16, we obtain the
following corollary.

Corollary 6: Suppose thatY L is cyclic shift invariant. If
0 ≤ D ≤ 1

L
Dth(µmin), then we have

R
(l)
sum,L(D · 1L|ΣY L)

= Rsum,L(D · 1L|ΣY L) = R
(u)
sum,L(D · 1L|ΣY L).

Furthermore, the curveR = Rsum,L(D · 1L|ΣY L) has the
following parametric form:

R =

L∑

l=1

1

2
log

{
µl
µmin

[
e2r − 1

]
+ 1

}

,

D =
1

L

L∑

l=1

µlµmin

µl(e2r − 1) + µmin
, for r ∈ [s(µmin),∞).







Here we consider the case whereΣY L has at most two
eigenvalues. In this case we haveµ̃ = µmin. Then we have
s(µmin) = 0 andDth(0) = tr[ΣY L ]. This implies thatR =
Rsum,L(D·1L|ΣY L) is determined for all0 ≤ D ≤ 1

L
tr[ΣY L ].

Wagneret al. [11] determinedR = Rsum,L(D · 1L|ΣY L) in a
special case whereΣY L satisfies[ΣY L ]ll = σ2 for l ∈ ΛL and
[ΣY L ]ll′ = cσ2, 0 < c < 1 for l 6= l′ ∈ ΛL. In this special case
ΣY L has two distinct eigenvaules. Hence our result includes
their result as a special case.
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Yang and Xiong [25] determinedRsum,L(D · 1L|ΣY L) in
the case whereΣY L has two distinct eigenvalues. Wanget al.
[12] determinedRsum,L(D·1L|ΣY L) for another case ofΣY L .
The class of information sources satisfying the cyclic shift
invariant property is different from the class of information
sources investigated by Yang and Xiong [25] and Wanget al.
[12] although we have some overlap between them.

V. PROOFS OF THERESULTS

A. Derivation of the Outer Bounds

In this subsection we prove the results on outer bounds of
the rate distortion region. We first state two important lemmas
which are mathematical cores of the converse coding theorem.
For l ∈ ΛL, set

Wl
△
= ϕl(Y l), r

(n)
l

△
=

1

n
I(Y l;Wl|XK). (44)

ForQ ∈ OK , setZK
△
= QXK . For

X
K = (XK(1), XK(2), · · · , XK(n))

we set

Z
K △

= QX
K = (QXK(1), QXK(2), · · · , QXK(n)).

Furthermore, forX̂
K

= (X̂K(1), X̂K(2), · · · , X̂K(n)), we
set

Ẑ
K

= QX̂
K △

= (QX̂K(1), QX̂K(2), · · · , QX̂K(n)).

We have the following two lemmas.
Lemma 7:For anyk ∈ ΛK and anyQ ∈ OK , we have

h(Zk|ZK
[k]W

L) ≤ h(Zk − Ẑk |ZK
[k] − Ẑ

K

[k])

≤ n

2
log

{

(2πe)

[

Q
(

1
n
Σ−1

XK−X̂
K

)−1
tQ

]−1

kk

}

,

whereh(·) stands for the differential entropy.
Lemma 8:For anyk ∈ ΛK and anyQ ∈ OK , we have

h(Zk|ZK
[k]W

L)

≥ n

2
log

{

(2πe)

[

Q

(

Σ−1
XK + tAΣ−1

NΛL
(r

(n)
ΛL

)
A

)

tQ

]−1

kk

}

.

Proofs of Lemmas 7 and 8 will be stated in Appendixes A
and B, respectively. The following lemma immediately follows
from Lemmas 7 and 8.

Lemma 9:For anyΣXKY L and for any(ϕ(n)
1 , ϕ

(n)
2 , · · · ,

ϕ
(n)
L , ψ(n)), we have

(
1
n
Σ

XK−X̂
K

)−1

� Σ−1
XK + tAΣ−1

NΛL
(r

(n)
ΛL

)
A.

From Lemma 8, we obtain the following lemma.
Lemma 10:For anyS ⊆ ΛL, we have

I(XK ;WS) ≤
n

2
log

∣
∣
∣
∣
I +ΣXK

tAΣ−1

NS(r
(n)
S

)
A

∣
∣
∣
∣
. (45)

Proof: For eachl ∈ ΛL−S, we chooseWl so that it takes a
constant value. In this case we haver(n)l = 0 for l ∈ ΛL−S.
Then by Lemma 8, for anyk ∈ ΛK , we have

h(Zk|ZK
[k]WS)

≥ n

2
log

{

(2πe)

[

Q

(

Σ−1
XK + tAΣ−1

NS(r
(n)
S

)
A

)

tQ

]−1

kk

}

.(46)

We choose an orthogonal matrixQ ∈ OK so that

Q

(

Σ−1
XK + tAΣ−1

NS(r
(n)
S

)
A

)

tQ

becomes the following diagonal matrix:

Q

(

Σ−1
XK + tAΣ−1

NS(r
(n)
S

)
A

)

tQ =










λ1 0
λ2

. . .

0 λK










. (47)

Then we have the following chain of inequalities:

I(XK ;WS) = h(XK)− h(XK |WS)

(a)
= h(XK)− h(ZK |WS) ≤ h(XK)−

K∑

k=1

h(Zk|ZK
[k]WS)

(b)

≤ n

2
log
[
(2πe)K |ΣXK |

]

+

K∑

k=1

n

2
log

{
1

2πe

[

Q

(

Σ−1
XK + tAΣ−1

NS(r
(n)
S

)
A

)

tQ

]

kk

}

(c)
=

n

2
log |ΣXK |+

K∑

k=1

n

2
logλl

=
n

2
log |ΣXK |+ n

2
log

∣
∣
∣
∣
Σ−1
XK + tAΣ−1

NS(r
(n)
S

)
A

∣
∣
∣
∣

=
n

2
log

∣
∣
∣
∣
I +ΣXK

tAΣ−1

NS(r
(n)
S

)
A

∣
∣
∣
∣
.

Step (a) follows from the rotation invariant property of the
(conditional) differential entropy. Step (b) follows from(46).
Step (c) follows from (47).

We first prove the inclusionRL(Σd| ΣXKY L) ⊆ R(out)
L (Σd

|ΣXKY L) stated in Theorem 3. Using Lemmas 7, 8, 10 and a
standard argument on the proof of converse coding theorems,
we can prove the above inclusion.

Proof ofRL(Σd|ΣXKY L) ⊆ R(out)
L (Σd|ΣXKY L): We first

observe that

WS → Y S → X
K → Y Sc →WSc (48)

hold for any subsetS of ΛL. Assume(R1, R2, · · · , RL) ∈
RL(Σd|ΣXKY L). Then, there exists a sequence{(ϕ(n)

1 , ϕ
(n)
2 ,

· · · , ϕ(n)
L , ψ(n)}∞n=1 such that

lim sup
n→∞

R
(n)
l ≤ Rl, l ∈ ΛL,

lim sup
n→∞

1

n
Σ

XK−X̂
K � Σd.







(49)

We set

rl
△
= lim sup

n→∞
r
(n)
l = lim sup

n→∞

1

n
I(Y l;WS |XK). (50)
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For any subsetS ⊆ ΛL, we have the following chain of
inequalities:

∑

l∈S

nR
(n)
l ≥

∑

l∈S

logMl ≥
∑

l∈S

H(Wl) ≥ H(WS |WSc)

= I(XK ;WS |WSc) +H(WS |WScX
K)

(a)
= I(XK ;WS |WSc) +

∑

l∈S

H(Wl|XK)

(b)
= I(XK ;WS |WSc) +

∑

l∈S

H(Wl|XK)

(c)
= I(XK ;WS |WSc) + n

∑

l∈S

r
(n)
l , (51)

where steps (a),(b) and (c) follow from (48). We estimate a
lower bound ofI(XK ;WS |WSc). Observe that

I(XK ;WS |WSc) = I(XK ;WL)− I(XK ;WSc). (52)

Since an upper bound ofI(XSc ;WSc) is derived by Lemma
10, it suffices to estimate a lower bound ofI(XK ; WL). We
have the following chain of inequalities:

I(XK ;WL) = h(XK)− h(XK |WL)

≥ h(XK)− h(XK |X̂K
) ≥ h(XK)− h(XK − X̂

K
)

≥ n

2
log
[
(2πe)K |ΣXK |

]
− n

2
log
[

(2πe)K
∣
∣
∣
1
n
Σ

XK−X̂
K

∣
∣
∣

]

=
n

2
log

|ΣXK |
∣
∣
∣
1
n
Σ

XK−X̂
K

∣
∣
∣

. (53)

Combining (52), (53), and Lemma 10, we have

I(XK ;WS |WSc) + n
∑

l∈S

r
(n)
l

≥ n

2
log







∏

l∈S e
2r

(n)
l |ΣXK |

∣
∣
∣
∣
I +ΣXK

tAΣ−1

NSc(r
(n)

Sc )
A

∣
∣
∣
∣

∣
∣
∣
1
n
Σ

XK−X̂
K

∣
∣
∣







=
n

2
log







∏

l∈S e
2r

(n)
l

∣
∣
∣
∣
Σ−1
XK + tAΣ−1

NSc(r
(n)

Sc )
A

∣
∣
∣
∣

∣
∣
∣
1
n
Σ

XK−X̂
K

∣
∣
∣






.

Note here thatI(XK ;WS |WSc)+n
∑

i∈S r
(n)
i is nonnegative.

Hence, we have

I(XK ;WS |WSc) + n
∑

i∈S

r
(n)
i

≥ nJS

(∣
∣
∣
1
n
Σ

XK−X̂
K

∣
∣
∣ , r

(n)
S

∣
∣
∣ r

(n)
Sc

)

. (54)

Combining (51) and (54), we obtain
∑

l∈S

R
(n)
l ≥ JS

(∣
∣
∣
1
n
Σ

XK−X̂
K

∣
∣
∣ , r

(n)
S

∣
∣
∣ r

(n)
Sc

)

(55)

for S ⊆ ΛL. On the other hand, by Lemma 9, we have

Σ−1
XK + tAΣ−1

NΛL
(r

(n)
ΛL

)
A � 1

n
Σ−1

XK−X̂
K . (56)

By letting n → ∞ in (55) and (56) and taking (49) into
account, we have for anyS ⊆ ΛL

∑

l∈S

Rl ≥ JS(|Σd| , rS |rSc), (57)

and

Σ−1
XK + tAΣ−1

NL(rL)
A � Σ−1

d . (58)

From (57) and (58),RL(Σd|ΣXKY L) ⊆ R(out)
L (Σd|ΣXKY L)

is concluded.
Proof of Theorem 4:We choose an orthogonal matrixQ∈

OK so that

QΓ−1
(

Σ−1
XK + tAΣ−1

NL(rL)
A
)

tΓ−1tQ

=










α1 0
α2

. . .

0 αK










.

Then we have

QΓ
(

Σ−1
XK + tAΣ−1

NL(rL)
A
)−1

tΓtQ

=










α−1
1 0

α−1
2

. . .

0 α−1
K










. (59)

For Σd ∈ A(rL), set

Σ̃d
△
= QΓΣd

tΓtQ, ξk
△
=
[

Σ̃d

]

kk
.

Since

ΓΣd
tΓ � Γ(Σ−1

XL + tAΣ−1
NL(rL)

A)−1tΓ,

(59), andtr[ΓΣdtΓ] ≤ D, we have

ξk ≥ α−1
k , for k ∈ ΛK ,

K∑

k=1

ξk = tr
[

Σ̃d

]

= tr
[
ΓΣd

tΓ
]
≤ D.







(60)

Furthermore, by Hadamard’s inequality we have

|Σd| = |Γ|−2|Σ̃d| ≤ |Γ|−2
K∏

k=1

[Σ̃d]kk = |Γ|−2
K∏

k=1

ξk. (61)

Combining (60) and (61), we obtain

θ(Γ, D, rL) = max
Σd:Σd∈AL(rL),

tr[ΓΣd
tΓ]≤D

|Σd|

≤ |Γ|−2 max
ξkαk≥1,k∈ΛK ,
∑

K
k=1 ξk≤D

K∏

k=1

ξk = ω(Γ, D, rL).

The equality holds wheñΣd is a diagonal matrix.
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Proof of Theorem 14:Assume that(R1, R2, · · · , RL) ∈
RL(D|ΣY L). Then, there exists a sequence{(ϕ(n)

1 , ϕ
(n)
2 ,

· · · , ϕ(n)
L , φ(n)}∞n=1 such that

lim sup
n→∞

R
(n)
l ≤ Rl, l ∈ ΛL

lim sup
n→∞

1

n
Σ

Y ΛL
−Ŷ ΛL

� Σd, tr[Σd] ≤ D

for someΣd.







(62)

For eachj = 0, 1, · · · , L − 1, we use(ϕ(n)
τ j(1), ϕ

(n)
τ j(2), · · · ,

ϕ
(n)
τ j(L)) for the encoding of(Y 1,Y 2, · · · ,Y L). For l ∈ ΛL

and forj = 0, 1, · · · , L− 1, set

Wj,l
△
= ϕ

(n)
τ j(l)(Y l), r

(n)
j,l

△
=

1

n
I(Y l;Wj,l|XL).

In particular,

r
(n)
0,l = r

(n)
l =

1

n
I(Y l;Wl|Xi), for l ∈ ΛL.

Furthermore, set

r
(n)

τ j(ΛL)

△
= (r

(n)
j,1 , r

(n)
j,2 , · · · , r

(n)
j,L), for j = 0, 1, · · · , L− 1,

r(n)
△
=

1

L

L∑

l=1

r
(n)
l .

By the cyclic shift invariant property ofXΛL
andY ΛL

, we
have forj = 0, 1, · · · , L− 1,

1

L

L∑

l=1

r
(n)
j,l =

1

L

L∑

l=1

r
(n)
0,i = r(n). (63)

For j = 0, 1, · · · , L− 1 and for l ∈ ΛL, set

Ŷ j,l
△
= φτ j(l)(ϕτ j(1)(Y 1), ϕτ j(2)(Y 2), · · · , ϕτ j(L)(Y L)),

Ŷ τ j(ΛL)
△
=








Ŷ j,1

Ŷ j,2

...
Ŷ j,L







.

By the cyclic shift invariant property ofY ΛL
, we have

E〈Y l − Ŷ j,l,Y l′ − Ŷ j,l′〉
= E〈Y τ(l) − Ŷ j,l,Y τ(l′) − Ŷ j,l′〉 (64)

for (l, l′) ∈ Λ2
L and for j = 0, 1, · · · , L − 1. For Σd = [dll′ ],

set

τ j(Σd)
△
= [dτ j(l)τ j(l′)], Σd

△
=

1

L

L−1∑

j=0

τ j(Σd).

Then, we have

lim sup
n→∞

1

L

L−1∑

j=0

1
n
Σ

Y ΛL
−Ŷ

τj(ΛL)

(a)
= lim sup

n→∞

1

L

L−1∑

j=0

1
n
Σ

Y
τj(ΛL)−Ŷ

τj(ΛL)

(b)

� 1

L

L−1∑

j=0

τ j(Σd)
(c)
= Σd. (65)

Step (a) follows from (64). Step (b) follows from (62). Step (c)
follows from the definition ofΣd. From Y ΛL

, we construct
an estimationX̂ΛL

of XΛL
by X̂ΛL

= ÃŶ ΛL
. Then for

j = 0, 1, · · · , L− 1, we have the following:

Σ−1
XΛL

+Σ−1

N
τj(ΛL)(r

(n)

τj(ΛL)
)

(a)
= Σ−1

X
τj (ΛL)

+Σ−1

N
τj(ΛL)(r

(n)

τj(ΛL)
)

(b)

� 1
n
Σ−1

X
τj(ΛL)

−X̂
τj(ΛL)

(c)
= 1

n
Σ−1

XΛL
−X̂

τj(ΛL)

=
[

Ã
(

1
n
Σ

Y ΛL
−Ŷ

τj(ΛL)

)
tÃ+ΣXΛL

|YΛL

]−1

. (66)

Steps (a) and (c) follow from the cyclic shift invariant property
of XΛL

andXΛL
, respectively. Step (b) follows from Lemma

9. From (66), we have

1

L

L−1∑

j=0

[

Σ−1
XΛL

+Σ−1

N
τj(ΛL)(r

(n)

τm(ΛL)
)

]

� 1

L

L−1∑

j=0

[

Ã
(

1
n
Σ

Y ΛL
−Ŷ

τj(ΛL)

)
tÃ+ΣXΛL

|YΛL

]−1

(a)

�



Ã




1

L

L−1∑

j=0

1
n
Σ

Y ΛL
−Ŷ

τj(ΛL)



 tÃ+ΣXΛL
|YΛL





−1

=



Ã




1

L

L−1∑

j=0

1
n
Σ

Y ΛL
−Ŷ

τj(ΛL)
+B



 tÃ





−1

. (67)

Step (a) follows form that(ÃΣtÃ +ΣXΛL
|YΛL

)−1 is convex
with respect toΣ. On the other hand, we have

1

L

L−1∑

j=0

[

Σ−1
XΛL

+Σ−1

N
τj(ΛL)(r

(n)

τj(ΛL)
)

]

= Σ−1
XΛL

+

(

1

L

L∑

l=1

1− e−2r
(n)
l

ǫ

)

IL

(a)

� Σ−1
XΛL

+

(

1− e−2 1
L

∑

L
l=1 r

(n)
l

ǫ

)

IL

= Σ−1
XΛL

+

(

1− e−2r(n)

ǫ

)

IL. (68)

Step (a) follows from that1 − e−2a is a concave function of
a. Combining (67) and (68), we obtain

Σ−1
XΛL

+

(

1− e−2r(n)

ǫ

)

IL

�



Ã




1

L

L−1∑

j=0

1
n
Σ

Y ΛL
−Ŷ

τj(ΛL)
+B



 tÃ





−1

,

from which we obtain

1

L

L−1∑

j=0

1
n
Σ

Y ΛL
−Ŷ

τj(ΛL)
+B

�
[

tÃ

{

Σ−1
XΛL

+

(

1− e−2r(n)

ǫ

)

IL

}

Ã

]−1

. (69)
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Next we derive a lower bound of the sum rate part. For
each j = 0, 1, · · · , L − 1, we have the following chain of
inequalities:

∑

l∈ΛL

nR
(n)
l ≥

∑

l∈ΛL

logMl ≥
∑

l∈ΛL

H(Wj,l)

≥ H(Wτ j(ΛL)) = I(XΛL
;Wτ j(ΛL)) +H(Wτ l(ΛL)|XΛL

)

(a)
= I(XΛL

;Wτ j(ΛL)) +
∑

l∈ΛL

H(Wj,l|XΛL
)

= I(XΛL
;Wτ j(ΛL)) +

∑

l∈ΛL

I(Y ΛL
;Wj,l|XΛL

)

(b)
= I(XΛL

;Wτ j(ΛL)) + nLr(n)

(c)

≥ n

2
log






∣
∣
∣ΣXΛL

∣
∣
∣

∣
∣
∣
1
n
Σ

XΛL
−X̂

τj(ΛL)

∣
∣
∣




+ nLr(n)

=
n

2
log

∣
∣
∣ÃΣYΛL

tÃ+ΣXΛL
|YΛL

∣
∣
∣

∣
∣
∣Ã
(

1
n
Σ

Y ΛL
−Ŷ

τj(ΛL)

)
tÃ+ΣXΛL

|YΛL

∣
∣
∣

+ nLr(n)

=
n

2
log

∣
∣
∣ΣYΛL

+B
∣
∣
∣

∣
∣
∣
1
n
Σ

Y ΛL
−Ŷ

τj (ΛL)
+B

∣
∣
∣

+ nLr(n). (70)

Step (a) follows from (48). Step (b) follows from (65). Step
(c) follows from (53). From (70), we have

∑

l∈ΛL

R
(n)
l =

1

L

L−1∑

j=0

∑

l∈ΛL

R
(n)
l

≥ 1

L

L−1∑

j=0

1

2
log

∣
∣
∣ΣYΛL

+B
∣
∣
∣

∣
∣
∣
1
n
Σ

Y ΛL
−Ŷ

τj(ΛL)
+B

∣
∣
∣

+ Lr(n)

(a)

≥ 1

2
log

∣
∣
∣ΣYΛL

+B
∣
∣
∣

∣
∣
∣
∣
∣
∣

1

L

L−1∑

j=0

1
n
Σ

Y ΛL
−Ŷ

τj(ΛL)
+B

∣
∣
∣
∣
∣
∣

+ Lr(n). (71)

Step (a) follows from that− log |Σ+B| is convex with respect
to Σ. Letting n → ∞ in (69) and (71) and taking (65) into
account, we have

∑

l∈ΛL

Rl ≥
1

2
log

∣
∣
∣ΣYΛL

+B
∣
∣
∣

∣
∣Σd +B

∣
∣

+ Lr, (72)

Σd +B �
[

tÃ

{

Σ−1
XΛL

+

(
1− e−2r

ǫ

)

IL

}

Ã

]−1

,(73)

tr[Σd +B] = tr[Σd] + tr[B] ≤ D + tr[B]. (74)

Now we choose an orthogonal matrixQ ∈ OL so that

QtÃ

{

Σ−1
XΛL

+

(
1− e−2r

ǫ

)

IL

}

ÃtQ =










β1 0
β2

. . .

0 βL










.

Set

Σ̂d
△
= QΣd

tQ, B̂d
△
= QBtQ, ξl

△
=
[

Σ̂d + B̂
]

ll
.

From (73) and (74), we have

ξl ≥ β−1
l (r), l ∈ ΛL,

L∑

l=1

ξl = tr
[

Σ̂d + B̂
]

= tr [Σd +B] ≤ D + tr[B].







(75)

From (75), we have

L∑

l=1

1

βl(r)
≤

L∑

l=1

ξl = tr[Σ̂d + B̂] ≤ D + tr[B]

⇔ r ≥ r∗(D + tr[B]). (76)

Furthermore, by Hadamard’s inequality we have

|Σd +B| = |Σ̂d + B̂| ≤
L∏

l=1

[Σ̂d + B̂]ll =
L∏

l=1

ξl. (77)

Combining (75) and (77), we obtain

|Σd +B| ≤ max
ξlβl≥1,l∈ΛL,

∑L
l=1 ξl≤D+tr[B]

L∏

l=1

ξl = ω̃(D, r). (78)

Hence, from (72), (76), and (78), we have

L∑

l=1

Rl ≥ min
r≥r∗(D+tr[B])

1

2
log

[
eLr|ΣY +B|
ω̃(D, r)

]

= min
r≥r∗(D+tr[B])

J̃(D, r) = Rsum,L(D|ΣY L),

completing the proof.

B. Derivation of the Inner Bound

In this subsection we proveR(in)
L (Σd |ΣXKY L) ⊆ RL(Σd

|ΣXKY L) stated in Theorem 3.
Proof of R(in)

L (Σd|ΣXKY L) ⊆ RL(Σd|ΣXKY L): Since
R̂(in)
L ( Σd|ΣXKY L) ⊆RL(Σd|ΣXKY L) is proved by Theorem

1, it suffices to showR(in)
L (Σd|ΣXKY L) = R̂(in)

L (Σd|ΣXKY L)

to proveR(in)
L (Σd|ΣXKY L) ⊆ RL(Σd|ΣXKY L). We assume

thatRL ∈ R(in)
L (Σd|ΣXKY L). Then, there exists nonnegative

vectorrL such that
(

Σ−1
XK + tAΣ−1

NL(rL)
A
)−1

� Σd

and ∑

i∈S

Rl ≥ JS(rS |rSc) for anyS ⊆ ΛL. (79)

Let Vl, l ∈ ΛL beL independent zero mean Gaussian random
variables with varianceσ2

Vl
. Define Gaussian random variables

Ui, l ∈ ΛL by Ul = Xl +Nl + Vl. By definition it is obvious
that

UL → Y L → XK

US → YS → XK → YSc → USc

for anyS ⊆ ΛL.






(80)

For given rl ≥ 0, l ∈ ΛL, chooseσ2
Vl

so that σ2
Vl

=
σ2
Nl
/(e2rl − 1) when rl > 0. When rl = 0, we chooseUl

so thatUl takes constant value zero. In the above choice the



23

covariance matrix ofNL+V L becomesΣNL(rL). Define the
linear functionψ of UL by

ψ
(
UL
)
= (Σ−1

XK + tAΣ−1
NL(rL)A)

−1tAΣ−1
NL(rL)U

L.

Set X̂L = ψ
(
UL
)

and

dkk
△
= E

[

||Xk − X̂k||2
]

, 1 ≤ k ≤ K,

dkk′
△
= E

[(

Xk − X̂k

)(

Xk′ − X̂k′

)]

, 1 ≤ k 6= k′ ≤ K.

Let Σ
XK−X̂K be a covariance matrix withdkk′ in its (k, k′)

element. By simple computations we can show that

ΣXK−X̂K = (Σ−1
XK + tAΣ−1

NL(rL)A)
−1 � Σd (81)

and that for anyS ⊆ ΛL,

JS(rS |rSc) = I(YS ;US |USc). (82)

From (80) and (81), we haveUL ∈ G(Σd). Thus, from (82)
R(in)
L (Σd|ΣXKY L) ⊆ R̂(in)

L (Σd|ΣXKY L) is concluded.

C. Proofs of the Results on Matching Conditions

We first observe that the condition

tr

[

Γ
(

Σ−1
XK + tAΣ−1

NL(rL)
A
)−1

tΓ

]

≤ D

is equivalent to
K∑

k=1

1

αk(rL)
≤ D. (83)

Proof of Lemma 3:Let ΛK = {1, 2, · · · ,K} and letS ⊆
ΛK be a set of integers that satisfiesα−1

i ≥ ξ in the definition
of θ(Γ, D, rL). Then,θ(Γ, D, rL) is computed as

θ(Γ, D, rL)

= 1
(K−|S|)K−|S|




∏

j∈S

1

αj





(

D −
∑

k∈S

1

αk

)K−|S|

.

Fix l ∈ ΛL arbitrarily and setΨl
△
= 2rl− log θ(Γ, D, rL).

Computing the partial derivative ofΨl by rl, we obtain

∂Ψl
∂rl

=
∑

j∈S

(
∂αj
∂rl

)







1

αj
− K − |S|
D −

∑

k∈S

1
αk

1

α2
j






+ 2

(a)

≥
∑

j∈S

(
∂αj
∂rl

)







1

αj
− K − |S|

∑

k∈ΛK−S

1
αk

1

α2
j






+ 2

≥
∑

j∈S

(
∂αj
∂rl

)[

1

αj
− αmax

α2
j

]

+ 2

(b)
=
∑

j∈S

(
∂αj
∂rl

)[

αj − αmax

α2
j

]

+
σ2
Nl
e2rl

||âl||2
L∑

j=1

(
∂αj
∂rl

)

≥
∑

j∈S

(
∂αj
∂rl

)[

σ2
Nl
e2rl

||âl||2
− αmax

αj

(
1

αmax
− 1

αj

)]

≥
[

σ2
Nl
e2rl

||âl||2
− αmax

αmin

(
1

αmax
− 1

αmin

)]
∑

j∈S

(
∂αj
∂rl

)

.(84)

Step (a) follows from the following inequality which is equiv-
alent to (83):

D −
∑

k∈S

1

αk(rL)
≥

∑

k∈ΛK−S

1

αk(rL)
.

Step (b) follows from Lemma 2. Hence, by (84) and Lemma
2, ∂Ψl

∂rl
is nonnegative if

σ2
Nl
e2rl

||âl||2
− αmax

αmin

(
1

αmin
− 1

αmax

)

≥ 0,

completing the proof.
Proof of Lemma 4: Without loss of generality we may

assumek = 1. For T∈ OK(âl, k), the matrixC∗(Γ−1T, rl)
has the form:

C∗(Γ−1T, rl) =

[

c∗11(Γ
−1T, rl) c

∗
1[1](Γ

−1T )
t
c
∗
1[1](Γ

−1T ) C∗
22(Γ

−1T )

]

,

where C∗
22(Γ

−1T ) is a (K − 1) × (K − 1) matrix with
c∗kk′ (Γ

−1T ), (k, k′) ∈ (ΛK − {1})2 in its (k, k′) ele-
ment. SinceC∗(Γ−1T, rl) � α∗

max(rl)IK , we must have
C∗

22(Γ
−1T ) � α∗

max(rl)IK−1. Then we have

C∗(Γ−1T, rl) �
[

c∗11(Γ
−1T, rl) c

∗
1[1](Γ

−1T )
t
c
∗
1[1](Γ

−1T ) α∗
max(rl)IK−1

]

. (85)

Let λ be the minimum eigenvalue of the matrix in the right
hand side of (85). Then, by (85), we haveλ ≥ α∗

min(rl) and
λ satisfies the following:

(λ − c∗11(Γ
−1T, rl))(λ− α∗

max(rl))

−||c∗1[1](Γ−1T )||2 = 0. (86)

From (86), we have

c∗11(Γ
−1T, rl) = λ+

||c∗1[1](Γ−1T )||2

α∗
max(rl)− λ

≥ α∗
min(rl) +

||c∗1[1](Γ−1T )||2

α∗
max(rl)− α∗

min(rl)

≥ αmin(r
L) +

||c∗1[1](Γ−1T )||2

α∗
max − αmin(rL)

,

completing the proof.
Next we prove Theorems 5 and 6. For simplicity of notation

we set

a(rL)
△
=

1

αmin(rL)
, b(rL)

△
=

1

αmax(rL)
, b∗

△
=

1

α∗
max

.

Then the condition (6) in Lemma 3 is rewritten as

a(rL)

[
a(rL)

b(rL)
− 1

]

≤
σ2
Nl
e2rl

||âl||2
. (87)

Proof of Theorem 5:For (l, k) ∈ ΛL × ΛK , we choose
T ∈ OK(âl, k). By Lemma 4, we have

σ2
Nl
e2rl

||âl||2
≥
[

χ∗
k −

1

a(rL)
−
a(rL)b∗||c∗

k[k]||2

a(rL)− b∗

]−1

. (88)
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It follows from (87), (88), and Lemma 3 that if for anyl ∈ ΛL,
there existk ∈ ΛK andT ∈ OK(âl, k) such that

a(rL)

[
a(rL)

b(rL)
− 1

]

≤
[

χ∗
k −

1

a(rL)
−
a(rL)b∗||c∗

k[k]||2

a(rL)− b∗

]−1

(89)
holds for rL ∈ B(Γ, D), then θ(Γ, D, rL) satisfies the MD
condition onBL( Γ, D). Since the left hand side of (89) is a
monotone decreasing function ofb(rL) andb(rL) ≥ b∗,

a(rL)

[
a(rL)

b∗
− 1

]

≤
[

χ∗
k −

1

a(rL)
−
a(rL)b∗||c∗k[k]||2

a(rL)− b∗

]−1

(90)
implies (89). Observe that (90) is equivalent to

a(rL)

[
a(rL)

b∗
− 1

]

·
[

χ∗
k −

1

a(rL)
−
a(rL)b∗||c∗

k[k]||
a(rL)− b∗

]

≤ 1

⇔
(
a(rL)

b∗
− 1

)

χ∗
k −

1

b∗
− a(rL)||c∗k[k]||2 ≤ 0. (91)

Solving (91) with respect toa(rL), we have

a(rL) ≤ χ∗
k +

1
b∗

1
b∗
χ∗
k − ||c∗

k[k]||2
=

b∗χ∗
k + 1

χ∗
k − b∗||c∗

k[k]||2

= b∗ +
1 + (b∗)2||c∗

k[k]||2

χ∗
k − b∗||c∗

k[k]||2
. (92)

On the other hand, by (83), we have

a(rL) ≤ D − (K − 1)b(rL) ≤ D − (K − 1)b∗. (93)

Then we have the following.

D ≤ Kb∗ +
1 + (b∗)2||c∗k[k]||2

χ∗
k − b∗||c∗

k[k]||2
.

⇔ D − (K − 1)b∗ ≤ b∗ +
1 + (b∗)2||c∗

k[k]||2

χ∗
k − b∗||c∗

k[k]||2
.

⇒ (92) holds under(93).

⇒ (92) holds forrL ∈ B(Γ, D).

⇔ (90) holds forrL ∈ B(Γ, D).

⇒ (89) holds forrL ∈ B(Γ, D).

Hence, if for anyl ∈ ΛL, there existk ∈ ΛK andT ∈ OK(
âl, k) such that

D ≤ K

α∗
max

+
1 +

||c∗
k[k](Γ

−1T )||2

(α∗
max)

2

χ∗
k(Γ

−1T )− ||c∗
k[k]

(Γ−1T )||2

α∗
max

,

then θ(Γ, D, rL) satisfies the MD condition onBL( Γ, D).
Thus, by Lemma 1,

D ≤ K

α∗
max

+ min
l∈ΛL

max
k∈ΛK

T∈OK(âl,k)

1 +
||c∗

k[k](Γ
−1T )||2

(α∗
max)

2

χ∗
k(Γ

−1T )− ||c∗
k[k]

(Γ−1T )||2

α∗
max

is a sufficient matching condition.

Proof of Theorem 6: The inequality (6) in Lemma 3 is
rewritten as

[a(rL)− b(rL)]
a(rL)

b(rL)
≤ τle

2rl . (94)

From (94), we can see that if we have

[a(rL)− b(rL)]
a(rL)

b(rL)
≤ τ∗ (95)

on BL(Γ, D), thenθ(Γ, D, rL) satisfies the MD condition on
BL(Γ, D). On the other hand, from (83), we obtain

a(rL) ≤ D − (K − 1)b(rL). (96)

Under (96), we have

[a(rL)− b(rL)]
a(rL)

b(rL)

≤
[
D −Kb(rL)

] D − (K − 1)b(rL)

b(rL)
.

Hence the following is a sufficient condition for (95) to hold:

[
D −Kb(rL)

] D − (K − 1)b(rL)

b(rL)
≤ τ∗. (97)

Solving (97) with respect toD, we obtain

D ≤ Kb(rL) +
1

2

[√

b2(rL) + 4τ∗b(rL)− b(rL)

]

. (98)

Since the right hand side of (98) is a monotone increasing
function of b(rL) and b(rL) ≥ 1/α∗

max by Lemma 2, the
condition

D ≤ K

α∗
max

+
1

2α∗
max

{√

1 + 4α∗
maxτ

∗ − 1
}

is a sufficient condition for (95) to hold.
Next, we prove Lemma 6. To prove this lemma we prepare

a lemma shown below.
Lemma 11:A necessary and sufficient condition for̃J(

D, r) to take the maximum atr = r∗ is
(

d

dr
J̃(D, r)

)

r=r∗
≥ 0.

Proof: For simplicity of notation we set̃J(r)
△
= J̃(D , r).

Suppose that (

dJ̃(r)

dr

)

r=r∗

≥ 0. (99)

Under (99), we assume that̃J(r) does not take the minimum
at r = r∗. Then there existsǫ > 0 and r̃ > r∗ such that
J̃(r̃) ≤ J̃(r∗)− ǫ. SinceJ̃(r) is a convex function ofr ≥ r∗,
we have

J̃(τ r̃ + (1− τ)r∗) ≤ τJ̃(r̃) + (1 − τ)J̃(r∗)

≤ τ(J̃(r∗)− ǫ) + (1− τ)J̃(r∗) = J̃(r∗)− τǫ (100)

for any τ ∈ (0, 1]. From (100), we obtain

J̃(r∗ + τ(r̃ − r∗))− J̃(r∗)

τ(r̃ − r∗)
≤ − ǫ

r̃ − r∗
(101)
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for any τ ∈ (0, 1]. By letting τ → 0 in (101), we have
(

dJ̃(r)

dr

)

r=r∗

≤ − ǫ

r̃ − r∗
< 0,

which contradicts (99). Hence under (99),̃J(r) takes the

minimum atr = r∗. It is obvious that when
(

dJ̃(r)
dr

)

r=r∗
< 0,

J̃(r) does not take the minimum atr = r∗.
Proof of Lemma 6:We first derive expression of̃ω(D, r)

usingβl = βl(r), l ∈ ΛL in a neighborhood ofr = r∗. Let
S(r) = {l : βl(r) < βl1(r)}. By definition,L−|S(r)| is equal
to the multiplicity of theβl1(r). In particular, forr = r∗, we
have

1

βl1(r
∗)

=
1

L− |S(r∗)|



D + tr[B]−
∑

l∈S(r∗)

1

βl(r∗)



 .

(102)
Sinceβl(r), l ∈ ΛL are strictly monotone increasing functions
of r, there exists small positive numberδ such that for any
r ∈ [r∗, r∗ + δ), we have

S(r) = S(r∗),

1

βl1(r)
<

1

L− |S(r)|



D + tr[B]−
∑

l∈S(r)

1

βl(r)





<
1

βk(r)
for k /∈ S(r∗).

The functionω̃(D, r),r ∈ [r∗, r∗ + δ) is computed as

ω̃(D, r) = 1
(L−|S(r∗)|)L−|S(r∗)|




∏

l∈S(r∗)

1

βl(r)





×



D + tr[B]−
∑

l∈S(r∗)

1

βl(r)





L−|S(r∗)|

.

In the following we use the simple notationsβl and S for
βl(r

∗) and S(r∗), respectively. Computing the derivative of
J̃ (D, r) at r = r∗, we obtain

1

2

(
d

dr
J̃ (D, r)

)

r=r∗

=
1

ǫe2r∗
∑

l∈S

(

1− ǫ

µl

)2







1

βl
− L− |S|
D + tr[B]−

∑

l∈S

1
βl

1

β2
l






+ L

(a)
=

1

ǫe2r∗
∑

l∈S

(

1− ǫ

µl

)2 [
1

βl
− βl1
β2
l

]

+ L

=
1

ǫe2r∗

L∑

l=1

(

1− ǫ

µl

)2 [
1

βl
− βl1
β2
l

]

+ L

=

L∑

l=1







(

1− ǫ
µl

) [

e2r
∗ − 1 + ǫ

µl

]

[

e2r∗ − 1 + ǫ
µl

]2

−

(

1− ǫ
µl1

) [

e2r
∗ − 1 + ǫ

µl1

]

[

e2r∗ − 1 + ǫ
µl

]2







+ L

=

L∑

l=1

e2r
∗
[

e2r
∗− 1 + ǫ

µl

]

−
(

1− ǫ
µl1

) [

e2r
∗− 1 + ǫ

µl1

]

[

e2r∗ − 1 + ǫ
µl

]2

≥ 0.

Step (a) follows from (102).

VI. CONCLUSION

We have considered the distributed source coding of cor-
related Gaussian sourcesYl, l ∈ ΛL which areL observa-
tions of K remote sourcesXk, k ∈ ΛK . We have studied
the remote source coding problem where the decoder wish
to reconstructXK and have derived explicit outer bounds
R(out)
L (Γ, DL|ΣXKY L) and R(out)

L (Γ, D|ΣXKY L) of RL(
Γ, DL|ΣXKY L) and RL(Γ, D|ΣXKY L), respectively. Those
outer bounds are described in a form of positive semi definite
programming. On the outer boundR(out)

L (Γ, D|ΣXKY L), we
have shown that it has a form of the water filling solution.
Using this form, we have derived two different matching
conditions forR(out)

L ( Γ, D|ΣXKY L) to coincide withRL(
Γ, D|ΣXKY L).

In the case ofK = L,A = IL, we have considered
the multiterminal source coding problem where the decoder
wishes to reconstructY L = XL + NL. Using the strong
relation between the remote source coding problem and
the multiterminal source coding problem, we have obtained
the outer boundsR(out)

L (Γ, DL|ΣY L) andR(out)
L (Γ, D|ΣY L),

of RL(Γ, D
L|ΣY L) and RL(Γ, D|ΣY L), respectively. Fur-

thermore, using this relation, we have obtained the match-
ing condition for R(out)

L (Γ, D|ΣY L) to coincide withRL(
Γ, D|ΣY L).

In the remote source coding problem, finding an explicit
condition forR(out)

L (Γ, DL|ΣXKY L) to be tight is left to us
as a future work. Similarly, in the multiterminal source coding
problem, finding an explicit condition forR(out)

L (Γ, DL|ΣY L)
to be tight is also left to us as a future work. To investigate
those problems we must examine the solutions to the problems
of positive semi definite programming describing those two
outer bounds. Those analysis are rather mathematical problems
in the field of convex optimization.

APPENDIX

Proof of Property 8 part b):Since

J̃(D, r) = Lr − log ω̃(D, r) +
1

2
log |ΣY L +B|,

it suffices to prove the concavity oflog ω̃(D, r) with respect
to r ≥ r∗. We first observe thatlog ω̃(D, r) has the following
expression:

log ω̃(D, r) = max
∑L

l=1 ξl≤D+tr[B],
ξlβl(r)≥1

L∑

l=1

log ξl

For eachj ∈ {1, 2}, let ξ(j)l , l = 1, 2, ·, L be L positive
numbers that attainlog ω̃(D, r(j)). Let t1, t2 be a pair of
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nonnegative numbers such thatt1 + t2 = 1. Then we have

t1 log ω̃(D, r
(1)) + t2 log ω̃(D, r

(2))

=

L∑

i=1

(

t1 log ξ
(1)
i + t2 log ξ

(2)
i

)

(a)

≤
L∑

i=1

log
(

t1ξ
(1)
i + t2ξ

(2)
i

)

. (103)

Step (a) follows from the concavity of the logarithm functions.
Since

{βl(r)}−1 =
µlǫ

µl − ǫ

e2r

µl[e2r − 1] + ǫ

=
µlǫ

µl − ǫ
+

µlǫ

µl[e2r − 1] + ǫ

{βl(r)}−1 is a convex function ofr ≥ r∗. Then we have

t1ξ
(1)
i + t2ξ

(2)
i ≥ t1{βi(r(1))}−1 + t2{βi(r(2))}−1

≥ {βi(t1r(1) + t2r
(2))}−1, (104)

for l = 1, 2, · · · , L. Furthermore, we have

L∑

l=1

(

t1ξ
(1)
l + t2ξ

(2)
l

)

= t1

L∑

l=1

ξ
(1)
l +t2

L∑

l=1

ξ
(2)
l ≤ D . (105)

From (104), (105), and the definition oflog ω̃(D, r), we have

L∑

l=1

log
(

t1ξ
(1)
l + t2ξ

(2)
l

)

≤ log ω̃
(

D, t1r
(1)
1 + t2r

(2)
2

)

.

(106)
From (103) and (106), we have

t1 log ω̃(D, r
(1)) + t2 log ω̃(D, r

(2))

≤ log ω̃
(

D, t1r
(1)
1 + t2r

(2)
2

)

,

completing the proof.

A. Proof of Lemma 7

In this appendix we prove Lemma 7. To prove this lemma
we need some preparations. Fork ∈ ΛK and forQ∈ OK , set

Fk(Σ|Q)
△
= sup

p
X̂K |XK :

Σ
XK−X̂K�Σ

h(Zk − Ẑk|ZK[k] − ẐK[k]).

To computeFk(Σ|Q), define two random variables by

X̃K △
= XK − X̂K , Z̃K

△
= ZK − ẐK .

Note that by definition we havẽZK = QX̃K . Let pXKX̃K

(xK , x̃K) be a density function of(XK , X̃K). Let qZKZ̃K

(zK , z̃K) be a density function of(ZK , Z̃K) induced by the
orthogonal matrixQ, that is,

qZKZ̃K (zK , z̃K)
△
= ptQZK tQZ̃K (tQzK , tQz̃K).

Expression ofFk(Σ|Q) using the above density functions is
the following.

Fk(Σ|Q) = sup
p
X̃K |XK :

Σ
X̃K�Σ

h(Z̃k|Z̃K[k])

= sup
p
X̃K |XK :

Σ
X̃K�Σ

−
∫

qZ̃K (zK) log qZ̃k|Z̃K
[k]
(zk|zK[k])dzK

= sup
p
X̃K |XK :

Σ
X̃K�Σ

−
∫

qZ̃K (zK) log
qZ̃K (zK)

qZ̃K
[k]
(zK[k])

dzK .

The following two properties onFk(Σ|Q) are useful for the
proof of Lemma 7.

Lemma 12:Fk(Σ|Q) is concave with respect toΣ.
Lemma 13:

Fk(Σ|Q) =
1

2
log
{

(2πe)
[
QΣ−1tQ

]−1

kk

}

.

We first prove Lemma 7 using those two lemmas and next
prove Lemmas 12 and 13.

Proof of Lemma 7:We have the following chain of inequal-
ities:

h(Zk|ZK
[k]W

K) ≤ h(Zk − Ẑk |ZK
[k] − Ẑ

K

[k])

≤
n∑

t=1

h(Zk(t)− Ẑk(t) |ZK[k](t)− Ẑ
K

[k](t))

(a)

≤
n∑

t=1

Fk

(

Σ
XK(t)−X̂

K
(t)

∣
∣
∣Q
)

(b)

≤ nFk

(

1
n

n∑

t=1

Σ
XK(t)−X̂

K
(t)

∣
∣
∣
∣
∣
Q

)

= nFk

(
1
n
Σ

XK−X̂
K

∣
∣
∣Q
)

(c)
=

n

2
log

{

(2πe)

[

Q
(

1
n
Σ

XK−X̂
K

)−1
tQ

]−1

kk

}

.

Step (a) follows from the definition ofFk(Σ|Q). Step (b)
follows from Lemma 12. Step (c) follows from Lemma 13.

Proof of Lemma 12:For given covariance matricesΣ(0)

andΣ(1), let p(0)
X̃K |XK

and p(1)
X̃K |XK

be conditional densities

achievingFk(Σ(0)|Q) andFk(Σ(1)|Q), respectively. For0 ≤
α ≤ 1, define a conditional density parameterized withα by

p
(α)

X̃K |XK
= (1− α)p

(0)

X̃K |XK
+ αp

(1)

X̃K |XK
.

Let p(α)
XKX̃K

be a density function of(XK , X̃K) defined by

(p
(α)

X̃K |XK
, p

(α)
XK ). Let Σ(α)

X̃
be a covariance matrix computed

from the densityp(α)
X̃K

. Since

p
(α)

X̃K
= (1− α)p

(0)

X̃K
+ αp

(1)

X̃K
,

we have

Σ
(α)

X̃
= (1− α)Σ

(0)

X̃
+ αΣ

(1)

X̃

� (1− α)Σ(0) + αΣ(1). (107)
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Let q(α)
ZKZ̃K

be a density function of(ZK , Z̃K) induced by the
orthogonal matrixQ, that is,

q
(α)

ZKZ̃K
(zK , z̃K)

△
= p

(α)
tQZK tQZ̃K

(tQzK , tQz̃K).

By definition it is obvious that

q
(α)

Z̃K
= (1− α)q

(0)

Z̃K
+ αq

(1)

Z̃K
.

Then we have

(1− α)Fk(Σ
(0)|Q) + αFk(Σ

(1)|Q)

= −(1− α)

∫

q
(0)

Z̃K
(zK) log

q
(0)

Z̃K
(zK)

q
(0)

Z̃K
[k]

(zK[k])
dzK

−α
∫

q
(1)

Z̃K
(zK) log

q
(1)

Z̃K
(zK)

q
(1)

Z̃K
[k]

(zK[k])
dzK

(a)

≤ −
∫

q
(α)

Z̃K
(zK) log

q
(α)

Z̃K
(zK)

q
(α)

Z̃K
[k]

(zK[k])
dzK

= −
∫

q
(α)

Z̃K
(zK) log q

(α)

Z̃k|Z̃K
[k]

(zk|zK[k])dzK

(b)

≤ Fk

(

(1− α)Σ(0) + αΣ(1)
∣
∣
∣Q
)

.

Step (a) follows from log sum inequality. Step (b) follows
from the definition ofFk(Σ|Q) and (107).

Proof of Lemma 13:Let

q
(G)

Z̃K
(zK)

△
=

1

(2πe)
K
2 |ΣZ̃K |

1
2

e−
1
2
t[zK ]Σ−1

Z̃K
[zK ]

and let

q
(G)

Z̃k|Z̃K
[k]

(zk|zK[k]) =
q
(G)

Z̃K
(zK)

q
(G)

Z̃K
[k]

(zK[k])

be a conditional density function induced byq(G)

Z̃K
(·). We first

observe that
∫

qZ̃K (zK) log
qZ̃k|Z̃K

[k]
(zk|zK[k])

q
(G)

Z̃k|Z̃K
[k]

(zk|zK[k])
dzK ≥ 0. (108)

From (108), we have the following chain of inequalities:

h(Z̃k|Z̃K[k]) = −
∫

qZ̃K (zK) log qZ̃k|Z̃K
[k]
(zk|zK[k])dzK

≤ −
∫

qZ̃K (zK) log q
(G)

Z̃k|Z̃K
[k]

(zk|zK[k])dzK

= −
∫

qZ̃K (zK) log
q
(G)

Z̃K
(zK)

q
(G)

Z̃K
[k]

(zK[k])
dzK

= −
∫

qZ̃K (zK) log q
(G)

Z̃K
(zK)dzK

+

∫

qZ̃K (zK) log q
(G)

Z̃K
[k]

(zK[k])dz
K

(a)
= −

∫

q
(G)

Z̃K
(zK) log q

(G)

Z̃K
(zK)dzK

+

∫

q
(G)

Z̃K
(zK) log q

(G)

Z̃K
[k]

(zK[k])dz
K

=
1

2
log

{

(2πe)
|ΣZ̃K |
|ΣZ̃K

[k]
|

}

(b)
=

1

2
log

{

(2πe)
[

Σ−1

Z̃K

]−1

kk

}

=
1

2
log

{

(2πe)
[

QΣ−1

X̃K

tQ
]−1

kk

}

(c)

≤ 1

2
log
{

(2πe)
[
QΣ−1tQ

]−1

kk

}

.

Step (a) follows from the fact thatqZ̃L and q(G)

Z̃L
yield the

same moments of the quadratic formlog q(G)

Z̃L
. Step (b) is a

well known formula on the determinant of matrix. Step (c)
follows from ΣX̃L � Σ. Thus

Fk(Σ|Q) ≤ 1

2
log
{

(2πe)
[
QΣ−1tQ

]−1

kk

}

is concluded. Reverse inequality holds by lettingpX̃K |XK be
Gaussian with covariance matrixΣ.

B. Proof of Lemma 8

In this appendix we prove Lemma 8. We write an orthogonal
matrix Q ∈ OK as Q = [qkk′ ], where qkk′ stands for the
(k, k′) element ofQ. The orthogonal matrixQ transforms
XK into ZK= QXK . SetQ̃ = QtA and let q̃kl be the(k, l)
element ofQtA. The following lemma states an important
property on the distribution of Gaussian random vectorZK .
This lemma is a basis of the proof of Lemma 8.

Lemma 14:For anyk ∈ ΛK , we have the following.

Zk = − 1

gkk

∑

k′ 6=k

νkk′Zk′ +
1

gkk

L∑

l=1

q̃kl
σ2
Nl

Yl + N̂k, (109)

where

gkk =
[
QΣ−1

XK
tQ
]

kk
+

L∑

l=1

q̃2kl
σ2
Nl

, (110)

νkk′ , k
′ ∈ ΛK − {k} are suitable constants and̂Nk is a zero

mean Gaussian random variables with variance1
gkk

. For each

k ∈ ΛK , N̂k is independent ofZk′ , k′ ∈ ΛK−{k} andYl, l ∈
ΛL.

Proof: Without loss of generality we may assumek = 1.
SinceY L = AXK +NL, we have

ΣXKY L =

[
ΣXK ΣXK

tA
AΣXK AΣXK

tA+ΣNL

]

.

SinceZK = QXK , we have

ΣZKY L =

[
QΣXK

tQ QΣXK
tA

tAΣXK
tQ AΣXK

tA+ΣNL

]

.

The density functionpZKY L(zK , yL) of (ZK , Y L) is given
by

pZKY L(zK , yL)

=
1

(2πe)
K+L

2 |ΣZKY L |
1
2

e
− 1

2
t[zKyL]Σ−1

ZKY L

[

zK

yL

]

,

whereΣ−1
ZKY L has the following form:

Σ−1
ZKY L =

[
Q(Σ−1

XK + tAΣ−1
NLA)

tQ −QtAΣ−1
NL

−Σ−1
NLA

tQ Σ−1
NL

]

.
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For (k, k′) ∈ Λ2
K and l ∈ ΛK , set

νkk′
△
=
[
Q(Σ−1

XK + tAΣ−1
NLA)

tQ
]

kk′

=
[
QΣ−1

XK

tQ
]

kk′
+

L∑

l=1

q̃klq̃k′l
σ2
Nl

,

βkl
△
= −

[
QtAΣ−1

NL

]

kl
= − q̃kl

σ2
Nl

.







(111)

Now, we consider the following partition ofΣ−1
ZKY L :

Σ−1
ZKY L =

[
Q(Σ−1

XK + tAΣ−1
NLA)

tQ −QtAΣ−1
NL

−Σ−1
NLA

tQ Σ−1
NL

]

=

[
g11

tg12
g12 G22

]

,

whereg11, g12, andG22 are scalar,K + L − 1 dimensional
column vector, and(K + L − 1) ×(K + L − 1) matrix,
respectively. It is obvious from the above partition ofΣ−1

ZKY L

that we have

g11 = ν11 =
[
QΣ−1

XK
tQ
]

11
+

L∑

l=1

q̃21l
σ2
Nl

,

g12 = t [ν12 · · · ν1Kβ11β12 · · ·β1L] .







(112)

It is well known thatΣ−1
ZKY L has the following expression:

Σ−1
ZKY L =

[
g11

tg12
g12 G22

]

=

[
1 t012

1
g11
g12 IL−1

] [
g11

t012
012 G22 − 1

g11
tg12g12

]

×
[

1 1
g11

tg12
012 IL−1

]

.

Set

n̂1
△
= [z1|tzK[1]tyL]

[
1

1
g11
g12

]

= z1 +
1

g11

[
tzK[1]

tyL
]

g12.

(113)
Then, we have

[tzK tyL]ΣZKY L

[
zK

yL

]

= [z1|tzK[1]tyL]
[
g11

tg12
g12 G22

]




z1

zK[1]
yL





= [n̂1|tzK[1]tyL]
[
g11

t012
012 G22 − 1

g11
g12

tg12

]




n̂1

zK[1]
yL



 . (114)

From (111)-(113), we have

n̂1 = z1 +
1

g11

L∑

j=2

ν1jzj +
1

g11

L∑

l=1

β1lyl

= z1 +
1

g11

L∑

j=2

ν1jzj −
1

g11

L∑

l=1

q̃1l
σ2
Nl

yl. (115)

It can be seen from (114) and (115) that the random variable
N̂1 defined by

N̂1
△
= Z1 +

1

g11

L∑

j=2

ν1jZj −
1

g11

L∑

l=1

q̃1l
σ2
Nl

Yl

is a zero mean Gaussian random variable with variance1
g11

and is independent ofZK[1] andY L. This completes the proof
of Lemma 14.

The followings are two variants of the entropy power
inequality.

Lemma 15:Let U i, i = 1, 2, 3 be n dimensional random
vectors with densities and letT be a random variable taking
values in a finite set. We assume thatU3 is independent of
U1, U2, andT . Then, we have

1
2πee

2
n
h(U2+U3|U1T ) ≥ 1

2πee
2
n
h(U2|U1T ) + 1

2πee
2
n
h(U3).

Lemma 16:Let U i, i = 1, 2, 3 be n random vectors with
densities. LetT1, T2 be random variables taking values in
finite sets. We assume that those five random variables form
a Markov chain(T1,U1) → U3 → (T2,U2) in this order.
Then, we have

1
2πee

2
n
h(U1+U2|U3T1T2)

≥ 1
2πee

2
n
h(U1|U3T1) + 1

2πee
2
n
h(U2|U3T2).

Proof of Lemma 8:By Lemma 14, we have

Zk = − 1

gkk

∑

k′ 6=k

νkk′Zk′ +
1

gkk

L∑

l=1

q̃kl
σ2
Nl

Y l + N̂k, (116)

whereN̂k is a vector ofn independent copies of zero mean
Gaussian random variables with variance1

gkk
. For eachk ∈

ΛK , N̂k is independent ofZk′ , k
′ ∈ ΛK −{k} andY l, l ∈

ΛL. Set

h(n)
△
=

1

n
h(Zk|ZK

[k],W
L).

Furthermore, forl ∈ ΛL, define

Sl
△
= {l, l+ 1, · · · , L},Ψl = Ψl(Y Sl

)
△
=

L∑

j=l

q̃kj
σ2
Nj

Y j .

Applying Lemma 15 to (116), we have

e2h
(n)

2πe
≥ 1

(gkk)2
1

2πe
e

2
n
h(Ψ1|Z

K
[k],W

L) +
1

gkk
. (117)

On the quantityh(Ψ1|ZK[k],WL) in the right member of (117),
we have the following chain of equalities:

h(Ψ1|ZK
[k],W

L)

= I(Ψ1;X
K |ZK

[k],W
L) + h(Ψ1|XK ,ZK

[k],W
L)

(a)
= I(Ψ1;Z

K |ZK
[k],W

L) + h(Ψ1|XK ,WL)

= I(Ψ1;Zk|ZK
[k],W

L) + h(Ψ1|XK ,WL)

= h(Zk|ZK
[k],W

L)− h(Zk|Ψ1,Z
K
[k],W

L)

+h(Ψ1|XK ,WL)
(b)
= nh(n) − h(Zk|Ψ1,Z

K
[k]) + h(Ψ1|XK ,WL)

= nh(n) − n

2
log
[
2πe(gkk)

−1
]
+ h(Ψ1|XK ,WL).(118)

Step (a) follows from thatZK can be obtained fromXK

by the invertible matrixQ. Step (b) follows from the Markov
chain

Zk → (Ψ1,Z
K
[k]) → Y

L →WL.
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From (118), we have

1

2πe
e

2
n
h(Ψ1|Z

K
[k],W

L) =
e2h

(n)

2πe
gkk ·

1

2πe
e

2
n
h(Ψ1|X

K ,WL).

(119)
Substituting (119) into (117), we obtain

e2h
(n)

2πe
≥ e2h

(n)

2πe

1

gkk
· 1

2πe
e

2
n
h(Ψ1|X

K ,WL) +
1

gkk
. (120)

Solving (120) with respect toe
2h(n)

2πe , we obtain

e2h
(n)

2πe
≥
[

gkk −
1

2πe
e

2
n
h(Ψ1|X

K ,WL)

]−1

. (121)

Next, we evaluate a lower bound ofe
2
n
h(Ψ1|X

K ,WL). Note
that for l = 1, 2, · · · , L − 1 we have the following Markov
chain:

(
WSl+1

,Ψl+1(Y Sl+1
)
)
→ X

K →
(

Wl,
q̃kl

σ2
Nl

Y l

)

. (122)

Based on (122), we apply Lemma 16 to12πee
2
n
h(Ψl|X

K ,WL)

for l = 1, 2, · · · , L−1. Then, forl = 1, 2, · · · , L−1, we have
the following chains of inequalities :

1

2πe
e

2
n
h(Ψl|X

K ,WL)

=
1

2πe
e

2
n
h

(

Ψl+1+
q̃kl

σ2
N1

Y l

∣

∣

∣

∣

∣

X
K ,WSl+1

,Wl

)

≥ 1

2πe
e

2
n
h(Ψl+1|X

K ,WSl+1) +
1

2πe
e

2
n
h

(

q̃kl

σ2
Nl

Y l

∣

∣

∣

∣

∣

X
K ,Wl

)

=
1

2πe
e

2
n
h(Ψl+1|X

K ,WSl+1) + q̃2kl
e−2r

(n)
l

σ2
Nl

. (123)

Using (123) iteratively forl = 1, 2, · · · , L− 1, we have

1

2πe
e

2
n
h(Ψ1|X

K ,WL) ≥
L∑

l=1

q̃2kl
e−2r

(n)
l

σ2
Nl

. (124)

Combining (110), (121), and (124), we have

e2h
(n)

2πe
≥
{

[
QΣ−1

XK
tQ
]

kk
+

L∑

l=1

q̃2kl
1− e−2r

(n)
l

σ2
Nl

}−1

=

[

Q

(

Σ−1
XK + tAΣ−1

NΛL
(r

(n)
ΛL

)
A

)

tQ

]−1

kk

,

completing the proof.
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