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ON MAXIMAL REGULARITY AND SEMIVARIATION OF α-TIMES

RESOLVENT FAMILIES

FU-BO LI AND MIAO LI

Abstract. Let 1 < α < 2 and A be the generator of an α-times resolvent family {Sα(t)}t≥0

on a Banach space X. It is shown that the fractional Cauchy problem D
α
t u(t) = Au(t) + f(t),

t ∈ [0, r]; u(0), u′(0) ∈ D(A) has maximal regularity on C([0, r];X) if and only if Sα(·) is of
bounded semivariation on [0, r].

1. Introduction

Many initial and boundary value problems can be reduced to an abstract Cauchy problem of
the form

(1.1)
u′(t) = Au(t) + f(t), t ∈ [0, r]
u(0) = x ∈ D(A)

where A is the generator of a C0-semigroup. One says that (1.1) has maximal regularity on
C([0, r];X) if for every f ∈ C([0, r];X) there exists a unique u ∈ C1([0, r];X) satisfying (1.1).
From the closed graph theorem it follows easily that if there is maximal regularity on C([0, r];X),
then there exists a constant C > 0 such that

‖u′‖C([0,r];X) + ‖Au‖C([0,r];X) ≤ ‖f‖C([0,r];X).

Travis [5] proved that the maximal regularity is equivalent to the C0-semigroup generated by A

being of bounded semivariation on [0, r].
Chyan, Shaw and Piskarev [2] gave similar results for second order Cauchy problems. More

precisely, they showed that the second order Cauchy problem

(1.2)
u′′(t) = Au(t) + f(t), t ∈ [0, r]
u(0) = x, u′(0) = y, x, y ∈ D(A)

has maximal regularity on [0, r] if and only if the cosine opeator function generated by A is of
bounded semivariation on [0, r].

In this paper we will consider the maximal regularity for fractional Cauchy problem

(1.3)
Dα

t u(t) = Au(t) + f(t), t ∈ [0, r]
u(0) = x, u′(0) = y, x, y ∈ D(A)

where α ∈ (1, 2), A is the generator of an α-times resolvent family (see Definition 2.2 below)
and Dα

t u is understood in the Caputo sense. We show that (1.3) has maximal regularity on
C([0, r];X) if and only if the corresponding α-times resolvent family is of bounded semivariation
on [0, r].
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2. Preliminaries

Let 1 < α < 2, g0(t) := δ(t) and gβ(t) :=
tβ−1

Γ(β) (β > 0) for t > 0. Recall the Caputo fractional

derivative of order α > 0

Dα
t f(t) :=

∫ t

0
g2−α(t− s)

d2

ds2
f(s)ds, t ∈ [0, r]

for f ∈ C2([0, r];X). The condition that f ∈ C2([0, r];X) can be relaxed to f ∈ C1([0, r];X)
and g2−α ∗ (f − f(0) − f ′(0)g2) ∈ C2([0, r];X), for details and further properties see [1] and
references therein. And in the above we denote by

(gβ ∗ f)(t) =

∫ t

0
gβ(t− s)f(s)ds

the convolution of gβ with f . Note that gα ∗ gβ = gα+β .
Consider a closed linear operator A densely defined in a Banach space X and the fractional

evolution equation (1.3).

Definition 2.1. A function u ∈ C([0, r];X) is called a strong solution of (1.3) if

u ∈ C([0, r];D(A)) ∩ C1([0, r];X), g2−α ∗ (u(t) − x− ty) ∈ C2([0, r];X)

and (1.3) holds on [0, r]. u ∈ C([0, r];X) is called a mild solution of (1.3) if gα ∗ u ∈ D(A) and

u(t)− x− ty = A(gα ∗ u)(t) + (gα ∗ f)(t)

for t ∈ [0, r].

Definition 2.2. Assume that A is a closed, densely defined linear operator on X. A fam-
ily {Sα(t)}t≥0 ⊂ B(X) is called an α-times resolvent family generated by A if the following
conditions are satisfied:

(a) Sα(·) is strongly continuous on R+ and Sα(0) = I;
(b) Sα(t)D(A) ⊂ D(A) and ASα(t)x = Sα(t)Ax for all x ∈ D(A), t ≥ 0;
(c) For all x ∈ D(A) and t ≥ 0, Sα(t)x = x+ (gα ∗ Sα)(t)Ax.

Remark 2.3. Since A is closed and densely defined, it is easy to show that for all x ∈ X,
(gα ∗ Sα)(t)x ∈ D(A) and A(gα ∗ Sα)(t)x = Sαx− x.

The alpha-times resolvent families are closely related to the solutions of (1.3). It was shown in
[1] that if A generates an α-times resolvent family Sα(·), then (1.3) has a unique strong solution

given by Sα(t)x+
∫ t

0 Sα(s)yds.

Next we recall the definition of functions of bounded semivariation (see e.g. [3]). Given a
closed interval [a, b] of the real line, a subdivision of [a, b] is a finite sequence d : a = d0 < d1 <

· · · < dn = b. Let D[a, b] denote the set of all subdivisions of [a, b].

Definition 2.4. For G : [a, b] → B(X) and d ∈ D[a, b], define

SVd[G] = sup{‖

n
∑

n=1

[G(di)−G(di−1)]xi‖ : xi ∈ X, ‖xi‖ ≤ 1}

and SV [G] = sup{SVd[G] : d ∈ D[a, b]}. We say G is of bounded sevivariation if SV [G] < ∞.
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3. Main results

We begin with some properties on α-times resolvent families which will be needed in the
sequel.

Proposition 3.1. Let 1 < α < 2 and {Sα(t)}t≥0 be the α-times resolvent family with generator
A. Define

Pα(t)x = (gα−1 ∗ Sα)(t)x =

∫ t

0
gα−1(t− s)Sα(s)xds, x ∈ X,

then the following statements are true.

(a) For every x ∈ X,
∫ t

0 Pα(s)xds ∈ D(A) and

A

∫ t

0
Pα(s)xds = Sα(t)x− x;

(b) For every x ∈ X, 0 ≤ a, b ≤ t,
∫ b

a
sPα(t− s)xdx ∈ D(A) and

A

∫ b

a

sPα(t− s)xds = aSα(t− a)x− bSα(t− b)x+

∫ b

a

Sα(t− s)xds;

(c) For every x ∈ X,
∫ t

0 gα(t− s)sPα(s)xds ∈ D(A) and

A
(

∫ t

0
gα(t− s)sPα(s)xds

)

= −α(gα ∗ Sα)(t)x+ tPα(t)x;

(d) If f ∈ C([0, r];X), then gα ∗ Sα ∗ f ∈ D(A) and

(3.1) A(gα ∗ Sα ∗ f) = (Sα − 1) ∗ f.

Proof. (a) follows from the fact that
∫ t

0 Pα(s)xds = (g1 ∗ gα−1 ∗ Sα)(t)x = (gα ∗ Sα)(t)x ∈ D(A)
and A(gα ∗ Sα)(t)x = Sα(t)x− x by Remark 2.3.

(b) By integration by parts we have

∫ b

a

sPα(t− s)xds =

∫ b

a

sds[

∫ s

0
Pα(t− τ)xdτ ]

=

∫ b

a

sds[(gα ∗ Sα)(t− s)x]

= −s(gα ∗ Sα)(t− s)x
∣

∣

∣

b

a
+

∫ b

a

(gα ∗ Sα)(t− s)xds

= a(gα ∗ Sα)(t− a)x− b(gα ∗ Sα)(t− b)x+

∫ b

a

(gα ∗ Sα)(t− s)xds,

since (gα ∗ Sα)(t)xds ∈ D(A) by Remark 2.3, operating A on both sides of the above identity
gives (b).
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(c) follows from the fact that
∫ t

0
gα(t− s)sPα(s)xds

=

∫ t

0
gα(t− s)(s− t)Pα(s)xds+ t

∫ t

0
gα(t− s)Pα(s)xds

= −α

∫ t

0
gα+1(t− s)Pα(s)xds + t(gα ∗ Pα)(t)x

= −α(gα+1 ∗ Pα)(t)x+ t(gα ∗ Pα)(t)x

= −α(gα+1 ∗ gα−1 ∗ Sα)(t)x+ t(gα ∗ gα−1 ∗ Sα)(t)x

= −α(gα ∗ gα ∗ Sα)(t)x+ t(gα−1 ∗ gα ∗ Sα)(t)x

belongs to D(A) and

A(

∫ t

0
gα(t− s)sPα(s)xds) = −α(gα ∗ A(gα ∗ Sα))(t)x+ t(gα−1 ∗A(gα ∗ Sα))(t)x

= −α(gα ∗ (Sα − 1))(t)x + t(gα−1 ∗ (Sα − 1))(t)x

= −α(gα ∗ Sα)(t)x+ αgα+1(t)x+ t(gα−1 ∗ Sα)(t)− tgα(t)x

= −α(gα ∗ Sα)(t)x+ tPα(t)x.

(d) (3.1) is true for step functions, and then for continuous functions by the closedness of
A. �

The following two lemmas can be proved similarly as that in [2, 5].

Lemma 3.2. If f ∈ C([0, r];X) and the α-times resolvent family Sα(t) is of bounded semivari-
ation on [0, r], then (Pα ∗ f)(t) ∈ D(A) and

A(Pα ∗ f)(t) = −

∫ t

0
ds[Sα(t− s)]f(s).

Lemma 3.3. If f ∈ C([0, r];X) and the α-times resolvent family Sα(t) is of bounded semivari-

ation on [0, r], then
∫ t

0 ds[Sα(t− s)]f(s) is continuous in t on [0, r].

We next turn to the solution of

Dα
t u(t) = Au(t) + f(t), t ∈ [0, r],

u(0) = 0, u′(0) = 0,
(3.2)

where A is the generator of an α-times resolvent family. If v(t) is a mild solution of (3.2), then
by Definition 2.1 (gα ∗ v)(t) ∈ D(A) and v(t) = A(gα ∗ v)(t) + (gα ∗ f)(t). It then follows from
the properties of α-times resolvent family that

1 ∗ v = (Sα −A(gα ∗ Sα)) ∗ v = Sα ∗ v − Sα ∗ A(gα ∗ v) = Sα ∗ (v −A(gα ∗ v)) = Sα ∗ gα ∗ f,

which implies that gα ∗ Sα ∗ f is differentiable and

v(t) =
d

dt
(gα ∗ Sα ∗ f)(t) = (gα−1 ∗ Sα ∗ f)(t) = (Pα ∗ f)(t).

Therefore, the mild solution of (1.3) is given by

(3.3) u(t) = Sα(t)x+

∫ t

0
Sα(s)yds+ (Pα ∗ f)(t).



ON MAXIMAL REGULARITY AND SEMIVARIATION OF α-TIMES RESOLVENT FAMILIES 5

Proposition 3.4. Let A be the generator of an α-times resolvent family Sα(·), and let f ∈
C([0, r];X) and x, y ∈ D(A). Then the following statements are equivalent:

(a) (1.3) has a strong solution;
(b) (Sα ∗ f)(·) ∈ C1([0, r];X);
(c) (Pα ∗ f)(t) ∈ D(A) for 0 ≤ t ≤ r and A(Pα ∗ f)(t) is continuous in t on [0, r].

Proof. (a) If u(t) is a strong solution of (1.3), then u is given by (3.3) since every strong solution
is a mild solution. Therefore, by the definition of strong solutions, g2−α ∗ Pα ∗ f = g1 ∗ Sα ∗ f ∈
C2([0, r];X); it then follows that Sα ∗ f ∈ C1([0, r];X), this is (b).

(b) ⇒ (c). Suppose that Sα ∗ f ∈ C1([0, r];X). Since g1 ∗Pα ∗ f = gα ∗Sα ∗ f , by Proposition
3.1(d), g1 ∗ Pα ∗ f ∈ D(A) and

(3.4) A(g1 ∗ Pα ∗ f) = A(gα ∗ Sα ∗ f) = (Sα − 1) ∗ f.

Since A is closed and Sα ∗f ∈ C1([0, r];X), we have Pα ∗f ∈ D(A) and A(Pα ∗f) = (Sα ∗f)
′−f

is continuous.
(c) ⇒ (a). By (3.4), g1 ∗ A(Pα ∗ f) = A(g1 ∗ Pα ∗ f) = (Sα − 1) ∗ f , therefore Sα ∗ f is

differentiable and thus g2−α ∗Pα ∗ f = g1 ∗Sα ∗ f is in C2([0, r];X). It is easy to check that u(t)
defined by (3.3) is a strong solution of (1.3). �

Now we are in the position to give the main result of this paper. The proof is similar to that
of Proposition 3.1 in [5] or Theorem 4.2 in [2], we write it out for completeness.

Theorem 3.5. Suppose that A generates an α-times resolvent family {Sα(t)}t≥0. Then the
function (3.3) is a strong solution of the Cauchy problem (1.3) for every pair x, y ∈ D(A) and
continuous function f if and only if Sα(·) is of bounded semivariation on [0, r].

Proof. The sufficiency follows from Lemmas 3.2 and 3.3.
Conversely, suppose that for x, y ∈ D(A) and continuous function f , u(t) given by (3.3)

is a strong solution for (1.3). Define the bounded linear operator L : C([0, r];X) → X by
L(f) = (Pα ∗ f)(r). By Proposition 3.4 (c) Lf ∈ D(A), it thus follows from the closedness of A
that AL : C([0, r];X) → X is bounded.

Let {di}
n
i=0 be a subdivision of [0, r] and ǫ > 0 such that ǫ < min1≤i≤n{|di − di−1|}. For

xi ∈ X with ‖xi‖ ≤ 1 (i = 1, 2, · · · , n+ 1), define fd,ǫ ∈ C([0, r];X) by

fd,ǫ(τ) =

{

xi, di−1 ≤ τ ≤ di − ǫ

xi+1 +
τ−di
ǫ

(xi+1 − xi), di − ǫ ≤ τ ≤ di
,

then ‖fd,ǫ‖C([0,r];X) ≤ 1. By Proposition 3.1,

AL(fd,ǫ) = A

∫ r

0
Pα(r − s)fd,ǫ(s)ds

=

n
∑

i=1

[

A

∫ di−ǫ

di−1

Pα(r − s)xids

+A

∫ di

di−ǫ

Pα(r − s)xi+1ds+A

∫ di

di−ǫ

s− di

ǫ
Pα(r − s)(xi+1 − xi)dx

]
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=
n
∑

i=1

{

[Sα(r − di−1)xi − Sα(r − di + ǫ)xi]

+[Sα(r − di + ǫ)xi+1 − Sα(r − di)xi+1]

−
d

ǫ
[Sα(r − di + ǫ)(xi+1 − xi)− Sα(r − di)(xi+1 − xi)]

+
1

ǫ
[(di − ǫ)Sα(r − di + ǫ)(xi+1 − xi)− diSα(r − di)(xi+1 − xi)]

+
1

ǫ

∫ di

di−ǫ

Sα(r − s)(xi+1 − xi)ds
}

=

n
∑

i=1

{

[Sα(r − di−1)xi − Sα(r − di)xi+1]

+
1

ǫ

∫ di

di−ǫ

Sα(r − s)(xi+1 − xi)ds
}

=

n
∑

i=1

{

[Sα(r − di−1)− Sα(r − di)]xi − Sα(r − di)(xi+1 − xi)

+
1

ǫ

∫ di

di−ǫ

Sα(r − s)(xi+1 − xi)ds
}

,

it then follows that
∥

∥

∥

n
∑

i=1

[Sα(r − di−1)− Sα(r − di)]xi

∥

∥

∥

≤ ‖AL(fd,ǫ)‖+

n
∑

i=1

∥

∥

∥
Sα(r − di)(xi+1 − xi)−

1

ǫ

∫ di

di−ǫ

Sα(r − s)(xi+1 − xi)ds
∥

∥

∥
.

By letting ǫ → 0, we obtain that Sα is of bounded semivariation on [0, r]. �

Corollary 3.6. Suppose that {Sα(t)}t≥0 is an α-times resolvent family with generator A and
Sα(·) is of bounded semivariation on [0, r] for some r > 0. Then R(Pα(t)) ⊂ D(A) for t ∈ [0, r]
and ‖tAPα(t)‖ is bounded on [0, r].

Proof. For x ∈ X, consider f(t) = αSα(t)x. By Proposition 3.1(c), tPα(t)x is a mild solution of
(3.2). Moreover, it follows from Proposition 3.4 that Pα ∗ f is a strong solution of (3.2). Since a
strong solution must be a mild solution, we have (Pα ∗ f)(t) = tPα(t)x. Thus our claim follows
from Proposition 3.4. �

Remark 3.7. Let α = 1. If A generates a C0-semigroup T (·), then the condition that tAT (t) is
bounded on [0, r] implies that T (·) is analytic (see [4]). When α = 2 and A generates a cosine
function C(·), then the condition that tAC(t) is bounded on [0, r] implies that A is bounded
([2]). However, since there is no semigroup properties for α-times resolvent family, it is not clear
that one can get the analyticity of Sα(·) from the local boundedness of tAPα(t).
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