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SEPARATING INVARIANTS FOR THE KLEIN FOUR GROUP

AND CYCLIC GROUPS

MARTIN KOHLS AND MÜFİT SEZER

Abstract. We consider indecomposable representations of the Klein four
group over a field of characteristic 2 and of a cyclic group of order pm with
p,m coprime over a field of characteristic p. For each representation we ex-
plicitly describe a separating set in the corresponding ring of invariants. Our
construction is recursive and the separating sets we obtain consist of almost
entirely orbit sums and products.

1. introduction

Let V be a finite dimensional representation of a group G over an algebraically
closed field F . In the sequel we will also call V a G-module. There is an induced ac-
tion on the symmetric algebra F [V ] := S(V ∗) given by σ(f) = f ◦σ−1 for σ ∈ G and
f ∈ F [V ]. We let F [V ]G denote the subalgebra of invariant polynomials in F [V ]. A
subset A ⊆ F [V ]G is said to be separating for V if for any pair of vectors u,w ∈ V ,
we have: If f(u) = f(w) for all f ∈ A, then f(u) = f(w) for all f ∈ F [V ]G. Goals
in invariant theory include finding generators and studying properties of invariant
rings. In the study of separating invariants the goal is rather to find and describe
a subalgebra of the ring of invariants which separates the group orbits. Although
separating invariants have been object of study since the early times of invariant
theory, they have regained particular attention following the influential textbook
of Derksen and Kemper [5]. The invariant ring is often too complicated and it
is difficult to describe explicit generators and relations. Meanwhile, there have
been several papers within the last decade that demonstrate that one can construct
separating subalgebras with nice properties that make them more accessible. For
instance Noether’s (relative) bound holds for separating invariants independently
of the characteristic of the field [5, Corollary 3.9.14]. For more results on separating
algebras we direct the reader to [6, 7, 8, 9, 10, 11, 13, 14].

If the order of the group is divisible by the characteristic of the field, then the
degrees of the generators increase unboundedly as the dimension of the representa-
tion increases. Therefore computing the invariant ring in this case is particularly
difficult. Even in the simplest situation of a cyclic group of prime order acting
through Jordan blocks, explicit generating sets are known only for a handful of
cases. This rather short list of cases consists of indecomposable representations
up to dimension nine and decomposable ones whose indecomposable summands
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have dimension at most four. See [17] for a classical work and [18] for the most
recent advances in this matter which also gives a good taste of the difficulty of the
problem. On the other hand separating invariants for these representations have
a surprisingly simple theory. In [15, 16] it is observed that a separating set for a
indecomposable representation of a cyclic p-group over a field of characteristic p can
be obtained by adding some explicitly defined invariant polynomials to a separating
set for a certain quotient representation. The main ingredient of the proofs of these
results is the efficient use of the surjection of a representation to a quotient repre-
sentation to establish a link between the respective separating sets that generating
sets do not have. In this paper we build on this technique to construct separating
invariants for the indecomposable representations of the Klein four group over a
field of characteristic 2 and of a cyclic group of order pm with p,m coprime over
a field of characteristic p. Despite being the immediate follow ups of the cyclic
p-groups, their invariant rings have not been computed yet. Therefore these groups
(and representations) appear to be the natural cases to consider. As in the case
for cyclic p-groups, we describe a finite separating set recursively. We remark that
in [5, Theorem 3.9.13], see also [12, Corollary 19], a way is given for calculating
separating invariants explicitly for any finite group. This is done by presenting
a large polynomial whose coefficients form a separating set. On the other hand,
the separating sets we compute consist of invariant polynomials that are almost
exclusively orbit sums and products. These are “basic” invariants which are easier
to obtain. Additionally, our approach respects the inductive structure of the con-
sidered modules. Also, the size of the set we give for the cyclic group of order pm
depends only on the dimension of the representation while the size in [5, Theorem
3.9.13] depends on the group order as well. Hence, for large p and m our separating
set is much smaller for this group.

The strategy of our construction is based on the following theorem.

Theorem 1. Let V and W be G-modules, φ : V → W a G-equivariant surjection,
and φ∗ : F [W ] →֒ F [V ] the corresponding inclusion. Let S ⊆ F [W ]G be a separating
set for W and let T ⊆ F [V ]G be a set of invariant polynomials such that if v1, v2 ∈ V
are in different G-orbits and if φ(v1) = φ(v2), then there is a polynomial f ∈ T
such that f(v1) 6= f(v2). Then φ∗(S) ∪ T is a separating set for V .

Proof. Pick two vectors v1, v2 ∈ V in different G-orbits. If φ(v1) and φ(v2) are in
different G-orbits, then there exits a polynomial f ∈ S that separates these vectors,
so φ∗(f) separates v1, v2. So we may assume that φ(v1) and φ(v2) are in the same
G-orbit. Furthermore, by replacing v2 with a suitable vector in its orbit we may
take φ(v1) = φ(v2). Hence, by construction, T contains an invariant that separates
v1 and v2 as desired. �

Before we finish this section we recall the definitions of a transfer and a norm.
For a subgroup H ⊆ G and f ∈ F [V ]H , the relative transfer TrGH(f) is defined to be
∑

σ∈G/H σ(f). We also denote TrG{ι}(f) = TrG(f), where ι is the identity element

of G. Also for f ∈ F [V ], the norm NH(f) is defined to be the product
∏

σ∈H σ(f).

2. The Klein four group

For the Klein four group G = {ι, σ1, σ2, σ3} over an algebraically closed field F of
characteristic 2, the complete list of indecomposable G-modules is given in Benson
[2, Theorem 4.3.3]. For each module in the list, we will explicitly construct a finite
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separating set. The modules in this list come in five “types”. We use the same
enumeration as in [2]. The first type (i) is just the regular representation FG of G,
and a separating set or even the invariant ring can be computed with Magma [3].
In the following, we will thus concentrate on the remaining four types, where each
type consists of an infinite series of indecomposable representations. Let In denote
the identity matrix of Fn×n, and Jλ denote an upper triangular Jordan block of
size n with eigenvalue λ ∈ F . Let Hi = {ι, σi} for i = 1, 2, 3 be the three subgroups
of order 2.

2.1. Type (ii). Let G act on V2n = F 2n by the representation σ1 7→

(

In In
0 In

)

and σ3 7→

(

In Jλ
0 In

)

. We write F [V2n] = F [x1, . . . , x2n]. We then have

σ1xi = xi + xn+i for 1 ≤ i ≤ n,
σ3xi = xi + λxn+i + xn+i+1 for 1 ≤ i ≤ n− 1,
σ3xn = xn + λx2n,
xn+i ∈ F [V2n]

G for 1 ≤ i ≤ n.

We start by computing several transfers and norms modulo some subspaces of
F [V2n]. Define R := F [x2, . . . , xn]. Note that S := F [x1, . . . , xn−1, xn+1, . . . , x2n]
is a G-subalgebra of F [V2n], and the congruence in Lemma 2(a) also holds modulo
S ∩ R = F [x2, . . . , xn−1, xn+1, . . . , x2n]. This will be needed for type (v), so we
mark this result with a star.

Lemma 2. We have

(a*) TrG(x1xixj) ≡ x1(xn+ixn+j+1 + xn+i+1xn+j) mod R for 2 ≤ i, j ≤ n− 1.

(b) TrG(x1xn−1xn) ≡ x1x
2
2n mod R.

Proof. (a*) We only have to care for terms containing x1, so

TrG(x1xixj) ≡ x1xixj + x1(xi + xn+i)(xj + xn+j)

+x1(xi + λxn+i + xn+i+1)(xj + λxn+j + xn+j+1)

+x1(xi + (λ+ 1)xn+i + xn+i+1)(xj + (λ+ 1)xn+j + xn+j+1)

≡ x1xn+ixn+j+1 + x1xn+i+1xn+j mod R.

(b) Follows from above with i = n− 1, j = n and setting x2n+1 := 0. �

Lemma 3. For n ≥ 3 we have

(a) TrG(x1x
3
2) ≡ λ(λ + 1)x1x

3
n+2 mod (R + xn+3F [V2n]).

(b) For λ ∈ {0, 1}, we have the invariant

NH2
(x1xn+2 + x2xn+1) ≡ x2

1x
2
n+2 + x1xn+2(x

2
n+2 + xn+1xn+3) mod R.

Proof. (a) We only care for terms containing x1 and not xn+3, so

TrG(x1x
3
2) ≡ x1x

3
2 + x1(x2 + xn+2)

3 + x1(x2 + λxn+2)
3

+x1(x2 + (λ+ 1)xn+2)
3

≡ λ(λ + 1)x1x
3
n+2 mod (R+ xn+3F [V2n]).

(b) Just note that x1xn+2+x2xn+1 is H1-invariant, so the norm is G-invariant. �
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Let (a1, . . . , an, an+1, . . . , a2n) ∈ F 2n. We have a G-equivariant surjection V2n →
V2n−2 given by

φ : (a1, . . . , an, an+1, . . . , a2n) → (a2, . . . , an, an+2, . . . , a2n) ∈ F 2n−2.

Therefore F [V2n−2] = F [x2, · · · , xn, xn+2, · · ·x2n] is a G-subalgebra of F [V2n] =
F [x1, · · · , xn, xn+1, · · · , x2n].

Proposition 4. Let n ≥ 3 and S ⊆ F [V2n−2]
G be a separating set for V2n−2. Then

φ∗(S) together with the set T consisting of

xn+1, NG(x1), fλ :=

{

TrG(x1x
3
2) for λ 6= 0, 1

NH2
(x1xn+2 + x2xn+1) for λ ∈ {0, 1}

TrG(x1xixi+1) for 2 ≤ i ≤ n− 1,

is a separating set for V2n.

Proof. Let v1 = (a1, . . . , an, an+1, . . . , a2n) and v2 = (b1, . . . , bn, bn+1, . . . , b2n) be
two vectors in V2n in different G-orbits with φ(v1) = φ(v2), so ai = bi except for
i = 1, n+ 1. To apply Theorem 1, we assume for a contradiction that all elements
of T take the same values on v1 and v2. Since xn+1 ∈ T , we have an+1 = bn+1,
hence we have v2 = (b1, a2, . . . , an, an+1, . . . , a2n). Because of Lemma 2 (b) we

can assume a2n = 0. Since TrG(x1xixi+1) ≡ x1(xn+ixn+i+2 + x2
n+i+1) mod R for

2 ≤ i ≤ n− 2, we succesively get a2n−1 = a2n−2 = . . . = an+3 = 0. In case λ 6= 0, 1
we can also assume an+2 = 0 by Lemma 3(a). In case λ ∈ {0, 1} and an+2 6= 0,
NH2

(x1xn+2+x2xn+1) taking the same value on v1, v2 implies a1 = b1+an+2, hence
v1 = σ3v2 for λ = 0 and v1 = σ2v2 for λ = 1 respectively. So now assume an+2 = 0.
Then NG(x1)(v1) = NG(x1)(v2) implies a1+b1 ∈ {an+1, λan+1, (λ+1)an+1}, hence
v1 = σiv2 for some i ∈ {1, 2, 3}. �

We give the induction start for n = 2 and λ 6= 0, 1 - the case λ ∈ {0, 1} is left to
the reader (or to Magma ).

Lemma 5. A separating set for λ 6= 0, 1 and n = 2 is given by the invariants

f1 := x1x4 +
1

λ(λ + 1)
x2
2 + x2(x3 +

1

λ(λ+ 1)
x4),

NG(x1), NG(x2), x3, x4

Note that since G is not a reflection group, we need at least 5 separating invari-
ants by [8, Theorem 1.1].

Proof. The invariants x3, x4 allow us to consider two points v1 = (a1, a2, a3, a4)
and v2 = (b1, b2, a3, a4) in different orbits. If NG(x2)(v1) = NG(x2)(v2), then
a2 + b2 ∈ {0, a4, λa4, (λ+ 1)a4}, so after replacing v2 by an element in its orbit we
can assume a2 = b2. If a4 6= 0, then f1 separates v1, v2, so assume a4 = 0. Then
NG(x1)(v1) = NG(x1)(v2) implies a1 + b1 ∈ {0, a3, λa3, (λ + 1)a3}, so v1, v2 are in
the same orbit. �

2.2. Type (iii). Let G act on V2n = F 2n by the representation σ1 7→

(

In J0
0 In

)

and σ3 7→

(

In In
0 In

)

. This leads to the same invariants as in type (ii) with λ = 0,

just σ1 and σ3 are interchanged.
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2.3. Type (iv). Take λ = 1 in type (ii). If e1, . . . , e2n ∈ F 2n denotes the standard
basis vectors, we can consider the submodule V2n−1 := 〈e1, . . . , en, en+2, . . . , e2n〉.
Its representation is given by

σ1 7→





In
0n−1

In−1

0 In−1



 and σ2 7→





In
In−1

0n−1

0 In−1



 ,

which correpsonds to type (iv). Since the restriction map F [V2n]
G → F [V2n−1]

G,
f 7→ f |V2n−1

maps separating sets to separating sets by [5, Theorem 2.3.16], we are
done by our treatment of type (ii).

2.4. Type (v). Again we look at the case λ = 1 of type (ii). Then 〈en〉 is a
G-submodule, and we look at the factor module V2n−1 := V2n/〈en〉 with basis
ẽi := ei + 〈en〉, i ∈ {1, . . . , 2n} \ {n}. Its representation is given by

σ1 7→

(

In−1 In−1 0n−1

0 In

)

and σ2 7→

(

In−1 0n−1 In−1

0 In

)

.

We have a G-algebra inclusion F [V2n−1] = F [x1, . . . , xn−1, xn+1, . . . , x2n] ⊂ F [V2n].
The action on the variables is given by

σ1(xi) =

{

xi + xn+i for 1 ≤ i ≤ n− 1
xi for n+ 1 ≤ i ≤ 2n,

and

σ2(xi) =

{

xi + xn+i+1 for 1 ≤ i ≤ n− 1
xi for n+ 1 ≤ i ≤ 2n.

Let (a1, . . . , an−1, an+1, . . . , a2n) ∈ F 2n−1 ∼= V2n−1. We have a G-equivariant sur-
jection V2n−1 → V2n−3 given by

φ : (a1, . . . , an−1, an+1, . . . , a2n) → (a2, . . . , an−1, an+2, . . . , a2n) ∈ F 2n−3.

Therefore F [V2n−3] = F [x2, · · · , xn−1, xn+2, · · ·x2n] is aG-subalgebra of F [V2n−1] =
F [x1, · · · , xn−1, xn+1, · · · , x2n]. Also, let R := F [x2, · · · , xn−1, xn+1, · · ·x2n]. We
will make computations modulo R, considered as a subvectorspace of F [V2n−1],
and we can re-use the equation of Lemma 2(a*).

Lemma 6. Let v1, v2 ∈ V2n−1 be two vectors in different orbits that agree every-
where except the first coordinate. Say, v1 = (a1, . . . , an−1, an+1, . . . , a2n), v2 =
(b1, a2 . . . , an−1, an+1, . . . , a2n). Assume further that one of the following holds.

(a) an+2 6= 0 and ai = 0 for n+ 3 ≤ i ≤ 2n
(b) ai = a2n 6= 0 for n+ 2 ≤ i ≤ 2n− 1.

Then the invariant

f := NH2
(x1xn+2 + x2xn+1) ≡ x2

1x
2
n+2 + x1xn+2(x

2
n+2 + xn+1xn+3) mod R

separates v1 and v2.

Proof. Assume the first case. Then f(v1) = f(v2) implies (a1 + b1)
2a2n+2 = (a1 +

b1)a
3
n+2, hence a1 = b1+an+2. Since ai = 0 for i ≥ n+3 this implies that v1 = σ2v2

which is a contradiction because v1 and v2 are in different orbits.
Next assume the second case. Then f(v1) = f(v2) implies (a1 + b1)

2a2n+2 =

(a1 + b1)a
2
n+2(an+1 + an+2), hence a1 = b1 + an+1 + an+2. Since ai = a2n for

n+ 2 ≤ i ≤ 2n− 1, this implies that v1 = σ3v2 yielding a contradiction. �
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Lemma 7. For 2 ≤ i ≤ n− 1, we have the following elements in F [V2n−1]
G:

TrG(x1x
3
i ) ≡ x1xn+ixn+i+1(xn+i + xn+i+1) mod R.

Proof.

TrG(x1x
3
i ) ≡ x1x

3
i + x1(xi + xn+i)

3 + x1(xi + xn+i+1)
3

+x1(xi + xn+i + xn+i+1)
3

≡ x1xn+ixn+i+1(xn+i + xn+i+1) mod R.

�

Proposition 8. Let n ≥ 3 and S ⊆ F [V2n−3]
G be a separating set for V2n−3. Then

φ∗(S) together with the set T consisting of

xn+1, NG(x1), NH2
(x1xn+2 + x2xn+1), TrG(x1x2xn−1),

TrG(x1xixi+1) for 2 ≤ i ≤ n− 2, TrG(x1x
3
i ) for 2 ≤ i ≤ n− 1,

is a separating set for V2n−1.

Proof. Let v1 = (a1, . . . , an−1, an+1, . . . , a2n) and v2 = (b1, . . . , bn−1, bn+1, . . . , b2n)
be two vectors in V2n−1 in different G-orbits with φ(v1) = φ(v2), so ai = bi except
for i = 1, n+1. To apply Theorem 1, we assume for a contradiction that all elements
of T take the same values on v1 and v2. Since xn+1 ∈ T , we have an+1 = bn+1,
hence we have v2 = (b1, a2, . . . , an−1, an+1, . . . , a2n).

We first assume an+i 6= 0 for 2 ≤ i ≤ n. Lemma 7 implies an+2 = an+3 =
. . . = a2n 6= 0, a contradiction to Lemma 6 (b). Thus there must be a 2 ≤ i ≤ n
with an+i = 0, so let i be maximal with this property. Consider the invariants

fj := TrG(x1xjxj+1) ≡ x1(xn+jxn+j+2 + x2
n+j+1) mod R of T for 2 ≤ j ≤ n − 2

(see Lemma 2(a*)).
If i ≤ n− 2, then an+i+1 6= 0, and fi separates v1, v2.
If i = n − 1, then a2n 6= 0, and fj(v1) = fj(v2) for j = n − 3, n − 4, . . . , 2

implies an+j = 0 for 3 ≤ j ≤ n− 1. As Tr(x1x2xn−1) ≡ x1(xn+2x2n + xn+3x2n−1)
mod R takes the same value on v1, v2, we also have an+2 = 0. Now NG(x1)(v1) =
NG(x1)(v2) implies a1 = b1 + an+1, thus v1 = σ1v2.

If i = n, i.e. a2n = 0, then since fj(v1) = fj(v2) for j = n − 2, n− 3, . . . , 2, we
get an+j = 0 for 3 ≤ j ≤ 2n. In case an+2 6= 0, we are done by Lemma 6 (a). If
an+2 = 0, then NG(x1)(v1) = NG(x1)(v2) implies as before a1 = b1 + an+1 and
v1 = σ1v2. �

Remark 9. A separating set for V3 is formed by NG(x1), x3, x4.

3. Cyclic groups

Let G = Zprm be the cyclic group of order prm, where p is a prime number and
r,m are non-negative integers with (m, p) = 1. Let H and M be the subgroups
of G of order pr and m, respectively. Let Vn be an indecomposable G-module of
dimension n.

Lemma 10. There exists a basis e1, e2, . . . , en of Vn such that σ−1(ei) = ei + ei+1

for 1 ≤ i ≤ n − 1 and σ−1(en) = en for a generator σ of H, and α(ei) = λei for
1 ≤ i ≤ n for a m-th root of unity λ ∈ F and α a generator of M .
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Proof. It is well known that n ≤ pr and there is basis such that a generator ρ of
G acts by a Jordan matrix Jµ = µIn + N with µ a mth root of unity [1, p. 24].

Then ρp
r

is a generator of M acting by (µIn+N)p
r

= µpr

In, and ρm is a generator
of H acting by (µIn + N)m = In + mµm−1N +

(

m
2

)

µm−2N2 + . . .. This matrix

has Jordan normal form J1, and the representation matrix of ρp
r

is invariant under
base change, which proves the lemma. �

Since we want our representation to be faithful, we will assume that λ is a
primitive mth root of unity from now. We also restrict to the case r = 1. Let
x1, x2, . . . , xn be the corresponding basis elements in V ∗

n . We have σ(xi) = xi+xi−1

for 2 ≤ i ≤ n, σ(x1) = x1 and α(xi) = λ−1xi for 1 ≤ i ≤ n. Since α acts by
multiplication by a primitive mth root of unity, there exists a non-negative integer
k such that xnx

p−1

i+1 x
k
i ∈ F [Vn]

M for 1 ≤ i ≤ n − 2. We may assume that k is the
smallest such integer. Let Ii denote the ideal in F [Vn] generated by x1, x2, . . . , xi.

Set fi = xnx
p−1

i+1 x
k
i for 1 ≤ i ≤ n− 2.

Lemma 11. Let a be a positive integer. Then
∑

0≤l≤p−1 l
a ≡ −1 mod p if p− 1

divides a and
∑

0≤l≤p−1
la ≡ 0 mod p, otherwise.

Proof. See [4, 9.4] for a proof for this statement. �

Now set R := F [x1, x2, . . . , xn−1].

Lemma 12. Let 1 ≤ i ≤ n− 2. We have

TrGM (fi) ≡ −xnx
p+k−1

i mod
(

Ii−1 +R
)

.

Proof. We only care for terms containing xn but not x1, . . . , xi−1, thus we have

σl(fi) = (xn + lxn−1 +

(

l

2

)

xn−2 + · · · )(xi+1 + lxi + · · · )p−1(xi + lxi−1 + · · · )k

≡ xn(xi+1 + lxi)
p−1xk

i mod
(

Ii−1 +R
)

.

Thus it suffices to show that
∑

0≤l≤p−1
(xi+1 + lxi)

p−1 = −xp−1

i . Let a and b be

non-negative integers such that a + b = p − 1. Then the coefficient of xa
i+1x

b
i in

(xi+1+lxi)
p−1 is

(

p−1

b

)

lb and so the coefficient of xa
i+1x

b
i in

∑

0≤l≤p−1
(xi+1+lxi)

p−1

is
∑

0≤l≤p−1

(

p−1

b

)

lb. Hence the result follows from the previous lemma. �

Let (c1, c2, . . . cn) be a vector in Vn. There is a G-equivariant surjection φ : Vn →
Vn−1 given by (c1, c2, . . . cn) → (c1, c2, . . . cn−1). Hence F [Vn−1] = F [x1, · · · , xn−1]
is a G-subalgebra of F [Vn]. Let l be the smallest non-negative integer such that
NH(xn)(NH(xn−1))

l ∈ F [Vn]
G. Note that since (p,m) = 1 such an integer exists.

Proposition 13. Let S ⊆ F [Vn−1]
G be a separating set for Vn−1. Then φ∗(S)

together with the set T consisting of

NH(xn)(NH(xn−1))
l, NG(xn), TrGM (fi) for 1 ≤ i ≤ n− 2,

is a separating set for Vn.

Proof. Let v1 = (c1, c2, . . . , cn) and v2 = (d1, d2, . . . , dn) be two vectors in Vn in
different G-orbits with φ(v1) = φ(v2), so ci = di for 1 ≤ i ≤ n − 1. To apply
Theorem 1, we assume for a contradiction that all elements of T take the same
values on v1 and v2. Assume that there exists an integer i ≤ n−2 such that ci 6= 0.
Assume further that i is the smallest such integer. Then TrGM (fi) separates v1 and v2
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by the previous lemma. Therefore we have c1 = c2 = · · · = cn−2 = 0. We consider
two cases. First assume that cn−1 = 0. Then NG(xn)(v1) = NG(xn)(v2), i.e.
cpmn = dpmn , implies that cn = λadn for some integer a and hence v1 and v2 are in the
same orbit. If cn−1 6= 0, then we see that NH(xn)(NH(xn−1))

l separates v1 and v2
as follows. We have (NH(xn−1))

l(v1) = (NH(xn−1))
l(v2) 6= 0. Therefore it suffices

to show NH(xn)(v1) 6= NH(xn)(v2). But otherwise cpn − cnc
p−1

n−1 = dpn − dnc
p−1

n−1,
which implies cn = dn + lcn−1 for some 0 ≤ l ≤ p− 1, so v1 and v2 are in the same
orbit. �
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