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Understanding the underlying mechanisms causing rapid thermalization deduced for high-energy
heavy ion collissons is still a challenge. To estimate the thermalization time, entropy growth for
classical Yang-Mills theories is studied, based on the determination of Lyapunov exponents. Distinct
regimes for short, medium and long sampling times are characterized by different properties of their
spectrum of Lyapunov exponents. Clarifying the existence of these regimes and their implications for
gauge-field dynamics is one of the results of this contribution. As a phenomenological application we
conclude that for pure gauge theories with random initial conditions thermalization occures within
few fm/c, an estimate which can be reduced by the inclusion of fermions, specific initial conditions
etc.

I. INTRODUCTION

Experiments have shown that a new form of strongly
interacting matter with very high energy density and un-
usual transport properties is created in collisions between
heavy nuclei at energies attainable at the Relativistic
Heavy Ion Collider (RHIC), up to 200 GeV per nucleon
pair in the center of mass [1]. Theoretical arguments as
well as circumstantial experimental evidence suggest that
this matter is a strongly coupled quark-gluon plasma [2].
The early thermalization of this matter leading to the for-
mation of a quark-gluon plasma is one of the largest un-
explained puzzles in RHIC physics. Hydrodynamic sim-
ulations are consistent with a thermalization time of 1.5
fm/c or less [3]. It is generally believed that the instabil-
ity and consequent exponential growth of intense gluon
fields would be the origin of early thermalization. Vari-
ous plasma instabilities such as the Weibel instability [4]
and the Nielsen-Olesen instability [5] can cause the ex-
ponential growth of the amplitude of unstable modes of
the SU(3) gauge field. The plasma instability may be
characterized by the negative curvature of the potential,
leading to the equation of motion

Ẍi = λ2
iXi , (1)

where Xi denotes the field variable in the unstable mode.
The energy stored in the intense gauge field eventually
produces abundant particles and evolves towards a ther-
malized state. The thermalization mechanism governing
this transition is not yet clear, and the time scale on
which it occurs is not known. The equilibration problem
is simplified, however, by the high occupation probabil-
ity of the unstable modes, which makes a quasi-classical
treatment of the thermalization process, at least of its
initial stages, possible.
In the classical dynamics, the apparent entropy of an

isolated system is produced by the increasing complexity
in phase space. The distance between classical trajec-
tories starting from very similar initial conditions grows

exponentially in the long-time evolution of a chaotic sys-
tem,

|δXi(t)| ∝ eλit , (2)

where δXi represents the separation of trajectories, and
λi is referred to as the Lyapunov exponent (LE). The en-
tropy production rate is given by the Kolmogorov-Sinäı
(KS) entropy, which is defined as the sum of positive
LEs, dS/dt = SKS ≡

∑

λi>0 λi. The production of en-
tropy at the quantum level poses additional problems
such as the decoherence of the quantum state of the
system [6], since the evolution in pure state generates
no entropy and some kind of coarse graining is neces-
sary. Kunihiro, Müller, Ohnishi, and Schäfer [7] (hence-
forth referred to as KMOS) proposed to apply the Husimi
function, a smeared Wigner function with minimal wave
packets, to define a minimally coarse grained entropy, the
Wehrl entropy, and showed that it grows at the rate of
the KS entropy in the classical long-time limit, i.e. if the
system has enough time to sample the complete phase
space. In that paper application was limited to simple
cases where the number of degrees of freedom is essen-
tially one. In this contribution we extend the KMOS
framework to more realistic processes.
In this work, we analyze the chaotic behavior in the

classical Yang-Mills (CYM) evolution. Specifically, we
analyze the exponentially growing behavior of the dis-
tances between the trajectories. We find that we have
to distinguish different regimes, depending on sampling
time, namely a kinetic stage for short sampling times, an
intermediate- and a long-time regiem.In each case we con-
sider the exponential growth rate of the distance between
two trajectories, which follows the equation of motion,

δẊ(t) = H(t,X)δX(t) (3)

where H is the so-called Hesse matrix or Hessian and
analyse the time evolution of the distance vector δX .
i) The instantaneous change of δX is determined by the
eigenvalues of the Hessian, which we will refer to as the
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local Lyapunov exponents (LLE).
ii) The evolution of the distance on ergodic time scales is
described by the Lyapunov exponents (2), which we will
refer to as global Lyapunov exponents (GLE).
iii) For the third, intermediate time period, the Hessian
changes due to the nonlinear coupling among the different
field modes, but the energy remains localized among the
primary unstable modes. By using the Trotter formula,
we can numerically integrate the equation of motion for
the tangent space δX , and construct the time-evolution
matrix for an intermediate time period. We will refer to
the eigenvalues of the time-evolution matrix as interme-

diate Lyapunov exponents (ILE).

Because the ILEs describe the evolution of the strongly
excited Yang-Mills field modes during the time when the
field configuration is still far away from equilibrium and a
quasi-classical description of the dynamics of the Yang-
Mills field is appropriate, the ILEs are the most rele-
vant Lyapunov exponents for the early thermalization at
RHIC.

Below we obtain the distribution of these three kinds of
Lyapunov exponents. Since they govern the growth rate
of the coarse grained entropy residing in the Yang-Mills
field, they will allow us to estimate the equilibration time
as τeq ≃ ∆S/SKS , where ∆S is the increase of entropy
necessary for equilibration.

Since classical CYM theory has no conformal anomaly
(it does not know about ΛQCD) all statistical quantities

should scale like εn/4, where ε is the energy density and
n is the mass dimension of that quantity. For example,
the KS entropy has the mass dimension and scales as
SKS ∝ ε1/4.

For the initial stage of high energy heavy ion collisions
the relevant scale is the saturation scale Qs, which is
related to the initial energy density in the color glass
condensate (CGC) model as ε = Q4

s/g
2, implying that

the time scale of very early dynamics is given by 1/Qs.

Not surprisingly, Fries, Müller and Schäfer have indeed
found that decoherence (which is probably the fastest
mechanism for entropy production) happens indeed on
this time scale [6].

However, they also found that decoherence can only
generate a fraction of the entropy needed to justify a
hydrodynamic treatment.

The real-time gauge field dynamics discussed in this
contribution is treated numerically introducing a spatial
lattice with lattice constant a which accordingly has to
be chosen as a ∼ ε−1/4. We show that everything works
out exactly in this manner.

This paper is organized as follows. In Sec. II, we ex-
plain the equations of motion in the CYM theory, and
how we can obtain the eigenvalues of the Hessian in
CYM. In Sec. III, we show the eigenvalue distribution
of the Hessian and its time evolution. Next we show the
long-time evolution in terms of the maximum Lyapunov
exponent.

II. THEORETICAL BACKGROUND

A. Chaotic dynamics of Yang-Mills fields

In this section, following a brief review of previous re-
sults, we discuss the method we use to analyze the com-
plexity evolution in the classical Yang-Mills theory for
an intermediate time duration. We first introduce the
intermediate Lyapunov exponent which is applicable to
general cases, and apply it to the classical Yang-Mills
evolution.

The chaotic properties of the classical evolution of
Yang-Mills fields has been known and studied for a long
time [8]. Chaos was first observed in the infrared limit of
the Yang-Mills theory [9]; later it was shown to exist also
in the compact lattice version of the classical Yang-Mills
theory [10]. The maximal global Lyapunov exponent may
be related to the plasmon damping rate of the thermal
pure Yang-Mills plasma [11].

The global KS entropy of the compact lattice gauge
theory (i.e. the rate of entropy growth close to thermal
equilibrium) was shown to be extensive, i.e. proportional
to the lattice volume [12], and the ergodic properties of
the compact SU(2) lattice gauge theory were investigated
numerically in detail by Bolte et al. [13].

Since we are here not interested in the ergodic prop-
erties of the classical nonabelian gauge theory, but in its
dynamical properties far off equilibrium, we will mostly
make use of the non-compact formulation of the lattice
gauge theory. In the following, we set the stage for our
investigation by discussing three different kinds of insta-
bility exponents, which capture different aspects of the
dynamics of a nonlinear system with many degrees of
freedom, such as the classical Yang-Mills field.

B. Local and intermediate Lyapunov exponents

For a simple “roll-over” transition, H = p2/2−λ2x2/2,
we have one positive and one negative Lyapunov ex-
ponents, λ and −λ, which characterize both, the ki-
netic instability and the entropy production. This is
understood in the matrix form as follows. For a clas-
sical trajectory, X(t) = (x(t), p(t))T , we consider a sec-
ond trajectory which differs a little in the initial con-
dition. The equations of motion for the tangent vector
δX(t) = (δx(t), δp(t))T are written as,

Ẋ(t) =

(

0 1
−1 0

)(

Hx

Hp

)

, (4)

δẊ(t) =

(

0 1
−1 0

)(

Hxx Hxp

Hpx Hpp

)

δX(t) , (5)

where we have introduced short-hand notations, Hx =
∂H/∂x, Hxp = ∂2H/∂x∂p, and so on. For an inverted
harmonic oscillator, we put Hxx = −λ2, Hpp = 1, and
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find,

δẊ(t) = A

(

λ 0
0 −λ

)

A−1δX(t) , A =

(

1 −1
λ λ

)

. (6)

This leads to an exponential expansion in the direction
of λx+ p and an exponential contraction in the direction
of −λx + p. The entropy production rate in this simple
case was analyzed by KMOS, who found to be given by
dS/dt → λ for t → ∞.
In the case of many degrees of freedom, a similar struc-

ture will appear as

δẊ(t) =

(

Hpx Hpp

−Hxx −Hxp

)

δX(t) ≡ H(t)δX(t) . (7)

Now the second derivatives should be regarded as ma-
trices, e.g. (Hxx)ij = ∂2H/∂xi∂xj . We will refer to
the matrix of second derivatives, H, as the Hessian in
this paper. The eigenvalues λLLE of H are referred to as
the local Lyapunov exponents (LLE). The LLE plays the
role of a “temporally local” Lyapunov exponent, which
specifies the departure of two trajectories in a short time
period.
If H is constant, i.e. in the absence of mode coupling,

the LLEs are identical with the Lyapunov exponents, and
the KS entropy is defined as the sum of positive LLEs. In
general, however, for a system with many degrees of free-
dom, stable and unstable modes couple with each other.
Thus, the LLE does not generally agree with the Lya-
punov exponent in a long time period. In order to discuss
the exponentially growing behavior of the fluctuation, we
introduce the intermediate Lyapunov exponent (ILE).
We can formally solve the equation of motion (7) for a

finite time period ∆t as,

δX(t+∆t) =U(t, t+∆t)δX(t) , (8)

U(t, t+∆t) =T

[

exp

(

∫ t+∆t

t

H(t+ t′)dt′

)]

, (9)

where T denotes the time ordered product. Numerically,
we can obtain the time-evolution operator U by the Trot-
ter formula,

U(t, t+∆t) = T
∏

k=1,N

U(tk−1, tk)

≃T
∏

k=1,N

[1 +H(tk−1)δt] , (10)

where δt = ∆t/N . We diagonalize the time evolution
matrix U and define the ILEs as,

UD(t, t+∆t) = diag(eλ
ILE
1 ∆t, eλ

ILE
2 ∆t, . . .). (11)

Liouville’s theorem dictates that the determinant of the
time evolution matrix U is unity, and thus the sum of all
positive and negative ILEs is zero. After a long enough
time for thermalization, the distribution of the ILEs is

expected to converge to that of the global Lyapunov ex-
ponents (GLE):

λILE →

{

λLLE (∆t → 0) ,

λGLE (∆t → ∞) ,
(12)

In general all three types of Lyapunov exponents, LLE,
ILE, and GLE, yield different results. Here we are inter-
ested in the rapid growth of the coarse grained entropy
when the gauge field configuration is still far from equi-
librium, but has already had sufficient time to sample a
significant fraction of phase space. Our goal is not to cal-
culate how the entropy grows when a configuration close
to equilibrium relaxes further; this can be calculated re-
liably in thermal quantum field theory. Instead, we focus
below on the ILEs, and estimate the KS entropy as

dS

dt
= SKS =

∑

λILE
i

>0

λILE
i . (13)

C. Classical Yang-Mills equation

We consider the pure Yang-Mills theory in the tem-
poral gauge, which permits a Hamiltonian formulation.
The continuum Hamiltonian is given in terms of the phys-
ical chromoelectric and chromomagnetic fields, Ea

i and
Ba

i = εijkF
a
jk, by

H =
1

2g2

∫

d3x





∑

a,i

Ea
i (x)

2 +
1

2

∑

a,i,j

F a
ij(x)

2



 . (14)

We now define the dimensionless variables on the lattice
with lattice spacing a as (omitting vector and color in-
dices)

AL = aA, EL = a2E, FL = a2F. (15)

The time variable is rescaled as

tL = t/a. (16)

The lattice spacing a is thus scaled out, and the dimen-
sionless lattice Hamiltonian is defined as

HL = ag2H. (17)

Here we make use of the fact that a rescaling of the
Hamiltonian (by g2) does not affect the classical equa-
tions of motion. In the following we omit the superscript
“L”. The Hamiltonian on the lattice is

H =
1

2

∑

x,a,i

Ea
i (x)

2 +
1

4

∑

x,a,i,j

F a
ij(x)

2 , (18)

F a
ij(x) = ∂iA

a
j (x) − ∂jA

a
i (x) +

∑

b,c

fabcAb
i (x)A

c
j(x) ,

(19)
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where ∂i is the central difference operator in the i-
direction, i.e., ∂iA(x) ≡ {A(x+ î)−A(x − î)}/2.
The classical equations of motion are given as,

Ȧa
i (x) = Ea

i (x) , (20)

Ėa
i (x) =

∑

j

∂jF
a
ji(x) +

∑

b,c,j

fabcAb
j(x)F

c
ji(x) . (21)

There are two conserved quantities; total energy and
charge. In the numerical simulation, we check that the
total energy is strictly conserved along the time evo-
lution. The charge conservation is expressed by non-
Abelian Gauss’ law,

∑

i

∂iE
a
i (x) +

∑

b,c,i

fabcAb
i (x)E

c
i (x) = 0 (22)

In the non-compact formalism, the lattice discritization
violates the charge conservation in the magnitude of the
field amplitudes.
The Hessian of CYM theory is written as

H =

(

HEA HEE

−HAA −HAE

)

, (23)

where the matrix elements are

HEE = δabδijδx,y , (24)

HEA = HAE = 0 , (25)

HAA =
1

4
δabP +

1

2

∑

c

fabcQc +
∑

cde

facdf bceRde, (26)

with

P = − (δx+î,y+ĵ − δx+î,y−ĵ − δx−î,y+ĵ + δx−î,y−ĵ)

+ δij
∑

k

(2δx,y − δx+k̂,y−k̂ − δx−k̂,y+k̂) (27)

Qc =Ac
i (y)(δx,y+ĵ − δx,y−ĵ)−Ac

j(x)(δx+î,y − δx−î,y)

+ δij
∑

k

{Ac
k(x) +Ac

k(y)}(δx+k̂,y − δx−k̂,y)

+ 2F c
ij(x)δx,y (28)

Rde ={−Ae
i (x)A

d
j (x) + δij

∑

k

Ad
k(x)A

e
k(x)}δx,y . (29)

On the L3 lattice, the number of the eigenvalues is 6(N2
c−

1)L3.

D. Physical scale

In order to fix the scale of the theory, we consider a
physical volume V = a3L3 in which the gauge field is
thermalized at temperature T . The total energy is given
by:

〈H〉 = V ε(T ) =

〈

HL
〉

g2a
=

L3

g2a
εL , (30)

where εL =
〈

HL
〉

/L3 is the energy per site, i.e., the
energy density in lattice units.
A classical Yang-Mills theory on the lattice is a classi-

cal system of 2L3(N2
c −1) oscillators and has the thermal

energy density

εL = 2(N2
c − 1)

1

L3

∑

k

|k|
T L

|k|

= 2(N2
c − 1)CLT

L , (31)

where CL =
∑

k
/L3 is a numerical coefficient of order

unity. The physical energy density of the lattice theory
is

εcl(T ) =
εL

a4g2
= 2(N2

c − 1)CL
T

a3
, (32)

where we have used the relation T L = ag2T . On the
other hand, the energy density in the weakly interacting
thermal quantum Yang-Mills theory is

ε(T ) = 2(N2
c − 1)

∫

d3k

(2π)3
|k|

e|k|/T − 1

= 2(N2
c − 1)

π2

30
T 4 . (33)

The classical theory only applies to those modes of the
continuum theory which are highly occupied and for
which the quantum corrections are not too large. This
condition imposes a lower limit on the lattice spacing of
the classical theory. One can either argue that the two
expressions for the energy density should coincide, or that
a is the screening length of the corresponding quantum
field theory. In both cases this leads to the relation

a ≥
θ

T
, (34)

where θ is a numerical constant of order unity and T ∼
ε1/4 is introduced as a measure of the energy density.
(For example, εcl = ε leads to a = (30CL/π

2)1/3/T ≃
1.45/T .)
The KS entropy growth rate, i.e. the sum of all positive

Lyapunov exponents, in lattice units is given by

S
(L)
KS = cKSL

3(εL)1/4 . (35)

The KS entropy density in lattice units is thus

s
(L)
KS = cKS(ε

L)1/4 . (36)

The equilibrium entropy density of the classical Yang-
Mills theory in the continuum with ultraviolet cut-off, is
according to (32),

seq(T ) =
4

3

εcl
T

= 2(N2
c − 1)

4CL

3 a3
; (37)

the same result in lattice units is

s(L)eq = a3seq(T ) = 2(N2
c − 1)

4CL

3
; (38)
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FIG. 1: Time evolution of the distance in SU(2) simulation
on 43 lattice. All scales are given in the lattice unit.

The equilibration time in lattice units is thus

τ (L)eq =
s
(L)
eq

s
(L)
KS

= 2(N2
c − 1)

4CL

3 cKS
(εL)−1/4 . (39)

Finally, the physical equilibration time is

τeq = τ (L)eq a ≥
τ
(L)
eq θ

T

= 2(N2
c − 1)

4CLθ

3 cKST
(εL)−1/4 . (40)

III. CLASSICAL YANG-MILLS EVOLUTION

A. Lyapunov exponents

We first discuss the Lyapunov exponents obtained by
the numerical simulations of SU(2) CYM systems. Ini-
tial conditions are prepared with Ea

i (x) = 0 and random
Aa

i (x) 6= 0. To see the chaotic time evolution, we mea-
sured the “distances” between two gauge configurations:

DEE =

√

∑

x

{
∑

a,i

Ea
i (x)

2 −
∑

a,i

E′a
i (x)

2}2 , (41)

DFF =

√

∑

x

{
∑

a,i,j

F a
ij(x)

2 −
∑

a,i,j

F ′a
ij(x)

2}2 . (42)

The two gauge configurations are set to be very close to
each other at the initial time t = 0.
In Fig. 1, we show the numerical results on a 43 lat-

tice. The energy density is ε = 0.014. After a short
time, the distance of two trajectories start to deviate,
and exponentially grows in the intermediate time region
(50 < t < 120). Later it saturates to a maximum value
(t > 120). The exponential growth rate of the distance,
i.e., the linear slope of lnDFF , in the intermediate time
region is λD ∼ 0.04. This growth rate λD is governed by
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FIG. 2: Time evolution in SU(2) simulation on 43, 103, and
203 lattices with the same energy density.

the maximum Lyapunov exponent for a finite time pe-
riod. In Fig. 2, we show the lattice size dependence of
the time evolution. Apart from the irrelevant constant,
the time evolution is almost insensitive to the lattice size.
This is consistent with the expectation that the present
lattice calculation simulates a piece of hot matter occu-
pying a much larger volume.

We calculated the ILEs by using the Trotter formula
(10). In the practical calculation, we have adopted the
following expression,

1 +Hδt ≃

(

1 δt
−HAAδt 1−HAA(δt)

2

)

, (43)

which contains an O(δt2) term and coincides with 1+Hδt
up to O(δt). The determinant of this matrix is equal to
unity and thus protects the symplectic property of the
evolution. The eigenvalues are real or pure imaginary.
These eigenmodes correspond to the exponentially grow-
ing or damping mode and the oscillating mode, respec-
tively. Since Liouville’s theorem ensures the sum of the
ILEs is zero, the positive and negative ILEs should ap-
pear in a pairwise manner.

We show the ILE distribution in Fig. 3. The gauge
configuration is the same as in Fig. 1. The distribution
at t = 0 corresponds to the LLEs of the initial condi-
tion. A positive (negative) LLE corresponds to the tem-
porally local negative (positive) potential curvature, and
the maximum LLE is larger than λD. Within a short
time period (0 < t < 5), the maximal ILE rapidly de-
creases and the number of positive ILEs increases. As
the distribution of ILEs no longer evolves for t > 50,
the KS entropy is, therefore, also constant for t > 50.
In this time region, the maximum ILE is λLLE

max ∼ 0.04,
which is close to λD. This fact means that the ILE does
correspond to the growth rate for a finite time period.
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FIG. 3: Distribution of the intermediate Lyapunov exponents. The total number of the eigenvalues is 1152. The right panel
is a closeup of the largest 300 eigenvalues.

FIG. 4: The spectrum of gauge fields Ã(|p|) for different
times.

B. Growth of low- and high-momentum amplitudes

Since the classical lattice theory is not ultra-violet
(UV) safe, the energy is exhausted in this limit mostly
by UV modes, which are sensitive to the lattice cutoff.
We note that the classical theory at nonzero temperature
has no well-defined continuum limit; e.g., the Rayleigh-
Jeans formula gives an energy density that diverges in
that limit. To wit, the thermal classical Yang-Mills the-
ory on a lattice has no well defined continuum limit and
the choice of lattice constant has physical significance, as
discussed above.
In order to examine further the role of UV modes we

discuss next the momentum spectra of the gauge field
Ã(p). We performed SU(2) simulations on a N3

s = 163

lattice with the energy density ε = 0.014, which is the
same setup as that in Sec. III A. The distance DFF then
exhibits a similar behavior as Fig. 1.
The gauge-field’s spectra Ã(p) are obtained with 3-dim

Fourier transformation of A(x), where momenta pµ(µ =
1, 2, 3) range from −(Ns/2− 1) to Ns/2 times 2π/(Nsa).

(Note that due to our definition of the Laplacian, which
extends to x ± 2a we get a factor 2π/Ns rather than
π/Ns).

We average |Ãµ(p)| over direction and color. and

show the time evolution of the spectrum Ã(p) of A(x) in

Fig. 4, where the spectra |Ã(p)| are plotted as functions

of
√

sin2 p1 + sin2 p2 + sin2 p3. Due to discretization of
space one encounters doublers, which is why only half of
the Brillouin zone is plotted in Fig. 4.
At t = 0, A(x) is randomly distributed and hence the

Ã(p) are almost independent of |p|. After a short time
the IR modes are strongly excited. and they dominate
the exponential growth of the distance between gauge
field configurations, as was expected.
At low momenta our results approach the classical

equilibrium (equipartition) distribution explains the ten-
dency of our results at low momenta, but it is not com-
pletely reached even in the IR modes at the last stage of
the exponential growth (t ∼ 150).
Our results show, in addition, that at earlier times

(t < 50) one has IR modes with very rapid growth, which
appear to be the modes associated with the largest Lya-
punov exponents. This would fit the usual assumption of
a bottom-up thermalization [19], except that it is rather a
pre-thermalization, because phase space is filled rapidly,
but the full approach towards equilibrium sets in only
with the linear phase, i.e. for t > 50.

C. Equilibration time of SU(3) Yang-Mills theory

Next, we discuss the SU(3) CYM theory. In Fig. 5,
we show the time evolution of DFF in SU(3) simulation
on a 43 lattice for several energy densities. By changing
the initial amplitude of Aa

i (x), we calculated time evolu-
tions with different energy densities. In Fig. 6, we show
the ILE distributions after a long time period, which no
longer change along time evolution. Only the positive
eigenvalues are shown. These are qualitatively the same



7

-8

-6

-4

-2

 0

 2

 4

 0  50  100  150  200

lo
g(

 D
F

F
 )

t

ε = 3.20
ε = 0.87
ε = 0.20
ε = 0.05

FIG. 5: Time evolution in SU(3) simulation on a 43 lattice.

as the SU(2) simulations.
In Table I and Fig. 7, we show the SU(3) results of the

Lyapunov exponents: the exponential growth of the dis-
tance λD, the largest LLE λLLE

max , the sum of the positive
LLEs λLLE

sum , the largest ILE λILE
max, and the sum of the

positive ILEs λILE
sum. As discussed in the previous section,

the Lyapunov exponents should scale as ε1/4 because of
the conformal invariance. As shown in Fig. 7, λLLE

max and
λLLE
sum are indeed proportional to ε1/4. Other Lyapunov

exponents slightly deviate from this scaling. This is be-
cause the change of the field amplitude is not exactly the
conformal transformation, e.g., the dimensionless ratio of
the electric energy density to the magnetic energy density
is changed. Numerically, however, the best-fit prefactor
is not much affected by the difference of the exponent in
the following accuracy.
After all, we extract the Lyapunov exponent as a func-

tion of the energy density from this approximate scaling.
By fitting, we find that the numerical prefactors are

λD ≃ 0.1× ε1/4 , (44)

λLLE
max ≃ 1× ε1/4 , (45)

λLLE
sum /L3 ≃ 3× ε1/4 , (46)

λILE
max ≃ 0.2× ε1/4 , (47)

λILE
sum/L

3 ≃ 2× ε1/4 . (48)

Thus, the KS entropy density is

sKS = λILE
sum/L

3 ≃ 2× ε1/4 = cKS × ε1/4 . (49)

From this result, we can evaluate the equilibration time
of the SU(3) CYM theory. We take θ ≃ (30CL/π

2)1/3 ≃
1.45 and CL ≃ 1 as a typical case. Then we get T L =
ag2T = g2(30/π2)1/3 ≃ 6 and εL = 2(N2

c −1)CLT
L ≃ 90.

Inserting these numbers into Eq. (40), we obtain

τeq ≃
5

T
+ τdelay . (50)

Here τdelay was introduced to take the initial phase into
account, in which DFF is more or less constant, because
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FIG. 6: Distribution of the intermediate Lyapunov exponents
in SU(3) simulations.
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the strongly growing modes are not yet relevant. One
would expect that τdelay fulfills approximately [16]

1

6(N2
c − 1)L3

eλmaxτdelay ≈ 1 (51)

which is indeed in good agreement with our numerical
findings. When T ≃ 350 MeV, the equilibration time is
τeq ≃ 3 fm/c, with a systematic uncertainty which can
easily account for a factor of two.

TABLE I: The Lyapunov exponents in the SU(3) CYM the-
ory.

L3 ε λD λLLE

max λLLE

sum λILE

max λILE

sum

43 0.05 0.05 0.55 80 0.06 32

43 0.20 0.08 0.77 114 0.11 62

43 0.86 0.14 1.14 174 0.20 115

43 3.16 0.23 1.64 265 0.32 191

43 19.4 0.39 2.89 474 0.59 328

43 90.9 0.59 4.60 708 0.95 474



8

If entropy is produced by very rapid processes, especially
by decoherence, before the non-linear dynamics analysed
by us reaches the phase of linear entropy growth, the
real thermalization time is correspondingly shorter. In
[6] this decoherence entropy was estimated to be roughly
1/3 of what is needed by the hydrodynamical initial con-
ditions. This is consistent with results obtained in [21]
in k⊥ factorized perturbation theory. In that calculation
the full observed particle number at central rapidities is
only reached from decohering the Color Glass Conden-
sate after introducing a normalization factor. Without
that factor one would obtain between one half and one
quarter of the total particle number. On the other hand,
simulations of the combined decoherence and non-linear
dynamics stage of the glasma in a longitudinally expand-
ing, boost-invariant geometry reaches 80% of the final
particle number [22]. All of this indicates that it is prob-
ably a good guess to assume that non-linear gauge field
dynamics has to generate about 2/3 of the entropy re-
quired by thermal equilibrium and that the thermaliza-
tion time is thus rather of the order of 2 fm/c.

IV. SUMMARY

The main aim of this paper is to understand the fast
thermalization deduced for high energy heavy ion collis-
sions, which is, in fact, one of the largest unexplained
puzzles in RHIC physics. We argue that entropy genera-
tion plays the key role in this context.
The overall picture of entropy generation in heavy ion

collins is involved. While some part of the entropy is
produced from the decoherence at very early times, i.e.
times of order 1/Qs, see [6], most of entropy required by
the initial condition for the hydrodynamic phase must be
generated within the first fm/c by nonequilibrium gluon
dynamics. Entropy generation of quantum systems al-
ways requires coarse graining. Coarse-graining in turn
relates it to the Lyapunov exponents, see [6]. As the lat-
ter can be studied in the corresponding classical gauge
theories so can entropy production in total.
More precisely, the entropy production rate in classi-

cal systems is given by the Kolmogorov-Sinäı (KS) en-
tropy, defined as the sum of positive Lyapunov expo-
nents. (The KS entropy describes the entropy produc-
tion also in quantum systems when the coarse graining
is introduced with a minimum wave packet [7].)
We have investigated classical Yang-Mills (CYM) dy-

namics in the noncompact (A,E) scheme. We started
from random initial conditions and studied the result-
ing spectrum of Lyapunov exponents. We found that
their properties change with time in a characteristic man-
ner and identified three distinct regimes: A short time
regime, in which the system has not yet sampled a large
fraction of phase space, a late time regime in which the
system is already close to thermal equilibrium and has
sampled basically all of phase space, and an intermedi-
ate regime which is dominated by non-linear gauge field

dynamics.

We have developed a method, making use of Trot-
ter formula, to evaluate the Lyapunov exponent in the
intermediate time scale (intermediate Lyapunov expo-
nent; ILE), which is the relevant time scale for the
problem of thermalization in heavy ion collisions, and
determined the entropy production rate (Kolmogorov-
Sinäı entropy). The obtained equilibration time scales as
τeq ∝ ε−1/4 ∝ 1/T + τdelay, where ε is the energy density
and τdelay is the typical time to reach the intermediate
time range, which we also determined. In total the ther-
malization time is around 2 fm/c for T = 350 MeV, if
one assumes that 1/3 of the required entropy is gener-
ated by decoherence, with rather substantial systematic
uncertainties. The most important source of uncertainty
is related to the choice of lattice constant a. Since CYM
has conformal symmetry, the physical scale setting is pro-
vided by the discretization scale a which thus acquires
physical importance. The choice of a is not free of ambi-
guities. Different arguments all lead to the form a = cε1/4

with a constant c of the order of one but varying within
a factor of two.

One also finds that the ε dependence of a is crucial
to obtain the correct power scaling for all quantities of
interest from CYM.

In the course of these investigations it was crucial to
understand the qualitative differences between the dif-
ferent time ranges and corresponding Lyapunov spectra,
which also allows to reconcile previously not understood
observations [20].

A thermalization time of roughly 2 fm/c is some-
what larger than the phenomenologically preferred value.
However, the inclusion of quarks will reduce this number
and could well bring it into the phenomenologically pre-
ferred range. In addition strong electric field in the initial
condition together with the magnetic field, and longitu-
dinal (Bjorken) expansion may promote faster equilibra-
tion.
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