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Abstract

We study the capability of the international linear collider (ILC) to probe

extra dimensions via the seesaw mechanism. In the scenario we study, heavy

Kaluza-Klein neutrinos generate tiny neutrino masses and, at the same time,

have sizable couplings to the standard-model particles. Consequently, a Kaluza-

Klein tower of heavy neutrinos (N) can be produced and studied at the ILC

through the process: e+e− → νN followed by N → Wℓ decay. We show

that the single lepton plus two-jets final states with large missing energy from

this signal process will provide a good opportunity to measure the masses and

cross sections of Kaluza-Klein neutrinos up to the third level. Furthermore,

the neutrino oscillation parameters can be extracted from the flavor depen-

dence of the lowest-mode signals, which give us information about the origin

of low-energy neutrino masses.

http://arxiv.org/abs/1008.2257v2


1 Introduction

The detailed structure of lepton sector has been gradually revealed by the recent

neutrino oscillation experiments [1, 2]. The smallness of neutrino masses is one of

the most important clues to find new physics beyond the standard model (SM). The

seesaw mechanism naturally leads to small neutrino masses through heavy particles

being coupled with ordinary neutrinos. In Type I seesaw scheme [3], the introduction

of right-handed neutrinos implies intermediate mass scales to have light neutrino

masses of order eV, and hence these heavy states are almost decoupled in low-energy

effective theory. Alternatively, TeV-scale right-handed neutrinos are also viable,

which in turn means much smaller couplings to the SM sector and their signals would

not be captured in future collider experiments such as the Large Hadron Collider

(LHC). It is therefore difficult to simultaneously realize tiny neutrino masses and

detectably large interactions among right-handed neutrinos and the SM particles

within the framework of four-dimensional Type I seesaw.

In the previous work by a part of the authors [4], it was pointed out that

the difficulty is overcome by a simple extension of the SM. We have considered

a five-dimensional theory where all the SM fields are confined in a four-dimensional

space-time while right-handed neutrinos propagate in the bulk of extra-dimensional

space [5, 6]. With bulk Majorana mass, TeV-scale right-handed neutrinos can gener-

ate a tiny scale of neutrino masses through the seesaw mechanism and simultaneously

have sizable couplings to the SM leptons and gauge bosons. The previous work fo-

cused on the tri-lepton signal with large missing transverse energy pp → ℓ±ℓ∓ℓ±ν(ν̄).

This process is expected to be detectable at the LHC because only a small fraction of

SM processes contributes to the background against the signals. It was shown that

the observation of right-handed neutrinos is possible, though it is limited only to

the lightest Kaluza-Klein (KK) mode of right-handed neutrinos and the mechanism

itself seems difficult to be confirmed at the LHC.

In this paper, we will investigate how this scenario can be observed at the Inter-

national Linear Collider (ILC). The ILC is the future electron-positron linear collider

for the next generation of high-energy frontier physics. At the ILC, electrons and

positrons are accelerated by two opposing linear accelerators installed in an about

30 km long underground tunnel, and are brought into collision with a center of

mass energy of 500 GeV-1 TeV. The clean experimental environment of the ILC

due to the electron-positron collider gives us an opportunity to obtain more infor-
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mation about the property of right-handed neutrinos and their interactions. We

focus on the two-jet and single lepton signal with large missing energy, e+e− → νN

(N → ℓW, W → qq̄), which can be efficiently reconstructed at the ILC and allows

us to reveal not only the lightest but also higher KK-excited states of right-handed

neutrinos. As a result, the ILC experiment can completely confirm that the scenario

is based on the extra-dimensional theory. Furthermore, by observing the flavor de-

pendence of interactions between right-handed neutrinos and SM particles, it is also

possible to confirm the mechanism to generate the neutrino masses. We performed

the analysis of the signal in the various mass hierarchies of neutrino masses (the

normal, inverted, and degenerate cases).

This article is organized as follows. In the next section, we briefly review the five-

dimensional theory with right-handed neutrinos. The simulation framework such as

a representative point in the parameter space of the model and the simulation tools

used in our study are presented in Section 3. The details of analysis to observe

the right-handed neutrinos at the ILC are discussed in Section 4, where we show

expected measurement accuracies of the masses of right-handed neutrinos and their

production cross-sections at the center of mass energy of 500 GeV and 1 TeV. In

Section 5, we will discuss how the mechanism of neutrino-mass generation can be

confirmed at the ILC. Section 6 is devoted to summary.

2 Physics Model

We consider the five-dimensional theory on S1/Z2 with the S1-radius R. The co-

ordinates are denoted by (xµ, y) where the y direction is compactified to the line

segment y = [0, πR]. The standard-model fields are confined on the four-dimensional

boundary at y = 0. In addition, we introduce the bulk gauge-singlet fermions

Ni (i = 1, 2, 3) and assign the even Z2 parity to their upper components, i.e.

Ni(−y) = γ5Ni(y), so that they contain three-generation right-handed neutrinos

as zero modes.1 The kinetic and mass terms are given by

L = iNiD/Ni −
1

2

[

N c
i (Mγ5 +M ′)ijNj + h.c.

]

. (1)

The conjugated spinor is defined as N c = γ3γ1N t
. It is easy to also write down the

Dirac mass md if one introduces a Z2-odd function which could originate from some

1We do not consider the possibility of generation-dependent parity assignment [7].
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field expectation value. In this paper, we take md = M ′ = 0, first considered in

Ref. [5] as a simple example of higher-dimensional seesaw models. We also have the

mass term between bulk and boundary fields:

Lm = NiPLmijLj δ(y) + h.c., (2)

generated after the electroweak symmetry breaking. The boundary fermions Li con-

tain the left-handed neutrinos νi. Hereafter we take the basis where M is generation

diagonalized, and will drop other generation indices for notational simplicity.

The bulk fermions are KK expanded by Majorana fermions Ψn
R,L as

N (x, y) =
∑

n=0

χn
R(y)PRΨ

n
R(x) +

∑

n=1

χn
L(y)PLΨ

n
L(x). (3)

The wavefunctions χn
R,L are normalized so that the KK-mode kinetic terms are canon-

ical in four dimensions. The low-energy neutrinos (e.g. singlet fermions) come from

the boundary neutrinos and the KK modes: (ν,Ψ0
R,Ψ

1
R,Ψ

1
L,Ψ

2
R,Ψ

2
L, · · · ) ≡ (ν,N).

By integrating over the fifth dimension, we obtain the Majorana mass matrix in

four-dimensional effective theory, explicitly given by 1
2
(νc N c)PLM

(

ν
N

)

+ h.c.,

M =





















0 mt
0 mt

1 0 · · ·
m0 M∗

R00
M∗

R01
MK01

· · ·
m1 M∗

R10
M∗

R11
MK11

· · ·
0 M t

K10
M t

K11
ML11

· · ·
...

...
...

...
. . .





















≡













M t
D

MD MN













, (4)

where the boundary, KK-, and Majorana masses (mn, MK , and MR,L) are

mn = χn
R(0)m, MRmn

=

∫ πR

−πR

dy χm
RMχn

R ,

MKmn
=

∫ πR

−πR

dy χm
R∂yχ

n
L , MLmn

=

∫ πR

−πR

dy χm
LMχn

L . (5)

It is noted that MKmn
becomes proportional to δmn when χn

R,L are the eigenfunctions

of bulk equations of motion, and MRmn
, MLmn

are also proportional to δmn for a

constant (y-independent) mass parameter M due to the normalization conditions.

2.1 Seesaw and Electroweak Lagrangian

We further implement the seesaw operation assuming O(mn) ≪ O(MR,L,K) and find

the induced Majorana mass matrix for three-generations light neutrinos

Mν = −M t
DM

−1
N MD. (6)
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It is useful for later discussions to write down the electroweak Lagrangian in the basis

where all the mass matrices are generation-diagonalized. The neutrino interactions

to electroweak gauge bosons are given in terms of these mass eigenstates (νd, Nd):

Lg =
g√
2

[

W †
µ ēγ

µUMNSPL

(

νd + V Nd

)

+ h.c.
]

+
g

2 cos θW
Zµ

(

ν̄d + N̄dV
†
)

γµPL

(

νd + V Nd

)

, (7)

where W and Z are the electroweak gauge bosons and g is the SU(2)weak gauge

coupling constant. The spinors νd are three light neutrinos for which the seesaw-

induced mass matrix (6) is diagonalized

Mν = U∗
ν M

d
ν U

†
ν , Uν νd = ν −M †

DM
−1 ∗
N N, (8)

and Nd denote the infinite numbers of neutrino KK modes for which the bulk mass

matrix MN is diagonalized both in the generation and KK-mode spaces by a unitary

matrix UN :

MN = U∗
N Md

N U †
N , UNNd = N +M−1

N MD ν. (9)

The lepton mixing matrix measured in neutrino oscillation experiments is given

by UMNS = U †
eUν where Ue is the left-handed rotation matrix for diagonalizing the

charged-lepton Dirac masses. It is interesting to find in (7) that the model-dependent

parts of electroweak gauge vertices are governed by a single matrix V defined as

V = U †
νM

†
DM

−1 ∗
N UN . (10)

When one works in the basis where the charged-lepton sector is flavor diagonal, Uν

is fixed by the neutrino oscillation matrix.

The neutrinos also have the Yukawa couplings to the Higgs doublet H in the

four-dimensional boundary, from which the Dirac mass (2) is generated;

Lh = fH̃†NPLL δ(y) + h.c., (11)

where H̃ = ǫH∗. The doublet Higgs H has a non-vanishing expectation value v and

its fluctuation h(x) in the lower component. After integrating out the fifth dimension

and diagonalizing mass matrices, we have the Yukawa interaction

Lh =
h

v

∑

n

Ψn
R mnPLUν(νd + V Nd) + h.c., (12)

and Ψn
R are determined by the mass eigenstates through Eqs. (8) and (9).
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2.2 Observable Seesaw

The interactions between heavy neutrinos and SM fields are described by the mixing

matrix V both in the gauge and Higgs vertices. The 3×∞ matrix V is determined

by the mass parameters of neutrinos in the original Lagrangian L+Lm. The matrix

elements in V have the experimental upper bounds from electroweak physics. An-

other important constraint on V comes from the low-energy neutrino experiments,

namely, the seesaw-induced mass should be on the order of eV scale, which in turn

specifies the scale of heavy neutrino mass MN . This can be seen from the definition

of V by rewriting it with the light and heavy neutrino mass eigenvalues

V = i(Md
ν )

1

2X(Md
N)

− 1

2 , (13)

where X is an arbitrary 3 × ∞ matrix with XXt = 1. Therefore one naively ex-

pects that, with a fixed order of Md
ν ∼ 10−1 eV and |V | & 10−2 for the discovery

of experimental signature of heavy neutrinos, their masses should be very light and

satisfy Md
N . keV (this does not necessarily mean that the seesaw operation is not

justified as Md
ν is fixed). The previous collider studies of TeV-scale right-handed

neutrinos [8] did not satisfy the seesaw relation (13) and have to rely on some as-

sumption for suppressing the necessarily-induced (large) mass Mν ; for example, the

neutrino mass matrix must have a singular generation structure, otherwise it leads

to the decoupling of heavy neutrinos from collider physics.

A possible scenario for observable heavy neutrinos is to take a specific value of

bulk Majorana mass [4] so that the lepton number is recovered in low-energy effective

theory. In this paper we assume that bulk Dirac mass vanishes, but it is easy to

include it by attaching wavefunction factors in the following formulas. The equations

of motion without bulk Dirac mass are solved by simple one-dimensional oscillators,

and the neutrino mass matrices are found

mn =
m√

2δn0πR
, MRmn

= Mδmn,

MKmn
=

n

R
δmn , MLmn

= Mδmn. (14)

From these matrices, we find the seesaw-induced mass matrix Mν and the light

neutrino mixing with heavy modes as follows:

Mν = mt 1

2 tan(πR|M |)m, (15)

ν = Uννd +
1√
2πR

m†

[

∑

n=0

1

|M |+ n
R

N2n+1
d +

∑

n=1

i

|M | − n
R

N2n
d

]

. (16)
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The heavy mass eigenstate N2n
d (N2n+1

d ) are the Majorana fermions with masses
n
R
− |M | ( n

R
+ |M |). In the seesaw formula, the effect of infinitely many numbers

of KK neutrinos appears as the factor πR|M |/ tan(πR|M |). An interesting case is

that |M | takes a specific value |M | ≃ α/R where α is some half integer [5]: the

seesaw-induced mass Mν becomes tiny as a result of KK-mode summation (not

only suppressed by the Majorana mass scale). On the other hand, the heavy-mode

interaction is not suppressed unlike the above naive speculation. These facts realize

the situation that right-handed neutrinos in the seesaw mechanism are observable

at sizable rates in future collider experiments such as the LHC and ILC.

In the KK-mode picture, the mass spectrum is vector-like with a half integer α

and no chiral zero mode exists; for α = 1/2, the mass eigenstates Nd compose the

Dirac fermions Nn (n = 1, 2, · · · ) with masses Mn,

Nn =
1√
2
(N2n

d − iN2n−1
d ), Mn =

2n− 1

2R
. (17)

As a result, the lepton number is preserved in the KK-mode sector and their contri-

butions to the seesaw-induced mass vanish. The model given above is an illustrative

example for accessible seesaw neutrinos. While there are many other possibilities for

extra-dimensional seesaw, they are supposed to have a common mass matrix struc-

ture as a key ingredient for tiny neutrino masses and observability, which could be

seen from the operator analysis in low-energy effective theory. It would therefore

be reasonable that the above model is used as a representative of extra-dimensional

neutrinos. With the use of Eq. (16), the weak interaction of KK Dirac fermions,

which is relevant to the collider study, turns out to be

Lint = − g√
2

∑

n=1

1

πRMn

W †
µ ēγ

µUMNS

(

2Md
ν

δM

)
1

2

PLNn

− g

2 cos θW

∑

n=1

1

πRMn
Zµ ν̄dγ

µ

(

2Md
ν

δM

)
1

2

PLNn

−
∑

n=1

1

πRv
hν̄d

(

2Md
ν

δM

)
1

2

PRNn + h.c. . (18)

Here δM ≡ 1
2R

− |M | characterizes the scale of small neutrino masses.

Similarly to the seesaw neutrino mass, heavy neutrinos do not give sizable con-

tributions to lepton-number-violating processes such as the like-sign di-leptons in

the final states [9]. In the previous work, we have analyzed the LHC signature of

the above model focusing on the (lepton-number-conserving) tri-lepton signal with
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Hierarchy mν1 mν2 mν3

(N) 0 ∆m21 ∆m21 +∆m32

(I) ∆m32 −∆m21 ∆m32 0

(D) mtot mtot +∆m21 mtot +∆m21 +∆m32

Table 1: Three types of neutrino mass hierarchies used in our simulation study: (N), (I),

and (D) correspond to the normal, inverted, and degenerate mass spectrum, respectively.

large missing transverse energy [4] (see also [10]). It was found that the model gives

enough excessive tri-lepton events beyond the SM background in a wide region of

parameter space, and the LHC would discover the signs of neutrino mass generation

and extra dimensions, while the analysis only included the contribution from the 1st

KK-excited mode. In the following sections, we will perform the ILC study of the

same setup, in particular, the observation of higher KK neutrino modes and their

interactions to the SM particles.

3 Representative Points and Simulation Tools

3.1 Constraints on Yukawa Couplings

Before going to discuss representative points used in our simulation study, we sum-

marize the neutrino mass and mixing matrices which are mandatory to determine

the flavor structure of Yukawa interaction. The two matrices are parameterized as

Md
ν =









mν1

mν2

mν3









, φ =









eiϕ1

eiϕ2

1









,

UMNS =









c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13









φ , (19)

where sx (cx) means sin θx (cos θx). The Dirac and Majorana phases are denoted by

δ and ϕ1,2, respectively. The neutrino mass differences and the generation mixing

parameters have been measured at the neutrino oscillation experiments [2]. We take

their typical values; ∆m21 ≡ mν2−mν1 ≃ 9×10−3 eV, ∆m32 ≡ |mν3−mν2 | ≃ 5×10−2

eV, s12 ≃ 0.56, s23 ≃ 0.71, and s13 ≤ 0.22. The mass spectrum is allowed to have

7



Hierarchy s13 δ ϕ1 ϕ2

(N) 0.07 π 0 0

(I) 0.09 0 0 0

(D) 0.04 π 0 0

Table 2: The representative points for UMNS.(N), (I), and (D) correspond to the normal,

inverted, and degenerate mass spectrum, respectively.

three types of hierarchies shown in Table 1, where we define mtot = (0.67 eV −
2∆m21 −∆m32)/3, considering the cosmological bound

∑

imνi ≤ 0.67 eV [11].

Since the scenario we are studying also affects several physical observables such

as the flavor-changing processes of charged leptons, it is important to take account

of constraints on the neutrino Yukawa coupling to have proper representative points.

By integrating out all the heavy KK fermions from the Lagrangian (18), we obtain

the following dimension 6 operator O(6), which contributes to the flavor-changing

neutral current;

O(6) =
π2R2

2

(

L̄H̃
)

f †f∂/
(

H̃†L
)

, f =
2

πRv
δ
− 1

2

M Y U †
MNS, (20)

where Y is the 3×3 orthogonal matrix which generally comes in reconstructing high-

energy quantities from the observable ones [12]. That corresponds to the matrix X

in (13). The coefficient of the operator receives phenomenological constraints as

shown in Ref. [13], and then each component of the Yukawa couplings is restricted

by comparing theoretical predictions with experimental data.

3.2 Representative Points

We choose the representative points with Mi = M × 1, namely the right-handed

neutrino masses are degenerate in the flavor space, and also assume that Y is a real

orthogonal matrix. As a result, the operator O(6) is found to be

O(6) =
2

v2δM

(

L̄H̃
)

UMNSM
d
νU

†
MNS∂/

(

H̃†L
)

. (21)

To satisfy experimental constraints from this operator and become small e-µ com-

ponent, we take the lepton mixing matrix UMNS as shown in Table 2 for each case of

neutrino mass hierarchy.
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Detector Performance Coverage

Vertex detector δb ≤ 5⊕ 10/pβ sin3/2 θ (µm) | cos θ| ≤ 0.93

Central drift chamber δpt/p
2
t ≤ 5× 10−5 (GeV/c)−1 | cos θ| ≤ 0.98

EM calorimeter σE/E = 17%/
√
E ⊕ 1% | cos θ| ≤ 0.99

Hadron calorimeter σE/E = 45%/
√
E ⊕ 2% | cos θ| ≤ 0.99

Table 3: The detector parameters used in our simulation study.

Interestingly, the coefficient of O(6) depends only on the parameter δM , which

turns out to be constrained as follows in each pattern of neutrino mass hierarchy:

δM ≥ 3.3 eV for (N), (22)

δM ≥ 4.4 eV for (I), (23)

δM ≥ 24 eV for (D). (24)

We will set δM to the most optimistic value, namely these lower bounds, in the follow-

ing simulation study. The new study [14] may be given the stronger constraints.The

change of the constraints can be put in the change of δM bound.It is straightfor-

ward to extend them to larger values because collider signals such as the production

cross sections of heavy KK neutrinos are simply proportional to 1/δM , though the

discovery of the signal will be difficult.

The compactification radius R is not relevant to the constraint from the operator

O(6). It is however limited by the LEP experiment since the Dirac masses of KK

neutrinos are given by Mn = (2n− 1)/2R. It is easy to confirm that the constraint

is not so severe if 1/R > 200 GeV, and we thus use the value

1/R = 300 GeV, (25)

as a representative point of 1/R in our simulation study.

3.3 Simulation Tools

The signal and SM events have been generated by Physsim [15]. The initial-state

radiation and bremsstrahlung have been included in the event generations. The

beam energy spread was set to be 0.14% for electron and 0.07% for positron beams.

The finite crossing angle between the electron and positron beams was assumed to

be 14 mrad. In the event generations, helicity amplitudes were calculated using the

HELAS (HELicity Amplitude Subroutines) library [16], which allows us to deal with
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Figure 1: The diagrams of signal processes, e+e− → νN (N → ℓW ).

the effect of gauge boson polarizations properly. The phase space integration and the

generation of parton 4-momenta have been performed by a nubmerical integration

program package , BASES/SPRING [17]. The parton showering and hadronization

have been carried out by using the event generator PYTHIA6.4 [18], where final-state

tau leptons are decayed by the MC particle decay software package, TAUOLA [19]

to handle their polarizations correctly.

The generated Monte Carlo events have been passed to a detector simulator called

JSFQuickSimulator, which implements the geometry and other detector-performance

related parameters of an ILC detector concept called GLD [20]. In the detector sim-

ulator, hits by charged particles at the vertex detector and track parameters at the

central tracker are smeared according to their position resolutions, taking into ac-

count correlations due to off-diagonal elements in the error matrix. Since calorimeter

signals are simulated in individual segments, a realistic simulation of cluster over-

lapping is possible. Track-cluster matching is performed for the hit clusters in the

calorimeter in order to form pseudo Particle Flow Objects (pPFO), thereby achieving

the best attainable jet energy measurements. The resultant detector performance in

our simulation study is summarized in Table 3.

4 Results from Simulation Study

The simulation has been performed at
√
s = 500 GeV for the first KK mode of

right-handed neutrinos, and at
√
s = 1 TeV for the KK modes up to the third level,

with an integrated luminosity of 500 fb−1 each. We have considered the case with no

beam polarization. We have evaluated the measurement accuracies of the masses of

KK right-handed neutrinos and their production cross-sections using the processes

as shown in Fig. 1 for the cases of the normal, inverted, and degenerate hierarchies

10



√
s = 500 GeV

√
s = 1 TeV

KK mode ℓ (N) (I) (D) (N) (I) (D)

1st [fb] e 6.524 297.5 257.1 7.79 355 307

µ · · · · · · · · · · · · · · · · · ·
τ 5.490 4.176 0.113 · · · · · · · · ·

2nd [fb] e 0.065 2.975 2.571 0.51 23.6 20.4

3rd [fb] e · · · · · · · · · 0.085 3.86 3.34

Table 4: Cross sections of e+e− → νN (N → ℓW,W → qq̄) at
√
s = 500 GeV and 1 TeV.

The three dots mean that the cross sections are too low to be explored at the ILC.

of neutrino masses.

4.1 Study at
√
s = 500 GeV

Based on the cross sections shown in Table 4, we have studied e+e− → νN1 (N1 →
eW ) for all the neutrino mass hierarchies and e+e− → νN1 (N1 → τW ) for the

normal and inverted mass hierarchies. In the analysis, we have used the hadronic-

decay modes of W , which allow us to fully reconstruct the mass of N1.

4.1.1 Analysis of νN1 → νeW

In the signal event, an isolated-electron track from the decay of N1 is expected. We

have therefore selected the electron track and reconstructed two jets in the final state

of the signal. Since the isolated-electron track has no energy around it, while a track

from a jet has some energy, we have selected tracks with the energy around them

within 20 degrees below 5 GeV. Then, in the tracks which satisfy the requirement,

the track with the maximum energy has been selected as a candidate of the electron

track. After picking up the isolated-electron track, the clustering of the jets has been

performed. The pPFOs have been combined to form a jet if the two clusters satisfy

yij < ycut, where the variable yij is defined as

yij =
2EiEj(1− cos θij)

E2
vis

. (26)

Here, θij is the angle between two clusters, Ei(j) are their energies, and Evis is the

total visible energy. All events are forced to have two jets by adjusting ycut. The

mass of N1 was, then, reconstructed using the candidate for the electron track and

two reconstructed jets.
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Figure 2: Distribution of the N1 mass reconstructed from Mejj in the case of inverted

neutrino mass hierarchy at
√
s = 500 GeV.

We have considered the processes shown in Table 5 as the background. In order

to suppress these background processes, we have applied the following requirement.

The isolated electron candidate selected above would have a higher energy then

tracks from jets, if it were really coming from the decay of N1. We, hence, required

the energy of the isolated-electron candidate (Ee) to be 10 GeV < Ee < 200 GeV.

In addition, since the reconstructed di-jet mass (Mjj) should be consistent with the

W hypothesis for a signal event, we have selected events with 60 GeV < Mjj <

100 GeV. For reconstruction of the N1 mass with the isolated electron and W

candidates (Mejj), the energy and momentum of the W candidate was corrected to

have W mass. Figure 2 shows the distribution of Mejj after all the selection cuts in

the case of the inverted neutrino mass hierarchy. With the signal region defined by

135 GeV < Mejj < 165 GeV, the numbers of signal and background events before

and after selection cuts are summarized in Table 5.

We have evaluated the measurement accuracy of the N1 mass and its production

cross section by fitting the Mejj distribution. The N1 mass values and errors from

the fit are 150.2 ± 0.20 GeV, 150.0 ± 0.01 GeV, and 150.0 ± 0.01 GeV, for the

normal, inverted, and degenerate neutrino mass hierarchies, respectively. These

results correspond to the measurement accuracies of 0.14%, 0.01%, and 0.01%. On

the other hand, the cross section of e+e− → νN1 (N1 → eW ) events turned out to

be measurable with accuracies of 6.5%, 0.4%, and 0.4%. Since the cross-section of

the normal hierarchy is much smaller than that of the other hierarchies as shown in

Table 4, the measurement accuracy for the normal hierarchy is worse. The results
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are summarized in Table 7.

4.1.2 Analysis of νN1 → ντW

In order to analyze e+e− → νN1 (N1 → τW ) events, we have reconstructed all events

as 3-jet. A jet with the smallest number of the tracks was assumed to be a tau-jet.

The previous signal e+e− → νN1 (N1 → eW ) has been considered as background

together with e+e− → eνW and WW shown in Table 5. The following selection cuts

have been applied to reduce these backgrounds. The energy of the tau-jet (Eτ ) was

required to satisfy 10 GeV < Eτ < 150 GeV in order to reject high energy electron-

and muon-tracks from the leptonic-decay modes of W in the e+e− → WW events.

We required the same criteria for the di-jet mass, Mjj, as in the study of νN → eW .

Then, the reconstructed N1 mass (Mτjj) was required to be 80 GeV < Mτjj < 160

GeV.

After applying the selection cuts, a likelihood analysis has been performed. Since

the processes e+e− → eνW , νN1 (N1 → eW ) dominate in the background, we

constructed two likelihood functions to separate the signal from eνW (LeνW ) and

νN1 → νeqq̄ (LνN1→νeqq̄). As the input variables of the likelihood functions, we used

the number of tracks in the jets of the tau candidate, the energy of the track with

the maximum energy in the tau-jet (Emax), and the energy of tau-jet with Emax

subtracted from it. These likelihood functions were prepared for the normal and

inverted neutrino mass hierarchies separately, because we would be able to identify

the neutrino mass hierarchies by using the cross section of νN → νeW events.

We have required LeνW > 0.79 (0.63) and LνN1→νeqq̄ > 0.13 (0.11) for the normal

(inverted) neutrino mass hierarchy to maximize the signal significance.

The resolution of the N1 mass can be improved by compensating for the missing

energy of the τ decay as follows: Since the N1 mass has already been measured

through the analysis of νN → νeW events, we can calculate energy of the N1

assuming its two-body kinematics. Then, we calculated the energy of the tau as the

calculated N1 energy minus the energy of the W candidate. We assumed that the

direction of the tau coincided the direction of the tau-jet. The corrected mass of N1

(colMτjj) was reconstructed by using the estimated tau energy and momentum and

those of the W candidate. Figure 3 shows the distribution of colMτjj for the inverted

neutrino mass hierarchy after applying all selection cuts. The number of events in

the signal region, 135 GeV <col Mτjj < 165 GeV, before and after the selection cuts

are summarized in Table 5. Fitting the colMτjj distribution, we have obtained the N1

13
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Figure 3: Distribution of the N1 mass reconstructed from colMτjj in the case of inverted

neutrino mass hierarchy at
√
s = 500 GeV.

mass as 149.8± 0.24 GeV and 150.0± 0.32 GeV, corresponding to the measurement

accuracies of 0.16% and 0.21% for the normal and inverted neutrino mass hierarchies,

respectively. The cross section of νN1 → ντW could be determined with accuracies

of 11.3% and 12.4% for the two mass hierarchies. These results are summarized in

Table 7.

4.2 Study at
√
s = 1 TeV

Not only the first but also the second and the third KK modes of right-handed

neutrinos can be produced at the ILC with
√
s = 1 TeV. Taking into account

the cross sections shown in Table 4, we have studied the process e+e− → νN1

(N1 → νeW ) for all the neutrino mass hierarchies and e+e− → νN2,3 (N2,3 → νeW )

processes for the inverted and degenerate neutrino mass hierarchies. The background

processes considered in this study are shown in Table 6.

After the selection of the electron track and the reconstruction of two jets with

the same procedure as the study at
√
s = 500 GeV, the following selection cuts were

applied. To remove electron tracks from jets, we selected high-energy electrons by

requiring 10 GeV < Ee < 600 GeV. The di-jet mass was required to satisfy the same

criteria as the study at
√
s = 500 GeV. Since the WW events have a peak at 500

GeV for the di-jet energy distribution, we have required the di-jet energy should be

below 460 GeV. Shifting the energy and momentum of the W candidate to have

the nominal W mass, the Mejj was calculated. Finally, the signal region has been

defined as 135 GeV < Mejj < 165 GeV, 425 GeV < Mejj < 475 GeV, and 720 GeV
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Figure 4: Distributions of the masses of (a) the second and (b) third KK modes recon-

structed from Mejj in the case of inverted neutrino mass hierarchy at
√
s = 1 TeV.

< Mejj < 780 GeV for the 1st, 2nd, and 3rd KK modes, respectively. The numbers

of events before and after the selection cuts are summarized in Table 6.

Figure 4 shows the distributions of Mejj for the 2nd and the 3rd KK modes of

right-handed neutrinos in the case of inverted neutrino mass hierarchy. Fitting the

Mejj distributions, we have obtained the measurement accuracies of N1,2,3 masses

and their cross sections as shown in Table 7. The masses of right-handed neutrinos

could be determined with the accuracy better than 1%.

5 Discussion

We found that the observation of the higher KK modes, especially the mass spectrum

of these particles is measured accurately at the ILC, which allows us to confirm that

physics behind these signals is based on higher-dimensional theory. The observation

of the masses of KK modes, however, does not directly mean that the signals are

coming from physics responsible for neutrino masses and mixings, because there are

many scenarios in the framework of higher-dimensional theory which are not related

to neutrinos but to other issues such as hierarchy problem and dark matter.

In order to confirm that the signals are from physics of neutrino masses and mix-

ings through the higher-dimensional theory, we should observe not only the masses

of KK modes but also other quantities which depend strongly on parameters of

neutrinos. One of such parameters is δM , because it is the origin of tiny neutrino

masses. However, the smallness of the parameter inevitably leads to the smallness of
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Process (
√
s = 500 GeV) Cross sec. Events No. Events after cuts

νN1 → νeW (W → qq̄) (N) 6.5 [fb] 3,262 2,216

(I) 297.5 [fb] 177,700 101,057

(D) 257.1 [fb] 128,564 87,588

eνW → eνqq̄ 4,462 [fb] 2,231,000 22,594

WW → ℓνqq̄ 1320 [fb] 660,000 11,324

ZZ → ννqq̄, ℓℓqq̄ 108 [fb] 54,000 1

tt̄ 531 [fb] 265,500 568

Process (
√
s = 500 GeV) Cross sec. Events Events after cuts

νN1 → ντW (W → qq̄) (N) 5.49 [fb] 2,745 1,029

(I) 4.18 [fb] 2,090 821

νN1 → νeW (W → qq̄) 6.52 [fb] 3,260 495 (N) 554 (I)

eνW → eνqq̄ 4,460 [fb] 223,100 8,989 (N) 12,276 (I)

WW → ℓνqq̄ 3,960 [fb] 1,980,000 13,788 (N) 14,861 (I)

Table 5: Summary of cuts for
√
s = 500 GeV.

lepton-number violation in the scenario, so that it is difficult to observe the quantities

related to this parameter through processes violating the lepton-number.

Another interesting parameter is UMNS describing phenomena of neutrino mix-

ings. The higher-dimensional theory for neutrinos considered in this article predicts

a specific flavor-structure at the right-handed neutrino sector, and it is completely

determined by the mixing parameter UMNS and neutrino masses Md
ν as shown in

Eq. (18). This fact leads to that branching fractions of the right-handed neutrino

are governed by UMNS and Md
ν . We have shown that both the eW and τW de-

cay modes of N1 can fortunately be measured at the ILC. The ratio of these two

branching fractions R ≡ Br(τW )/Br(eW ) is theoretically given by the formula,

R =

[

UMNS Md
ν U †

MNS

]2

13

[

UMNS Md
ν U †

MNS

]

33

[

UMNS (Md
ν )

2 U †
MNS

]

11
[

UMNS Md
ν U †

MNS

]3

11

[

UMNS (Md
ν )

2 U †
MNS

]

33

, (27)

which takes a value of 0.850 for the normal mass hierarchy and 1.58 × 10−2 for the

inverted mass hierarchy using the representative points of UMNS in Table 2. With the

use of the results in Table 7, we investigate how accurately the ratio can be measured

at the ILC. The result is shown in Fig. 5 for both cases of normal and inverted mass
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Process (
√
s = 1 TeV) Cross sec. Events Events after cuts

νN1 → νeW (W → qq̄) (N) 7.79 [fb] 3,895 1,244

(I) 355.0 [fb] 177,700 44,021

(D) 307.0 [fb] 153,540 29,106

eνW → eνqq̄ 10,320 [fb] 5,160,000 9238

WW → ℓνqq̄ 560.6 [fb] 280,300 1,234

ZZ → ννqq̄, ℓℓqq̄ 42.79 [fb] 21,393 5

tt̄ 29.43 [fb] 14,715 23

Process (
√
s = 1 TeV) Cross sec. Events Events after cuts

νN2 → νeW (W → qq̄) (I) 23.6 [fb] 11,800 6,756

(D) 20.4 [fb] 10,200 5,820

eνW → eνqq̄ 10,320 [fb] 5,160,000 24,671

WW → ℓνqq̄ 560.6 [fb] 140,150 4,858

ZZ → ννqq̄, ℓℓqq̄ 42.79 [fb] 21,393 0

tt̄ 29.43 [fb] 14,715 0

Process (
√
s = 1 TeV) Cross sec. Events Events after cuts

νN3 → νeW (W → qq̄) (I) 3.86 [fb] 1,932 1,131

(D) 3.34 [fb] 1,670 961

eνW → eνqq̄ 10,320 [fb] 5,160,000 10,510

WW → ℓνqq̄ 560.6 [fb] 280,300 6,780

ZZ → ννqq̄, ℓℓqq̄ 42.79 [fb] 21,393 0

tt̄ 29.43 [fb] 14,715 0

Table 6: Summary of cuts for
√
s = 1 TeV.
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Process (
√
s = 500 GeV) N mass resolution Cross-section accuracy

νN1 → νeW (N) 0.14 [%] 6.5 [%]

(I) 0.01 [%] 0.4 [%]

(D) 0.01 [%] 0.4 [%]

νN1 → ντW (N) 0.16 [%] 11.3 [%]

(I) 0.21 [%] 12.4 [%]

Process (
√
s = 1 TeV) N mass resolution Cross-section accuracy

νN1 → νeW (N) 0.41 [%] 13.6 [%]

(I) 0.01 [%] 0.6 [%]

(D) 0.02 [%] 0.7 [%]

νN2 → νeW (I) 0.05 [%] 2.8 [%]

(D) 0.08 [%] 3.1 [%]

νN3 → νeW (I) 0.21 [%] 9.9 [%]

(D) 0.23 [%] 10.0 [%]

Table 7: Summary of measurement accuracies.
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hierarchies, where probability densities for the determination of the ratio are shown.

It can be seen that the ratio will be measured with accuracy of ± 0.110 and ± 0.17

× 10−2 for the cases of normal and inverted mass hierarchies, respectively. The ILC

has, therefore, a potential not only to discover the signal of higher-dimension theory

but also to observe the signal related to neutrino oscillation parameters.

6 Summary

We have investigated ILC signals of the seesaw scenario in a five-dimensional exten-

sion of the SM, where right-handed neutrinos live in the bulk and the SM particles

stay at a four-dimensional boundary. We focused on the production process of KK

right-handed neutrinos, e+e− → Nν (N → ℓW , W → qq̄), where the masses of

KK right-handed neutrinos N can be fully reconstructed. With realistic Monte-

Carlo simulations, we found that the masses of KK neutrinos and their production

cross sections can be measured accurately at the ILC as summarized in Table 7. In

particular, it was found that the mass and production cross section of the first KK

right-handed neutrino can be measured accurately for various hierarchies of neutrino

masses with the center of mass energy of 500 GeV. In addition, it was shown that

masses and production cross sections of the second and third KK neutrinos can be

measured with the center of mass energy of 1 TeV.

The ILC also allow us to investigate the flavor structure of the higher-dimensional

theory using the measurement of the N1 production cross section followed by its

various decay modes. Since branching fractions ofN1 decay modes are determined by

the masses of neutrinos and their mixing matrix UMNS, measuring the ratio between

these fractions can be directly compared with the results of neutrino oscillation

experiments, which give us an important clue to clarify the mechanism to generate

neutrino masses in the framework of the higher dimensional theory. Interestingly,

the first or third generation lepton in the final state of the N1 decay can be detected

at the ILC, while the LHC will be possible to observe that with the first or second

lepton. The ILC will therefore be a complementary machine to the LHC to explore

physics of neutrinos in the higher-dimensional theory.
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