
ar
X

iv
:1

00
8.

36
47

v1
  [

he
p-

la
t]

  2
1 

A
ug

 2
01

0

Preconditioning the non-relativistic many-fermion problem
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Abstract

Preconditioning is at the core of modern many-fermion Monte Carlo algorithms, such as Hybrid Monte Carlo,
where the repeated solution of a linear problem involving an ill-conditioned matrix is needed. We report on a
performance comparison of three preconditioning strategies, namely Chebyshev polynomials, strong-coupling
approximation and weak-coupling expansion. We use conjugate gradient (CG) on the normal equations as
well as stabilized biconjugate gradient (BiCGStab) as solvers and focus on the fermion matrix of the unitary
Fermi gas. Our results indicate that BiCGStab is by far the most efficient strategy, both in terms of the
number of iterations and matrix-vector operations.

1. Introduction

The Hybrid Monte Carlo (HMC) [1, 2] algorithm provides an efficient way of calculating the properties
of many-body Fermi systems. HMC achieves high efficiency by performing global updates by means of
Molecular Dynamics (MD) trajectories that are integrated with a finite time step. At each step, the solution
of a linear problem

M †Mx = b (1)

is needed. In this problem,M is a large but typically sparse matrix which provides a real-space representation
of the fermion operator that defines the dynamics of the system. While M is typically neither symmetric
nor positive definite, it is always possible to consider solving Eq. (1) via conjugate gradient (CG) iteration,
as M †M satisfies these properties [3]. However, as CG is a Krylov-type method based of successive matrix-
vector (MV) operations using M †M , the efficiency of CG depends critically on the condition number of that
matrix. Unfortunately, in most cases of interest M †M may be extremely ill-conditioned, leading to a rapid
growth of the number of CG iterations required to reach a preset convergence criterion. Such a situation
manifests itself in many problems at low enough temperatures or strong enough couplings. Apart from
the obvious disadvantages of a rapidly growing computational cost, any iterative method may eventually
become unstable if the number of iterations grows without bounds. For these reasons, CG and similar
Krylov methods are preferentially used together with a suitable preconditioner. It should be pointed out
that while direct methods such as LU decomposition avoid the problems related to ill-conditioning, problems
of physical interest are typically large enough such that the storage of M is not feasible. It is thus desirable
to resort to “matrix-free” methods based on MV operations only, which require significantly less memory
and scale much more favorably with system size.

Whenever M is ill-conditioned, the problem is much more severe for M †M . An attractive option is then
to perform the solve the problem in two steps, by considering the linear systems given by

M †y = b, Mx = y. (2)
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However, since M is typically neither symmetric nor positive definite, these equations require more sophisti-
cated algorithms such as biconjugate gradient (BiCG) [4] or stabilized biconjugate gradient (BiCGStab) [5],
which is a modern development of the former. One is thus dealing with a much less ill-conditioned problem,
at the price of solving two successive problems. Nevertheless, preconditioning remains instrumental in ac-
celerating and stabilizing the solution process. In its simplest form, preconditioning amounts to considering
the linear problem

PM †Mx = Pb, (3)

where P represents an approximation to (M †M)−1. A similar procedure applies to Eq. (2) given approx-
imations to the inverses of M and M †. The procedure in Eq. (3) is referred to as “left preconditioning”.
So-called “right preconditioning” is also possible by insertion of P between M †M and x, followed by multi-
plication with P once the solution has been obtained. In this work, we shall be mainly concerned with the
former approach.

While the choice of P is in principle arbitrary, preconditioning is only useful if the solution of Eq. (3) to
a given accuracy requires fewer CG iterations than the solution of Eq. (1). Moreover, as iterative methods
tend to accumulate roundoff error, an iterative solution may not even be possible without preconditioning.
In such cases preconditioning also serves to stabilize the algorithm by enabling convergence. Two obvious
extreme choices are those of setting P = I and setting P = (M †M)−1, however no benefits are achieved in
either case, as the first one amounts to no preconditioning at all and the second one requires the solution
of the original problem in order to determine P . Therefore, what one seeks is compromise between the
computational simplicity of the first option and the effectiveness of the second one.

Over the years, many preconditioning strategies were developed and tested on a wide range of problems
(see e.g. Chapter 11 in Ref. [6], or Chapters 9 and 10 in Ref. [7]). In general, preconditioners specifically
designed for a particular problem tend to be superior to generic approaches that build in no knowledge
about the physics of the system in question. With this in mind, we will explore several approaches to
preconditioning which combine some knowledge of the features of M , M † and M †M , in order to find a
strategy which is both computationally efficient and effective in accelerating the convergence of the linear
problem at hand.

In this work, we are mainly concerned with problems that arise in the context of HMC simulations
of non-relativistic, (3+1)-dimensional many-fermion systems. The HMC approach forms a central part of
state-of-the-art Lattice QCD calculations [8], which involve a relativistic system of fermions. The popularity
of HMC stems from the great algorithmic efforts of the Lattice QCD community to enable simulations on
large lattices. On the other hand, HMC remains little known in other areas such as condensed-matter
physics [9] and nuclear structure [10], where many of the problems are non-relativistic and determinantal
Monte Carlo (DMC) [11] remains the method of choice. The most serious drawback of DMC is the poor
scaling of the computation time with the lattice volume V , namely ∼ V 3. In contrast, the use of global
updates and iterative solvers enables the HMC algorithm to scale as ∼ V 5/4. In spite of this obvious
advantage, the widespread use of HMC implementations for non-relativistic fermions has been hampered by
problems related to the operator M †M , which is severely ill-conditioned at low temperatures (see e.g. [12]).
It is therefore of great interest to explore various preconditioning strategies, as these hold the key to finding
a practical HMC implementation which is competitive with current DMC calculations.

The class of problems at hand is characterized by a zero-range interaction, such that the Hamiltonian is
given by

Ĥ ≡ K̂ + V̂ , (4)

where the kinetic energy is

K̂ =
∑

s=↑,↓

∫

drψ†
s(r)

−~
2∇2

2m
ψs(r), (5)

and the potential energy

V̂ = −g
∫

drψ†
↓(r)ψ↓(r)ψ

†
↑(r)ψ↑(r), (6)
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such that ψ†
s(r) and ψs(r) are creation and annihilation operators for particles of spin s at point r, respec-

tively. We next seek to recast the grand canonical partition function

Z ≡ Tr exp(−β(Ĥ − µN̂)), (7)

in a form amenable to a Monte Carlo calculation. We proceed by discretizing imaginary time into Nτ

slices of length τ = β/Nτ using a Trotter-Suzuki decomposition [13] followed by a continuous Hubbard-
Stratonovich transformation (HST) [14] of the form recently proposed by Lee [15]. It should be noted that
these last two steps are, to a certain extent, a matter of choice. For instance, continuous-time formulations
exist [16] although they have as yet not been combined with HMC. The choice of HST is also dictated by
computational preferences [17], although it is not clear at this time whether an HMC implementation is
compatible with a discrete HST. The end result is a path integral representation of the partition function

Z =

∫

Dσ (detM [σ])
2
=

∫

Dσ detM †[σ]M [σ], (8)

M [σ] ≡



















1 0 0 0 . . . BN
τ

[σ]

−B1[σ] 1 0 0 . . . 0
0 −B2[σ] 1 0 . . . 0
...

...
...

...
...

...
0 0 . . . −BN

τ
−2[σ] 1 0

0 0 . . . 0 −BN
τ
−1[σ] 1



















, (9)

where the explicit form of the block matrices

Bj [σ] ≡ exp(−τK)
(

1 +A sin[σj ]
)

, (10)

and A ≡
√
2
√

exp(τg) − 1, which results from the specific choice of HST. In momentum space, the kinetic
energy is given by

K
k,k′ ≡ δ

k,k′ E(k), (11)

where we have chosen the dispersion relation E(k) = ~
2k2/2m for our calculations. The integer vec-

tors (k,k′) assume values on a three-dimensional momentum lattice given by ki = 2πni/Nx, where ni =
−Nx/2, . . . , Nx/2 − 1. Eq. (9) provides a representation of the fermionic operator M referred to earlier,
which is real and manifestly not symmetric.

One of the most popular and successful implementations of HMC is known as the ϕ-algorithm [2], which
combines the stochastic evaluation of the fermion determinant in Eq. (8) with the MD evolution of the
auxiliary Hubbard-Stratonovich field σ (originally the gauge field in the case of Lattice QCD). To this end,
the pseudofermion representation

detM †[σ]M [σ] ≡
∫

Dφ†Dφ exp(−Sp[σ]), (12)

is applied, giving

Sp[σ] ≡
∑

n,τ

[

φ†Q−1[σ]φ
]

n,τ
, (13)

for the corresponding action, where Q ≡ M †M . The next step is to introduce an auxiliary field π that
will play the role of a conjugate momentum to the field σ in the molecular dynamics evolution. This is
accomplished by multiplying the partition function by a constant in the form of a path integral over π,

Z ≡
∫

DσDπDφ†Dφ exp(−H[σ, π]), (14)
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where the MD Hamiltonian is given by

H ≡
∑

n,τ

π2
n,τ

2
+ Sp[σ, π]. (15)

In the pseudofermion formulation, field configurations are sampled by evolving σ and π according to the
classical MD equations of motion that follow from the MD Hamiltonian. It should be noted that the
pseudofermion field φ may be sampled exactly from a Gaussian heat bath and is kept constant during the
MD evolution. In practice, the MD evolution should be performed using a reversible symplectic integrator
in order to ensure detailed balance. At each step in the MD evolution the “fermion force”

Fn,τ [σ, φ] ≡ φ†Q−1[σ]
δQ

δσ(n, τ)
Q−1[σ]φ, (16)

is calculated, which requires frequent computation of the vector η ≡ Q−1[σ]φ. This represents the most
time-consuming part of the HMC algorithm. One of the most obvious advantages of the ϕ-algorithm is that
the direct calculation of a large determinant is avoided, in favor of the solution of a much smaller linear
problem a fixed number of times. Specifically, in our case this involves the repeated solution of Eq. (1) in its
preconditioned form given by Eq. (3), where the structure of the matrix is constant but the auxiliary field
σ varies at each MD step. This should be contrasted with the cost of computing the full inverse, which is
much more expensive than solving a single linear problem. By avoiding the calculation of the determinants
and inverses, this algorithm enables global updates of the auxiliary field σ via MD evolution. Moreover, all
HMC approaches can be rendered free of systematic errors associated with a finite MD integration step size
by means of a Metropolis accept/reject step at the end of each MD trajectory.

In Sec. 2, we study the effect of preconditioning via Chebyshev polynomials, which provide an approxima-
tion to Q−1. Chebyshev polynomials provide a generic approach which is easy to apply, but computationally
expensive. In Sec. 3, we proceed to study the weak-coupling approximation (WCA) method of precondition-
ing M and its transpose separately. In Sec. 4 we explore the strong-coupling approximation (SCA) to Q−1

which was originally proposed in Ref. [18]. Our findings are summarized in Sec. 5, followed by a concluding
discussion in Sec. 6.

2. Chebyshev polynomials

Chebyshev polynomials have frequently been applied in the preconditioning of relativistic quantum field
theory problems. In fact, they have led to the development of a whole new class of HMC-type algorithms
commonly referred to as Polynomial Hybrid Monte Carlo (PHMC) [20], in which preconditioners are used to
separate modes that evolve at different rates in an MD trajectory. The Chebyshev preconditioning technique
is based on approximating z−1 with a Chebyshev polynomial P (z) of degree 2n,

P (z) ≡ c2n

2n
∏

k=1

(z − z2n,k), (17)

where the coefficients are given by

c−1
2n =

1 + ǫ

2

2n
∏

k=1

(

1 + ǫ

2
− z2n,k

)

, (18)

and the roots by

z2n,k =
1 + ǫ

2

[

1− cos

(

2πk

2n+ 1

)]

− i
√
ǫ sin

(

2πk

2n+ 1

)

, (19)
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such that the parameter 0 < ǫ < 1 provides a lower bound for the range of validity of the approximation.
Indeed, in the interval [ǫ, 1] the Chebyshev polynomials provide a good approximation, in the sense that the
relative error

|R2n,ǫ| ≤ 2

(

1−√
ǫ

1 +
√
ǫ

)2n+1

, (20)

where
R2n,ǫ(z) =

[

P2n,ǫ(z)− 1/z
]

z, (21)

is exponentially suppressed with the degree of the polynomial.
The preconditioner we seek is obtained from Eq. (17) upon replacing z → M †M , assuming that the

eigenvalue spectrum of M †M is normalized in the range [ǫ, 1]. One of the most appealing features of the
Chebyshev preconditioning method is that its speed and effectiveness can be tuned by varying the degree
of the polynomial n. Moreover, since P is applied in its factorized form, the speed of the preconditioner
is directly linked to the speed with which M is applied. The order in which the factors of Eq. (17) are
applied turns out to be critical for numerical stability, due to cancellations between the various terms that
occur naturally when evaluating a polynomial in finite precision arithmetic. In practice it becomes crucial
beyond n ≃ 20 to address this issue. Various orderings of the factors were explored in Ref. [19], as well as a
recursive Clenshaw algorithm which largely eliminates the accumulation of round-off error. Our experience
indicates that the performance of the “bit-reversal” ordering of Ref. [19] is nearly identical to that of the
Clenshaw algorithm, and it is slightly faster and requires less memory, in addition to being much simpler to
implement. The bit-reversal ordering will therefore be our method of choice.

A serious disadvantage of the Chebyshev approach is that it is only applicable to the preconditioning of
the normal equations, as it requires the matrix to have positive definite eigenvalue spectrum. Also, asM †M
becomes extremely ill-conditioned at low temperatures, polynomial orders larger than n ∼ 64 are needed for
effective preconditioning, which makes the Chebyshev approach rather computationally intensive. As will
become evident in Sec. 5, this problem can largely be avoided by separately inverting M and M †, which
however requires a different type of preconditioner. We shall now turn to the description of such strategies.

3. Weak coupling expansion

In this section, we demonstrate how the weak-coupling limit of M can be used as the starting point of
an efficient preconditioning strategy for M and M †. It is useful to note that the representation of M given
in Eq. (9) can be decomposed as

M ≡M0 +AM1 (22)

where M0 ≡ limA→0M corresponds to the non-interacting case, and

M1 ≡



















0 0 0 0 . . . CN
τ

−C1 0 0 0 . . . 0
0 −C2 0 0 . . . 0
...

...
...

...
...

...
0 0 . . . −CN

τ
−2 0 0

0 0 . . . 0 −CN
τ
−1 0



















, (23)

where the block matrices are given by

Cj ≡ exp(−τK) sin[σj ]. (24)

The inverse M−1 can then be formally expanded in powers of AX , giving

M−1 = (1 +AX)−1M−1
0 = (1 −AX +A2X2 − . . .+ . . .)M−1

0 , (25)
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where X ≡ M−1
0 M1. One can then determine a posteriori whether the truncated series represents a good

approximation to M−1, which is a reasonable expectation for A ≪ 1. The most computationally intensive
part of such an approximation is the application of M−1

0 . However, this matrix is diagonal in frequency-
momentum space. It is thus convenient to apply M−1

0 after a four-dimensional Fourier transform of the
relevant vector, followed by an anti-Fourier transform to return to the original basis. This approach is
referred to as Fourier acceleration. In frequency-momentum space, M−1

0 is given by

[M0]
−1
ω,k;ω′,k′ ∼ δω,ω′δk,k′

[

1− exp (−iω − τ~2k2/2m)
]−1

, (26)

up to a constant normalization factor, with

ω = (2nτ + 1)π/Nτ , ki = 2niπ/Nx, nµ = −Nµ/2, . . . , Nµ/2− 1. (27)

Care must be taken that the boundary conditions in the temporal direction are antiperiodic, as befit fermions,
rather than periodic as commonly assumed in FFT routines. A possible complication arises due to the fact
that the radius of convergence of Eq. (25) can be quite limited depending on the spectrum of X , which is
unknown for all practical purposes. We therefore turn to techniques which may accelerate the convergence
of the expansion.

3.1. Convergence acceleration methods

Here, we will briefly review the practical aspects of the Euler and van Wijngaarden methods for con-
vergence acceleration of series expansions, without concerning ourselves with the underlying theory. The
interested reader is referred to the standard literature, see e.g. Refs. [21, 22, 23]. Given a sequence of partial
sums (in this case of sign-alternating terms)

S0,k =

k
∑

n=0

(−1)nan, (28)

where k = 0, . . . , kmax, the Euler method consists of defining a set of new sequences given by

Sj+1,k = pSj,k + (1− p)Sj,k+1, (29)

where k = 0, . . . , kmax−(j+1). According to this method, instead of using S0,k
max

as an estimate of the
infinite sum, one can arrive at a much better estimate as follows. Use the original sequence to define new
ones using Eq. (29) until all the terms available have been exhausted. The last sum, namely Sk

max
,0 will

consist of only one term, which is the estimate we seek. In practice one usually takes p = 1/2, and it is not
uncommon to achieve convergence improvements by several orders of magnitude with a handful of terms as
a starting point. It has also been pointed out in the literature that S2k

max
/3,k

max
/3 is often an even better

approximation than Sk
max

,0. We shall apply this method to the series that results of applying Eq. (25) to a
given vector.

The sequence Sj,0 is commonly referred to as the Euler transform of the original sequence S0,k, and it
can be shown to be given by

Sj,0 =

j
∑

n=0

bn (30)

where

bn ≡
n
∑

j=0

(

n
j

)

pn−j(1 − p)j+1(−1)jaj . (31)

The idea of van Wijngaarden was to first multiply each term in the original series by non-vanishing arbitrary
constants λk and then perform an Euler transformation. It was assumed that a moment generating function
φ(t) exists such that

λ−1
k =

∫ ∞

0

φ(t) tkdt, (32)

6



and it was shown that the sum of the original series is given by

∞
∑

n=0

(−1)nan =
∞
∑

n=0

µnbn, (33)

where

µk ≡
∫ ∞

0

dt φ(t)
tk

(1− p+ pt)k+1
. (34)

In practice, van Wijngaarden’s transformation can turn a slowly convergent or even divergent series into a
rapidly convergent series. It can also be shown that the so-called special van Wijngaarden transformation,
for which λk = sk/k! and φ(t) = s exp(−st), where s is a free parameter, does not change the Borel sum of
the original series and corresponds to the Laplace transform of the Euler transformation [22].

4. Strong coupling approximation

The idea of constructing a preconditioner based on a strong-coupling approximation was originally devel-
oped by Scalettar et al. in Ref. [18]. It consists of constructing the inverse of a strong-coupling approximation
to M †M , which we shall denote by M̃ †M̃ , where M̃ has the same structure as M but with the substitution

Bj → B0,j = 1 +A sin[σj ], (35)

where it should be noted that B0,j is diagonal in coordinate space. In this approach, all the blocks will have
this property, which makes it extremely inexpensive from a computational point of view. In order to find
the inverse, one defines a factorization

M̃ †M̃ ≡ L†DL, (36)

where

L† =



















1 0 0 0 . . . 0
−L1 1 0 0 . . . 0
0 −L2 1 0 . . . 0
...

...
...

. . .
...

...
0 0 . . . −LN

τ
−2 1 0

LNτ
0 . . . 0 −LN

τ
−1 1



















, (37)

and

D =



















D1 0 0 0 . . . 0
0 D2 0 0 . . . 0
0 0 D3 0 . . . 0
...

...
...

. . .
...

...
0 0 . . . 0 DN

τ
−1 0

0 0 . . . 0 0 DN
τ



















, (38)

for which it is straightforward to show that the individual blocks are given by

Lt = D−1
t B0,t, (39)

Dt = α+B2
0,t −B0,t−1D

−1
t−1B0,t−1, (40)

for t = 1, . . . , Nτ and

LN
τ

= D−1
1 B0,N

τ

, (41)

DN
τ

= α+B2
0,N

τ

−B0,N
τ
−1D

−1
Nτ−1B0,N

τ
−1 −B0,N

τ

D−1
1 B0,N

τ

, (42)
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where the parameter α is tuned such that the number of CG iterations is minimized. The matrix

L−1D−1L†−1 = (M̃ †M̃)−1 (43)

then plays the role of the preconditioner in this approach. Notice that the matrices L and L† are trivial to
invert, in the sense that the linear problems Lx = y and L†x = y can be solved in a fast and straightforward
fashion. For example, X = L†−1Y is given by the recursive expression

x(r, 1) = y(r, 1),

x(r, 2) = y(r, 2) + L1 x(r, 1),

x(r, 3) = y(r, 3) + L2 x(r, 2),

. . .

x(r,Nτ ) = y(r,Nτ ) + LNτ−1 x(r,Nτ − 1)− LNτ
x(r, 1). (44)

While Ref. [18] found this approach promising, it presents at least two disadvantages. Firstly, it is not easy
to improve in a systematic fashion, in contrast with the Chebyshev approximation. Indeed, one of the key
properties of this preconditioner is that it only involves diagonal matrices. Any improvement involving the
kinetic energy operator will eliminate this property and make the approach much more computationally
expensive. Secondly, just like the Chebyshev method, this preconditioner aims at approximating the inverse
ofM †M , whereas invertingM andM † separately is preferable due to the dramatic increase in the condition
number ofM †M relative toM . However, it should be pointed out that this preconditioner is computationally
very inexpensive and can furthermore be combined with the Chebyshev preconditioner, using the latter as
a secondary filter. It is not yet known whether such a combined approach is useful in practice.

5. Results

The number of CG or BiCGStab iterations required to solve the linear problems of Eqs. (1) and (2)
is given in Table 1 for the various preconditioners, with a more comprehensive study of the scaling of the
second-order weak-coupling preconditioner (WCE2) in Fig. 1. The convergence criterion, referred to as the
tolerance parameter, was taken to be a reduction in the norm of the residual by a factor of 10−12. The
achieved absolute accuracy is approximately constant for each space-time volume N3

x ×Nτ , but deteriorates
slowly as Nx and Nτ are increased. However, it should be noted that in typical HMC simulations, a tolerance
parameter of ∼ 10−7 is considered adequate. Our test runs have been performed using a imaginary time
step of τ = 0.05, with couplings of g = 2.5, 5.0 and 7.5. The corresponding values of A are ≃ 0.52, 0.75
and 0.95. The results shown in Tables 1 and 2 correspond to g = 5.0, which is close to the unitary limit.

We have used auxiliary field configurations σ with randomly distributed entries in the interval [−π, π]
in order to characterize the performance of the preconditioners. While this is the proper interval for the
chosen HST, the distribution differs from that of a thermalized HMC simulation, where the values of σ tend
to cluster around −π/2 and π/2. However, in practice the net effect of using thermalized instead of random
configurations is to increase the number of CG iterations by a factor of ∼ 2 across all parameter values. We
have confirmed this behavior in a number of cases, and we therefore conclude that the relative merits of
the preconditioners remain unaffected by the issue of thermalized versus random configurations. We have
also found that 10 random field configurations suffices to provide an estimate of the average number of CG
iterations with an uncertainty of less than 10−15% in all cases. The uncertainly can be further suppressed by
increasing the number of sample configurations. So far, we have made limited use of Euler–Van Wijngaarden
acceleration techniques. For the second-order weak-coupling expansion (WCE2), the simplest Euler method
yielded a moderate but definite improvement over the non-accelerated implementation. For the fourth-order
expansion (WCE4), the Euler method was found to reduce the number of iterations by up to a factor of 2.
Finally, we have varied the right-hand side from a constant vector to one with randomly distributed entries
and found no impact on the results.

The number of MV operations consumed by each method is shown in Table 2. Per iteration, CG on
the normal equations requires one application of M †M as well as the preconditioner P (M †M). On the
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Table 1: Summary of the number of iterations required for the solution of M†Mx = b with CG, or M†y = b followed by
Mx = y with BiCGStab, for a tolerance of 10−12 and a coupling of g = 5.0 (A ≃ 0.75), which is close to the unitary limit. The
columns labeled “Cheb8”, “Cheb16” and “Cheb32” denote, respectively, Chebyshev preconditioning of degrees 8, 16 and 32
using bit-reversal ordering of the roots. The strong-coupling preconditioner is labeled “SCA”, and “WCE0”, “WCE1” and
“WCE2” denote the weak-coupling expansion of order 0, 1 and 2 in A, respectively. The reported numbers represent averaged
over 10 random auxiliary field configurations, which yields an uncertainty below 10-15%. A line denotes the cases that failed
to converge in less than 10,000 iterations.

Lattice size CG BiCGStab
N3

x ×Nτ Cheb8 Cheb16 Cheb32 SCA WCE0 WCE1 WCE2

63 × 50 294 167 104 1,790 128 77 55
83 × 50 386 226 130 2,388 147 84 62
103 × 50 489 259 163 2,810 152 93 67
63 × 100 534 316 187 3,470 162 97 71
83 × 100 875 460 288 5,223 183 114 78
103 × 100 1,102 610 382 7,104 196 118 88
63 × 200 864 530 276 5,987 208 119 87
83 × 200 3,301 998 604 — 246 148 105
103 × 200 — 1,306 735 — 279 162 121

other hand, BiCG and BiCGStab require the application of both M and M † (as well as their respective
preconditioners) for each iteration. Thus, in the absence of a preconditioner, the cost per iteration of CG,
BiCG and BiGStab is the same. The main advantage of using the normal equations with CG is that one
avoids the need to successively solve two linear problems. The MV operations performed per CG iteration
when using Chebyshev preconditioning can be estimated as follows: the application of a polynomial of degree
d to a vector requires 2d MV operations; adding the application of the matrix M †M itself yields a total of
2(d + 1) operations. Estimating the computational cost of the weak-coupling preconditioner is somewhat
more involved. The BiCG or BiCGStab iterations contribute two MV operations from the application of
M † and M . For each power of A, applying K contributes one MV operation to the total cost. However, the
non-interacting matrixM0 is applied using a four-dimensional FFT, which scales as N3

x×Nτ× log(N3
x×Nτ ),

which differs from the N3
x × Nτ × log(N3

x) scaling of the MV operations. The overall computational cost
of the approach using the weak-coupling preconditioner of degree d in A is given by 2(d + 1)(1 + 2β) MV
operations, where β is the factor in front of the scaling law for the 4D FFT, relative to that of the 3D
FFT. While we have not attempted to estimate β directly (it is implementation-dependent), we find that
in practice the gain in CPU time can be lower by a factor of ∼ 2 compared with the gain factors quoted in
Table 2, where we set β = 1. Notice however that the gain is still substantial, especially as the total number
of MV operations increases only mildly as a function of Nτ .

While the strong-coupling approximation is extremely inexpensive from a computational point of view,
its effect on the solution process is rather mild, at least for the values of g considered here. Thus, the number
of CG iterations remains rather high, which is an undesirable feature as the iterative solution process is prone
to accumulate numerical round-off error after seveal hundred iterations, which is especially problematic for
the BiCG and BiCGStab solvers. As a rule of thumb, in our HMC calculations we aim to keep the iterations
below the 200−300 range. Though computationally cheap, a preconditioner which is unable to reduce the
iteration count below ∼ 1000 is of limited practical usefulness, especially at large Nτ where the number
of iterations may increase dramatically. The effective cost of the strong-coupling preconditioner in terms
of MV operations is difficult to estimate, as it involves no FFTs. We have found, empirically, that the
number of MV operations required per CG iteration can be conservatively estimated to be ∼ 3. In light of
the exceedingly high iteration count shown in Table 1 for this preconditioner, however, this MV estimate is
irrelevant.

We have also tested the weak-coupling approximation with CG and found that it provides little benefit,
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Figure 1: BiCGStab iterations as a function of N
τ
and N

x
, for the solution of M†y = b followed by Mx = y, for a tolerance of

10−7 and a coupling of g = 5.0 (A ≃ 0.75), using the second-order weak-coupling expansion (WCE2 ) as preconditioner. The
results represent averages over 20 random auxiliary field configurations.

in contrast to the dramatic improvement when used with BiCGStab. This situation arises as we have only
attempted left preconditioning with CG, and thus the full potential of the preconditioning strategy is not
realized. For this to be the case, one would need to precondition with (M †

0 )
−1 on the left and with M−1

0

on the right. In the case of BiCGStab this complication does not appear, as M and M † are preconditioned
separately. Finally, in Table 3 we show the behavior of the weak-coupling preconditioner as a function of the
coupling, for g = 2.5, 5.0 and 7.5. We note that the case of g = 10.0 (A ≃ 1.14), typically failed to converge
in less than 15,000 MV operations.

6. Summary and Conclusions

In this work, we have evaluated three different strategies to precondition the non-relativistic many-
fermion problem: Chebyshev polynomials, a strong-coupling approximation and a weak-coupling expansion.
We have argued that such preconditioning forms a central part of HMC calculations, as the frequent solution
of a linear problem involving the ill-conditioned fermion matrixM is at the heart of the HMC algorithm. We
have considered the cases of normal equationsM †Mx = b which is tractable using the CG algorithm, as well
as the two-step approach of solving M †y = b followed by Mx = y, using the BiCG or BiCGStab algorithms.
Our results indicate that both the Chebyshev polynomials (Sec. 2) and the weak-coupling expansion (Sec. 3)
can be effective preconditioners, especially when high orders are used. However, from the point of view of
performance, Chebyshev polynomials represent an expensive choice. Additionally, the Chebyshev approach
requires a matrix with a positive definite eigenvalue spectrum, which forces us to work with the CG solver
on the normal equations. This is unfortunate, as M tends to be a rather ill-conditioned matrix (especially
at low temperatures), which makes the normal system Qx = b extremely ill-conditioned. The result is that
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Table 2: Summary of the number of matrix-vector (MV) operations required for the solution of M†Mx = b with CG, or
M†y = b followed by Mx = y with BiCGStab. Notation and parameters are as for Table 1. The rightmost column illustrates
the gain provided by the lowest-order weak-coupling expansion using BiCGStab over the most favorable case using CG. As
explained in the text, the actual gain in CPU time is likely to be somewhat less. Notice in particular the mild increase in the
number of MV operations for BiCGStab as a function of N

x
and N

τ
.

Lattice size CG BiCGStab
N3

x ×Nτ Cheb8 Cheb16 Cheb32 SCA WCE0 WCE1 WCE2 Gain

63 × 50 5,292 5,678 6,864 5,370 768 924 990 7x
83 × 50 6,948 7,684 8,580 7,164 882 1,008 1,116 8x
103 × 50 8,802 8,806 10,758 8,430 912 1,116 1,206 9x
63 × 100 9,612 10,744 12,342 10,410 972 1,164 1,278 10x
83 × 100 15,750 15,640 19,008 15,669 1,098 1,368 1,404 14x
103 × 100 19,836 20,740 25,212 21,313 1,176 1,416 1,584 17x
63 × 200 15,552 18,020 18,216 17,961 1,248 1,428 1,566 12x
83 × 200 59,418 33,932 39,864 — 1,476 1,776 1,890 23x
103 × 200 — 44,404 48,510 — 1,674 1,944 2,178 27x

Table 3: Effectiveness of the second-order (WCE2 ) and fourth-order (WCE4 ) weak-coupling preconditioners as a function of
g. For g = 2.5, we have A ≃ 0.52, for g = 5.0, A ≃ 0.75 and for g = 7.5, A ≃ 0.95. The figures given represent the number of
matrix-vector operations required to solve M†y = b followed by Mx = y with BiCGStab. These are averages over 10 random
configurations, with an uncertainly in the range of 10-15%.

Lattice size g = 2.5 g = 5 g = 7.5
N3

x ×Nτ WCE2 WCE4 WCE2 WCE4 WCE2 WCE4

103 × 50 630 600 1,206 1,320 2,358 4,110
103 × 100 702 690 1,584 1,530 3,816 9,330
103 × 200 864 780 2,178 2,190 6,444 12,720

the number of MV operations required to solve the problem with a preset accuracy grows rapidly with the
size of the problem, in particular with Nτ , which controls the temperature.

We have shown that solving M †y = b followed by Mx = y using the BiCGStab algorithm provides an
alternative, extremely promising approach. The use of a weak-coupling preconditioner supplemented with a
simple convergence acceleration technique solves the problem elegantly and provides dramatically enhanced
performance in terms of both number of iterations and MV operations, which translates into significant
savings of CPU time and improved scaling of the HMC algorithm at low temperature. While we have only
provided a first, sketchy comparison of the two methods, the difference between using CG with Chebyshev
preconditioning and BiCGStab with weak-coupling preconditioning is so striking that the latter technique is
the obvious choice. The weak-coupling preconditioner represents a good example in which knowledge of the
structure of the matrix, as well as the physical problem at hand, allows for the construction of an effective
and efficient strategy to accelerate the solution process.

The strong-coupling approximation of Ref. [18] provides an alternative to Chebyshev preconditioning.
While computationally inexpensive, this preconditioner turned out to be less efficient in terms of its ability
to reduce the number of CG iterations. Apparently, this approach fails to capture the relevant physics at
the range of couplings in the vicinity of the unitary limit. In an effort to shed more light on this problem, we
explored the behavior of the weak-coupling preconditioner as a function of the coupling g, and found that its
effectiveness breaks down somewhere between g = 7.5 and 10. This situation might be remedied by using a
strong-coupling expansion in powers of A−1, although our attempts to apply such an expansion have so far
not been successful. However, we believe this to be a topic worthy of further investigation. Alternatively, one
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can reduce the value of the imaginary time step τ , which serves to extend the usefulness of the weak-coupling
expansion to larger values of g, given that the relevant expansion parameter is A =

√
2
√

exp(τg)− 1.
However, this has the drawback of increasing the value of Nτ required to achieve a given temperature, which
can be taxing on the method.

Various cases of interest that could and should be studied lie beyond the scope of this work. Among
these are the case of finite effective range, relevant for nuclear and neutron matter calculations, which would
make the potential energy operator more dense in real space (it is diagonal for the zero-range interaction
considered here). Other dispersion relations, such as that of the conventional Hubbard model should be
studied as well, particularly since this might open the door to large-scale HMC simulations in the fields of
solid-state and atomic physics. Finally, we have focused here on a problem in 3 + 1 dimensions, although
the methods employed in this study carry over directly to applications in lower dimensions.
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