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+π− AND D0 → π0K+K−
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Relative phases of amplitudes for D meson decays to a light pseudoscalar meson
P and a light vector meson V decaying to two pseudoscalar mesons will lead
to characteristic interferences on the three-body Dalitz plot. These phases may
be compared with predictions of a flavor-symmetric treatment which extracts
contributing amplitudes and their relative phases from a fit to D → PV decay
rates. Good agreement was found previously for the cases of B0 → K+π−π0

and D0 → π+π−π0. The present work is devoted to the decays D0 → KSπ
+π−

and D0 → π0K+K−, for which agreement is not found. Several suggestions are
offered for this discrepancy.

PACS categories: 11.30.Hv, 13.25.Ft, 14.40.Lb

I INTRODUCTION

The relative phases of amplitudes for decays of charmed mesons to three light pseudoscalar
mesons P are useful in extracting the phase γ of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix. (See, e.g., [1] and references therein.) These phases may be specified by amplitude
fits to Dalitz plots. For amplitudes dominated by quasi-two-body final states such as PV ,
where V denotes a light vector meson, such phases are also specified in fits to decay rates
based on flavor symmetry. (For recent examples see Refs. [2, 3, 4].)

Good agreement between the two methods of extracting relative phases ofD → PV am-
plitudes was found previously for B0 → K+π−π0 [5] and D0 → π+π−π0 [6]. In the present
work we investigate a similar question for the decays D0 → KSπ

+π− [1, 7, 8, 9, 10] and
D0 → π0K+K− [11, 12]. For these two processes, we do not find agreement between phases
based on Dalitz plot analyses and those calculated from our flavor-symmetric amplitude
analysis. (The decays D0 → KSK

+K− are also studied in many of these references, but
the important role of scalar resonances, for which quark-model assignments are uncertain,
puts a similar analysis beyond our reach for the moment.)

We recall notation for amplitudes in the flavor-symmetric analysis and quote their values
obtained from previous fits [2, 4] in Sec. II. We then construct the amplitudes for relevant
D → PV subprocesses in Sec. III, and compare them with those extracted from Dalitz plot
fits in Sec. IV. We discuss possible reasons for the observed discrepancies in Sec. V, and
conclude in Sec. VI. An Appendix discusses some phase conventions.
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Figure 1: Flavor topologies for describing charm decays. T : color-favored tree; C: color-
suppressed tree; E exchange; A: annihilation.

II AMPLITUDES FROM PREVIOUS FITS

We recall the notation from our previous analyses of D → PV decays [2]. The ratios of
singly-Cabibbo-suppressed (SCS) amplitudes to Cabibbo-favored (CF) ones, and of doubly-
Cabibbo-suppressed (DCS) to SCS ones, are SCS/CF = DCS/SCS = tan θC ≡ λ = 0.2305
[13], with θC the Cabibbo angle and signs governed by the relevant CKM factors.

For present purposes we shall be interested in amplitudes labeled as T (“tree”), C
(“color-suppressed”), and E (“exchange”), illustrated in Fig. 1. For PV final states, a
subscript on the amplitude denotes the meson (P or V ) containing the spectator quark.
The partial width Γ(H → PV ) for the decay of a heavy meson H is expressed in terms of
an invariant amplitude A as

Γ(H → PV ) =
p∗3

8πM2
H

|A|2 , (1)

where p∗ is the center-of-mass (c.m.) 3-momentum of each final particle, and MH is the
mass of the decaying particle. With this definition, the amplitudes A are dimensionless.

Fits to rates for D → PV Cabibbo-favored decays not involving η or η′ provide infor-
mation on the amplitudes TV , CP , and EP , as shown in Table I. For the amplitudes TP ,
CV , and EV , one needs information on the η-η′ mixing, and Table II shows results for two
values θη = 19.5◦ and 11.7◦.

III CONSTRUCTION OF D → PV AMPLITUDES

The D0 → PV amplitudes of interest for the present discussion are shown in Tables III
(θη = 19.5◦) and IV (θη = 11.7◦), along with their representations in the flavor-SU(3)
language and their values.

Two notable relations in these tables are

A(D0 → K∗−K+) = λA(D0 → K∗−π+) , (2)
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Table I: Solution in Cabibbo-favored charmed meson decays to PV final states favored by
fits [2] to singly-Cabibbo-favored decays.

PV Magnitude Relative
amplitude (10−6) strong phase

TV 3.95± 0.07 —
CP 4.88± 0.15 δCPTV

= (−162± 1)◦

EP 2.94± 0.09 δEPTV
= (−93± 3)◦

Table II: Solutions for TP , CV , and EV amplitudes in Cabibbo-favored charmed meson
decays to PV final states, for η − η′ mixing angle of θη = 19.5◦ and 11.7◦.

θη = 19.5◦ θη = 11.7◦

PV Magnitude Relative Magnitude Relative
ampl. (10−6) strong phase (10−6) strong phase
TP 7.46±0.21 Assumed 0 7.69±0.21 Assumed 0
CV 3.46±0.18 δCV TV

= (172± 3)◦ 4.05±0.27 δCV TV
= (162± 4)◦

EV 2.37±0.19 δEV TV
= (−110± 4)◦ 1.11±0.22 δEV TV

= (−130± 10)◦

A(D0 → K∗+K−) = −(1/λ)A(D0 → K∗+π−) , (3)

independent of the fitted values of these parameters. The phases of the first two amplitudes
are expected to be equal, while the second pair should have a relative phase of 180◦. Taking
the quotient of the two, one finds

A(D0 → K∗−K+)

A(D0 → K∗+K−)
= −λ2A(D

0 → K∗−π+)

A(D0 → K∗+π−)
(4)

This relation can be checked using relative phases of Dalitz plot amplitudes, and will be
one of the tests performed in Section. V.

IV COMPARISON WITH MAGNITUDES AND

PHASES IN DALITZ PLOT ANALYSES

The amplitudes for the D0 → PV processes described in the previous Section do not have
any information about the vector meson decay. In order to obtain information about how
these amplitudes interfere on the D0 → KSπ

+π− or D0 → π0K+K− Dalitz plots, we
need to let the vector meson decay to two-pseudoscalar final states. In a D0 → ABC
Dalitz plot, if we consider the intermediate process D0 → RC where R is the intermediate
AB resonance, we need to multiply the amplitude for the intermediate process by the
appropriate isospin Clebsch–Gordan factor governing the decay of the vector meson. The
spin part of this amplitude on the Dalitz plot is T = −2~pA ·~pC where ~pi is the 3-momentum
of the particle i in the resonance rest frame. This implies that if we switch the order of
the particles A and B in the vector meson decay, then the phase of the resulting amplitude

3



Table III: Amplitudes for D0 → PV decays of interest for the present discussion (in units
of 10−6). The first three processes contribute to D0 → KSπ

+π−, while the last three
contribute to D0 → π0K+K−. Here we have taken θη = 19.5◦.

D0 final Amplitude Amplitude A
state representation Re Im |A| Phase (◦)
K∗−π+ TV + EP 3.796 –2.936 4.799 – 37.7

ρ0K
0

(CV − EV )/
√
2 –1.850 1.915 2.663 134.0

K∗+π− −λ2(TP + EV ) –0.353 0.118 0.373 161.5
K∗−K+ λ(TV + EP ) 0.875 –0.677 1.106 – 37.7
K∗+K− λ(TP + EV ) 1.533 –0.513 1.616 – 18.5

φπ0 λCP/
√
2 –0.756 –0.246 0.795 –162.0

Table IV: Same as Table III but for θη = 11.7◦.

D0 final Amplitude Amplitude A
state representation Re Im |A| Phase (◦)
K∗−π+ TV + EP 3.796 –2.936 4.799 – 37.7

ρ0K
0

(CV − EV )/
√
2 –2.219 1.486 2.671 146.2

K∗+π− −λ2(TP + EV ) –0.371 0.045 0.373 173.1
K∗−K+ λ(TV + EP ) 0.875 –0.677 1.106 – 37.7
K∗+K− λ(TP + EV ) 1.608 –0.196 1.620 – 6.9

φπ0 λCP/
√
2 –0.756 –0.246 0.795 –162.0

changes by π. Thus the order of the two pseudoscalar mesons in the vector meson decay
is crucial for our understanding of interferences on the Dalitz plot. Here we are guided by
a set of conventions kindly communicated to us by R. Andreassen [15] and K. Mishra [16].
These conventions are noted in Table V. The particle index numbers in column 5 of this
table show the order of the two pseudoscalars from the vector meson decay, for each process
with an intermediate vector resonance. The respective Clebsch–Gordan factors indicate the
weight attached to the D0 → PV amplitude to obtain its contribution to the interferences
on the corresponding Dalitz plot.

We fix the amplitudes of D0 → ρ0KS for D0 → KSπ
+π− and D0 → K∗+K− for

D0 → π0K+K− to 1.0 and obtain the amplitudes and phases of the other processes relative
to these. The results are shown for θη = 19.5◦ in Table VI for D0 → KSπ

+π− and in Table
VII for D0 → π0K+K−. One does not see agreement between the relative phases predicted
in the flavor -SU(3) approach and those implied by the Dalitz plot analysis. A similar
set of results may be obtained using θη = 11.7◦. Even though there are slight changes in
the relevant amplitudes and phases, they still do not agree with those obtained from the
Dalitz plot analysis. In the next Section we shall discuss some possible reasons for this
discrepancy.
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Table V: Conventions for order of the two pseudoscalars in vector meson decay [15, 16].

Here we choose the CP-even state KS = K0−K
0

√
2

following the convention in Ref. [17].

Dalitz Plot Bachelor Particle Vector Meson Decay
Meson Index Process Indices Clebsch factor
KS 1 ρ0 → π+π− 23 1

D0 → KSπ
+π− π+ 2 K∗− → KSπ

− 13
√

2/3

π− 3 K∗+ → KSπ
+ 12 −

√

2/3

π0 1 φ→ K+K− 23 1/
√
2

D0 → π0K+K− K+ 2 K∗− → K−π0 31 –1/
√
3

K− 3 K∗+ → π0K+ 12 −1/
√
3

Table VI: Relative amplitudes and phases in D0 → KSπ
+π− Dalitz plot. We use θη = 19.5◦.

Decay Relative Theoretical Relative Experimental [10]
mode Amplitude Phase (◦) Amplitude Phase (◦)

D0 → ρ0KS 1.0 0.0 1.0 0.0
D0 → K∗−π+ 1.472±0.187 188±7 1.735±0.005 133.5±0.2
D0 → K∗+π− 0.114±0.015 27±7 0.164±0.003 –44.0±1.1

Table VII: Relative amplitudes and phases in D0 → π0K+K− Dalitz plot. We use θη =
19.5◦.

Decay Relative Theoretical Relative Experimental [12]
mode Amplitude Phase (◦) Amplitude Phase (◦)

D0 → K∗+K− 1.0 0.0 1.0 0.0
D0 → K∗−K+ 0.685±0.049 –19±3 0.601±0.016 –37 ±2.9
D0 → φπ0 0.602±0.042 37±3 0.690±0.022 –20.7±16.5
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V POSSIBLE SOURCES OF DISCREPANCIES

A Inaccuracies or instabilities of the flavor-SU(3) approach

Although the flavor-SU(3) approach has had some success in fitting rates of charm decays
to PP and PV [2, 3, 4, 17, 18], as well as in describing relative phases in D0 → K−π+π0

[5] and D0 → π+π−π0 [6] Dalitz plots, there are some notable shortcomings. Perhaps
the most familiar is the prediction of equal rates for D0 → K+K− and D0 → π+π−,
whereas the former rate is about 2.8 times the latter [14]. One possibility is that an earlier
fit to Cabibbo-favored decay rates [19, 20] with |CP | < |TV | (“Solution B”) in Ref. [2],
rejected because it did not fit SCS rates as well as the amplitudes quoted in Table I,
nevertheless has some validity. One may use the B1 solutions quoted in Ref. [2] and check
the relative amplitudes and phases as was done for the A1 solutions in the previous section.
It turns out that the B1 solutions don’t agree with relative amplitude predictions in the
case of D0 → π0K+K−, indicating that |CP | < |TV | is not very helpful. In the case of
D0 → KSπ

+π−, where the amplitudes do not explicitly depend on CP , the B1 solutions
give reasonable results for relative amplitudes, but fail to agree with the relative phases.

Even though a flavor-SU(3) approach might predict equal strong phases for a pair of
amplitudes, it has been pointed out that this relation could be violated by SU(3)-breaking
effects [21]. Thus, although flavor SU(3) predicts equal strong phases for D0 → K−π+

and D0 → K+π−, there might be no reason to expect such an equality. In fact, this is
an experimental question, which can be attacked by a variety of means [22]. The CLEO
Collaboration has addressed this problem using tagged D0 mesons produced in pairs at the
ψ(3770) resonance, and finds a strong phase consistent with zero [23].

B Dalitz plot conventions

It is notoriously tricky to specify conventions for Dalitz plot amplitudes for D → RC →
ABC when considering vector mesons R = V , because of the importance of choosing the
order correctly in V → AB decay. This question was found to be non-trivial in both cases
mentioned above in which agreement between flavor SU(3) and Dalitz plot analyses was
eventually found. One cross-check which should be relatively airtight is the comparison of
relative phases implied by Eqs. (2) and (3). Here we use a modified version of Eq. (4):

A(D0 → K∗−K+)

A(D0 → K∗+K−)
= − r ei φ λ2

A(D0 → K∗−π+)

A(D0 → K∗+π−)
, (5)

where r and φ determine the amplitude and phase of the deviation from Eq. (4). [Eq. (4)
corresponds to r = 1 and φ = 0◦.] We find the following results from the experimental
values, taking into account the signs and magnitudes of the Clebsch-Gordan factors in

Table V and remembering the present convention KS = (K0 −K
0
)/
√
2:

rex = 1.069± 0.034 ; φex = (−34.5± 3.1)◦ . (6)

The experimental result differs from 0◦ by a phase ∆φex = −34.5◦, which is small enough
that any remaining discrepancy is probably at least not due to a sign convention.

Comparison of the experimental and theoretical values for the two sides of Eq. (4) can
indicate whether a sign might be misplaced in the conventions for D0 → π0K+K− (left-
hand side) or D0 → KSπ

+π− (right-hand side). In Table VIII we compare the ratios in
theory (based on Table III) and experiment (based on Tables V, VI, and VII).
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Table VIII: Comparison between predicted and measured ratios in Eq. (4).

Amplitude Predicted Measured
ratio Magnitude Phase (◦) Magnitude Phase (◦)

A(K∗−K+)/A(K∗+K−) 0.685±0.049 –19.2±2.2 0.601±0.016 –37.0±2.9
−λ2A(K∗−π+)/A(K∗+π−) 0.685±0.049 –19.2±2.2 0.562±0.010 –2.5±1.1

We have checked the phase conventions for D0 → π0K+K− using the fact that in
Ref. [11] the K̄∗ and K∗ resonances are found to interfere destructively with one another.
In that reference and in the BaBar analysis [8], this would follow from the conventions
stated in Table V, which have been confirmed to be those used [16]. These involve cyclic
permutations of the particle indices for the three V P cases. On the other hand, approximate
agreement of our relative phase prediction for D0 → K∗−π+ and D0 → K∗+π− with that
measured experimentally [10] suggested to us that the conventions for D0 → KSπ

+π− were
as stated in Table V, and did not involve cyclic particle indices. This was also confirmed
to be the case [15]. (See Appendix.)

C Existence of multiple solutions to Dalitz plot fits

It is possible to find multiple solutions of relative phases on Dalitz plots. Usually one
chooses the “best-fit” solution, but such a choice may depend on assumptions about other
amplitudes in the fit. To that end, we suggest that fits be attempted starting from the
relative phases we have proposed in Table VI and VII.

D Alternative parametrization of S-wave Kπ amplitudes

The relative phases of different D0 → PV amplitudes in D0 → KSπ
+π− and D0 →

π0K+K− Dalitz plots depend on the interference of these amplitudes with those involving
Kπ in an S-wave final state. This is particularly important for D0 → KSπ

+π−, as the PV
bands in the Dalitz plot do not overlap with one another.

The BaBar analyses we have quoted (e.g., [8, 10, 12]) parametrizeKπ S-wave amplitudes
using a form consistent with LASS data [27]. The elastic scattering amplitudes in these
data are expected to rise linearly with squared center-of-mass energy s as a result of the
Adler zero [28, 29] at s ≃ m2

K − m2
π/2 [30, 31, 32]. Because of this behavior, a pole

for a scalar resonance (“κ”) will appear at a much lower mass than in a näıve Breit-
Wigner parametrization [33]. An inelastic process such as D → K̄ππ does not involve
the Adler zero, so a description of the S-wave Kπ amplitude via the LASS amplitude
is not appropriate. A similar difference between elastic ππ amplitudes consistent with
current algebra, unitarity, and crossing symmetry [34, 35] (which contain the Adler zero)
and inelastic processes such as γγ → π+π− [36, 37] (which do not) is responsible for the
peaking at very low dipion effective mass of the cross section for the latter process.

Although we cannot at this point indicate the quantitative effect a different Kπ S-wave
amplitude parametrization would have on the Dalitz plot analyses, it has been shown in
fits to D → K̄ππ decays [31] that one obtains an improved description of the data by
introducing the Adler zero into the Kπ amplitude. A similar exercise would be worthwhile
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in the BaBar, Belle, and CLEO data, especially in light of the importance of relative phases
in three-body D0 decays for determining phases of the CKM matrix [1, 38].

VI CONCLUSIONS

We have compared experimental determinations of relative phases in Dalitz plot amplitudes
for D0 → KSπ

+π− and D0 → π0K+K− with predictions from a flavor-SU(3) approach. In
contrast to the previously-studied cases of B0 → K+π−π0 [5] and D0 → π+π−π0 [6], we do
not find agreement. A simpler test, Eq. (4) relating the ratio A(D0 → K∗−K+)/A(D0 →
K∗+K−) to the ratio A(D0 → K∗−π+)/A(D0 → K∗+π−) with coefficient −λ2 = −0.053,
is satisfied by magnitudes of amplitudes but fails in phase by (34.5 ± 3.1)◦. The phase
discrepancies in various relations seem to be limited to less than 60◦, suggesting that at
least sign conventions have been properly identified. Three remaining possibilities for these
shortcomings include (a) inaccuracies of the flavor-SU(3) approach, (b) the possibility that
other Dalitz plot solutions exist with phases closer to the flavor-SU(3) predictions, and
(c) sensitivity to the parametrization of the S-wave Kπ amplitudes, in particular to the
distinction between elastic amplitudes which have an Adler zero and inelastic ones which
do not.

ACKNOWLEDGMENTS

We thank M. Dubrovin, M. Gaspero, K. Mishra, B. Meadows, and A. Soffer for helpful
communications. JLR is grateful to the Fermilab Theory Group for hospitality during the
completion of this study. This work was supported in part by the United States Department
of Energy through Grant No. DE FG02 90ER40560.

APPENDIX: PHASE CONVENTIONS IN THREE-

BODY DECAYS

Here we expand upon the phase conventions defined in Table V [15, 16]. For a decay
D0 → RC → (AB)C, where R is the intermediate AB resonance (here, a vector meson),
the conventions for D0 → KSπ

+π− and D0 → π0K+K− are illustrated in Figs. 2 and 3,
respectively. The matrix element T = −2~pA · ~pC for the vector meson contribution to the
Dalitz plot amplitude for a decay D → ABC can also be expressed in terms of masses and
two-body effective masses

m2

AB = (pA + pB)
2 , m2

AC = (pA + pC)
2 , m2

BC = (pB + pC)
2 (7)

in the form (see, e.g., [25, 26], containing also expressions for a spin-2 resonance R):

−2~pA · ~pC =
1

2

(

m2

AC −m2

BC

)

+
1

2m2
AB

(

m2

B −m2

A

) (

m2

D −m2

C

)

. (8)

TheK∗ bands inD0 → KSπ
+π− do not overlap with one another, so one cannot directly

see the interference between the Cabibbo-favored decay D0 → K∗−π+ and the doubly-
Cabibbo-suppressed decay D0 → K∗+π−. However, the K∗ bands do overlap in D0 →
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Figure 2: Phase conventions of Ref. [15] for the decays D0 → KSπ
+π−.

Figure 3: Phase conventions of Ref. [16] for the decays D0 → π0K+K−.

π0K+K−, and are of comparable strength, as both represent singly-Cabibbo-suppressed
decays. It was noted in Ref. [24] that the sign of the interference can be readily diagnosed
by inspecting the overlap region. In fact, in Ref. [11] the interference between the K∗+

and K∗− bands was found to be destructive in the overlap region. This conclusion was
based on enhancement of the K∗+ band in the low-m(K−π0) region, but suppression of
the K∗− band in the low-m(K+π0) region, indicating opposite signs of interference with a
slowly-varying S-wave component.

Referring to Fig. 3, one sees that the low-m(K+π0) region in the K∗− band [illustrated
by the configuration (b)] and the low-m(K−π0) region in the K∗+ band [illustrated by the
configuration (c)] are defined with the same sign. In that case, one expects the relative
phase between the D0 → K∗+K− and D0 → K∗−K+ amplitudes on the D0 → π0K+K−

Dalitz plot, quoted in Table VII, to be near 180◦, as predicted theoretically. Taking account
of the relative sign of the Clebsch-Gordan coefficients ±1/

√
3 in the last column and last

two rows of Table V, this means that one expects the phase of the ratio on the left-hand
side of Eq. (4), A(D0 → K∗−K+)/A(D0 → K∗+K−), to be near zero, as predicted. (See
Table VIII.)
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