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We demonstrate that Widom’s particle insertion technique provides a convenient and efficient method to determine the effective
pair interaction between complex, composite soft-matter particles in the zero-density limit. By means of three different test
systems, i.e. amphiphilic dendrimers, electrostatic polymers and colloids coated with electrostatic polymers, we demonstrate the
validity and the power of the presented method.

1 Introduction

Soft materials, be they colloids, polymers or proteins, are of-
ten complex constructs that live in a bath of small molecules.
In addition, these mesoscopic particles themselves are often
composite objects that contain flexible moieties†. As a result,
atomistic modeling of the structure and dynamics of soft ma-
terials would need to span a wide range of length and time
scales, which makes such an approach infeasible in all but the
simplest cases (few mesoscopic particles and short times).

In an effort to simplify the description of the system at hand,
coarse-grained models are being developed that aim to capture
the mesoscopic and macroscopic behavior of the system by
including in the description only the most relevant degrees of
freedom. In the simplest coarse-graining approach each com-
plex, mesoscopic particle is characterized by only one effec-
tive coordinate. In the case of particles that have on average
inversion symmetry, such as e.g. polymer-coated colloids, this
is the coordinate of the center of inversion symmetry. For sys-
tems without such symmetry (or, to be more precise, where
this symmetry center cannot be identified with a fixed coor-
dinate in the molecular frame) it is conventional to use the
center of mass to specify the position of the particle, which is
the procedure that is followed for polymers or proteins. The
mesoscopic particle is then represented as a “soft” sphere and
the effective interaction potential determines the softness. The
simplest effective potentials are obtained in the low-density
limit where many-body interactions can be ignored. In spite
of their simplicity, such models have been shown to work suc-
cessfully for a range of mesoscopic systems (see e.g.1–7).

Computing effective interactions for arbitrarily complex

† In what follows, we use the term “mesoscopic” to describe particles that con-
tain internal degrees of freedom that will be integrated out in a more coarse-
grained description. Usually, these particles will be in the mesoscopic size
range from nano- to micrometers.
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mesoscopic particles is one of the key steps in the develop-
ment of a coarse-grained model. There are many ways in
which these interactions can be obtained. The present paper
describes an approach that we found to be considerably more
efficient than other approaches that we explored.

The paper is organized as follows: in Sec. 2 we define the
effective interaction and explain standard Monte Carlo (MC)
techniques to determine it, highlighting their strengths and
their limitations. In Sec. 3 we adapt Widom’s particle insertion
method to the present problem and show that it is an efficient
way to determine effective interactions. In Sec. 4 we explain
how to implement this formalism and test the method for three
different model systems in Sec. 5, comparing the results from
the different techniques. In the concluding section (Sec. 6) we
point out possible limitations of the method that we present.

2 Computing effective interactions: the stan-
dard approach

Consider two mesoscopic particles confined in a volume V and
positioned at a distance R12 between them. At infinite dilution,
the effective pair interaction Φeff(R12) between these particles
is related to their radial distribution function8 g(R12) via

g(R12) = exp [−βΦeff(R12)] , (1)

where β = 1/kT is the reciprocal temperature5,9. The radial
distribution function, g(R12), can easily be measured during
the simulation and has to be normalised to 1 for large separa-
tions between the particles. Eqn. 1 thus offers a straightfor-
ward way to measure the effective interaction within simula-
tions. However, the repulsion between two mesoscopic par-
ticles usually increases as the particles approach each other,
possibly reaching several kT and configurations where parti-
cles are that close are rare. As a result, the relative error in
g(R12) at short distances will therefore be large, which results
in a concomitantly large error in Φeff(R12). In order to ob-
tain an accurate estimate of Φeff(R12) without wasting time on
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irrelevant, though easily accessible configurations, it is there-
fore necessary to use a simulation technique that samples also
the regime where Φeff(R12)� kT .

One way to overcome this sampling bottleneck is to sample
all relevant values of R12 more or less uniformly. Conceptu-
ally, the simplest approach to achieve this is to introduce an
external biasing potential that acts on the effective coordinates
and counteracts the repulsion between the particles. The total
interaction is then given by Φ̃(R12) = Φeff(R12)+Φbias(R12)
and the radial distribution function is modified to read

g̃(R12) ∝ exp
[
−βΦ̃(R12)

]
= exp [−βΦeff(R12)]exp [−βΦbias(R12)] .

Comparing this last equation to Eqn. 1, we see that to deter-
mine the radial distribution function of the unbiased system,
g(R12), we have to increment the histogram of the probabil-
ity of finding the molecules separated by a certain distance
R12 in each measurement by exp [βΦbias(R12)] rather than by
1. The effective interaction can then be determined from this
histogram via Eqn. 1.

However, there are two major disadvantages to this ap-
proach. First, to sample all relevant distances uniformly,
Φ̃(R12) should be zero (or constant) for all R12 and there-
fore the biasing potential should ideally be Φbias(R12) =
−Φeff(R12), which would correspond to knowing a priori the
sought-after answer. In practice, long simulations are often
needed where the biasing potential is determined in a trial-
and-error procedure, enhancing the guess for Φbias(R12) in
a rather cumbersome iterative process until the difference to
−Φeff(R12) is smaller than kT , which will then allow for an
efficient sampling of all distances. But even once the bias-
ing potential is known with sufficient accuracy, sampling will
still be slow due to the fact that the mesoscopic particles have
to diffuse over the relevant range of R12 values to visit each
distance often enough.

In an automated process, one can use the Wang-Landau ap-
proach10 to determine the biasing potential and thereby the ef-
fective interaction in an iterative way. In this scheme, g(R12) is
initially unknown and set to unity for all distances R12. During
the simulation, moves from an old distance Ro

12 with potential
energy U(Ro

12) to a new distance Rn
12 with potential energy

U(Rn
12) are accepted with a modified Metropolis acceptance

rule, where the probability to accept the move is given by

Pacc(Ro
12→ Rn

12) = min
[

1,e−β[U(Rn
12)−U(Ro

12)]
g(Ro

12)

g(Rn
12)

]
.

In each measurement, the histogram for g at the current posi-
tion R12 is multiplied by a factor f , which is usually taken to
be 2. At the same time, a histogram of the distances visited is
measured and once this histogram is sufficiently flat, a coarse
guess for g(R12) has been obtained. To refine the results, f is

set to
√

f , and the simulation is iterated like this until f ∼ 1.
Then, the effective interaction can be determined via Eqn. 1.

Alternatively, one can break down the range of distances
into several small windows11,12 and then use simple bias-
ing potentials to force the system to stay within each win-
dow. Typical choices for these so-called umbrella potentials
are e.g. hard walls13 or spring-like potentials Φ

j
bias(R12) =

1
2 k j(R12−R j)

2, where the k j are spring constants that deter-
mine the width of each window j located at R j. Carrying out
separate simulations for the different windows, one can sys-
tematically vary the separations between the mesoscopic par-
ticles. Within each of these windows j, a separate histogram
of the probability of finding the molecules a certain distance
apart, g j(R), is recorded. At the end of the simulations, the ef-
fective potential Φeff(R12) between the molecules is obtained
by merging the effective potentials obtained within each win-
dow,

βΦ
j(R12) =− ln

[
g j(R12)

]
−βΦ

j
bias(R12)+ c j,

where c j is a normalization constant. Since the various c j
are initially unknown, the concatenation of Φeff(R12) will dis-
play discontinuities at the windows’ edges. To obtain a con-
tinuous Φeff(R12), the c j are chosen such that the data are
aligned to each other at the edges of the windows or, more
sophisticatedly, the multiple histogram method can be imple-
mented12,14,15. Using this umbrella sampling, care has to be
taken to choose the windows and umbrella potentials in a way
that the variation of the effective interaction within each win-
dow does not exceed 1-2 kT to reliably sample the entire win-
dow. Moreover, to improve quality of the matching of the
different parts of Φeff(R12) at the edges of the windows, it is
advisable to use overlapping windows.

In view of the various limitations of above techniques, it
would be desirable to have a straightforward, unbiased method
of sampling all distances of approach between two mesoscopic
particles with the same probability, while obtaining an effi-
cient estimate of the effective interaction. We show in the next
section how Widom’s particle insertion method can be used to
achieve precisely this.

3 Formalism

The following formalism is based on Widom’s insertion
method to calculate the chemical potential of non-uniform
fluids16. We adapt his approach to determine the effective
interactions between two mesoscopic particles in the zero
density limit in a fast and straightforward manner. The
method presented here is also a generalisation of the scheme
used in Ref. 2, where the effective interaction between two
self-avoiding, i.e. hard-core, polymers was determined from
the overlap probability when placing the polymers random
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distances apart. Despite this generalisation being straight-
forward, we are not aware of earlier implementations.

We consider a fluid of N composite, mesoscopic particles
confined in a volume V . The effective coordinate of particle i
is denoted by vector Ri with i = 1, . . . ,N.

The probability P to find this system in a certain configura-
tion {R1, . . . ,RN} is given by the Boltzmann distribution

P({R1, . . . ,RN}) =
1

ZN
e−βU(R1,...,RN) .

U is the potential energy of the system including all intra and
inter-particle interactions. ZN is the configurational integral
given by

ZN =
∫

dR1 . . .dRNe−βU(R1,...,RN).

As Widom argued16, the density profile at position r within
the volume can be written as

ρ(r) =
N
ZN

∫
dR1 . . .dRN−1e−βU(R1,...,RN−1,r).

Splitting the potential energy in above equation into a contri-
bution due to all the interactions in the (N−1)-particle system
and an energy change, ∆U , due to adding an Nth particle at
position r, i.e.

U (R1, . . . ,RN−1,r)=U (R1, . . . ,RN−1)+∆U (R1, . . . ,RN−1,r) ,

we can write that

ρ(r)=
N
ZN

∫
dR1 . . .dRN−1e−βU(R1,...,RN−1)e−β∆U(R1,...,RN−1,r),

which simplifies to

ρ(r) =
NZN−1

ZN

〈
e−β∆U(R1,...,RN−1,r)

〉
N−1,r

,

where 〈x〉N−1,r denotes an ensemble average over quantity x
in the (N−1) particle system at position r.

Now, we apply this last formula to a system of only two
mesoscopic particles, labeled 1 and 2, whose effective coordi-
nates are positioned at R1 and r = R2. Then,

ρ(R2) =
NZ1

Z2

〈
e−β∆U(R1,R2)

〉
N=1,R2

.

Since we want to determine a radially symmetric interaction
potential, we can position the first particle in the origin and
place the second at a distance R12 = |R2−R1| = |R2|. The
above equation then simplifies to

ρ(R12) =
NZ1

Z2

〈
e−β∆U(R12)

〉
N=1,R12

.

The density profile can be expressed as ρ(R12) = ρg(R12),
where ρ is the average number density. Recalling Eqn. 1, we
find that

βΦeff(R12) =− ln
[〈

e−β∆U(R12)
〉

N=1,R12

]
+ c. (2)

The constant c cannot be directly measured since it is propor-
tional to the configurational integral of the system. However, it
is expected that the range of the effective interaction between
two typical macromolecules is finite, i.e. Φeff→ 0 as R→ ∞.
Therefore, with Rmax being a separation between the meso-
scopic particles where their interaction has decayed to zero, c
can be determined as

c = ln
[〈

e−β∆U(Rmax)
〉

N=1,Rmax

]
.

4 Simulation Technique

Eqn. 2 allows us to determine the effective interaction be-
tween two mesoscopic particles as a function of distance R12
between their effective coordinates Ri, i = 1,2, in a straight-
forward, efficient and unbiased way.

Let the coordinates of the M constituent parts of the meso-
scopic particles be given by {ri,1, . . . ,ri,M}, i = 1,2. In a
first step, we equilibrate each of the two mesoscopic parti-
cles in isolation and sample their configurational space with
a standard Metropolis MC simulation. The particle moves
employed will depend on the particular system under study
and will be chosen to ensure ergodicity. Each MC move
from an old internal configuration oi = {ro

i,1, . . . ,r
o
i,M} to a new

one ni = {rn
i,1, . . . ,r

n
i,M}, i = 1,2, is accepted according to the

Metropolis MC acceptance rule17, i.e. with a probability

Pacc(oi→ ni) = min
(

1,e−β[U(ni)−U(oi)]
)
,

where U(xi) is the intramolecular potential energy of configu-
ration x of particle i.

Once the mesoscopic particles have been equilibrated, we
randomly sample from the equilibrated conformations that
are used in the second step of the algorithm. We fix the
coarse-grained coordinate of the first particle at the origin.
We then generate effective coordinates of the second parti-
cle, uniformly distributed in the interval R12 ∈ [0,Rmax] and
we measure the intermolecular potential energy ∆U (R12) be-
tween the two mesoscopic particles‡. This procedure yields
e−β∆U(R12) as a function of R12 with high efficiency, since no
acceptance test has to be applied in this last step. Repeated

‡ To ensure good statistics at close approach of the mesoscopic particles, we
sample all distances uniformly on a line segment. An alternative, but less
accurate procedure would sample points uniformly distributed in a spherical
volume, but such a procedure would disfavor the sampling of short distances.
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sampling of steps one and two allows us to determine the av-
erage in Eqn. 2 and thereby the effective interaction between
the two molecules.

5 Application to test systems

To demonstrate the power and validity of the method pre-
sented above, we determine the effective interactions of three
different test systems.

5.1 Electrostatic polymers

As a first, simple test system, we study a strongly coarse-
grained representation of single-stranded DNA18, where the
strands are represented as electrostatically charged, freely
jointed chains. Vertices are separated by segments of fixed-
length lKuhn = 1.5nm19 and interact with each other via a
Debye-Hückel potential which reflects both the charge of the
sugar-phosphate backbone of the DNA strands and the solvent
conditions18,

βφ
i j
DH = q2lB

exp(−κri j)

ri j ,

where ri j is the distance between vertices i and j, κ is the in-
verse Debye screening length, q corresponds to the charge per
vertex and lB is the Bjerrum length. Here, we choose κ−1 =
0.67nm, lB = 0.7nm and q = 3.05e20 and sample chains of 20,
30, 40 and 50lKuhn with both biased simulations and Widom’s
particle insertion technique. In the former, we sample the
polymers for 1×107 MC sweeps, where each sweep consists
of 500 MC moves (i.e. either a pivot move21,22, crankshaft
move23, rotation or translation of a polymer). For Widom’s
method, we decorrelate each polymer for 500 MC moves, us-
ing pivot and crankshaft moves, and with the two configura-
tions thus obtained we sample 500 different distances between
the polymers. We then repeat this cycle 2.5× 106 times. In
Fig. 1, we compare the results from the two methods and
see that they perfectly coincide, confirming the validity of
Widom’s method.

To show how rapidly Widom’s method converges, we com-
pare to the results from a brute force simulation and a biased
one with Φbias = −Φeff. We ran all three simulations for the
same amount of computational time, i.e. 1 hour on a proces-
sor of our quad-core dual Xeon (Harpertown) cluster. For the
Widom method, this corresponds to 6× 104 cycles, for the
brute force and the biased simulation to 11×104 MC sweeps
each. As shown in Fig. 2, the results from Widom’s insertion
are equilibrated already after this little of simulation time. By
contrast, the brute force simulation has not yet visited small
distances at all and the data of the biased simulation shows
considerable noise. This impressively highlights the efficiency
of Widom’s method to determine effective interactions.

Fig. 1 (Color online) Comparison between Widom’s method (solid
lines) and biased simulations (symbols) of the effective interaction
Φeff between two electrostatically charged polymer chains of length
20 (diamonds), 30 (circles), 40 (squares) and 50lKuhn (red, triangles)
as a function of the distance between their centers of mass. The inset
shows a simulation snapshot of two chains of 20lKuhn.

5.2 Colloids coated with electrostatic polymers

As a second example, we study a system of colloids coated
with electrostatically charged polymers that can move on the
colloid’s surface. In this case, we determine the effective in-
teraction between the centers of the colloids rather than the
centers of mass. The vertices of the chains interact amongst
each other as described in Sec. 5.1, while the colloids are im-
penetrable spheres of fixed radius Rcoll. Again, we implement
crankshaft and pivot moves for the polymer chains, but we
also regrow them completely via a configurational bias MC
algorithm12, using 5 trial directions in each step of the re-
growth. The colloids are subject to rotations and translations.
Our model system is made of colloids of Rcoll = 4lKuhn, each
coated with 10 chains of 5 Kuhn segments. For Widom’s
method, we simulated 4× 106 cycles consisting of 250 MC
steps to decorrelate the coating of the colloids before sampling
500 different distances between the colloids.

In Fig. 3 we see that the Widom particle insertion data per-
fectly reproduces the results of unbiased, brute force simula-
tions, which we ran for 1×107 MC sweeps. In the latter, each
sweep consisted of 220 MC moves (i.e. pivot or crankshaft
move, configurational bias MC regrowth, colloid rotation or
translation). While the brute force simulations needed two
days of simulation time and were averaged over 6 different
simulation runs to obtain reliable statistics, the data from a
single simulation applying Widom’s method already shows
decent statistics after as little as 5× 104 cycles, which cor-
responds to 1.5 hours of simulation time on a single processor
of our cluster.
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Fig. 2 (Color online) Comparison between Widom’s method (solid
line), biased simulations (solid line with circles) and brute force
calculations (solid line with squares) of the effective interaction Φeff
between two electrostatically charged polymers of length 20 after
one hour of simulation time. While the data from Widom’s insertion
is equilibrated, statistics on the data of the other two methods is still
insufficient.

5.3 Amphiphilic dendrimers

Our final example concerns the determination of the effective
interaction between two amphiphilic dendrimers6,24, which
are expected to show clustering behavior at sufficiently high
densities6,25–27.

We sample two different second-generation amphiphilic
dendrimers. They have two central monomers and while the
end-groups form a solvophilic shell, all inner monomers repre-
sent the solvophobic core. The bonds between monomers are
modeled by the finitely extensible nonlinear elastic potential,
while all other interactions between monomers are modeled
by the Morse potential6,28,29. For the parameters of the differ-
ent interactions, we choose the same as for dendrimer D5 and
D7 from Ref. 30 and we refer to this reference for details.

Again, we implement Widom’s insertion method and com-
pare our results to the effective interactions found in Ref. 30
via umbrella sampling. For the umbrella sampling, 15 slightly
overlapping windows with Rmax = 5Rg were used, where Rg
is the radius of gyration of a single dendrimer. The systems
were then sampled for 2× 108 MC sweeps in each window.
These simulations can be carried out in parallel. For Widom’s
method, we sampled the dendrimers for 4× 106 MC cycles.
In each of these cycles, each dendrimer was decorrelated in
280 single monomer displacements and the resulting configu-
rations were used to sample 1000 different distances between
them.

As can be seen from Fig. 4, Widom’s method manages to
capture the interaction potential even at close approach of the
dendrimers where deformations to the dendrimer’s conforma-

Fig. 3 (Color online) Comparison between Widom’s method (solid
line) and brute force simulations (crosses) of the effective
interaction Φeff between two colloids of radius Rcoll = 4lKuhn coated
with 10 electrostatically charged polymer chains of length 5lKuhn as
a function of the distance between their centers. The inset shows a
simulation snapshot of the colloids.

tions are expected. While Widom’s technique already gives
reliable statistics for the effective interaction after as little as
5× 105 cycles, corresponding to 3h of simulation time, um-
brella sampling had to be carried out on 15 processors for
roughly a day to collect the necessary statistics.

6 Conclusions

In this contribution we have shown that Widom’s particle in-
sertion method can be adapted to determine the effective in-
teraction between two mesoscopic particles in a completely
unbiased, efficient way. While we showed the success of the
method for three rather different model systems, this method
can not be applied in its present form to particle insertion in
an explicit solvent. Further, we expect the method to fail for
those systems where close approach between the two particles
leads to a very strong deformation of the molecules’ confor-
mations that will not be sampled adequately in the ideal-gas
reference system that we use to generate independent confor-
mations. The usual way to test for the reliability or the failing
of Widom’s method is the so-called overlapping distribution
method12,31, where two simulations are needed: one of a one-
particle system, inserting a second one at frequent intervals;
and one of a two-particle system, removing one at frequent in-
tervals. Widom’s method will only give reliable answers when
the probability distributions of finding certain energy differ-
ences ∆U upon insertion and removal, respectively, have suf-
ficient overlap12. However, in these cases Widom’s method
will at least allow for an educated guess of a biasing potential
that can be used with one of the standard techniques, and will
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Fig. 4 (Color online) Comparison between Widom’s method (solid
lines) and brute force simulations (symbols) of the effective
interaction Φeff between two amphiphilic D5 (circles) and D7
(squares) dendrimers as a function of the distance between their
centers of mass. The inset shows a simulation snapshot of two
dendrimers.

thereby allow for a considerable speed-up of the conventional
methods.

In summary, the application of Widom’s particle insertion
method to the determination of effective interactions between
two mesoscopic particles has several advantages over the stan-
dard techniques: first, it allows for unbiased simulations,
while the standard techniques require a guess of appropriate
biasing potentials to force the system into close approaches.
These potentials have to be determined with high accuracy in
an iterative process, or if less precise potentials are used, simu-
lations in multiple windows of different separation ranges are
required. Furthermore, Widom’s method is very easy to im-
plement. Finally, biased or brute force simulations rely on the
diffusion of the particles through the simulation box, where
each change in separation will only be accepted with a cer-
tain probability depending on the ratio between the Boltzmann
weights of the old and the new configurations. This makes the
relative diffusion of highly entangled particles slow and can
lead to slow statistical fluctuations in the data of the effective
interaction. By contrast, within Widom’s method particles are
simply placed at a given separation and the intermolecular en-
ergy difference is measured, without having to employ any
acceptance/rejection step. Therefore, Widom’s particle inser-
tion method immediately allows for an exploration of even
the closest approach and will give reliable statistics for the
effective interaction for all ranges of separation within very
short simulation times. For the cases that we have studied,
this makes Widom’s particle insertion method the better tech-
nique to compute effective interactions between mesoscopic
particles.
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