

Observation of a Narrow Near-Threshold Structure in the $J/\psi\phi$ Mass Spectrum in $B^+ \rightarrow J/\psi\phi K^+$ Decays

Kai Yi*[†]

University of Iowa E-mail: yik@fnal.gov

Observation is reported for a structure near the $J/\psi\phi$ threshold in $B^+ \rightarrow J/\psi\phi K^+$ decays produced in $\bar{p}p$ collisions at $\sqrt{s} = 1.96$ TeV with a statistical significance of beyond 5 standard deviations. There are 19 ± 6 events observed for this structure at a mass of $4143.4^{+2.9}_{-3.0}(\text{stat}) \pm 0.6(\text{syst}) \text{ MeV}/c^2$ and a width of $15.3^{+10.4}_{-6.1}(\text{stat}) \pm 2.5(\text{syst}) \text{ MeV}/c^2$, which are consistent with the previous measurements reported as evidence of the Y(4140).

35th International Conference of High Energy Physics - ICHEP2010, July 22-28, 2010 Paris France

*Speaker. [†]for the CDF Collaboration

Figure 1: The mass distribution of $J/\psi\phi K^+$; the solid line is a fit to the data with a Gaussian signal function and linear background function.

Figure 2: The mass difference, ΔM , between $\mu^+\mu^-K^+K^-$ and $\mu^+\mu^-$, in the B^+ mass window is shown as the black histogram. The red histogram is the ΔM distribution from the data in the B sideband.

Recently, evidence has been reported by CDF for a narrow structure near the $J/\psi\phi$ threshold, named Y(4140), in $B^+ \to J/\psi\phi K^+$ decays produced in $\bar{p}p$ collisions at $\sqrt{s} = 1.96$ TeV [1]. The structure is the first charmonium-like structure decaying into two heavy quarkonium states ($c\bar{c}$ and $s\bar{s}$) which is a candidate for exotic mesons [2]. In this note, we report an update on a search for structures in the $J/\psi\phi$ system produced in exclusive $B^+ \to J/\psi\phi K^+$ decays with $J/\psi \to \mu^+\mu^$ and $\phi \to K^+K^-$. This analysis is based on a sample of $\bar{p}p$ collision data at $\sqrt{s} = 1.96$ TeV with an integrated luminosity of about 6.0 fb⁻¹ collected by the CDF II detector at the Tevatron. The CDF II detector has been described in detail elsewhere [3]. In this analysis, $J/\psi \to \mu^+\mu^-$ events are recorded using a dedicated three-level dimuon trigger.

The invariant mass of $J/\psi\phi K^+$ in the current dataset, which includes those used in the previous analysis after applying the same requirements used in the previous analysis [1], is shown in Fig. 1. A fit with a Gaussian signal function with its rms fixed to the value 5.9 MeV/ c^2 obtained from Monte Carlo (MC) simulation [4] and a linear background function to the mass spectrum of $J/\psi\phi K^+$ returns a B^+ signal of 115 ± 12 (stat) events. For a luminosity increase by a factor of 2.2, the yield increase was 1.53, reduced by trigger rate-limitation at higher average luminosity. We then select B^+ signal candidates with a mass within 3σ (17.7 MeV/ c^2) of the nominal B^+ mass. We define those events with a mass within $[-9,-6]\sigma$ or $[6,9]\sigma$ of nominal *B* mass as B sideband events. Fig. 2 shows the mass difference, $\Delta M = m(\mu^+\mu^-K^+K^-) - m(\mu^+\mu^-)$, for events in the B^+ mass window as well as in the B sideband in our data sample. The comparison of the ΔM distribution in the B mass window for the dataset used in this analysis (6.0 fb⁻¹) and the dataset used in the previous analysis (2.7 fb⁻¹ [1]) is shown in Figure 3.

The same model is used to examine the Y(4140) structure as described in reference [1]. We model the enhancement by an *S*-wave relativistic BW function [5] convoluted with a Gaussian resolution function with the r.m.s. fixed to 1.7 MeV/ c^2 obtained from MC, and use three–body phase space [6] to describe the background shape. Even though we exclude the high mass region to avoid the B_s contamination, there is still a small contribution in the region of interest. We obtained the ΔM shape from B_s contamination and fix the ΔM shape obtained from B_s MC simulation, and

Figure 3: The ΔM distribution in the B mass window for the data used in the current analysis (6.0 fb⁻¹) is shown as the black histogram, and the same distribution for the data in the previous analysis(2.7 fb⁻¹ [1]) is shown as the red dashed histogram.

Figure 4: The mass difference, ΔM , between $\mu^+\mu^-K^+K^-$ and $\mu^+\mu^-$, in the B^+ mass window is shown as a solid black histogram for the data. The dotted curve is the predicted three-body phase space background contribution, the dash-dotted curve is the predicted B_s contamination (fixed to 3.3), and the solid red curve is the total unbinned fit where the signal PDF is an S-wave Breit-Wigner convoluted with the resolution (1.7 MeV/ c^2).

the yield to 3.3, scaled from the $B_s \rightarrow J/\psi\phi$ yield in data. An unbinned likelihood fit to the ΔM distribution, as shown in Fig. 4, returns a yield of 19 ± 6 events, a ΔM of $1046.7^{+2.9}_{-3.0}$ MeV/ c^2 , and a width of $15.3^{+10.4}_{-6.1}$ MeV/ c^2 .

We use the same simulation process as in Reference [1], based on a pure three-body phase space background shape to determine the significance of the Y(4140) structure. We performed a total of 84 million simulations and found 19 trials with a $\sqrt{-2\ln(\mathscr{L}_0/\mathscr{L}_{max})}$ value greater than or equal to the value obtained in the data (5.9), as shown in Fig. 5, where \mathscr{L}_0 and \mathscr{L}_{max} are the likelihood values for the null hypothesis fit and signal hypothesis fit. The resulting *p*-value is 2.3×10^{-7} , corresponding to a significance of greater than 5.0 σ .

The mass of this structure, including systematic uncertainty, is measured as $4143.4^{+2.9}_{-3.0}(\text{stat}) \pm 0.6(\text{syst}) \text{ MeV}/c^2$ after including the world-average J/ψ mass. The relative efficiency between $B^+ \rightarrow Y(4140)K^+, Y(4140) \rightarrow J/\psi\phi$ and $B^+ \rightarrow J/\psi\phi K^+$ is 1.1 assuming Y(4140) as an S-wave structure and B^+ phase space decays. Thus the relative branching fraction between $B^+ \rightarrow Y(4140)K^+$, $Y(4140) \rightarrow J/\psi\phi$ and $B^+ \rightarrow J/\psi\phi K^+$ including systematics is $0.149 \pm 0.039(\text{stat}) \pm 0.024(\text{syst})$.

An further excess above the three-body phase space background shape appears at approximately 1.18 GeV/ c^2 in Fig. 1 (b). Since the significance of Y(4140) is greater than 5σ , we fit to the data assuming two structures at ΔM of 1.05 and 1.18 GeV/ c^2 as shown in Fig. 6. The fit to the data with the same requirements as in the previous paper [1] returns a yield of 20 ± 5 events, a ΔM of $1046.7^{+2.8}_{-2.9}$ MeV/ c^2 , and a width of $15.0^{+8.5}_{-5.6}$ MeV/ c^2 for the Y(4140), which are consistent with the values returned from a Y(4140)-only signal fit. The fit returns a yield of 22 ± 8 events, a ΔM of $1177.7^{+8.4}_{-6.7}$ MeV/ c^2 , and a width of $32.3^{+21.9}_{-15.3}$ MeV/ c^2 for the structure around ΔM of 1.18 GeV/ c^2 . The significance of the second structure, determined by a similar simulation is 3.1σ .

3

CDF Run II Preliminary L=6.0 fb⁻¹ 10 Candidates per 10 MeV/c² 9 8 7 6 5 4 3 2 1 0 1.2 m(μ⁺μ⁻K⁺K⁻)-m(μ⁺μ⁻) GeV/c²

Figure 5: Distribution of $-2\ln(\mathscr{L}_0/\mathscr{L}_{max})$ for 84 million simulation trials. The *p*-value obtained from counting is 2.3×10^{-7} , corresponding to a significance of 5.0σ .

Figure 6: The mass difference, ΔM , between $\mu^+\mu^-K^+K^-$ and $\mu^+\mu^-$, in the B^+ mass window. The dotted curve is the background contribution, the dash-dotted curve is the B_s contamination, and the red solid curve is the total unbinned fit assuming two structures.

In summary, the growing $B^+ \to J/\psi\phi K^+$ sample at CDF enables us to observe the Y(4140) structure [1] with a significance greater than 5σ . Assuming an *S*-wave relativistic BW, the mass and width of this structure, including systematic uncertainties, are measured to be $4143.4^{+2.9}_{-3.0}(\text{stat}) \pm 0.6(\text{syst}) \text{ MeV}/c^2$ and $15.3^{+10.4}_{-6.1}(\text{stat}) \pm 2.5(\text{syst}) \text{ MeV}/c^2$, respectively. The relative branching fraction between $B^+ \to Y(4140)K^+, Y(4140) \to J/\psi\phi$ and $B^+ \to J/\psi\phi K^+$ including systematics is $0.149 \pm 0.039(\text{stat}) \pm 0.024(\text{syst})$. We also find evidence at 3.1σ level for a second structure with a mass of $4274.4^{+8.4}_{-6.7}(\text{stat}) \text{ MeV}/c^2$, a width of $32.3^{+21.9}_{-15.3}(\text{stat}) \text{ MeV}/c^2$ and a yield of 22 ± 8 .

References

- [1] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 102, 242002 (2009).
- [2] X. Liu and S. Zhu, Phys. Rev. D 80, 017502 (2009); N. Mahajan, Phys. Lett. B 679, 228 (2009);
 Z. Wang, Eur. Phys. J. C 63, 115 (2009); T. Branz *et al.*, Phys. Rev. D 80, 054019 (2009);
 R. Albuquerque *et al.*, Phys. Lett. B 678, 186 (2009); X. Liu, Phys. Lett. B 680, 137 (2009); G Ding, Eur. Phys. J. C 64, 297 (2009); J. Zhang and M. Huang, Phys. Rev. D 80, 056004 (2009);
 E. Beveren and G. Rupp, arXiv:0906.2278 [hep-ph]; F. Stancu, J. Phys. G 37, 075017 (2010);
 T. Branz *et al.*, arXiv:1001.3959 [hep-ph]; K. Yamada, arXiv:1002.0410 [hep-ph].
- [3] D. Acosta *et al.* (CDF Collaboration), Phys. Rev. D 71, 032001 (2005); A. Abulencia *et al.* (CDF Collaboration), Phys. Rev. Lett. 97, 242003 (2006).
- [4] A. Abulencia *et al.* (CDF Collaboration), Phys. Rev. Lett. **96**, 082002 (2006); T. Aaltonen *et al.* (CDF Collaboration), Phys. Rev. Lett. **100** 182002 (2008).
- [5] $\frac{dN}{dm} \propto \frac{m\Gamma(m)}{(m^2 m_0^2)^2 + m_0^2 \Gamma^2(m)}$, where $\Gamma(m) = \Gamma_0 \frac{q}{q_0} \frac{m_0}{m}$, and the 0 subscript indicates the value at the peak mass.
- [6] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008).