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Abstract

Self-consistent mean field methods based on phenomenological Skyrme effective interactions are

known to exhibit spurious spin and spin-isospin instabilities both at zero and finite temperatures

when applied to homogeneous nuclear matter at the densities encountered in neutron stars and

in supernova cores. The origin of these instabilities is revisited in the framework of the nuclear

energy density functional theory and a simple prescription is proposed to remove them. The

stability of several Skyrme parametrizations is reexamined.
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I. INTRODUCTION

The self-consistent mean-field method with Skyrme effective interactions has been very

successful in describing the structure and the dynamics of medium-mass and heavy nuclei [1].

These interactions have been also widely applied to the description of extreme astrophysical

environments such as neutron stars and supernova cores. Actually very soon after Skyrme [2]

introduced his eponymous effective interaction, Cameron [3] applied it to calculate the struc-

ture of neutron stars. Assuming that neutron stars were made only of neutrons, he found

that their maximum mass was significantly higher than the Chandrasekhar mass limit. His

work thus brought support to the scenario of neutron star formation from the catastrophic

gravitational collapse of massive stars in supernova explosions, as proposed much earlier by

Baade and Zwicky [4]. The interior of neutron stars is highly neutron rich but contains also

a non-negligible amount of protons, leptons and possibly other particles. However micro-

scopic calculations in uniform infinite nuclear matter using bare nucleon-nucleon potentials

have been usually restricted to symmetric nuclear matter (SNM) and pure neutron matter

(NeuM). Even though effective interactions are phenomenological, they can provide a con-

venient interpolation of realistic calculations to determine the equation of state of neutron

star cores. Mean-field calculations can be easily extended to finite temperatures and can

thus be also used to describe the hot nuclear matter found in supernova cores and protoneu-

tron stars. Moreover, the mean-field method allows a consistent and tractable treatment of

both homogeneous matter and inhomogeneous matter (e.g. neutron star crusts [5]) with a

reduced computational cost. This opens the way to a unified description of all regions of

neutron stars and supernova cores [6].

Nevertheless the application of these effective forces to nuclear matter at high densities

has been limited by the occurrence of spurious instabilities [7, 8]. In particular, Skyrme

forces predict a spontaneous transition to a spin-polarized phase when the density exceeds

a critical threshold which depends on the isospin asymmetry [9–13]. Besides, it is found

that for some forces the energy density of the spin-polarized phase decreases with increasing

density. In this case, the phase transition is accompanied by a catastrophic collapse [14],

which is contradicted by the existence of neutron stars (note however that observations

alone do not exclude the possibility of a ferromagnetic core inside neutron stars, see for

instance Refs. [15, 16]). Moreover, the critical density predicted within the Skyrme formalism

2



generally decreases with temperature due to an anomalous behavior of the entropy, which

is larger in the spin-ordered phase than in the unpolarized phase [17, 18]. This instability

can strongly affect the neutrino propagation in hot dense nuclear matter [12, 19, 20] which

is believed to play an important role in the supernova explosion mechanism and in the

evolution of protoneutron stars [21]. However, no such spin-polarized phase transition is

found by microscopic calculations using realistic nucleon-nucleon potentials. Indeed several

calculations based on different methods, such as the lowest-order constrained variational

method [22–26], the Brueckner-Hartree-Fock method [27–29], the auxiliary field diffusion

Monte Carlo method [30] and the Dirac-Brueckner-Hartree-Fock method [31], show that

nuclear matter remains unpolarized well above the nuclear saturation density ρ0 both at

zero and finite temperatures.

The prediction of spin-ordering in nuclear matter is one of the main deficiencies of the

mean-field method with effective forces. Different extensions of the standard Skyrme force

have been recently proposed in order to prevent these phase transitions at zero tempera-

ture [12, 13]. In this paper, the origin of the spin and spin-isospin instabilities is revisited

in the more general framework of the nuclear energy density functional (EDF) theory (see

for instance Ref. [32] for a review) and a simpler prescription is proposed to ensure stability

of dense nuclear matter for any degree of spin and spin-isospin polarizations and for any

temperature. The paper is organized as follows. The Skyrme functionals that we consider

here are defined in Section II. Section III is devoted to the discussion about the stability of

nuclear matter. Several Skyrme functionals are reexamined in Section IV.

II. SKYRME FUNCTIONALS

The nuclear EDFs that we consider here are of the form

E = Ekin + ECoul + ESky , (1)

where Ekin is the kinetic energy, ECoul is the Coulomb energy and ESky is a functional of

the local densities and currents (q = n, p for neutron, proton respectively): the density ρq,

the current density jqjqjq, the kinetic density τq, the spin density sqsqsq, the spin kinetic density

TqTqTq and the spin-current tensor Jq,µν (see for instance Ref. [1] for precise definitions). It

is convenient to introduce the isospin index t = 0, 1 for isoscalar and isovector quantities
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respectively. Isoscalar quantities (also written without any subscript) are sums over neutrons

and protons (e.g. ρ0 = ρ = ρn + ρp) while isovector quantities are differences between

neutrons and protons (e.g. ρ1 = ρn − ρp). The Skyrme functional ESky is then given by

ESky =

∫

d3rrr ESky(rrr), ESky =
∑

t=0,1

(E even
t + Eodd

t ) , (2a)

E even
t = Cρ

t ρ
2
t + C∆ρ

t ρt∆ρt + Cτ
t ρtτt + C∇J

t ρt∇ · JtJtJt + CJ
t

∑

µ,ν

Jt,µνJt,µν , (2b)

Eodd
t = Cs

t s
2
t + C∆s

t ststst ·∆ststst + CT
t ststst · TtTtTt + Cj

t j
2
t + C∇j

t ststst · ∇ × jtjtjt . (2c)

The spin current vector is defined by Jtκ =
∑

µ,ν εκµνJt,µν , where εκµν is the Levi-Civita

tensor. The so-called “time-even” part E even
t (“time-odd” part Eodd

t ) contains only even

(odd) densities and currents with respect to time reversal.

The coupling “constants” Cρ
t and Cs

t generally depend on the isoscalar density ρ = ρn+ρp

as follows

Cρ
t = aρt + bρt ρ

α , (3a)

Cs
t = ast + bstρ

α . (3b)

Moreover, local gauge invariance [33, 34] imposes the following relations

Cj
t = −Cτ

t , CJ
t = −CT

t , C∇j
t = C∇J

t . (4)

Historically the type of functionals given by Eqs.(2a)–(2c) were obtained from the Hartree-

Fock approximation using effective zero-range interactions of the Skyrme type [1, 6]

vi,j = t0(1 + x0Pσ)δ(rrrij) +
1

2
t1(1 + x1Pσ)

1

h̄2

[

p2ij δ(rrrij) + δ(rrrij) p
2
ij

]

+t2(1 + x2Pσ)
1

h̄2
pppij · δ(rrrij)pppij +

1

6
t3(1 + x3Pσ)ρ(rrr)

α δ(rrrij)

+
i

h̄2
W0(σ̂iσ̂iσ̂i + σ̂jσ̂jσ̂j) · pppij × δ(rrrij)pppij , (5)

where rrrij = rrri − rrrj, rrr = (rrri + rrrj)/2, pppij = −ih̄(∇∇∇i −∇∇∇j)/2 is the relative momentum, Pσ

is the two-body spin-exchange operator. The relations between the coupling constants in

Eqs. (2b) and (2c) and the parameters of the effective force in Eq. (5), can be found for

instance in Appendix A of Ref. [1].
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Kutschera and Wójcik [14] pointed out that for some Skyrme forces not only is the

ground state of NeuM polarized, but also the energy density of polarized NeuM decreases

with increasing density. However such a catastrophic ferromagnetic collapse is ruled out by

neutron star observations. The origin of this singular behavior can be traced back to the

parameters t2 and x2 of the Skyrme force. In particular, the authors of Ref. [14] found that

in order to prevent a ferromagnetic collapse of NeuM, the parameters of Skyrme forces must

satisfy the following inequality

t2(1 + x2) ≥ 0 . (6)

This constraint was taken into account to construct the Saclay-Lyon Skyrme parametriza-

tions [35], which were fitted with the parameter x2 = −1. These forces which were specifically

developed for astrophysics, have been widely used in neutron star studies. However it has

been found that these forces predict various transitions to spin-ordered phases in nuclear

matter [10, 12, 13, 17, 18] even though Eq. (6) was enforced. Actually this is a general

feature of standard Skyrme forces [7, 8]. We will now reexamin this issue in the framework

of the nuclear EDF theory.

III. STABILITY OF NUCLEAR MATTER

Let us consider the case of static uniform (possibly polarized) infinite isospin asymmetric

nuclear matter. The Skyrme energy density, Eq. (2a), thus reduces to

ESky =
∑

t=0,1

(Cρ
t ρ

2
t + Cτ

t ρtτt + Cs
t s

2
t + CT

t ststst · TtTtTt) . (7)

Let us choose the spin-quantization axis so that the only non-vanishing components of the

spin density sqsqsq and the spin kinetic density TqTqTq are along the z-axis. For brevity we will simply

write sq and Tq instead of sqz and Tqz. In the following we will neglect the anisotropies

induced by the polarization of matter [36]. Introducing the density ρqσ of nucleons with

spins σ =↑, ↓ and the kinetic density of polarized nucleons defined by

τqσ =
3

5
(6π2)2/3ρ5/3qσ , (8)

the spin density and the spin kinetic density can now be expressed as

sq = ρq↑ − ρq↓ , (9)
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Tq = τq↑ − τq↓ . (10)

In fully polarized NeuM with all spins up (ρ = ρn↑), Eq. (7) reduces to

Epol
NeuM =

[

h̄2

2Mn
+ (Cτ

0 + Cτ
1 + CT

0 + CT
1 )ρ

]

τn↑ + (Cρ
0 + Cρ

1 + Cs
0 + Cs

1)ρ
2 . (11)

If the energy density is calculated from a Skyrme force in the Hartree-Fock approximation,

we find

Cρ
0 + Cρ

1 + Cs
0 + Cs

1 = 0 , (12)

Cτ
0 + Cτ

1 + CT
0 + CT

1 =
1

2
t2(1 + x2) , (13)

so that Eq. (11) reduces to

Epol
NeuM =

[

h̄2

2Mn
+

1

2
t2(1 + x2)ρ

]

τn↑ . (14)

Eq. (12) is a consequence of the Pauli exclusion principle and the zero range of the Skyrme

interaction. Actually as will be shown elsewhere, Eq. (12) must still be satisfied for nuclear

EDFs that are not obtained from effective forces in order to prevent self-interactions. The

constraint of Kutschera and Wójcik [14], Eq. (6), can thus be more generally written as

Cτ
0 + Cτ

1 + CT
0 + CT

1 ≥ 0 . (15)

If this inequality is violated, Epol
NeuM decreases with increasing density thus leading to a

ferromagnetic collapse.

It is instructive to rewrite Eq. (11) as

Epol
NeuM =

h̄2

2M∗
n↑

τn↑ , (16)

where we have introduced the effective mass of a nucleon in a spin state σ defined by

h̄2

2M∗
qσ

=
∂E

∂τqσ
=

h̄2

2M∗
q

±
[

s(CT
0 − CT

1 ) + 2sqC
T
1

]

, (17)

with +(−) for spin up (spin down respectively), and M∗
q is the usual effective mass given by

h̄2

2M∗
q

=
∂E

∂τq
=

h̄2

2Mq

+ [(Cτ
0 − Cτ

1 )ρ+ 2ρqC
τ
1 ] . (18)
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It can be easily seen that in fully polarized NeuM, the effective mass reduces to

h̄2

2M∗
n↑

=
h̄2

2Mn

+ (Cτ
0 + Cτ

1 + CT
0 + CT

1 )ρ

=
h̄2

2M∗
n

+ (CT
0 + CT

1 )ρ

=
h̄2

2Mn
+ t2(1 + x2)ρ (19)

so that Eq. (16) coincides with Eq. (14). Setting x2 = −1 as in the Saclay-Lyon Skyrme

forces [35] therefore implies that the effective mass of polarized neutrons is equal to the bare

mass.

We have seen that the constraint of Ref. [14] is equivalent to the requirement that the

effective mass of polarized neutrons remains always positive. However the ground state of

NeuM (and more generally that of isospin asymmetric nuclear matter) could still be polarized

as shown below.

A. Landau stability criterion

The stability of unpolarized homogeneous nuclear matter with respect to spin and spin-

isospin polarizations has been generally addressed using the Landau Fermi-liquid theory (see

e.g. Ref. [37]). In this theory, the elementary excitations of the liquid at low temperatures

are described in terms of quasiparticles which are in one-to-one correspondence with single-

particle states of the non-interacting Fermi gas. Any small change δñ(kkk) in the distribution

function of quasiparticles with wave vector kkk leads to a change δE in the energy density,

which can be expressed (up to second order) as

δE =

∫

d3k

(2π)3
ε(kkk)δñ(kkk) +

1

2

∫

d3k

(2π)3

∫

d3k′

(2π)3
v(kkk,k′k′k′)δñ(kkk)δñ(k′k′k′) (20)

where ε(kkk) is the energy of a quasiparticle with wave vector kkk and v(kkk,k′k′k′) is the residual

interaction between quasiparticles with wave vectors kkk and k′k′k′.

In pure NeuM, the residual interaction (neglecting tensor interaction) can be expressed

as

vNeuM(kkk,k′k′k′) =
1

N

[

FNeuM(kkk,k′k′k′) +GNeuM(kkk,k′k′k′)σ̂̂σ̂σ · σ̂′σ̂′σ̂′
]

(21)

where N is the density of states at the Fermi surface given by

N =
M∗

nkF

h̄2π2
, (22)
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with kF = (3π2ρ)1/3. We have also introduced the Pauli matrices σ̂̂σ̂σ and σ̂′σ̂′σ̂′ in order to take

into account the spin of the quasiparticles. Small perturbations involve only quasiparticles

at the Fermi surface, i.e. with k = k′ = kF. We can thus expand each term in the residual

interaction in Legendre polynomials Pℓ(cos θ) where θ is the angle between kkk and k′k′k′. For

instance,

FNeuM(kkk,k′k′k′) =
+∞
∑

ℓ=0

FNeuM
ℓ Pℓ(cos θ) (23)

where FNeuM
ℓ are dimensionless Landau parameters. Similarly, we can define Landau param-

eters GNeuM
ℓ . For the Skyrme functional, the only non-zero Landau parameters are of order

ℓ = 0 and ℓ = 1. The stability of the initial state is ensured if any change in the energy per

particle e ≡ E/ρ is positive. This condition leads to Landau’s criterion

FNeuM
ℓ > −(2ℓ+ 1) , (24a)

GNeuM
ℓ > −(2ℓ+ 1) . (24b)

In particular, the condition on GNeuM
0 guarantees that NeuM is stable against small fluc-

tuations of the (isoscalar) spin polarization Iσ = s0/ρ = (ρ↑ − ρ↓). This can be seen by

expanding the energy per particle up to second order in Iσ

e(Iσ) ≃ e(0) +
1

2

∂2e

∂I2σ

∣

∣

∣

∣

Iσ=0

I2σ (25)

with

∂2e

∂I2σ

∣

∣

∣

∣

Iσ=0

=
h̄2k2

F

3M∗
n

(1 +GNeuM
0 ) . (26)

The first order term vanishes because of the requirement that the unpolarized phase be an

equilibrium state.

Using the Skyrme functional, we find

GNeuM
0 = 2N

[

Cs
0 + Cs

1 + k2
F(C

T
0 + CT

1 )

]

. (27)

Now if the Skyrme functional is fitted to a realistic equation of state of NeuM [13], we find

that Cρ
0 + Cρ

1 ≤ 0, which according to Eq. (12) implies that

Cs
0 + Cs

1 ≥ 0 . (28)
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Ferromagnetic instabilities are therefore mainly due to the coupling constants CT
t . In order

to fulfill the Landau’s stability condition GNeuM
0 > −1 at any density, we must have1

CT
0 + CT

1 ≥ 0 . (29)

The absence of a ferromagnetic transition in NeuM does not generally forbid the occurence

of spin-ordered phases in asymmetric nuclear matter. Let us consider in particular SNM.

The most general form of the residual interaction (neglecting tensor interaction) can be

expressed as

vSNM(kkk,k′k′k′) =
1

N0

[

F (kkk,k′k′k′) + F ′(kkk,k′k′k′)τ̂̂τ̂τ · τ̂ ′τ̂ ′τ̂ ′ +G(kkk,k′k′k′)σ̂̂σ̂σ · σ̂′σ̂′σ̂′ +G′(kkk,k′k′k′)σ̂̂σ̂σ · σ̂′σ̂′σ̂′τ̂̂τ̂τ · τ̂ ′τ̂ ′τ̂ ′
]

(30)

where N0 is the density of states at the Fermi surface given by

N0 =
2M∗

s kF0

h̄2π2
, (31)

with kF0 = (3π2ρ/2)1/3 and M∗
s is the isoscalar effective mass defined by

M

M∗
s

= 1 +
2M

h̄2
Cτ

0ρ ,
2

M
=

1

Mn

+
1

Mp

. (32)

We have also introduced the Pauli matrices τ̂̂τ̂τ , τ̂ ′τ̂ ′τ̂ ′ in order to take into account the isospin

of the quasiparticles. As before, we can define dimensionless Landau parameters Fℓ, F
′
ℓ , Gℓ

and G′
ℓ. The Landau’s stability conditions are in this case given by

Fℓ > −(2ℓ+ 1) , (33a)

F ′
ℓ > −(2ℓ+ 1) , (33b)

Gℓ > −(2ℓ+ 1) , (33c)

G′
ℓ > −(2ℓ+ 1) . (33d)

The Landau parameters F0 and F ′
0 are related to the usual compression modulus

Kv =
3h̄2k2

F0

M∗
s

(1 + F0) , (34)

1 This inequality is not strictly required if the coefficients Cs

t
are allowed to depend on the density according

to Eqs. (3a) and (3b) and the term in (bs
0
+ bs

1
)ρα dominates at high density. However for modern Skyrme

parametrizations such a situation does not arise because 3α < 2.
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and symmetry energy

J =
h̄2k2

F0

6M∗
s

(1 + F ′
0) , (35)

respectively. The conditions on G0 and G′
0 ensure that SNM is stable against small fluctu-

ations of isoscalar and isovector spin densities respectively. These Landau parameters can

be expressed in terms of the spin asymmetry coefficient, defined by

aσ ≡
1

2

∂2e

∂I2σ

∣

∣

∣

∣

Iσ=0

=
h̄2k2

F0

6M∗
s

(1 +G0) , (36)

and the spin-isospin asymmetry coefficient, defined by

aστ ≡
1

2

∂2e

∂I2στ

∣

∣

∣

∣

Iστ=0

=
h̄2k2

F0

6M∗
s

(1 +G′
0) , (37)

where Iστ ≡ s1/ρ = (ρn↑ − ρn↓ − ρp↑ + ρp↓)/ρ. Using the Skyrme functional, the Landau

parameters G0 and G′
0 are given by

G0 = 2N0

[

Cs
0 + CT

0 k
2
F0

]

, (38)

G′
0 = 2N0

[

Cs
1 + CT

1 k
2
F0

]

. (39)

The stability of SNM at any density thus requires

CT
t ≥ 0 . (40)

These two conditions entail Eq. (29). Note that Landau’s stability conditions allow one of

the coefficients Cs
t to be negative provided their sum remains positive.

Landau’s stability conditions, Eqs. (24b),(33c) and (33d), guarantee that the unpolarized

state is locally stable (metastable) against small fluctuations of the spin and spin-isospin

polarizations. But this criterion does not necessarily imply that the unpolarized state is the

ground state, i.e. the state with the lowest energy. In particular, the ground state could still

be polarized with finite values of Iσ and Iστ . Moreover we have only considered so far the

two limiting cases of SNM and NeuM. However, the outer core of neutron stars is formed

of isospin asymmetric nuclear matter whose composition varies with depth. We thus need a

more general stability criterion.
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B. General stability criterion

Asymmetric nuclear matter is stable with respect to any degree of spin and spin-isospin

polarizations whenever the energy density Epol of the polarized state is larger than the energy

density Eunpol of the unpolarized state (for a given density ρ). Using Eqs. (7), (17) and (18)

we find

Epol =
∑

q,σ

h̄2

2M∗
qσ

τqσ + Cs
0s

2 + Cs
1(sn − sp)

2 + Cρ
0ρ

2 + Cρ
1 (ρn − ρp)

2 (41)

which for unpolarized matter (i.e. sq = 0, Tq = 0) yields

Eunpol =
∑

q

h̄2

2M∗
q

τq + Cρ
0ρ

2 + Cρ
1 (ρn − ρp)

2 , (42)

with

τq =
3

5
(3π2)2/3ρ5/3q . (43)

The difference can thus be expressed as

Epol − Eunpol =
∑

q

h̄2

2M∗
q

(τpolq − τq) + Cs
0s

2 + Cs
1(sn − sp)

2

+CT
0 sT + CT

1 (sn − sp)(Tn − Tp) (44)

where τpolq = τq↑ + τq↓ is the nucleon kinetic density in the polarized phase. The absolute

stability of the unpolarized phase can be insured by requiring each term be separately

positive so that Epol > Eunpol. Now the first term in Eq. (44) is always positive since

mechanical stability requires M∗
q ≥ 0 and the Pauli exclusion principle implies that τpolq > τq.

Let us also remark that (sn−sp)(Tn−Tp) ≥ 0 because τqσ increases monotonically with ρqσ.

The following constraints

Cs
t ≥ 0 , (45a)

and

CT
t ≥ 0 , (45b)

therefore guarantee the absence of any spin-ordered phase transitions in asymmetric nuclear

matter. It is readily seen from Eqs. (27), (38) and (39) that these inequalities enforce
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Landau stability conditions, Eq. (24b) in NeuM and Eqs. (33c) and (33d) in SNM. Since

Eqs. (45a) and (45b) ensure the stability of asymmetric nuclear matter, they obviously

prevent a ferromagnetic collapse of NeuM as can be seen from Eq. (15) remembering that

Cτ
0 + Cτ

1 ≥ 0 as a consequence of M∗
n ≥ 0.

C. Anomalous behavior of the entropy

We have seen that the stability of nuclear matter requires that CT
t ≥ 0. However, these

coefficients cannot take arbitrary values. From Eq. (4), large positive values of CT
t translate

into large negative values of CJ
t which, in certain circumstances, can lead to instabilities in

finite nuclei whose consequence is a major rearrangement of the single-particle spectrum [44].

We will now show that these coupling constants can be further constrained by requiring the

stability of nuclear matter with respect to any degree of spin and spin-isospin polarizations

at non-zero temperatures.

It was shown in Refs. [17, 18] that not only do Skyrme forces predict a ferromagnetic

transition in NeuM above a certain critical density, but worse this density decreases with

increasing temperature due to an anomalous behavior of the entropy. This argument can be

easily transposed to asymmetric nuclear matter as follows. At low temperatures (compared

to nucleon Fermi energies), the difference between the entropy density Spol of the polarized

state and the entropy density Sunpol of the unpolarized state is approximately given by

Spol − Sunpol =
∑

q,σ

π2TM∗
q ρq

2h̄2k2
Fq

[

M∗
qσ

M∗
q

(

2ρqσ
ρq

)1/3

− 1

]

. (46)

Now because the polarized phase is more ordered than the unpolarized phase, its entropy

according to Boltzmann’s definition should thus be lower, i.e. Spol < Sunpol as found in

realistic calculations [23–25, 29]. Since this should be true for any isospin asymmetry, we

find from Eq. (46)

∑

σ

M∗
qσ

M∗
q

(

ρqσ
ρq

)1/3

< 22/3 . (47)

This condition reduces to that of Ref. [17] in the limiting case of fully polarized NeuM.

Equation (47) can be equivalently expressed as (q′ 6= q)

(1 + Iσq)
1/3

1 + ΞIσq −ΥIσq′
+

(1− Iσq)
1/3

1− ΞIσq +ΥIσq′
< 2 , (48)
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with Iσq = (ρq↑ − ρq↓)/ρq,

Ξ = (CT
0 + CT

1 )ρq
2M∗

q

h̄2
, (49)

Υ = (CT
0 − CT

1 )ρq′
2M∗

q

h̄2
. (50)

We have found numerically that the inequalities (48) can be satisfied for any degree of spin

and spin-isospin polarizations, i.e. 0 < |Iσq|, |Iσq′| ≤ 1, provided

Ξ1 ≤ Ξ ≤ Ξ2 , (51a)

Υ = 0 , (51b)

with Ξ1 ≃ −0.21 and Ξ2 ≃ 0.54. We have also found solutions of (48) for |Υ| > Υc(Ξ) > 0.

But it can be seen from Eq. (50) that such solutions cannot exist for all densities and must

therefore be excluded. Inserting Eq. (49) in Eq. (51a) using Eq. (18) yields

ρq
[

(CT
0 + CT

1 )− Ξ2(C
τ
0 + Cτ

1 )
]

− Ξ2ρq′(C
τ
0 − Cτ

1 ) ≤ Ξ2

h̄2

2Mq
, (52a)

ρq
[

(CT
0 + CT

1 )− Ξ1(C
τ
0 + Cτ

1 )
]

− Ξ1ρq′(C
τ
0 − Cτ

1 ) ≥ Ξ1

h̄2

2Mq
. (52b)

The terms in ρq′ always satisfy the above inequalities. This is a consequence of the positivity

ofM∗
q for any density and isospin asymmetry which requires that Cτ

0+Cτ
1 ≥ 0 and Cτ

0−Cτ
1 ≥

0, as can be seen from Eq. (18). The conditions (52a) and (52b) can be ensured for any

density ρq by imposing that the associated terms be respectively negative and positive

leading to

Ξ1(C
τ
0 + Cτ

1 ) ≤ CT
0 + CT

1 ≤ Ξ2(C
τ
0 + Cτ

1 ) . (53)

On the other hand, Eq. (51b) implies

CT
0 = CT

1 . (54)

Combining these inequalities with Eqs. (45b), we arrive at the following restrictions

CT
0 = CT

1 , 0 ≤ CT
t ≤

1

2
Ξ2(C

τ
0 + Cτ

1 ) . (55)

Eqs. (55) guarantee that asymmetric nuclear matter remains unpolarized at finite tempera-

ture T since the free energy density of the polarized phase, defined by Fpol = Epol − TSpol,

is always higher than the free energy density Funpol = Eunpol − TSunpol of the unpolarized

phase.
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IV. STABILITY OF SKYRME FORCES REVISITED

Conventional Skyrme forces have been shown to predict various spin and spin-isospin

instabilities in nuclear matter [7, 9, 10, 13, 14, 17, 18]. We have seen in the previous section

that for a nuclear functional given by Eqs. (2a),(2b) and (2c) the stability of asymmetric

nuclear matter at any temperature can be ensured by imposing Eqs. (45a) and (55) [the

constraint proposed in Ref. [14], Eq. (6) and more generally Eq. (15), prevents a collapse

of polarized NeuM, but does not forbid a ferromagnetic transition]. While the coefficients

Cs
t are generally positive (at least for not too high densities), standard Skyrme forces yield

negative values of at least one of the couplings constants CT
t . The origin of the instabilities

can therefore be traced back to the time-odd terms ststst · TtTtTt, which are related to the time-

even terms
∑

µ,ν Jt,µνJt,µν due to gauge invariance (4). Since the seminal work of Vautherin

and Brink [38], it is commonly taken for granted that the spin-current tensor (which is

usually approximated by the spin-current vector JqJqJq) is small in nuclei, and most Skyrme

parametrizations therefore neglect them. We have tested this assumption by computing

the HFB energies with and without the J2 and J2
q terms (denoted respectively by EHFB

and E0
HFB) for all even-even nuclei with Z,N > 8 and Z < 110 lying between the proton

and neutron drip lines (Note that when the J2 and J2
q terms are included, the associated

time-odd terms in CT
t play a role in the exact treatment of the masses of odd nuclei, but not

in the equal-filling approximation [39], which we adopt here, as in all our previous papers).

The differences ∆M ≡ EHFB − E0
HFB are shown in Fig. 1 for the Skyrme parametrization

BSk17 [40, 41] which was originally fitted with the J2 and J2
q terms, and for SkI2 [42] which

was not. The impact of the J2 and J2
q terms is quite large, reaching about 20 MeV for the

heaviest nuclei. The impact of dropping or including the J2 and J2
q terms is logically found

to be correlated to the amplitude of the CT
t = −CJ

t coupling constants, especially CT
0 . For

instance, in the case of the SLy4 [35] interaction (CT
0 = −17.21 MeV fm5), the HFB energy

is affected by no more than 5 MeV, while for SkO [46] (CT
0 = −220.54 MeV fm5) values up

to 30 MeV can be reached. Adding or removing the J2 and J2
q terms a posteriori without

refitting all the parameters of the force can thus lead to significant errors. However in all

previous studies of spin and spin-isospin instabilities in nuclear matter [7–14, 17, 18], the

time-odd terms ststst · TtTtTt were taken into account whereas the Skyrme forces were generally

fitted without the J2 and J2
q terms. This treatment not only violates gauge symmetry but

14



FIG. 1: Differences between the HFB energies estimated with and without the J2-terms for two

Skyrme forces SkI2 (upper panel) and BSk17 (lower panel) for all even-even nuclei with Z,N > 8

and Z < 110 lying between the proton and neutron driplines.

also introduces inconsistencies in the residual interaction hence in the Landau parameters

(see the discussion in Section III of Ref. [43] and also in Section 5D of Ref. [44]).

We have therefore reexamined the stability of several Skyrme parametrizations for which

the J2 and J2
q terms were not included in the fit: SGII [45], SLy4 [35], SkI1-SkI5 [42],

SkO [46] and LNS [47]. The parametrization SGII [45] was constructed in order to improve

the Landau parameters G0 and G′
0 and the description of Gamow-Teller resonances in nuclei.

The Skyrme Saclay-Lyon forces and especially the parametrization SLy4 [35], have been

widely used not only in nuclear physics, but also in neutron-star studies because these forces

were constrained to reproduce a realistic neutron-matter equation of state. The SkI [42]

forces were all constrained (except for SkI1) to reproduce the isotopic shifts of the root

mean square charge radii of neutron rich Pb and Ca nuclei. Forces SkI3 and SkI4 were

constructed with non-standard spin-orbit couplings. For the parametrization SkI5, the 16O

ground-state data were excluded from the fit. We have also included the parametrization
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SkO [46] from the same group. The parametrization LNS [47] was fitted to Brueckner

calculations. The Landau parameters in SNM and in NeuM calculated at saturation density

ρ0, with and without the terms in CT
t are shown in Table I. For comparison we have

also indicated the predictions from Brueckner-Hartree-Fock calculations in SNM [48] and

from realistic calculations based on the renormalization group approach in NeuM [49]. As

can be seen in Table I, setting CT
t = 0 in Eqs. (27), (33c) and (33d) tends to reduce

the discrepancies between the different Skyrme functionals and generally leads to a better

agreement with realistic calculations, especially for G′
0. In particular, the new values of G′

0

lie closely inside the empirical range of 1.0 ± 0.1 deduced in Ref. [50] from the analysis of

Gamow-Teller resonances and magnetic-dipole modes in finite nuclei. The improvement is

quite spectacular for the parametrization SkI1. In the case of LNS, setting CT
0 = 0 actually

deteriorates the value of the Landau parameter G0 since the latter was directly fitted to

the value obtained from realistic calculations. Table II shows the critical densities of the

spin-ordered phase transitions according to Landau’s stability criterion. It can be seen that

dropping the terms ststst · TtTtTt eliminates the instabilities in almost all Skyrme forces. This

prescription is also consistent with Eqs. (55) and therefore prevents an anomalous behavior

of the entropy thus ensuring the stability of nuclear matter for any temperatures.

Moreover, setting CT
t = 0 is the only prescription which guarantees the Landau stability

conditions of Eqs. (24b), (33c) and (33d) at any density both for ℓ = 0 and ℓ = 1. Indeed

the Landau parameters G1, G
′
1 in SNM and GNeuM

1 in NeuM, are given by

G1 = −2N0C
T
0 k

2
F0 , (56)

G′
1 = −2N0C

T
1 k

2
F0 , (57)

GNeuM
1 = −2Nk2

F(C
T
0 + CT

1 ) . (58)

Requiring G1 ≥ −3, G′
1 ≥ −3 and GNeuM

1 ≥ −3 for any density thus leads to CT
t ≤ 0.

Combining these inequalities with Eqs. (40) yields CT
t = 0. Adopting these particular values

tends to be supported by the following basic sum rules of Landau Fermi liquid theory [51]

S1 =
∑

ℓ

Fℓ

1 + Fℓ/(2ℓ+ 1)
+

F ′
ℓ

1 + F ′
ℓ/(2ℓ+ 1)

+
Gℓ

1 +Gℓ/(2ℓ+ 1)
+

G′
ℓ

1 +G′
ℓ/(2ℓ+ 1)

= 0 , (59a)
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and

S2 =
∑

ℓ

Fℓ

1 + Fℓ/(2ℓ+ 1)
− 3

F ′
ℓ

1 + F ′
ℓ/(2ℓ+ 1)

−3
Gℓ

1 +Gℓ/(2ℓ+ 1)
+ 9

G′
ℓ

1 + G′
ℓ/(2ℓ+ 1)

= 0 . (59b)

Even though Skyrme forces generally violate these sum rules, the prescription CT
t = 0 sig-

nificantly improves the second sum rule as can be seen in Table III. It is quite remarkable

that dropping the terms ststst · TtTtTt not only removes all kinds of instabilities in nuclear matter

but also improves the internal consistency of the nuclear functional. Nevertheless with this

prescription, the Landau parameters G1, G′
1 and GNeuM

1 all vanish leading to unrealistic

effective masses in polarized matter. Indeed, according to Eqs. (17) M∗
q↑ = M∗

q↓ = M∗
q which

obviously holds in the limit of vanishing spin polarizations but is otherwise contradicted

by realistic calculations [23–25, 29, 31]. In particular, these calculations indicate that in

polarized NeuM Mn↑ > Mn↓ whenever ρ↑ > ρ↓. Imposing the less stringent stability con-

ditions (55) leads to a splitting of effective masses but with a wrong sign. This deficiency

calls for further extensions of existing Skyrme functionals.

In the discussion above, we have implicitly adopted the point of view of the nuclear EDF

theory [32] that the different terms appearing in Eqs (2b) and (2c) can be a priori considered

as independent from each other (apart from the requirements of gauge invariance). It is

therefore perfectly legitimate to set CJ
t = −CT

t ≡ 0. However in the framework of effective

forces, the coupling constants are uniquely determined by the parameters of the force. In

particular, the coefficients Cs
t and CT

t are now given by

Cs
0 = −

1

4
t0

(

1

2
− x0

)

−
1

24
t3

(

1

2
− x3

)

ρα (60a)

Cs
1 = −

1

8
t0 −

1

48
t3ρ

α (60b)

CT
0 = −

1

8

[

t1

(

1

2
− x1

)

− t2

(

1

2
+ x2

)]

(60c)

CT
1 = −

1

16
(t1 − t2) . (60d)

We have therefore studied the stability of the few Skyrme parametrizations which were fitted

with the J2 and J2
q terms: SkP [52], SLy5 [35], SkO′ [46], SkX [53] and BSk17 [40, 41]. The

17



parametrization SkP, which was specifically designed to be used both in the particle-hole

channel and in the particle-particle channel, is still used nowadays. The forces SLy5 and

SkO′ were fitted following the same protocol as SLy4 and SkO respectively, but they include

the contribution of the J2 and J2
q terms. The force SkX [53] was constructed in an attempt

to improve the description of single-particle energies. BSk17 is the force underlying our

nuclear mass model HFB-17, based on the Hartree-Fock-Bogoliubov method [40, 41]. With

this model we were able to fit with an rms deviation of 0.581 MeV the 2149 measured masses

of nuclei with N and Z ≥ 8 given in the 2003 Atomic Mass Evaluation [54], while at the

same time constraining the underlying Skyrme force to fit properties of SNM and NeuM, as

determined by many-body calculations using realistic potentials. The values of the Landau

parameters in SNM and in NeuM are shown in Table IV and the critical densities for the

onset of instabilities are shown in Table V. For those few Skyrme forces which include the J2

and J2
q terms, nuclear matter is therefore unstable because of the tight correlations between

the different coupling constants in the energy density. In order to illustrate the impact of

the J2 and J2
q terms and their time-odd counterparts on the stability of nuclear matter, we

have plotted in Fig. 2 the difference between the energy per particle in fully polarized NeuM

and in unpolarized NeuM for the parametrizations SLy4 and BSk17. Both have been fitted

to a realistic equation of state of NeuM, but BSk17 includes the J2 and J2
q terms while SLy4

does not. Removing all instabilities requires that we impose Cs
t ≥ 0 and CT

t = 0. Since the

first term in t0 of the Skyrme force is generally associated with the long-range attractive part

of the nucleon-nucleon interaction while the density-dependent term in t3 is related to the

strongly repulsive short-range part, the coupling constant Cs
0 can be made positive for any

density by choosing x0 < 1/2 and x3 > 0. With t0 < 0 and t3 > 0, the coefficient Cs
1 will be

positive, at least for not too high densities. Spin- and spin-isospin instabilities thus generally

arise mainly from the coupling constants CT
0 and CT

1 , which in turn are generated by the

momentum-dependent terms in t1 and t2. Using Eqs. (60c) and (60d), the conditions CT
t = 0

entail t1 = t2 and x1 = −x2. Imposing these constraints would leave no degree of freedom

for adjusting surface properties of nuclei, which also depend on the momentum dependent

t1 and t2 terms through the coupling constants C∆ρ
t . This would also have an impact on

the coupling constants Cτ
t which determine the nucleon effective masses, Eq. (18). There is

little doubt that such a force would yield poor results when applied to nuclei. Since thermal

effects on the spin polarization are rather small for temperatures found in protoneutron stars
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and supernova cores [17], one may be tempted to require the stability of cold nuclear matter

only. But even in this case, it was shown in Refs. [7, 8] that it is not possible to avoid

spurious transitions to spin-ordered phases in nuclear matter above 2–3 times saturation

density, and at the same time giving reasonable properties of SNM. We have found that

the critical densities above which instabilities occur are even lower when more nuclear data

are included in the fit of the effective interaction. In particular, conventional Skyrme forces

fitted to essentially all experimental nuclear mass data predict a ferromagnetic transition in

NeuM at a density slightly above saturation density [13] (see also Table V).

The stability of cold nuclear matter can only be restored by including additional com-

ponents in the Skyrme interaction, thereby inducing new terms in the energy density. Two

different extensions have been recently proposed. Margueron and Sagawa [12] considered

extended Skyrme forces with two new t3 like terms depending on the nucleon spin densities

sqsqsq of the form

1

6
ts3(1 + xs

3Pσ)s(rrr)
2 δ(rrrij) +

1

6
tst3 (1 + xst

3 Pσ)s1(rrr)
2 δ(rrrij) . (61)

In the energy density, Eqs. (2b) and (2c), these new terms modify the coefficients Cs
t .

The additional parameters were adjusted so as to ensure the Landau stability conditions

G0 > −1, G′
0 > −1 and GNeuM

0 > −1. The nuclear mass model HFB-17 [40, 41] was thus

refitted with these new terms [55]. With this extended Skyrme force called BSk17st, it

was possible to maintain the quality of the HFB-17 mass model, and at the same time the

Landau parameters were adjusted so as to remove the spin and spin-isospin instabilities

present in the original force BSk17. Unfortunately instabilities were still found for finite

spin and spin-isospin polarizations [55]. The reason is that terms of the form given by

Eq. (61), do not change the coefficients CT
t and consequently, Eq. (44) is not guaranteed to

remain positive for any spin and spin-isospin polarizations. Moreover, as noted in Ref. [55]

the contributions of Eq. (61) to the energy density cancel in fully polarized NeuM so that

BSk17st still predicts a ferromagnetic collapse of NeuM as BSk17 does. The extension of

Ref. [12] does not affect the coefficients CT
t hence also the effective masses of spin-up and

spin-down nucleons are not affected, as can be seen from Eq. (17). This means that if the

original Skyrme force violates the constraint (47), this will still be the case for the extended

version of this force.

Alternatively, instabilities can be avoided by introducing into the force, density-dependent
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FIG. 2: Difference between the energy per particle in fully polarized neutron matter and in un-

polarized neutron matter for two Skyrme forces SLy4 and BSk17, with (dashed line) and without

(solid line) the J2 and J2
q terms and their time-odd part. The black dots indicate the densities at

which the difference vanishes.

generalizations of the usual t1 and t2 terms of the form [13]

1

2
t4(1 + x4Pσ)

1

h̄2

[

p2ij ρ(rrr)
βδ(rrrij) + δ(rrrij)ρ(rrr)

β p2ij
]

+ t5(1 + x5Pσ)
1

h̄2
pppij · ρ(rrr)

γδ(rrrij)pppij .(62)

These new terms modify the coefficients Cτ
t , C

T
t , C

∆ρ
t and C∆s

t thus providing more flexibility

to remove instabilities without deteriorating the fit to nuclear data. We have constructed a

new nuclear mass model, labeled HFB-18, with such a generalized Skyrme force [13]. The

parameters t5, x5 and γ were chosen in order to avoid a ferromagnetic collapse of neutron-

star matter. For simplicity, the remaining parameters in Eq. (62) were fixed by the equations

β = γ , (63a)

t4 = −
1

3
t5(5 + 4x5) , (63b)

x4 = −
4 + 5x5

5 + 4x5

, (63c)
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which ensure that the contributions of the new terms to the coefficients Cτ
t vanish identically.

As a result, the t4 and t5 terms cancel exactly in unpolarized homogeneous nuclear matter.

This new model yields almost as good a mass fit as our previous model HFB-17, with the

advantage that NeuM matter is now stable with respect to any degree of spin polarizations.

Even thouth this new force still predicts an isospin instability in SNM, this does not affect

the interior of neutron stars which is now unpolarized. Moreover we have found that this

isospin instability can be easily removed if the conditions (63a)–(63c) are released, without

deteriorating the quality of the mass fit [56]. However we did not succeed in constructing

a nuclear mass model that satisfies Eq. (47). As a consequence, nuclear matter could still

become unstable at finite temperatures even though no phase transitions occur at zero

temperature, as shown in Ref. [17].

One might be tempted to enforce the stability conditions CT
t = 0 by adding a zero-

range tensor force to the conventional Skyrme interaction (5) with suitable adjustments of

the parameters, like the parametrization T22 of Ref. [44]. Unfortunately, a tensor force

introduces new terms in the functional which also affect the stability of nuclear matter [57].

The stability of 41 different Skyrme interactions having a tensor component has been recently

studied in Ref. [58]. In particular, the recent Skyrme forces from the Saclay-Lyon group [44]

which include tensor forces and which were fitted following the same protocol as the older

SLy family [35], still predict various spin and spin-isospin instabilities. This is notably the

case for the force T22 for which CT
t = 0.

V. CONCLUSION

Nuclear energy density functional theory has been traditionally restricted to very specific

phenomenological semi-local functionals of the form given by Eqs. (2a)–(2c), based on effec-

tive forces [1, 6]. However the use of effective forces introduces tight correlations between

different terms of the functional, which can generate various kinds of instabilities. In partic-

ular, the time-odd terms ststst ·TtTtTt induced by the momentum-dependent part of Skyrme forces

(which contribute also to the coupling constants Cτ
t , C

∆ρ
t and C∆s

t ) are responsible for spu-

rious spin and spin-isospin instabilities in infinite homogeneous nuclear matter at densities

encountered in the interior of neutron stars. In some cases, instabilities arise in symmetric

nuclear matter below saturation densities and could thus also contaminate calculations in
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finite nuclei (Note that the coupling constants C∆ρ
t alone were found to drive finite-size

instabilities [59]). These correlations between different parts of the nuclear energy density

functional hamper the development of more accurate functionals since adding one term in

the effective force can induce several new terms in the functional. Moreover, the coupling

constants of the time-odd terms are generally not directly fitted to experimental data but are

calculated a posteriori using the parameters of Skyrme force. However, there is no guarantee

that the effects associated with the time-odd terms will be correctly described in this way. As

shown in Refs. [7, 8] it is not possible to avoid spurious transitions to spin-ordered phases in

nuclear matter above 2–3 times saturation density. The critical densities above which these

instabilities occur, decrease when more nuclear data are included in the fit of the parame-

ters of the Skyrme force [13]. For instance, for our nuclear mass model HFB-17 [40, 41], the

ground state of neutron matter becomes ferromagnetic above 0.17 fm−3. These instabilities

can be (at least partially) removed by suitable extensions of the Skyrme force, as proposed

for instance in Refs. [12, 13]. However an unphysical spin-ordering could still occur at finite

temperatures thus spoiling the application of Skyrme forces to the hot nuclear matter found

in protoneutron stars and supernova cores. Alternatively the terms ststst · TtTtTt that are respon-

sible for spin and spin-isospin instabilities could be canceled by suitable adjustments of an

additional tensor component to the Skyrme force [44]. Unfortunately a tensor force would

also generate new terms in the energy density which still lead to instabilities [58].

On the other hand, the concept of effective forces leads to formal inconsistencies as

recently discussed in Ref. [60]. Lots of efforts are now devoted to the construction of

non-empirical functionals from realistic interactions directly without resorting to effective

forces [32]. If one adopts the point of view that the nuclear functional is more fundamen-

tal than effective forces, the different terms appearing in Eqs.(2b) and (2c) can be treated

independently (apart from the requirements of gauge invariance and cancellation of self-

interactions). It is therefore perfectly legitimate to set CJ
t = −CT

t ≡ 0. Actually the J2 and

J2
q terms are dropped in most Skyrme forces, not only because of simplicity but also because

it seems to be favored by global fits to nuclear data and basic nuclear matter properties [61].

Moreover, the J2 and J2
q terms might even lead to instabilities in the single-particle spectra

of finite nuclei, as discussed for instance in Ref. [44]. However in all previous studies of spin

and spin-isospin instabilities in nuclear matter [7–14, 17, 18], the associated time-odd terms

sss · TTT and (snsnsn − spspsp) · (TnTnTn − TpTpTp) have been included in the residual interaction thus violating
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gauge symmetry. We have therefore reexamined the stability of nuclear matter by setting

CT
t ≡ 0 for those Skyrme parametrizations which were fitted without the J2 and J2

q terms.

We have found that this simple prescription not only improves the values of the Landau

parameters G0, G
′
0 and GNeuM

0 . But this also generally removes all kinds of instabilities in

asymmetric nuclear matter both at zero and finite temperatures. Nevertheless this prescrip-

tion yields unrealistic values of the Landau parameters G1, G
′
1 and GNeuM

1 , hence also of the

effective masses M∗
qσ in polarized matter. Further improvements thus require extensions of

existing Skyrme functionals.

Acknowledgments. This work, which was initiated by discussions with J.M. Pearson,

was financially supported by FNRS (Belgium), Communauté française de Belgique (Actions
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TABLE I: Landau parametersG0 andG′
0 in symmetric nuclear matter andGNeuM

0 in neutron matter

(at saturation density) for selected Skyrme forces which were fitted without the J2 and J2
q terms.

Values in parenthesis were obtained by setting CT
t = 0. The last line shows the Landau parameters

predicted by microscopic calculations using realistic interactions: Ref. [48] for symmetric nuclear

matter and Ref. [49] for neutron matter.

G0 G′
0 GNeuM

0

SGII 0.01 (0.62) 0.51 (0.93) -0.07 (1.19)

SLy4 1.11 (1.39) -0.13 (0.90) 0.11 (1.27)

SkI1 -8.74 (1.09) 3.17 (0.90) -5.57 (1.10)

SkI2 -1.18 (1.35) 0.77 (0.90) -1.08 (1.24)

SkI3 0.57 (1.90) 0.20 (0.85) -0.19 (1.35)

SkI4 -2.81 (1.77) 1.38 (0.88) -2.03 (1.40)

SkI5 0.28 (1.79) 0.30 (0.85) -0.31 (1.30)

SkO -4.08 (0.48) 1.61 (0.98) -3.17 (0.97)

LNS 0.83 (0.32) 0.14 (0.92) 0.59 (0.91)

Realistic 0.83 1.22 0.77
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TABLE II: Critical densities above which nuclear matter becomes unstable according to Landau’s

criterion for selected Skyrme forces which were fitted without the J2 and J2
q terms. The first two

column are for symmetric nuclear matter, while the last column is for pure neutron matter. The

densities indicated in parenthesis were obtained by setting CT
t = 0.

ρc(G0) [fm
−3] ρc(G

′
0) [fm

−3] ρc(G
NeuM
0 ) [fm−3]

SGII 0.44 (∞) 0.80 (∞) 0.26 (2.07)

SLy4 ∞ (∞) 0.33 (∞) 0.59 (∞)

SkI1 0.04 (0.71) ∞ (∞) 0.05 (∞)

SkI2 0.14 (∞) ∞ (∞) 0.15 (∞)

SkI3 0.91 (∞) 0.92 (∞) 0.37 (∞)

SkI4 0.07 (∞) ∞ (∞) 0.09 (∞)

SkI5 0.43 (∞) 1.36 (∞) 0.28 (∞)

SkO 0.07 (0.52) ∞ (2.32) 0.09 (0.67)

LNS ∞ (∞) 0.43 (∞) 0.62 (1.38)

TABLE III: Landau sum rules given by Eqs. (59a) and (59b) for selected Skyrme forces which were

fitted without the J2 and J2
q terms. Values in parenthesis were obtained by setting CT

t = 0.

S1 S2

SGII 0.97 (0.61) 1.13 (-0.51)

SLy4 -0.31 (-0.65) 1.52 (0.85)

SkI1 -6.71 (-0.59) -89.2 (0.86)

SkI2 6.87 (-0.71) -20.7 (0.98)

SkI3 -1.46 (-2.33) 2.14 (1.84)

SkI4 1.01 (-1.23) -11.3 (1.32)

SkI5 -1.47 (-2.28) 2.17 (1.77)

SkO 3.21 (1.07) -13.7 (0.87)

LNS 0.49 (0.63) 3.53 (-0.04)
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TABLE IV: Landau parameters G0 and G′
0 in symmetric nuclear matter and GNeuM

0 in neutron

matter (at saturation density) for selected Skyrme forces which were fitted with the J2 and J2
q

terms. The last line shows the Landau parameters predicted by microscopic calculations using

realistic interactions: Ref. [48] for symmetric nuclear matter and Ref. [49] for neutron matter.

G0 G′
0 GNeuM

0

SkO′ -1.62 0.79 -1.43

SLy5 1.09 -0.16 0.09

SkP -0.23 0.06 -0.61

SkX -0.63 0.51 -0.50

BSk17 -0.69 0.50 -0.88

BSk17st -0.68 0.50 0.47

BSk18 -0.33 0.46 -0.57

Realistic 0.83 1.22 0.77

TABLE V: Critical densities above which nuclear matter becomes unstable according to Landau’s

criterion for selected Skyrme forces which were fitted with the J2 and J2
q terms. The first two

column are for symmetric nuclear matter, while the last column is for pure neutron matter.

ρc(G0) [fm
−3] ρc(G

′
0) [fm

−3] ρc(G
NeuM
0 ) [fm−3]

SkO′ 0.12 0.97 0.14

SLy5 ∞ 0.33 0.57

SkP 0.74 0.30 0.19

SkX 0.22 0.40 0.19

BSk17 0.21 0.68 0.17

BSk17st ∞ ∞ ∞

BSk18 ∞ 0.62 ∞
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