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ABSTRACT. In this paper, we discuss a new iterative method for computing sinp. This function

was introduced by Lindqvist in connection with the unidimensional nonlinear Dirichlet eigenvalue

problem for the p-Laplacian. The iterative technique was inspired by the inverse power method in

finite dimensional linear algebra and is competitive with other methods available in the literature.
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1 Introduction

In this paper we present a new method to compute the function sinp, inspired by recent
work done by the authors in [BEM], where an iterative algorithm based on the inverse
power method of linear algebra was introduced for the computation of the first eigenvalue
and first eigenfunction of the Dirichlet problem for the p-Laplacian in arbitrary domains in
R

N . The functions sinp, 1 < p < ∞, can be thought of as generalizations of the familiar
trigonometric functions. They arise in the unidimensional Dirichlet eigenvalue problem for
the p-Laplacian and were introduced in this capacity in [Lindqvist], where a power series
formula for computing them was also formally given.

In [BR1] sinp functions were utilized to introduce a generalization of the Prüfer transfor-
mation and thus represent, in two phase-plane coordinates, Sturm-Liouville-type problems

involving the N -dimensional radially symmetric p-Laplacian Lpu := x1−N
(

xN−1 |u′|p−2 u′
)′

,
0 6 a < x < b <∞. This approach was numerically implemented in [BR2] for an eigenvalue
problem involving Lp with separated homogeneous boundary conditions. In that paper an
interpolation table for sinp was obtained by numerically solving an ODE. Also in that paper
the authors raised the question of finding a fast and accurate algorithm for computing sinp.

Our method depends on the convergence of a sequence of functions whose definition, as
in [BEM], is motivated by an extension of the inverse power method of linear algebra for

∗E-mail addresses: rodney@mat.ufmg.br (R. J. Biezuner), grey@mat.ufmg.br (G. Ercole),
eder@iceb.ufop.br (E. Martins).
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obtaining the first eigenvalue and first eigenfunction of finite dimensional linear operators.
These functions are recursively defined and can be given in integral form, so that they can
be obtained by numerical integration.

More specifically, recall that it suffices to obtain sinp in the interval Ip = [0, πp/2], since
it is extended to the interval [πp/2, πp] symmetrically with respect to πp/2 and afterward to
the whole real line R as an odd, 2πp-periodic function (the definition of sinp as well as the
precise value of πp are recalled in Section 2). We define the following sequence of (positive)
functions {φn} ⊂ C1 (Ip). Set φ0 ≡ 1 and

{
(

φ′

n+1

∣

∣φ′

n+1

∣

∣

p−2
)

′

= −φn |φn|p−2 if x ∈ Ip,

φn+1 (0) = φ′

n+1 (πp/2) = 0.

We prove that the scaled sequence
{

p
√
p− 1φn/ ‖φn‖∞

}

converges uniformly to sinp in Ip.
The functions φn can be written in integral form as

φn+1 (x) =

∫ x

0

(

∫ πp/2

θ

φn (s)
p−1 ds

)
1

p−1

dθ, x ∈ Ip,

and, therefore, are readily computed using standard efficient numerical methods for definite
integrals.

This paper is organized as follows. In Section 2, we recall the definition and some basic
properties of sinp which will be used in the sequel. In Section 3, we show how to recursively
construct a sequence of functions which converge uniformly to sinp. Finally, in Section 4 we
compare the performance of our method with those of [Lindqvist] and [BR2].

2 The function sinp

For the sake of completeness we recall in this section the definition and some properties
of the function sinp. The unidimensional Dirichlet eigenvalue problem for the p-Laplacian,
p > 1, is

{

ψp (u
′)′ = −λψp (u) if a < x < b,

u (a) = u (b) = 0,
(1)

where ψp (t) = t |t|p−2.
It is easy to verify that if λ1 is the first eigenvalue of

{

ψp (v
′)′ = −λψp (v) if a < x < m :=

a + b

2
,

v (a) = v′ (m) = 0,
(2)

and v1 is the corresponding positive eigenfunction, then λ1 is also the first eigenvalue for (1)
with

u1 (x) =

{

v1 (x) if a 6 x 6 m,
v1 (a+ b− x) if m 6 x 6 b,
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being the corresponding positive eigenfunction. Moreover, this function is stricly increasing
on [a,m), strictly decreasing on (m, b] and has only one maximum point which is reached at
x = m. Thus, ‖u1‖∞ = u1 (m).

An expression for λ1 is well known and can be obtained by integration (see [Otani]) as
follows. First multiply (1) by u′1 and integrate the resulting equation by parts on [a, x] to
obtain

ψp (u
′

1) u
′

1|
x

a −
∫ x

a

ψp (u
′

1) u
′′

1dx = −λ1
∫ x

a

ψp (u1) u
′

1dx. (3)

We have
ψp (u

′

1)u
′

1|
x

a = |u′1 (x)|
p − |u′1 (a)|

p
(4)

∫ x

a

ψp (u1) u
′

1dx =

∫ u1(x)

u1(a)

ψp (s) ds =
|u (x)|p
p

− |u (a)|p
p

, (5)

∫ x

a

ψp (u
′

1) u
′′

1dx =

∫ u′

1
(x)

u′

1
(a)

ψp (s) ds =
|u′ (x)|p

p
− |u′ (a)|p

p
. (6)

Substituting (4), (5) and (6) in (3) we obtain

(

1− 1

p

)

[

|u′1 (x)|
p − |u′1 (a)|

p]
= −λ1

[ |u1 (x)|p
p

− |u1 (a)|p
p

]

,

whence
[(

1− 1

p

)

|u′1|
p
+ λ1

|u1|p
p

]x

a

= 0.

This means that
p− 1

p
|u′1|

p
+
λ1
p
|u1|p ≡ C,

where C is a constant and p′ = p/ (p− 1) is the conjugate of p. The value of C can be
found computing the value of this expression at the maximum point m; choosing u1 such
that u1 (m) = 1 we find

C =
p− 1

p
|u′1 (m)|p + λ1

p
|u1 (m)|p = λ1

p
.

Therefore,
(p− 1) |u′1 (x)|

p
+ λ1 |u1 (x)|p = λ1 (7)

for all x ∈ [a, b].
On the interval [a,m] we have u′ > 0, hence we can write

u′1 (x)
p
√

(1− |u1 (x)|p)
= p

√

λ1
p− 1

(8)
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for all x ∈ [a,m]. Integrating this equation on (a,m) leads to

b− a

2
p

√

λ1
p− 1

=

∫ u1(m)

u1(a)

ds
p
√
1− sp

=

∫ 1

0

ds
p
√
1− sp

,

which gives the expression

λ1 = (p− 1)

(

2

b− a

∫ 1

0

ds
p
√
1− sp

)p

=

(

πp
b− a

)p

, (9)

where we set

πp := 2 p
√

p− 1

∫ 1

0

ds
p
√
1− sp

. (10)

Making the change of variable s = p
√
t in the last integral and using the classical Beta

function B we obtain
∫ 1

0

ds
p
√
1− sp

=
1

p

∫ 1

0

t
1

p
−1(1− t)−

1

pdt =
1

p
B

(

1− 1

p
,
1

p

)

=
π/p

sin(π/p)

(Here one use the properties B(x, y)B(x + y, 1 − y) = x/x sin (πy) and B(1, z) = 1/z with
x = 1− 1/p and y = z = 1/p).

Therefore,

πp =
2 p
√
p− 1 (π/p)

sin(π/p)
(11)

and

λ1 =

(

2 p
√
p− 1 (π/p)

(b− a) sin (π/p)

)p

.

When a = 0 and b = πp we denote the function p
√
p− 1u1 by sinp . Thus, sinp (0) = 0 =

sin′

p (πp/2), λ1 = 1 and from (7):

∣

∣sin′

p

∣

∣

p
+

|sinp|p
p− 1

= 1.

It is clear from this equation that sin′

p (0) = 1.
We remark that u = sinp is also the unique solution of the initial value problem

|u′|p + |u|p
p− 1

= 1, u (0) = 0,

which can be used to define this function.
Alternatively, we can define sinp on the interval [0, πp/2] as an inverse function. In fact,

multiplying (8) by p
√
p− 1 and using (9) with a = 0 and b = πp we obtain

∫ sinp(x)

0

ds

p

√

(

1− sp

p−1

)

= x, for x ∈ [0, πp/2] ,
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that is, sinp = ζ−1 where

ζ (z) :=

∫ z

0

ds

p

√

(

1− sp

p−1

)

, for z ∈
[

0, p
√

p− 1
]

.

With this definition, we extend sinp to the interval [πp/2, πp] symmetrically with respect
to πp/2 and afterward to the whole real line R as an odd, 2πp-periodic function. We list the
basic properties of sinp:

1. sinp (0) = 0 = sinp (πp), sinp (πp/2) = ‖sinp‖∞ = p
√
p− 1.

2. sinp (x) is strictly increasing in [0, πp/2] and strictly decreasing in [πp/2, πp] .

3.
∣

∣sin′

p (x)
∣

∣ = p

√

1− |sinp|p
p− 1

.

3 A sequence uniformly convergent to sinp

Let Ip = [0, πp/2] and define the following sequence of functions {φn} ⊂ C1 (Ip). Set φ0 ≡ 1
and

{ (

ψp

(

φ′

n+1

))

′

= −ψp (φn) if x ∈ Ip,
φn+1 (0) = φ′

n+1 (πp/2) = 0.

In this section, we prove that the scaled sequence
{

p
√
p− 1φn/ ‖φn‖∞

}

converges uniformly
to sinp in Ip. Before proceeding, we recall some basic properties of the ψp functions:

Proposition 3.1. (Basic properties of ψp) The following holds:

1. ψp is continuous, strictly increasing and odd, for each p > 1.

2. ψp (ab) = ψp (a)ψp (b) .

3. ψp

(a

b

)

=
ψp (a)

ψp (b)

4. (ψp)
−1 = ψp′ .

5.
∫ t

0
ψp (s) ds =

|t|p
p
.

By a straightforward calculation we can find the following recursive integral expression
for the φn-functions:

φn+1 (x) =

∫ x

0

ψp′

(

∫ πp/2

θ

ψp (φn (s)) ds

)

dθ. (12)
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It is clear from (12) that each φn is positive, increasing on Ip and reaches its maximum
value at x = πp/2. One can obtain an explicit expression for φ1, the second function in the
sequence:

φ1 (x) =

∫ x

0

ψp′

(

∫ πp/2

θ

ψp (1) ds

)

dθ

=

∫ x

0

ψp′

(πp
2

− θ
)

dθ

=

∫ πp/2

πp/2−x

ψp′ (y)dy

=
1

p

[(πp
2

)p

−
(πp
2

− x
)p]

.

Note that

‖φ1‖∞ = φ1

(πp
2

)

=
1

p

(πp
2

)p

=
p− 1

p

(

π/p

sin (π/p)

)p

.

The next φn-functions however, are very difficult to obtain explicitly by solving the integrals
analytically. On the other hand, the integrals can easily be solved numerically.

Proposition 3.2. φn+1 6 ‖φ1‖∞ φn on Ip.

Proof. For n = 1 the result is trivially true since φ0 ≡ 1.Assuming by induction that
φn 6 ‖φ1‖∞ φn−1, we have

φn+1 (x) =

∫ x

0

ψp′

(

∫ πp/2

θ

ψp (φn (s)) ds

)

dθ

6

∫ x

0

ψp′

(

∫ πp/2

θ

ψp (‖φ1‖∞ φn−1 (s)) ds

)

dθ

=

∫ x

0

ψp′

(

ψp (‖φ1‖∞)

∫ πp/2

θ

ψp (φn−1 (s)) ds

)

dθ

= ‖φ1‖∞
∫ x

0

ψp′

(

∫ πp/2

θ

ψp (φn−1 (s)) ds

)

dθ

= ‖φ1‖∞ φn (x) .

�

The following technical lemma, which will be used in the sequel, can be proved via the
Cauchy mean value theorem (see [AVV]) and works as a L’Hôpital’s rule in order to get
monotonicity for a certain quotient function.
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Lemma 3.3. Let f, g : [a, b] −→ R be continuous on [a, b] and differentiable in (a, b).

Suppose g′(x) 6= 0 for all x ∈ (a, b). If
f ′

g′
is (strictly) increasing [decreasing ], then

both
f(x)− f(a)

g(x)− g(a)
and

f(x)− f(b)

g(x)− g(b)
are (strictly) increasing [decreasing ].

Theorem 3.4. For each n > 1 the function
φn

φn+1
is strictly decreasing on Ip and

(i)
1

‖φ1‖∞
6 inf

Ip

φn

φn+1

=
φn (πp/2)

φn+1 (πp/2)
=

‖φn‖∞
‖φn+1‖∞

.

(ii)

∥

∥

∥

∥

φn

φn+1

∥

∥

∥

∥

∞

= ψp′

(

∫ πp/2

0
ψp (φn−1 (s)) ds

∫ πp/2

0
ψp (φn (s)) ds

)

for n > 1.

(iii)

∥

∥

∥

∥

φn

φn+1

∥

∥

∥

∥

∞

6

∥

∥

∥

∥

φn−1

φn

∥

∥

∥

∥

∞

6 · · · 6
∥

∥

∥

∥

φ1

φ2

∥

∥

∥

∥

∞

<∞.

Proof. Since φ1 is strictly increasing, it follows that 1/φ1 is strictly decreasing. Assume by
induction that φn−1/φn is strictly decreasing. Since

φn (x)− φn (0)

φn+1 − φn+1 (0)
=

φn (x)

φn+1 (x)
,

in order to show that φn/φn+1 is strictly decreasing, it suffices in light of the lemma to verify
that φ′

n/φ
′

n+1 is strictly decreasing on Ip. But,

φ′

n (x)

φ′

n+1 (x)
=

ψp′

(

∫ πp/2

x

ψp (φn−1 (s)) ds

)

ψp′

(

∫ πp/2

x

ψp (φn (s)) ds

) = ψp′











∫ πp/2

x

ψp (φn−1 (s)) ds

∫ πp/2

x

ψp (φn (s)) ds











.

Since ψp′ is strictly increasing and the functions
∫ πp/2

x
ψp (φn−1 (s)) ds and

∫ πp/2

x
ψp (φn (s)) ds

are null at x = πp/2, we can apply the lemma again to verify that the quotient of these
integral functions is a strictly decreasing function. We have

(

∫ πp/2

x

ψp (φn−1 (s)) ds

)

′

(

∫ πp/2

x

ψp (φn (s)) ds

)

′
=
ψp (φn−1 (s))

ψp (φn (s))
= ψp

(

φn−1

φn

)

,

which is strictly decreasing by the induction hypothesis.

7



The inequality in (i) follows from Proposition 3.2. Before verifying (ii) we remark that
‖1/φ1‖∞ = ∞ since φ1 (0) = 0. In order to prove (ii) we first observe that the monotonicity
of φn/φn+1 implies that

∥

∥

∥

∥

φn

φn+1

∥

∥

∥

∥

∞

= lim
x→0+

φn (x)

φn+1 (x)
.

L’Hôpital’s rule then yields

lim
x→0+

φn (x)

φn+1 (x)
= lim

x→0+

φ′

n (x)

φ′

n+1 (x)
= ψp′

(

∫ πp/2

0
ψp (φn−1 (s)) ds

∫ πp/2

0
ψp (φn (s)) ds

)

<∞.

The proof of (iii) is a consequence of the following estimates, valid for n > 2:

∥

∥

∥

∥

φn

φn+1

∥

∥

∥

∥

∞

= ψp′











∫ πp/2

0

ψp (φn−1 (s)) ds

∫ πp/2

0

ψp (φn (s)) ds











6 ψp′











∫ πp/2

0

ψp (φn (s))ψp

(

φn−1

φn
(s)

)

ds

∫ πp/2

0

ψp (φn (s)) ds











6 ψp′











∫ πp/2

0

ψp (φn (s))ψp

(∥

∥

∥

∥

φn−1

φn

∥

∥

∥

∥

∞

)

ds

∫ πp/2

0

ψp (φn (s)) ds











=

∥

∥

∥

∥

φn−1

φn

∥

∥

∥

∥

∞

ψp′











∫ πp/2

0

ψp (φn (s)) ds

∫ πp/2

0

ψp (φn (s)) ds











=

∥

∥

∥

∥

φn−1

φn

∥

∥

∥

∥

∞

.

�

Theorem 2.4. Let un :=
φn

‖φn‖∞
∈ C1 (Ip) , for n > 1. Then the sequence {un (x)}n>1 is

decreasing for each x ∈ Ip and

p
√

p− 1un → sinp uniformly in Ip.
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Proof. In Ip we have

un
un+1

=
φn

φn+1

( ‖φn‖∞
‖φn+1‖∞

)

−1

>

(

inf
Ip

φn

φn+1

)( ‖φn‖∞
‖φn+1‖∞

)

−1

=

( ‖φn‖∞
‖φn+1‖∞

)( ‖φn‖∞
‖φn+1‖∞

)

−1

= 1,

that is, {un (x)}n>1 is decreasing for each x ∈ Ip, and the whole sequence is bounded below
by u1. Thus, there exists

u := lim un.

We have ‖un‖∞ = 1 for each n. Moreover, since

‖φn‖∞
‖φn+1‖∞

= inf
Ip

φn

φn+1

6

∥

∥

∥

∥

φn

φn+1

∥

∥

∥

∥

∞

6

∥

∥

∥

∥

φ1

φ2

∥

∥

∥

∥

∞

=: C,

we also have, for every x ∈ Ip,

|u′n (x)| =
1

‖φn‖∞
ψp′

(

∫ πp/2

x

ψp (φn−1 (s)) ds

)

=
‖φn−1‖∞
‖φn‖∞

ψp′

(

∫ πp/2

x

ψp

(

φn−1 (s)

‖φn−1‖∞

)

ds

)

6 Cψp′

(

∫ πp/2

0

ψp (un−1) ds

)

6 Cψp′

(

∫ πp/2

0

ψp (1) ds

)

=
Cπp
2
.

It follows from Arzela-Ascoli’s theorem that un → u ∈ C (Ip), uniformly.
In order to conclude the proof, we need just to show that

u =
sinp

p
√
p− 1

. (13)

From (12) we can write the following expression:

un+1 (x) = γn

∫ x

0

ψp′

(

∫ πp/2

θ

ψp (un (s)) ds

)

dθ,

9



where

γn :=
‖φn‖∞
‖φn+1‖∞

.

In view of the boundedness of {γn}, there exists γ := lim γnk
for some subsequence {γnk

} .
Thus, letting k → ∞ in

unk+1 (x) = γnk

∫ x

0

ψp′

(

∫ πp/2

θ

ψp (unk
(s)) ds

)

dθ,

we get

u (x) = γ

∫ x

0

ψp′

(

∫ πp/2

θ

ψp (u (s)) ds

)

dθ ∈ C1 (Ip) ,

which means that u is a positive solution to the following problem

{

ψp (u
′)′ = −γψp (u) if x ∈ Ip,

u (0) = u′ (πp/2) = 0.

In view of the positivity of u, we can integrate the equation above multiplied by u′ and
proceed as in the derivation of (9) to find γ = 1. From this we conclude that in fact
lim γn = 1 (the whole sequence converges to the eingenvalue 1) and that u = lim un satisfies
the same boundary value problem that sinp / ‖sinp‖ does. Since both u and sinp are positive
and ‖u‖

∞
= ‖sinp / ‖sinp‖‖∞ = 1, we must have

u =
sinp

‖sinp‖

whence (13) follows. �

4 Numerical Results

Next we examine the computational time of each method. Computations were performed on
a WindowsXP/Pentium 4-2.8GHz platform, using the GCC compiler. Although the method
of computing sinp by solving an ODE suggested in [BR2] (which we implemented by means
of a standard Runge-Kutta fourth power method) is by far the fastest, the computational
times of the other two methods are competitive, the inverse power method being on average
more than twice as fast as the power series method of [Lindqvist] for values of p greater than
2. Also, the average number of 8 iterations that the inverse power method uses to obtain
the same (and sometimes better; see Table 2) accuracy of the differential equation method
of [BR2] is quite remarkable, specially taking into account that the functions φn converge to
0 rather rapidly. We emphasize that the computational time of the inverse power method is
not the main subject of this presentation. The method demands the computation of double
integrals at each iteration for each grid point. We opted for a classical, computationally easy

10



to implement and reasonably fast method to compute these integrals, namely, the Simpson
composite method. However, a greater effort spent in lessening the computational time of
the numerical integrations certainly would be reflected in a substantial decrease in the time
spent computing sinp overall. Nevertheless, by considering the accuracy and the comparison
scale among the three methods (on the range of miliseconds) we may say that the results
presented in this paper validate the inverse power method as an effective and reasonably fast
method for numerically obtaining sinp.

Below we present the average time spent in computing sinp on the whole interval Ip
divided in 101 grid points by each method for six values of p (the average was taken out
of five computer runs); the stop criterion in each method was an error tolerance of 10−8

between successive iterations and less than 500 terms in the power series.

p 1.1 1.5 2.0 2.5 3.0 3.5
Inverse power method 21.5 32.1 1.1 37.7 37.8 31.7
Differential equation method 1.9 1.8 1.1 1.5 1.5 1.5
Power series 92.9 2.2 2.0 79.6 79.3 73.3

Table 1: Average time (in miliseconds) for the computation of sinp on Ip for each method.

Besides the trivial point 0, the only point where the value of sinp is exactly known is πp/2,
with sinp (πp/2) =

p
√
p− 1. In the next table we present the computed value for sinp (πp/2)

obtained using each method:

p 1.1 1.5 2.0 2.5 3.0 3.5
p
√
p− 1 0.123285 0.629961 1 1.17608 1.25992 1.29926

Inverse power method 0.123285 0.629961 1 1.17608 1.25992 1.29926
Differential equation method 0.123285 0.629966 1.00017 1.17647 1.26044 1.29983
Power series 5.3× 10128 0.629961 1 1.17608 1.25993 1.29928

Table 2: Value of sinp (πp/2) = p
√
p− 1 obtained independently using each method.

Notice that the inverse power method appears to be more accurate when computing sinp at
values close to πp/2. Indeed, in order to obtain a good approximation close to this point,
it was necessary to allow for a greater number of terms in the power series than would be
necessary for points far from πp/2.

p 1.1 1.5 2.0 2.5 3.0 3.5
Inverse power method 5 8 9 8 8 8

Power Series 501 13 8 470 501 501

Table 3: Number of iterations.
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We see that the number of iterations used by the inverse power method is remarkably low.
Below, we present the graphics of sinp for the same values of p computed using the three
methods (except for p = 1.1, since the power series appears to diverge in this case). Notice
that all three methods agree very well with each other, being virtually indistinguishable.
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