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Abstract

We discuss the isospin symmetry breaking (ISB) of the valence- and sea-quark distributions

between the proton and the neutron in the framework of the chiral quark model. We assume that

isospin symmetry breaking is the result of mass differences between isospin multiplets and then

analyze the effects of isospin symmetry breaking on the Gottfried sum rule and the NuTeV anomaly.

We show that, although both flavor asymmetry in the nucleon sea and the ISB between the proton

and the neutron can lead to the violation of the Gottfried sum rule, the main contribution is from

the flavor asymmetry in the framework of the chiral quark model. We also find that the correction

to the NuTeV anomaly is in an opposite direction, so the NuTeV anomaly cannot be removed by

isospin symmetry breaking in the chiral quark model. It is remarkable that our results of ISB for

both valence- and sea-quark distributions are consistent with the Martin-Roberts-Stirling-Thorne

parametrization of quark distributions.
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I. INTRODUCTION

Isospin symmetry was originally introduced to describe almost identical properties of

strong interaction of the proton and the neutron by turning off their electromagnetic inter-

action, i.e., their charge information. This symmetry is commonly expected to be a precise

symmetry [1, 2], and its breaking is assumed to be negligible in the phenomenological or

experimental analysis. This is, in general, true, since electromagnetic interactions are weak

compared with strong interactions. However, it is possible for isospin symmetry breaking

(ISB) to have important influence on some experiments, especially its effects on the parton

distributions. Therefore, it is necessary to analyze it carefully.

The isospin symmetry between the proton and the neutron originates from the SU(2)

symmetry between u and d quarks, which are isospin doublets with isospin I = 1/2 and

isospin three-components (I3) 1/2 and -1/2, respectively. The isospin symmetry at parton

level indicates that the u (d, ū, d̄)-quark distribution in the proton is equal to the d (u, d̄, ū)-

quark distribution in the neutron. Accordingly, the ISBs of both valance-quark and sea-

quark distributions are defined, respectively, as

δuV(x) = upV(x)− dnV(x),

δdV(x) = dpV(x)− unV(x),

δū(x) = ūp(x)− d̄n(x),

δd̄(x) = d̄p(x)− ūn(x), (1)

where qNV(x) = qN(x)− q̄N(x) (q = u, d, N = p, n).

ISB at the parton level and its possible consequences for several processes were first

investigated by one of us [3]. It was pointed out that both flavor asymmetry in the nucleon

sea and isospin symmetry breaking between the proton and the neutron can lead to the

violation of the Gottfried sum rule reported by the New Muon Collaboration [4, 5]. The

possibility of distinguishing these two effects was also discussed in detail [6].

In 2002, the NuTeV Collaboration [7] extracted sin2 θW by measuring the ratios of neutral

current to charged current ν and ν̄ cross sections on iron targets. The reported sin2 θW =

0.2277 ± 0.0013 (stat) ± 0.0009 (syst) has approximately 3 standard deviations above the

world average value sin2 θW = 0.2227±0.0004 measured in other electroweak processes. This

remarkable deviation is called the NuTeV anomaly and was discussed in a number of papers
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from various aspects, including new physics beyond the standard model [8], the nuclear

effect [9], nonisoscalar targets [10], and strange-antistrange asymmetry [11–13]. Moreover,

the possible influence of ISB on this measurement was also studied in a series of papers [14–

20]. However, the correction from ISB to the NuTeV anomaly is still not conclusive.

The Martin-Roberts-Stirling-Thorne (MRST) group [21] provided some evidence to sup-

port the ISB effects on parton distributions of both valance and sea quarks and included

ISB in the parametrization based on experimental data. They obtained the ISB of valance

quarks as

δuV = −δdV = κ(1− x)4x−0.5(x− 0.0909), (2)

where −0.8 ≤ κ ≤ +0.65 with a 90% confidence level, and the best fit value is κ = −0.2.

They also obtained the ISB of sea quarks, as can be deduced from Eqs. (28) and (29) in

Ref. [21],

δū(x) = kūp(x), δd̄(x) = kd̄p(x), (3)

with the best fit value k = 0.08.

In this paper, we calculate the ISB of the valance- and sea-quark distributions between

the proton and the neutron in the chiral quark model and discuss some possible effects

of ISB. We assume that the ISB between the proton and the neutron is entirely from the

mass difference between isospin multiplets at both hadron and parton levels.1 In Sec. II, we

compute ISB in the chiral quark model, with the constituent-quark-model results as the bare

constituent-quark-distribution inputs. Then, we calculate the ISB effect on the violation of

the Gottfried sum rule. In Sec. III, we discuss the ISB correction to the measurement of the

weak angle and point out the significant influence on the NuTeV anomaly. In Sec. IV, we

provide summaries of the paper.

II. ISOSPIN SYMMETRY BREAKING IN THE CHIRAL QUARK MODEL

The chiral quark model, established by Weinberg [22] and developed by Manohar and

Georgi [23], has an apt description of its important degrees of freedom in terms of quarks,

1 As mass difference between isospin multiplets, especially that between u and d quarks, is not entirely due

to charge difference, we refer such effect as Isospin Symmetry Breaking (ISB) instead of Charge Symmetry

Breaking (CSB) as called in some papers.
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gluons, and Goldstone (GS) bosons at momentum scales relating to hadron structure. This

model is successful in explaining numerous problems, including the violation of the Gottfried

sum rule from the aspect of flavor asymmetry in the nucleon sea [24, 25], the proton spin cri-

sis [26–28], and the NuTeV anomaly resulting from the strange-antistrange asymmetry [13],

and has been widely recognized as an effective theory of QCD at the low-energy scale.

In the chiral quark model, the minor effects of the internal gluons are negligible. The

valence quarks contained in the nucleon fluctuate into quarks plus GS bosons, which spon-

taneously break chiral symmetry. Then, the effective interaction Lagrangian is

L = ψ̄ (iDµ + Vµ) γ
µψ + igAψ̄Aµγ

µγ5ψ + · · · , (4)

where

ψ =











u

d

s











(5)

is the quark field and Dµ = ∂µ + igGµ is the gauge-covariant derivative of QCD. Gµ stands

for the gluon field, g stands for the strong coupling constant, and gA stands for the axial-

vector coupling constant. Vµ and Aµ are the vector and the axial-vector currents, which are

defined as




Vµ

Aµ



 =
1

2

(

ξ+∂µξ ± ξ∂µξ
+
)

, (6)

where ξ = exp(iΠ/f), and Π has the form:

Π ≡ 1√
2











π0
√
2
+ η√

6
π+ K+

π− − π0
√
2
+ η√

6
K0

K− K0 −2η√
6











. (7)

Expanding Vµ and Aµ in powers of Π/f , one gets Vµ = 0 + O(Π/f)2 and Aµ = i∂µΠ/f +

O(Π/f)2. The pseudoscalar decay constant is f ≃ 93 MeV. Thus, the effective interaction

Lagrangian between GS bosons and quarks in the leading order becomes [24]

LΠq = −gA
f
ψ̄∂µΠγ

µγ5ψ. (8)

Based on the time-ordered perturbative theory in the infinite momentum frame, all particles

are on-mass-shell, and the factorization of the subprocess is automatic, so we can express the
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quark distributions inside a nucleon as a convolution of a constituent-quark distribution in

a nucleon and the structure functions of a constituent quark. Since the η is relatively heavy,

we neglect the minor contribution from its suppressed fluctuation in this paper. Then, the

light-front Fock decompositions of constituent-quark wave functions are

|U〉 =
√

Zu|u0〉+ aπ+ |dπ+〉+ auπ0√
2
|uπ0〉+ aK+|sK+〉, (9)

|D〉 =
√

Zd|d0〉+ aπ−|uπ−〉+ adπ0√
2
|dπ0〉+ aK0|sK0〉, (10)

where Zu and Zd are the renormalization constants for the bare constituent u quark |u0〉 and
d quark |d0〉, respectively, and |aα|2 (α = π,K) are the probabilities to find GS bosons in

the dressed constituent-quark states |U〉 and |D〉. In the chiral quark model, the fluctuation

of a bare constituent quark into a GS boson and a recoil bare constituent quark is given

as [29]

qj(x) =

∫ 1

x

dy

y
Pjα/i(y)qi

(

x

y

)

, (11)

where Pjα/i(y) is the splitting function, which gives the probability of finding a constituent

quark j carrying the light-cone momentum fraction y together with a spectator GS boson α,

Pjα/i(y) =
1

8π2

(

gAm

f

)2 ∫

dk2T
(mj −miy)

2 + k2T
y2(1− y)[m2

i −M2
jα]

2
. (12)

mi, mj , and mα are the masses of the i- and j-constituent quarks and the pseudoscalar

meson α, respectively, and m = (mi +mj)/2 is the average mass of the constituent quarks.

M2
jα =

(

m2
j + k2T

)

/y + (m2
α + k2T ) / (1− y) is the square of the invariant mass of the final

state. We can also write the internal structure of GS bosons in the following form

qk(x) =

∫

dy1
y1

dy2
y2
Vk/α

(

x

y1

)

Pαj/i

(

y1
y2

)

qi (y2) , (13)

where Vk/α(x) is the quark k distribution function in α and satisfies the normalization
∫ 1

0
Vk/α(x)dx = 1.

When we take ISB into consideration, the renormalization constant Z should take the

form

Zu = 1− 〈Pπ+〉 − 1

2
〈Puπ0〉 − 〈PK+〉,

Zd = 1− 〈Pπ−〉 − 1

2
〈Pdπ0〉 − 〈PK0〉, (14)
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where 〈Pα〉 ≡ 〈Pjα/i〉 = 〈Pαj/i〉 =
∫ 1

0
xn−1Pjα/i(x)dx [29]. It is conventional to specify the

momentum cutoff function at the quark-GS-boson vertex as

gA → g′Aexp

[

m2
i −M2

jα

4Λ2

]

, (15)

where g′A = 1, following the large Nc argument [30], and Λ is the cutoff parameter, which is

determined by the experimental data of the Gottfried sum and the constituent-quark-mass

inputs for the pion. Such a form factor has the correct t- and u-channel symmetry, Pjα/i(y) =

Pαj/i(1− y). Then, one can obtain the quark-distribution functions in the proton [29],

u(x) = Zuu0(x) + Puπ−/d ⊗ d0(x) + Vu/π+ ⊗ Pπ+d/u ⊗ u0(x) +
1

2
Puπ0/u ⊗ u0(x)

+ Vu/K+ ⊗ PK+s/u ⊗ u0(x) +
1

2
Vu/π0 ⊗

[

Pπ0u/u ⊗ u0(x) + Pπ0d/d ⊗ d0(x)
]

,

d(x) = Zdd0(x) + Pdπ+/u ⊗ u0(x) + Vd/π− ⊗ Pπ−u/d ⊗ d0(x) +
1

2
Pdπ0/d ⊗ d0(x)

+ Vd/K0 ⊗ PK0s/d ⊗ d0(x) +
1

2
Vd/π0 ⊗

[

Pπ0u/u ⊗ u0(x) + Pπ0d/d ⊗ d0(x)
]

,

ū(x) = Vū/π− ⊗ Pπ−u/d ⊗ d0(x) +
1

2
Vū/π0 ⊗

[

Pπ0u/u ⊗ u0(x) + Pπ0d/d ⊗ d0(x)
]

,

d̄(x) = Vd̄/π+ ⊗ Pπ+d/u ⊗ u0(x) +
1

2
Vd̄/π0 ⊗

[

Pπ0u/u ⊗ u0(x) + Pπ0d/d ⊗ d0(x)
]

, (16)

where the constituent quark-distributions u0 and d0 are normalized to two and one, respec-

tively. Convolution integrals are defined as

Pjα/i ⊗ qi =

∫ 1

x

dy

y
Pjα/i (y) qi

(

x

y

)

,

Vk/α ⊗ Pαj/i ⊗ qi =

∫ 1

x

dy1
y1

∫ 1

y1

dy2
y2
Vk/α

(

x

y1

)

Pαj/i

(

y1
y2

)

qi (y2) . (17)

In addition, Vk/α(x) follows the relationship

Vu/π+ = Vd̄/π+ = Vd/π− = Vū/π− = 2Vu/π0 = 2Vū/π0 = 2Vd/π0 = 2Vd̄/π0 =
1

2
Vπ,

Vu/K+ = Vd/K0. (18)

We postulate that the bare-quark distributions are isospin-symmetric between the proton

and the neutron, so we can obtain the quark distributions of the neutron by interchanging u0

and d0. Employing the quark distributions of the chiral quark model, we get the Gottfried
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sum determined by the difference between the proton and the neutron structure functions,

SG =

∫ 1

0

dx

x
[F p

2 (x)− F n
2 (x)]

=
1

9

∫ 1

0

dx
[

4up(x) + 4ūp(x)− 4un(x)− 4ūn(x) + dp(x) + d̄p(x)− dn(x)− d̄n(x)
]

=
1

3
+

∫ 1

0

dx

{

8

9
[ūp(x)− ūn(x)] +

2

9

[

d̄p(x)− d̄n(x)
]

}

=
1

3
− 8

9
〈Pπ−〉+ 2

9
〈Pπ+〉+ 5

18
(〈Puπ0〉 − 〈Pdπ0〉) . (19)

We assume that the ISB is entirely from the mass difference between isospin multiplets.

In this paper, we adopt (mu + md)/2 = 330 MeV, mπ± = 139.6 MeV, mπ0 = 135 MeV,

mK± = 493.7 MeV, and mK0 = 497.6 MeV. We choose two sets of the mass difference

between u and d quarks, namely δm = 4 MeV and δm = 8 MeV, respectively, in order to

show the dependence on this important parameter. Based on Eq. (19) and the experimental

data of the Gottfried sum [5], one can find that the appropriate value for Λπ is 1500 MeV.

However, one cannot determine ΛK in the same method, because 〈PK〉 in the Gottfried sum

is canceled out. Usually, it is assumed that ΛK = Λπ = 1500 MeV[29, 31]. However, it is

implied by the SU(3)f symmetry breaking that 〈PK〉 should be smaller, and, accordingly,

one should adopt a smaller ΛK . In this paper, we adopt a wide range of ΛK from 900 to

1500 MeV. In addition, the parton distributions of mesons are the parametrization GRS98

given by Gluck-Reya-Stratmann [32], since the parametrization is more approximate to the

actual value,

Vπ(x) = 0.942x−0.501(1 + 0.632
√
x)(1− x)0.367,

Vu/K+(x) = Vd/K0(x) = 0.541(1− x)0.17Vπ(x). (20)

We should point out that, in principle, it is possible that the parton distributions of different

mesons in the same multiplet are different, and this can contribute to ISB simultaneously.

However, in this paper, we simply neglect this possibility, and calculations in future can

be improved if we have a better understanding of the quark structure of mesons. More-

over, we have to specify constituent-quark distributions u0 and d0, but there is no proper

parametrization of them because they are not directly related to observable quantities in ex-

periments. In this paper, we adopt the constituent-quark-model distributions [33] as inputs
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for constituent-quark distributions. For the proton, we have

u0(x) =
2xc1(1− x)c1+c2+1

B[c1 + 1, c1 + c2 + 2]
,

d0(x) =
xc2(1− x)2c1+1

B[c2 + 1, 2c1 + 2]
, (21)

where B[i, j] is the Euler beta function. Such distributions satisfy the number and the

momentum sum rules

∫ 1

0

u0(x)dx = 2,

∫ 1

0

d0(x)dx = 1,

∫ 1

0

xu0(x)dx+

∫ 1

0

xd0(x)dx = 1. (22)

c1 = 0.65 and c2 = 0.35 are adopted in the calculation, following the original choice [33, 34].

We display the ISB of the valance- and sea-quark distributions in Figs. 1, 2, and 3,

respectively. It is shown that in most regions, xδuV(x) > 0 and xδū(x) > 0, and on the

contrary that xδdV(x) < 0 and xδd̄(x) < 0. Our predictions that xδū(x) > 0 and xδd̄(x) < 0

are consistent with the MRST parametrization [21], and, moreover, the shapes of xδū(x) and

xδd̄(x) are similar to the best phenomenological fitting results given by the MRST group.

We should point out that our results are analogous to the results calculated in the framework

of the meson cloudy model by Cao and Signal [18], and the shapes and magnitudes of xδū(x)

and xδd̄(x) are similar to the results given in the framework of the radiatively generated

ISB [19], but with different signs. It can also be found that the difference between various

choices of ΛK is minor, but the different choices of δm can have remarkable influence on

the distributions. Especially, larger δm can lead to larger ISB, and this is concordant with

our principle that ISB results from the mass difference between isospin multiplets at both

hadron and parton levels. From the figures, we can see that δuV(x) reaches a maximum

value at x ≈ 0.5, and δdV(x) has a minimum value at x ≈ 0.4. It should also be noted that

δqV(x) (q = u, d) must have at least one zero point due to the valance-quark-normalization

conditions. We should also point out that at large x, δuV/uV ≈ −δdV/dV, and this implies

that the magnitudes of the ISB for uV and dV are almost the same, but with opposite

signs. Moreover, although both flavor asymmetry in the nucleon sea and the ISB between

the proton and the neutron can lead to the violation of the Gottfried sum rule, the main

contribution is from the flavor asymmetry in the framework of the chiral quark model.
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u V
(x
)
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FIG. 1: The ISB of the uV-quark distribution xδuV(x) versus x in the chiral quark model with

different inputs. The red solid line is the result with δm = 4 MeV and ΛK = 1500 MeV as inputs.

The blue dashed line is the result with δm = 8 MeV and ΛK = 1500 MeV as inputs. The green

dotted line is the result with δm = 4 MeV and ΛK = 900 MeV as inputs.

III. THE CONTRIBUTION FROM ISOSPIN SYMMETRY BREAKING TO THE

NUTEV ANOMALY

The measured sin2 θW by the NuTeV Collaboration is closely related to the Paschos-

Wolfenstein (PW) ratio [35]

R− =

〈

σνN
NC

〉

−
〈

σνN
NC

〉

〈σνN
CC〉 − 〈σνN

CC〉
=

1

2
− sin2 θW, (23)

where
〈

σνN
NC

〉

is the neutral-current-inclusive cross section for a neutrino on an isoscalar

target. If we take the ISB between the proton and the neutron into account, we obtain

R−
N =

〈

σνN
NC

〉

−
〈

σνN
NC

〉

〈σνN
CC〉 − 〈σνN

CC〉
= R− + δRISB

PW, (24)
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d V
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FIG. 2: The ISB of the dV-quark distribution xδdV(x) versus x in the chiral quark model with

different inputs. The red solid line is the result with δm = 4 MeV and ΛK = 1500 MeV as inputs.

The blue dashed line is the result with δm = 8 MeV and ΛK = 1500 MeV as inputs. The green

dotted line is the result with δm = 4 MeV and ΛK = 900 MeV as inputs.

where δRISB
PW is the correction from the ISB to the PW ratio and takes the form

δRISB
PW =

(

1

2
− 7

6
sin2 θW

)

∫ 1

0
x

[

δuV(x)− δdV(x)

]

dx

∫ 1

0
x

[

uV(x) + dV(x)

]

dx

, (25)

with uV(x) and dV(x) standing for valance-quark distributions of the proton. We show

the renormalization constant Z, the total momentum fraction of valance quarks QV =
∫ 1

0
x [uV(x) + dV(x)] dx, and the correction of the ISB to the NuTeV anomaly ∆RISB

PW, with

different δm and ΛK as inputs in Table I. It can be found that the ISB correction is of

the order of magnitude of 10−3 and is more significant with a larger δm or ΛK . Our result

is consistent with the range −0.009 ≤ ∆RISB
PW ≤ +0.007, which is derived based on the

parametrization given by the MRST group [21]. We should stress that the correction is

10
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0.001
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x
q(
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FIG. 3: The ISB of the sea-quark distributions xδq̄(x) versus x in the chiral quark model. The red

solid line and the blue dashed line are the behaviors of xδū(x), with δm = 4 MeV and δm = 8 MeV,

respectively. The green dotted line and the orange dash-dotted line are the behaviors of xδd̄(x),

with δm = 4 MeV and δm = 8 MeV, respectively.

remarkable, since the NuTeV anomaly can be totally removed if ∆RPW = −0.005, and,

consequently, we should pay special attention to ISB in such problem. It is also worthwhile

to point out that the correction is in an opposite direction to remove the NuTeV anomaly

in the chiral quark model. Such a conclusion is the same as that given in the baryon-meson

fluctuation model [20], but the value is one or 2 orders of magnitude larger. Our result of

the ISB correction to the NuTeV anomaly differs from the results in Refs. [17, 19].

IV. SUMMARY

In this paper, we discuss the ISB of the valance-quark and the sea-quark distributions

between the proton and the neutron in the framework of the chiral quark model. We assume
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TABLE I: The renormalization constant, the total momentum fraction of valance quarks, and the

correction of the ISB to the NuTeV anomaly in the chiral quark model.

δm (MeV) ΛK (MeV) Zu Zd QV ∆RISB
PW

4 900 0.7497 0.7463 0.8451 0.0008

4 1200 0.7220 0.7185 0.8222 0.0008

4 1500 0.6932 0.6896 0.7985 0.0009

8 900 0.7515 0.7444 0.8455 0.0016

8 1200 0.7239 0.7165 0.8227 0.0017

8 1500 0.6953 0.6874 0.7990 0.0019

that isospin symmetry breaking is the result of mass differences between isospin multiplets.

Then, we analyze the effects of isospin symmetry breaking on the Gottfried sum rule and

the NuTeV anomaly. We show that, although both flavor asymmetry in the nucleon sea

and the ISB between the proton and the neutron can lead to the violation of the Gottfried

sum rule, the main contribution is from the flavor asymmetry in the framework of the chiral

quark model. It is remarkable that our results of ISB for both the valence-quark and sea-

quark distributions are consistent with the MRST parametrization of the ISB of valance-

and sea-quark distributions. Moreover, we find that the correction to the NuTeV anomaly

is in an opposite direction, so the NuTeV anomaly cannot be removed by isospin symmetry

breaking in the chiral quark model. However, its influence is remarkable and should be taken

into careful consideration. Therefore, it is important to do more precision experiments and

careful theoretical studies on isospin symmetry breaking.
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