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Abstract

We study scattering of higher spin closed string states at arbitrary mass levels from D-particle

in the Regge regime. We extract the complete infinite ratios among high-energy amplitudes of

different string states in the fixed angle regime from these Regge string scattering amplitudes.

In this calculation, we have used an identity proved recently based on a signless Stirling number

identity in combinatorial theory. The complete ratios calculated by this indirect method include a

subset of ratios calculated previously by direct fixed angle calculation [19]. Moreover, we discover

that in spite of the non-factorizability of the closed string D-particle scattering amplitudes, the

complete ratios derived for the fixed angle regime are found to be factorized. These ratios are

consistent with the decoupling of high-energy zero norm states calculated previously.
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I. INTRODUCTION

Recently high-energy, fixed angle behavior of string scattering amplitudes [1–3] was in-

tensively investigated for massive higher-spin string states at arbitrary mass levels [4–12].

The motivation was to uncover the fundamental hidden stringy spacetime symmetry. An

important new ingredient of this calculation was the zero-norm states (ZNS) [13–15] in the

old covariant first quantized string spectrum, in particular, the identification of inter-particle

symmetries induced by the inter-particle ZNS [13] in the spectrum. An infinite number of

linear relations among high-energy fixed angle scattering amplitudes of different string states

at each fixed but arbitrary mass levels can be derived. Moreover, these linear relations can

be used to fix the ratios among high-energy scattering amplitudes of different string states at

each fixed mass level. On the other hand, 2D discrete zero-norm states were also shown [14]

to carry the spacetime ω∞ symmetry charges of toy 2D string theory. Furthermore, in the

high-energy limit, these discrete zero-norm states approach to [8, 9] the discrete Polyakov

positive-norm states which generate the well-known ω∞ symmetry of the 2D string [16–18].

This strongly suggests that the linear relations obtained from zero-norm states are indeed

related to the hidden symmetry of the 26 dimensional string.

The calculation above was extended to scatterings of bosonic massive closed string states

at arbitrary mass levels from D-brane in [19, 20]. The scattering of massless string states

from D-brane was well studied in the literature and can be found in [21]. Since the mass

of D-brane scales as the inverse of the string coupling constant 1/g, it was assumed that it

is infinitely heavy to leading order in g and does not recoil. It was discovered [19] that all

the scattering amplitudes at arbitrary energy can be expressed in terms of the generalized

hypergeometric function 3F2 with special arguments, which terminates to a finite sum and,

as a result, the whole scattering amplitudes consistently reduce to the usual beta function.

For the simple case of D-particle, the authors of [19] explicitly calculated high-energy limit of

a series of the above scattering amplitudes for arbitrary mass levels, and derive infinite linear

relations among them for each fixed mass level. The ratios of these high-energy scattering

amplitudes were found to be consistent with the decoupling of high-energy zero-norm states

of the previous works. [4–11]. However, these ratios form only a subset of the complete

ratios for general high-energy vertex in the fixed angle.

In this paper, we calculate the general high-energy scattering amplitudes of arbitrary
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higher spin massive closed string states scattered from D-particle in the small angle or

Regge regime (RR). We will assume as before that the mass of the D-particle is infinitely

heavy and so does not recoil. For Regge string-string scatterings, see [22–27]. See also [28–

30]. Regge string-string scatterings for arbitrary higher spin massive states were intensively

studied recently in [31–35]. In contrast to the case of scatterings in the fixed angle regime,

we will see that there is no linear relation among string D-particle scatterings in the RR.

However, as in the case of Regge string-string scattering amplitude calculation [31–33], we

can extract the infinite fixed angle ratios of string D-particle scatterings from these Regge

string D-particle scattering amplitudes. In this calculation, we have used a set of identities

proved recently in [34] to extract the fixed angle ratios from the Regge scattering amplitudes.

We stress that the fixed angle ratios calculated in the present paper by this indirect

method from the Regge calculation are for the most general high-energy vertex rather than

only a subset of ratios [19] obtained directly from the fixed angle calculation previously.

More importantly, we discover that the amplitudes calculated in this paper for closed string

D-particle scatterings can not be factorized and thus are different from amplitudes for the

high-energy closed string-string scattering calculated previously [32]. Amplitudes for the

high-energy closed string-string scattering can be factorized into two open string scattering

amplitudes by using a calculation [11, 32] based on the KLT formula [36]. Presumably,

this non-factorization is due to the non-existence of a KLT-like formula for the string D-

brane scattering amplitudes. There is no physical picture for open string D-particle tree

scattering amplitudes and thus no factorizaion for closed string D-particle scatterings into

two channels of open string D-particle scatterings. However, we discover that in spite of the

non-factorizability of the closed string D-particle scattering amplitudes, the complete ratios

derived for the fixed angle regime are found to be factorized. These ratios are consistent

with the decoupling of high-energy zero norm states calculated previously [4–11].

This paper is organized as follows. In section II, we first set up the kinematics. In section

III, we calculate the general string D-particle scatterings in the RR. In section IV, we extract

the ratios of string D-particle fixed angle scattering amplitudes from RR amplitudes. We

also discuss and compare the ratios of string D-particle and string-string scatterings. Finally,

we give a brief conclusion in section V.
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II. KINEMATICS SET-UP

In this paper, we consider an incoming string state with momentum k2 scattered from an

infinitely heavy D-particle and end up with string state with momentum k1in the RR. The

high-energy scattering plane will be assumed to be the X − Y plane, and the momenta are

arranged to be

k1 = (E, k1 cos φ,−k1 sinφ) , (2.1)

k2 = (−E,−k2, 0) (2.2)

where

E =
√

k22 +M2
2 =

√

k21 +M2
1 , (2.3)

and φ is the scattering angle. For simplicity, we will calculate the disk amplitude in this

paper. The relevant propagators for the left-moving string coordinate Xµ (z) and the right-

moving one X̃ν (w̄) are

〈Xµ (z) , Xν (w)〉 = −ηµν 〈X (z) , X (w)〉 = −ηµν ln (z − w) , (2.4)
〈

X̃µ (z̄) , X̃ν (w̄)
〉

= −ηµν
〈

X̃ (z̄) , X̃ (w̄)
〉

= −ηµν ln (z̄ − w̄) , (2.5)
〈

Xµ (z) , X̃ν (w̄)
〉

= −Dµν
〈

X (z) , X̃ (w̄)
〉

= −Dµν ln (1− zw̄) (for Disk) (2.6)

where matrixD has the standard form for the fields satisfying Neumann boundary condition,

while D reverses the sign for the fields satisfying Dirichlet boundary condition. Instead of

the Mandelstam variables used in the string-string scatterings, we define

a0 ≡ k1 ·D · k1 = −E2 − k21 ∼ −2E2, (2.7)

a′0 ≡ k2 ·D · k2 = −E2 − k22 ∼ −2E2, (2.8)

b0 ≡ 2k1 · k2 + 1 = 2
(
E2 − k1k2 cosφ

)
+ 1 = fixed, (2.9)

c0 ≡ 2k1 ·D · k2 + 1 = 2
(
E2 + k1k2 cosφ

)
+ 1, (2.10)

so that

2a0 + b0 + c0 = 2M2
1 + 2. (2.11)
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Since we are going to calculate Regge scattering amplitudes, b0 = fixed. We can use Eq.(2.3)

and Eq.(2.9) to calculate

cosφ ∼1−
b0 −M2

1 −M2
2 − 1

2k21
(2.12)

sin φ ∼

√

b0 −M2
1 −M2

2 − 1

k1
≡

√

b̃0
k1

(2.13)

The normalized polarization vectors on the high-energy scattering plane of the k2 string

state are defined to be [4, 5]

eP =
1

M2
(−E,−k2, 0) =

k2
M2

, (2.14)

eL =
1

M2

(−k2,−E, 0), (2.15)

eT = (0, 0, 1). (2.16)

One can then easily calculate the following kinematics

eT · k2 = 0,

eT · k1 = −k1 sin φ ∼ −

√

b̃0,

eT ·D · k1 = k1 sinφ ∼

√

b̃0,

eT ·D · k2 = 0,

eP · k2 = −M2,

eP · k1 =
1

M2

[
E2 − k1k2 cosφ

]
=

b0 − 1

2M2

,

eP ·D · k1 =
1

M2

[
E2 + k1k2 cosφ

]
=

c0 − 1

2M2

,

eP ·D · k2 =
1

M2

[
−E2 − k22

]
=

a′0
M2

∼
a0
M2

,

eT ·D · eT = −1,

eT ·D · eP = eP ·D · eT = 0,

eP ·D · eP =
1

M2
2

[
−E2 − k22

]
=

a′0
M2

2

∼
a0
M2

2

, (2.17)

which will be useful in the amplitude calculation in the next section.
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III. REGGE STRING D-PARTICLE SCATTERINGS

We now begin to calculate the scattering amplitudes. For simplicity, we will take k1 to be

the tachyon and k2 to be the tensor states. One can easily argue that a class of high-energy

string states for k2 in the RR are [31, 33]

|pn, p
′
n, qm, q

′
m〉 =

[
∏

n>0

(
αT
−n

)pn
∏

m>0

(
αP
−m

)qm

][
∏

n>0

(
α̃T
−n

)p′n
∏

m>0

(
α̃P
−m

)q′m

]

|0, k〉 (3.1)

with

∑

n

n (pn − p′n) +
∑

m

m (qm − q′m) = 0, (3.2)

∑

n

n (pn + p′n) +
∑

m

m (qm + q′m) = N = const (3.3)

where M2
2 = (N − 2).

A. An example

Before calculating the string D-particle scattering amplitudes for general cases, we take

an example and illustrate the method of calculation. We consider the case

p1 = p′1 = q1 = q′1 = q2 = q′2 = 1, others = 0. (3.4)

As we will see in the next subsection, the string D-particle scattering amplitudes with

the general states (3.1) are reduced to simple forms in the Regge limit, in which most of

the ways of contracting the operators are discarded as subleading. For a fixed number

of the contractions between ∂XP and ∂̄X̃P , the ways of contracting the other factors are

determined by the following rules.

αT
−n 1 term (contraction of ik1X with ∂nX

T ) (3.5)

α̃T
−n 1 term (contraction of ik1X̃ with ∂̄nX̃

T ) (3.6)

αP
−n







(n > 1) 1 term (contraction of ik1X with ∂nX
P )

(n = 1) 2 terms (contraction of ik1X and ik2X with ∂XP )
(3.7)

α̃P
−n







(n > 1) 1 term (contraction of ik1X̃ with ∂̄nX̃
P )

(n = 1) 2 terms (contraction of ik1X̃ and ik2X̃ with ∂̄X̃P )
(3.8)

6



Therefore we take the state Eq.(3.4) as the simplest example for the purpose of this subsec-

tion.

We start with the procedure in [36] to treat the vertex operator corresponding to the

state (3.4).

V = i6εµ1···µ6
: ∂Xµ1∂Xµ2∂2Xµ3eik2X (z) : : ∂̄X̃µ4 ∂̄X̃µ5 ∂̄2X̃µ6eik2X̃ (z̄) :

= i6 : ∂XT∂XP∂2XPeik2X (z) : : ∂̄X̃T ∂̄X̃P ∂̄2X̃P eik2X̃ (z̄) :

= i6
[

: exp
{

ik2X(z) + ε
(1)
T ∂XT (z) + ε

(1)
P ∂XP (z) + ε

(2)
P ∂2XP (z)

}

:

× : exp
{

ik2X̃(z̄) + ε
′(1)
T ∂X̃T (z̄) + ε

′(1)
P ∂X̃P (z̄) + ε

′(2)
P ∂2X̃P (z̄)

}

:
]

linear terms
(3.9)

In the last equation, we have introduced the dummy variables ε
(1)
T , ε

(1)
P , ε

(2)
P , ε

′(1)
T , ε

′(1)
P , ε

′(2)
P

associated with the non-vanishing component εTPPTPP of the polarization tensor and written

the operator in the exponential form. “linear terms” indicate that we take the sum of the

terms linear in all of ε
(1)
T , ε

(1)
P , ε

(2)
P , ε

′(1)
T , ε

′(1)
P , and ε

′(2)
P . This sum can be rephrased as the

coefficient of the product ε
(1)
T ε

(1)
P ε

(2)
P ε

′(1)
T ε

′(1)
P ε

′(2)
P because we set the dummy variables to be 1

at the end of calculation.

The string D-particle scattering amplitudes can be calculated to be

A =

∫

d2z1d
2z2 i6

·
〈

: eik1X (z1) :: e
ik1X̃ (z̄1) :: ∂X

T∂XP∂2XPeik2X (z2) :: ∂̄X̃
T ∂̄X̃P ∂̄2X̃P eik2X̃ (z̄2) :

〉

(3.10)

= i6
∫

d2z1d
2z2

·
[

exp
{〈

ik1X (z1) ik1X̃ (z̄1)
〉

+
〈(

ε
(1)
T ∂XT + ε

(1)
P ∂XP + ε

(2)
P ∂2XP + ik2X

)

(z2)

·
(

ε
′(1)
T ∂̄X̃T + ε

′(1)
P ∂̄X̃P + ε

′(2)
P ∂̄2X̃P + ik2X̃

)

(z̄2)
〉

+
〈

ik1X (z1)
(

ε
(1)
T ∂XT + ε

(1)
P ∂XP + ε

(2)
P ∂2XP + ik2X

)

(z2)
〉

+
〈

ik1X̃ (z̄1)
(

ε
′(1)
T ∂̄X̃T + ε

′(1)
P ∂̄X̃P + ε

′(2)
P ∂̄2X̃P + ik2X̃

)

(z̄2)
〉

+
〈

ik1X (z1)
(

ε
′(1)
T ∂̄X̃T + ε

′(1)
P ∂̄X̃P + ε

′(2)
P ∂̄2X̃P + ik2X̃

)

(z̄2)
〉

+
〈

ik1X̃ (z̄1)
(

ε
(1)
T ∂XT + ε

(1)
P ∂XP + ε

(2)
P ∂2XP + ik2X

)

(z2)
〉}]

linear terms
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=

∫

d2z1d
2z2

〈

: eik1X (z1) :: e
ik1X̃ (z̄1) :: e

ik2X (z2) :: e
ik2X̃ (z̄2) :

〉

·
[

exp
{

− ε
(1)
T

[

ieTk1∂2 〈X (z1)X (z2)〉+ ieTDk1∂2

〈

X̃ (z̄1)X (z2)
〉

+ ieTDk2∂2

〈

X̃ (z̄2)X (z2)
〉]

− ε
′(1)
T

[

ieTDk1∂̄2

〈

X (z1) X̃ (z̄2)
〉

+ ieTk1∂̄2

〈

X̃ (z̄1) X̃ (z̄2)
〉

+ ieTDk2∂̄2

〈

X (z2) X̃ (z̄2)
〉]

− ε
(1)
P

[

iePk1∂2 〈X (z1)X (z2)〉+ iePDk1∂2

〈

X̃ (z̄1)X (z2)
〉

+ iePDk2∂2

〈

X̃ (z̄2)X (z2)
〉]

− ε
(2)
P

[

iePk1∂
2
2 〈X (z1)X (z2)〉+ iePDk1∂

2
2

〈

X̃ (z̄1)X (z2)
〉

+ iePDk2∂
2
2

〈

X̃ (z̄2)X (z2)
〉]

− ε
′(1)
P

[

iePDk1∂̄2

〈

X (z1) X̃ (z̄2)
〉

+ iePk1∂̄2

〈

X̃ (z̄1) X̃ (z̄2)
〉

+ iePDk2∂̄2

〈

X (z2) X̃ (z̄2)
〉]

− ε
′(2)
P

[

iePDk1∂̄
2
2

〈

X (z1) X̃ (z̄2)
〉

+ iePk1∂̄
2
2

〈

X̃ (z̄1) X̃ (z̄2)
〉

+ iePDk2∂̄
2
2

〈

X (z2) X̃ (z̄2)
〉]

− ε
(1)
T ε

′(1)
T

[

eTDeT∂∂̄
〈

X (z2) X̃ (z̄2)
〉]

− ε
(1)
P ε

′(1)
P

[

ePDeP∂∂̄
〈

X (z2) X̃ (z̄2)
〉]

− ε
(1)
P ε

′(2)
P

[

ePDeP∂∂̄2
〈

X (z2) X̃ (z̄2)
〉]

− ε
(2)
P ε

′(1)
P

[

ePDeP∂2∂̄
〈

X (z2) X̃ (z̄2)
〉]

− ε
(2)
P ε

′(2)
P

[

ePDeP∂2∂̄2
〈

X (z2) X̃ (z̄2)
〉]

− ε
(1)
T ε

′(1)
P

[

eTDeP∂∂̄
〈

X (z2) X̃ (z̄2)
〉]

− ε
(1)
T ε

′(2)
P

[

eTDeP∂∂̄2
〈

X (z2) X̃ (z̄2)
〉]

− ε
(1)
P ε

′ (1)
T

[

ePDeT∂∂̄
〈

X (z2) X̃ (z̄2)
〉]

− ε
(2)
P ε

′ (1)
T

[

ePDeT∂2∂̄
〈

X (z2) X̃ (z̄2)
〉]}]

linear terms

=

∫

d2z1d
2z2 (1− z1z̄1)

a0 (1− z2z̄2)
a′
0 |z1 − z2|

b0−1 |1− z1z̄2|
c0−1

·
[

exp
{

ε
(1)
T

[
ieTk1

(z1 − z2)
+

ieTDk1z̄1
(1− z̄1z2)

+
ieTDk2z̄2
(1− z̄2z2)

]

+ ε
′(1)
T

[
ieTDk1z1
(1− z1z̄2)

+
ieTk1

(z̄1 − z̄2)
+

ieTDk2z2
(1− z2z̄2)

]

+ ε
(1)
P

[
iePk1

(z1 − z2)
+

iePDk1z̄1
(1− z̄1z2)

+
iePDk2z̄2
(1− z̄2z2)

]

+ ε
(2)
P

[
iePk1

(z1 − z2)
2 +

iePDk1z̄
2
1

(1− z̄1z2)
2 +

iePDk2z̄
2
2

(1− z̄2z2)
2

]

+ ε
′(1)
P

[
iePDk1z1
(1− z1z̄2)

+
iePk1

(z̄1 − z̄2)
+

iePDk2z2
(1− z2z̄2)

]

+ ε
′(2)
P

[
iePDk1z

2
1

(1− z1z̄2)
2 +

iePk1

(z̄1 − z̄2)
2 +

iePDk2z
2
2

(1− z2z̄2)
2

]

+ ε
(1)
T ε

′(1)
T

eTDeT

(1− z2z̄2)
2

+ ε
(1)
P ε

′(1)
P

ePDeP

(1− z2z̄2)
2 + 2ε

(1)
P ε

′(2)
P

ePDeP z2

(1− z2z̄2)
3 + 2ε

(2)
P ε

′(1)
P

ePDeP z̄2

(1− z2z̄2)
3 + 2ε

(2)
P ε

′(2)
P

ePDeP (1 + 2z2z̄2)

(1− z2z̄2)
4

+ ε
(1)
T ε

′(1)
P

eTDeP

(1− z2z̄2)
2 + 2ε

(1)
T ε

′(2)
P

eTDeP z2

(1− z2z̄2)
3 + ε

(1)
P ε

′(1)
T

ePDeT

(1− z2z̄2)
2 + 2ε

(2)
P ε

′(1)
T

ePDeT z̄2

(1− z2z̄2)
3

}]

linear terms
(3.11)

To fix the SL(2, R) modulus group on the disk, we set z1 = 0 and z2 = r, then d2z1d
2z2 =
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d (r2) . By using Eq.(2.17), the amplitude can then be reduced to

A =

∫ 1

0

d
(
r2
) (

1− r2
)a′0 rb0−1

·
[

exp







ε
(1)
T

[

−
i
√

b̃0
−r

]

+ ε
′(1)
T

[

−
i
√

b̃0
−r

]

+ε
(1)
P

[

i b0−1
2M2

−r
+

i a0
M2

(1− r2) /r

]

+ ε
(2)
P

[

i b0−1
2M2

(−r)2
+

i a0
M2

[(1− r2) /r]2

]

+ε
′(1)
P

[

i b0−1
2M2

−r
+

i a0
M2

(1− r2) /r

]

+ ε
′(2)
P

[

i b0−1
2M2

(−r)2
+

i a0
M2

[1− r2/r]2

]

−ε
(1)
T ε

′(1)
T

1

(1− r2)2

+ε
(1)
P ε

′(1)
P

a0
M2

2

(1− r2)2
+ 2ε

(1)
P ε

′(2)
P

a0
M2

2

r

(1− r2)3
+ 2ε

(2)
P ε

′(1)
P

a0
M2

2

r

(1− r2)3
+ 2ε

(2)
P ε

′(2)
P

a0
M2

2

(1 + 2r2)

(1− r2)4







]

linear terms
(3.12)

Although in Eq.(3.12) we have dropped several subleading terms by using the kinematic

relations Eq.(2.17), Eq.(3.12) still has subleading terms. We can see that by performing the

integration of a generic term in Eq.(3.12) and looking at its behavior in the Regge limit

explicitly.

∫ 1

0

d
(
r2
) (

1− r2
)a′0+na

rb0−1−N+nb = B

(

a′0 + 1 + na,
b0 −N + 1

2
+

nb

2

)

= B

(

a′0 + 1,
b0 −N + 1

2

) (a′0 + 1)na

(
b0−N+1

2

)
nb
2

(
a′0 + 1 + b0−N+1

2

)

na+
nb
2

∼ B

(

a0 + 1,
b0 −N + 1

2

)(
b0 −N + 1

2

)

nb
2

(a0)
−

nb
2

(3.13)

Here the Pochhammer symbol is defined by (x)y =
Γ(x+y)
Γ(x)

, which, if y is a positive integer, is

reduced to (x)y = x(x+1)(x+2) · · · (x+ y− 1). From the Regge behavior Eq.(3.13), we see

that increasing one power of 1/r in the integrand results in increasing one-half power of a0.

Thus we obtain the following rules to determine which terms in the exponent of Eq.(3.12)

contribute to the leading behavior of the amplitude:

1/r → E, a0 → E2. (3.14)
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We can now drop the subleading terms in energy to get

A =

∫ 1

0

d
(
r2
) (

1− r2
)a′0 rb0−1

·

[

exp

{

ε
(1)
T

[

−
i
√

b̃0
−r

]

+ ε
′(1)
T

[

−
i
√

b̃0
−r

]

+ ε
(2)
P

[

i b0−1
2M2

(−r)2

]

+ ε
′(2)
P

[

i b0−1
2M2

(−r)2

]}]

ǫTPTP

·

[

exp

{

ε
(1)
P

[

i b0−1
2M2

−r
+

i a0
M2

(1− r2) /r

]

+ ε
′(1)
P

[

i b0−1
2M2

−r
+

i a0
M2

(1− r2) /r

]

+ ε
(1)
P ε

′(1)
P

a0
M2

2

(1− r2)2

}]

ǫPP

(3.15)

where [· · · ]ǫTPTP
in the second line and [· · · ]ǫPP

in the third line indicate that we take the

coefficients of ε
(1)
T ε

′(1)
T ε

(2)
P ε

′(2)
P and ε

(1)
P ε

′(1)
P respectively. Because of the difference in the powers

of 1/r and a0 in the exponent of Eq.(3.12), Eq.(3.15) has much more structure for ε
(1)
P and

ε
′(1)
P than for ε

(1)
T , ε

′(1)
T , ε

(2)
P , and ε

′(2)
P , and fits into the aforementioned rules (3.5)(3.6)(3.7)

(3.8). It is also worth noting that the appearance of the last term in the second exponent of

Eq.(3.15) originates from the contraction between ∂X (z2) and ∂̄X̃ (z̄2) in Eq.(3.10), which

is a characteristic of string D-brane scattering.

The explicit form of the amplitude for the current example is

A =

∫ 1

0

d
(
r2
) (

1− r2
)a′0 rb0−1

(

−
i
√

b̃0
−r

)(

−
i
√

b̃0
−r

)(

i b0−1
2M2

(−r)2

)(

i b0−1
2M2

(−r)2

)

·

[(

i b0−1
2M2

−r
+

i a0
M2

(1− r2) /r

)(

i b0−1
2M2

−r
+

i a0
M2

(1− r2) /r

)

+

a0
M2

2

(1− r2)2

]

(3.16)

= −

(√

b̃0

)2(
b0 − 1

2M2

)4 ∫ 1

0

d
(
r2
) (

1− r2
)a′0 rb0−9

·

[(
2∑

l=0

(
2

l

)(
−r2

(1− r2)

2a0
b0 − 1

)l
)

−
r2

(1− r2)2
4a0

(b0 − 1)2

]

(3.17)

∼ −

(√

b̃0

)2(
b0 − 1

2M2

)4

B

(

a0 + 1,
b0 − 7

2

)

·

[(
2∑

l=0

(
2

l

)(

−
2

b0 − 1

)l(
b0 − 7

2

)

l

)

−
4

(b0 − 1)2

(
b0 − 7

2

)]

(3.18)

= −

(√

b̃0

)2(
b0 − 1

2M2

)4

B

(

a0 + 1,
b0 − 7

2

)

·

[

2F0

(

−2,
b0 − 7

2
,

2

b0 − 1

)

−
4

(b0 − 1)2

(
b0 − 7

2

)]

(3.19)

where we have used Eq.(3.13).
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B. General cases

Now we move on to general cases. The vertex operator corresponding to a general massive

state with d left-modes and d′ right-modes is of the following form.

V = id+d′εµ1···µd+d′
: ∂n1Xµ1 · · ·∂ndXµdeik2X (z) : : ∂̄nd+1X̃µd+1 · · · ∂̄nd+d′ X̃µd+d′eik2X̃ (z̄) :

(3.20)

The vertex operators corresponding to the states Eq.(3.1) are expressed in this covariant

form by

d =
∑

n>0

pn + qn, d′ =
∑

n>0

p′n + q′n

(n1, n2, · · · , nd+d′) =




· · · , m, · · · , m

︸ ︷︷ ︸

pm

, · · · , n, · · · , n
︸ ︷︷ ︸

qn

, · · · , m′, · · · , m′

︸ ︷︷ ︸

p′
m′

, · · · , n′, · · · , n′

︸ ︷︷ ︸

q′
n′

, · · ·






ε···T · · ·T
︸ ︷︷ ︸

pm

···P · · ·P
︸ ︷︷ ︸

qn

···T · · ·T
︸ ︷︷ ︸

p′
m′

···P · · ·P
︸ ︷︷ ︸

q′
n′

··· = 1.

For the calculation of the correlator involving the operator Eq.(3.20), we introduce param-

eters associated with the polarization tensor and exponentiate the kinematic factors.

εTTT ···PPP ···TTT ···PPP ··· →
∏

n>0

pn∏

i=1

qn∏

j=1

p′n∏

i′=1

q′n∏

j′=1

ε
(n)
Ti

ε
(n)
Pj

ε
′(n)
Ti′

ε
′(n)
Pj′

V = (i)
∑

n>0
pn+p′n+qn+q′n

[

: exp

{

ik2X(z) +
∑

n>0

pn∑

i=1

ε
(n)
Ti

∂nXT (z) +
∑

m>0

qm∑

j=1

ε
(m)
Pj

∂mXP (z)

}

:

× : exp






ik2X̃(z̄) +

∑

n>0

p′n∑

i=1

ε
′(n)
Ti

∂nX̃T (z̄) +
∑

m>0

q′m∑

j=1

ε
′(m)
Pj

∂mX̃P (z̄)






:





linear terms

(3.21)

where “linear terms” means the terms linear in all of ε
(n)
Ti

, ε
(m)
Pj

, ε
′(n)
Ti

, and ε
′(m)
Pj

. Below we use

symbols like

εT 3P 2TP 3 ≡ ε
(1)
T1
ε
(3)
T1
ε
(3)
T2
ε
(2)
P1
ε
(5)
P1
ε
′(1)
T1

ε
′(1)
P1

ε
′(1)
P2

ε
′(2)
P1

, εT
∑

n

pn ≡
∑

n>0

pn∑

i=1

ε
(n)
Ti

(the meanings of these symbols are not unique.) and do not write the normal ordering

symbol : : to avoid messy expressions.
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The string D-particle scattering amplitudes of these string states can be calculated to be

A =

∫

d2z1d
2z2 · εT

∑
pnP

∑
qnT

∑
p′nP

∑
q′n

(3.22)

·

〈 eik1X (z1) e
ik1X̃ (z̄1) ·

∏

n>0

(
i∂nXT

)pn ∏

m>0

(
i∂mXP

)qm
eik2X (z2)

·
∏

n>0

(

i∂̄nX̃T
)p′n ∏

m>0

(

i∂̄mX̃P
)q′m

eik2X̃ (z̄2)

〉

≡ (i)

∑

n>0

pn+p′n+qn+q′n
A′ (3.23)

= (i)

∑

n>0

pn+p′n+qn+q′n
∫

d2z1d
2z2

· exp







〈

(ik1X) (z1)
(

ik1X̃
)

(z̄1)
〉

+

〈

(

εT
∑

n>0

pn∂
nXT + εP

∑

m>0

qm∂
mXP + ik2X

)

(z2)
(

ε′T
∑

n>0

p′n∂̄
nX̃T + ε′P

∑

m>0

q′m∂̄
mX̃P + ik2X̃

)

(z̄2)

〉

+

〈

(ik1X) (z1)

(

εT
∑

n>0

pn∂
nXT + εP

∑

m>0

qm∂
mXP + ik2X

)

(z2)

〉

+

〈(

ik1X̃
)

(z̄1)

(

ε′T
∑

n>0

p′n∂̄
nX̃T + ε′P

∑

m>0

q′m∂̄
mX̃P + ik2X̃

)

(z̄2)

〉

+

〈

(ik1X) (z1)

(

ε′T
∑

n>0

p′n∂̄
nX̃T + ε′P

∑

m>0

q′m∂̄
mX̃P + ik2X̃

)

(z̄2)

〉

+

〈(

ik1X̃
)

(z̄1)

(

εT
∑

n>0

pn∂
nXT + εP

∑

m>0

qm∂
mXP + ik2X

)

(z2)

〉







(3.24)

where only linear terms are taken in the expansion of the exponential (in the sense of

Eq.(3.21)). In Eq.(3.24), we have used the simplified notation ε
(n)
Tj

≡ εT , j = 1, 2, ...pn,

n ∈ Z+ for the spin polarizations, and similarly for the other polarizations. The exact

meanings of the summations in the exponent are the ones like Eq.(3.21). Note that there

will be terms corresponding to quadratic in the spin polarization. The amplitude A′ can be
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reduced to

A′ =

∫

d2z1d
2z2

〈

eik1X (z1) e
ik1X̃ (z̄1) e

ik2X (z2) e
ik2X̃ (z̄2)

〉

· exp







−εT
∑

n>0

pn




ieT · k1∂

n
2 〈X (z1)X (z2)〉+ ieT ·D · k1∂

n
2

〈

X̃ (z̄1)X (z2)
〉

+ieT ·D · k2∂
n
2

〈

X̃ (z̄2)X (z2)
〉





−ε′T
∑

n′>0

p′n′




ieT ·D · k1∂̄

n′

2

〈

X (z1) X̃ (z̄2)
〉

+ ieT · k1∂̄
n′

2

〈

X̃ (z̄1) X̃ (z̄2)
〉

+ieT ·D · k2∂̄
n′

2

〈

X (z2) X̃ (z̄2)
〉





−εP
∑

m>0

qm




ieP · k1∂

m
2 〈X (z1)X (z2)〉+ ieP ·D · k1∂

m
2

〈

X̃ (z̄1)X (z2)
〉

+ieP ·D · k2∂
m
2

〈

X̃ (z̄2)X (z2)
〉





−ε′P
∑

m′>0

q′m′




ieP ·D · k1∂̄

m′

2

〈

X (z1) X̃ (z̄2)
〉

+ ieP · k1∂̄
m′

2

〈

X̃ (z̄1) X̃ (z̄2)
〉

+ieP ·D · k2∂̄
m′

2

〈

X (z2) X̃ (z̄2)
〉





−εT ε
′
T

∑

n,n′>0

pnp
′
n′

(
eT ·D · eT

)
∂n∂̄n′

〈

X (z2) X̃ (z̄2)
〉

−εP ε
′
P

∑

m,m′>0

qmq
′
m′

(
eP ·D · eP

)
∂m∂̄m′

〈

X (z2) X̃ (z̄2)
〉

−εT ε
′
P

∑

n,m′>0

pnq
′
m′

(
eT ·D · eP

)
∂n∂̄m′

〈

X (z2) X̃ (z̄2)
〉

−εP ε
′
T

∑

n′,m>0

qmp
′
n′

(
eP ·D · eT

)
∂m∂̄n′

〈

X (z2) X̃ (z̄2)
〉







(3.25)

where only linear terms are taken in the expansion of the exponential. We can now put in
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the propagators in Eq.(2.4) to Eq.(2.6) to get

A′ =

∫

d2z1d
2z2 (1− z1z̄1)

a0 (1− z2z̄2)
a′
0 |z1 − z2|

b0−1 |1− z1z̄2|
c0−1

exp







εT
∑

n>0

pn

[
i (n− 1)!eT · k1

(z1 − z2)
n +

i (n− 1)!eT ·D · k1
(1− z̄1z2)

n z̄n1 +
i (n− 1)!eT ·D · k2

(1− z̄2z2)
n z̄n2

]

+ε′T
∑

n′>0

p′n′

[

i (n′ − 1)!eT ·D · k1

(1− z1z̄2)
n′

zn
′

1 +
i (n′ − 1)!eT · k1

(z̄1 − z̄2)
n′

+
i (n′ − 1)!eT ·D · k2

(1− z2z̄2)
n′

zn
′

2

]

+εP
∑

m>0

qm

[
i (m− 1)!eP · k1

(z1 − z2)
m +

i (m− 1)!eP ·D · k1
(1− z̄1z2)

m z̄m1 +
i (m− 1)!eP ·D · k2

(1− z̄2z2)
m z̄m2

]

+ε′P
∑

m′>0

q′m′







i (m′ − 1)!eP ·D · k1

(1− z1z̄2)
m′

zm
′

1 +
i (m′ − 1)!eP · k1

(z̄1 − z̄2)
m′

+
i (m′ − 1)!eP ·D · k2

(1− z2z̄2)
m′

zm
′

2







−εT ε
′
T

∑

n,n′>0

pnp
′
n′

(
eT ·D · eT

)
∂n∂̄n′

ln (1− z2z̄2)

−εP ε
′
P

∑

m,m′>0

qmq
′
m′

(
eP ·D · eP

)
∂m∂̄m′

ln (1− z2z̄2)

−εT ε
′
P

∑

n,m′>0

pnq
′
m′

(
eT ·D · eP

)
∂n∂̄m′

ln (1− z2z̄2)

−εP ε
′
T

∑

n′,m>0

qmp
′
n′

(
eP ·D · eT

)
∂m∂̄n′

ln (1− z2z̄2)







(3.26)

where only linear terms are taken in the expansion of the exponential. To fix the SL(2, R)

modulus group on the disk, we set z1 = 0 and z2 = r, then d2z1d
2z2 = d (r2) . By using

Eq.(2.17), the amplitude can then be reduced to

A′ =

∫

d
(
r2
) (

1− r2
)a′

0 rb0−1

exp







εT
∑

n>0

pn

[

−
i (n− 1)!

√

b̃0
(−r)n

]

+ ε′T
∑

n′>0

p′n′

[

−
i (n′ − 1)!

√

b̃0
(−r)n′

]

+εP
∑

m>0

qm

[

i (m− 1)! b0−1
2M2

(−r)m
+

i (m− 1)! a0
M2

[(1− r2) /r]m

]

+ε′P
∑

m′>0

q′m′

[

i (m′ − 1)! b0−1
2M2

(−r)m′
+

i (m′ − 1)! a0
M2

[(1− r2) /r]m
′

]

−εT ε
′
T

∑

n,n′>0

pnp
′
n′∂n∂̄n′

ln (1− z2z̄2)
∣
∣
z2=z̄2=r

−εP ε
′
P

∑

m,m′>0

qmq
′
m′∂m∂̄m′

ln (1− z2z̄2)
∣
∣
z2=z̄2=r

a0
M2

2







(3.27)

where only linear terms are taken in the expansion of the exponential.

Now we use the energy counting (3.14) and show how we reach the rules

(3.5)(3.6)(3.7)(3.8). We can see immediately that in the exponent of Eq.(3.27), the terms
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linear in ε
(n)
Pi

or ε
′(n)
Pi

are dominated by their first terms if m ≥ 2 or m′ ≥ 2. We can see

also that most of the terms in the forth and fifth lines of the exponent are discarded as

subleading. If we start with the terms consisting of only the factors coming from the first

three lines, the other terms are obtained by series of replacements of two factors in them

with one factors coming from the forth and fifth lines, and for each of the replacements

we can see how it changes the power of energy. We do not need to calculate the infinite

number of derivatives. For each differentiation the increase of the power of 1/r is less than

or equal to 1, while the powers of 1/r in the first three lines increase with n, n′, m or m′,

which implies that if one term in the forth or fifth line is discarded, the terms with higher

n, n′, m,m′ in the same line are also discarded. The sequences of those discarded terms start

at (n, n′) = (1, 1), (m,m′) = (1, 2), and (m,m′) = (2, 1). In this way, we can see that only

the terms with m = m′ = 1 in the fifth line contribute to the leading behavior. Thus we

obtain the generalization of Eq.(3.15)

A′ =

∫

d
(
r2
) (

1− r2
)a′

0 rb0−1

exp







εT
∑

n>0

pn

[

−
i (n− 1)!

√

b̃0
(−r)n

]

+ ε′T
∑

n′>0

p′n′

[

−
i (n′ − 1)!

√

b̃0
(−r)n′

]

+εP
∑

m>1

qm

[

i (m− 1)! b0−1
2M2

(−r)m

]

+ ε′P
∑

m′>1

q′m′

[

i (m′ − 1)! b0−1
2M2

(−r)m′

]







ε
T
∑

pnP
∑

′ qnT

∑
p′nP

∑
′ q′n

exp

{

εP q1

[

i b0−1
2M2

−r
+

i a0
M2

r

1− r2

]

+ ε′P q
′
1

[

i b0−1
2M2

−r
+

i a0
M2

r

1− r2

]

+ εP ε
′
P q1q

′
1

a0
M2

2

(1− r2)2

}

ε
Pq1P

q′
1

(3.28)

where the symbols ε··· are similar to the ones in Eq.(3.15) and indicate that we take the

coefficients of the products of the dummy variables in the exponents. ( ε
(1)
Pi

and ε
′(1)
Pi

are

excluded in the “sums”
∑′.) Note that the last term in the last line of Eq.(3.28) is quadratic

in the polarization. This term is a characteristic of string D-brane scattering and has no

analog in any of the previous works. It will play a crucial role in the following calculation

in this paper.
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For further calculation, we first note that

exp

{

εP q1

[

i b0−1
2M2

−r
+

i a0
M2

r

1− r2

]

+ ε′P q
′
1

[

i b0−1
2M2

−r
+

i a0
M2

r

1− r2

]

+ εPε
′
P q1q

′
1

a0
M2

2

(1− r2)2

}

ε
Pq1P

q′
1

= ε
P q1P q′

1

min{q1,q′1}
∑

j=0

(
q1
j

)(
q′1
j

)

j!

(

i b0−1
2M2

−r
+

i a0
M2

r

1− r2

)q1+q′
1
−2j ( a0

M2
2

(1− r2)2

)j

. (3.29)

Thus the amplitude can be further reduced to

A′ =

∫

d
(
r2
) (

1− r2
)a′

0 rb0−1

·
∏

n>0

[

−
i (n− 1)!

√

b̃0
(−r)n

]pn
∏

n′>0

[

−
i (n′ − 1)!

√

b̃0
(−r)n′

]p′
n′

·
∏

m>1

[

i (m− 1)! b0−1
2M2

(−r)m

]qm
∏

m′>1

[

i (m′ − 1)! b0−1
2M2

(−r)m′

]qm′

·

min{q1,q′1}
∑

j=0

q1+q′
1
−2j

∑

l=0

j!

(
q1
j

)(
q′1
j

)(
q1 + q′1 − 2j

l

)

·

(

i b0−1
2M2

−r

)q1+q′1−2j−l(
i a0
M2

r

1− r2

)l
(

a0
M2

2

(1− r2)2

)j

, (3.30)

which, in the case of the state (3.4), is reduced to Eq.(3.17). We can now do the integration

to get

A′ =

(

i
b0 − 1

2M2

)q1+q′1

·
∏

n>0

([

−i (n− 1)!

√

b̃0

]pn [

−i (n− 1)!

√

b̃0

]p′n
)

·
∏

m>1

([

i (m− 1)!
b0 − 1

2M2

]qm [

i (m− 1)!
b0 − 1

2M2

]qm)

·

min{q1,q′1}∑

j=0

q1+q′1−2j
∑

l=0

j!

(
q1
j

)(
q′1
j

)(
q1 + q′1 − 2j

l

)(
−2

b0 − 1

)l(
−4

(b0 − 1)2

)j

· B

(

a0 + 1,
b0 + 1−N

2

)(
b0 + 1−N

2

)

j

(
b0 + 1−N

2
+ j

)

l

(3.31)

where we have done the expansion of the beta function in the RR as following

B

(

a′0 + 1− l − 2j,
b0 + 1−N

2
+ l + j

)

≈ B

(

a0 + 1,
b0 + 1−N

2

) ( b0+1−N
2

)

l+j

al+j
0

= B

(

a0 + 1,
b0 + 1−N

2

) ( b0+1−N
2

)

j

(
b0+1−N

2
+ j
)

l

al+j
0

. (3.32)

16



Note that in the case of the state (3.4), Eq.(3.31) is reduced to Eq.(3.18). Performing the

summation over n, we obtain

A′ =

(

i
b0 − 1

2M2

)q1+q1

·
∏

n>0

([

−i (n− 1)!

√

b̃0

]pn+p′n
)
∏

m>1

([

i (m− 1)!
b0 − 1

2M2

]qm+q′m
)

·B

(

a0 + 1,
b0 + 1−N

2

)min{q1,q′1}
∑

j=0

(−1)jj!

(
q1
j

)(
q′1
j

)(
b0 + 1−N

2

)

j

(
2

b0 − 1

)2j

·2 F0

(

−q1 − q′1 + 2j,
b0 + 1−N

2
+ j,

2

b0 − 1

)

, (3.33)

which, in the case of the state (3.4), is reduced to Eq.(3.19). Finally we can use the identity

of the Kummer function

22m t̃−2mU

(

−2m,
t

2
+ 2− 2m,

t̃

2

)

= 2F0

(

−2m,−1 −
t

2
,−

2

t̃

)

≡

2m∑

j=0

(−2m)j

(

−1−
t

2

)

j

(
−2

t̃

)j

j!

=
2m∑

j=0

(
2m

j

)(

−1−
t

2

)

j

(
2

t̃

)j

(3.34)

to get the final form of the amplitude

A′ =
∏

n>0

([

−i (n− 1)!

√

b̃0

]pn+p′n
)
∏

m>1

([

i (m− 1)!
b0 − 1

2M2

]qm+q′m
)(

−
i

M2

)q1+q′
1

· B

(

a0 + 1,
b0 + 1−N

2

)min{q1,q′1}
∑

j=0

(−1)jj!

(
q1
j

)(
q′1
j

)(
b0 + 1−N

2

)

j

· U

(

−q1 − q′1 + 2j,
−b0 +N + 1

2
− q1 − q′1 + j,−

b0 − 1

2

)

. (3.35)

Note that the amplitudes in Eq.(3.35) can not be factorized into two open string D-particle

scattering amplitudes as in the case of closed string-string scattering amplitudes [11, 32]. In

Eq.(3.35) U is the Kummer function of the second kind and is defined to be

U(a, c, x) =
π

sin πc

[
M(a, c, x)

(a− c)!(c− 1)!
−

x1−cM(a + 1− c, 2− c, x)

(a− 1)!(1− c)!

]

(c 6= 2, 3, 4...) (3.36)

where M(a, c, x) =
∑∞

j=0
(a)j
(c)j

xj

j!
is the Kummer function of the first kind. Note that the

second argument of Kummer function c = c(b0), and is not a constant as in the usual case.

As a result, U as a function of b0 is not a solution of the Kummer equation.
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An interesting application of Eq.(3.35) is the universal power law behavior of the ampli-

tudes. We first define the Mandelstam variables as s = 2E2 and t = −(k1+k2)
2. The second

argument of the beta function in Eq.(3.35) can be calculated to be

b0 + 1−N

2
=

2k1 · k2 + 1 + 1−N

2
=

(k1 + k2)
2 − k2

1 − k2
2 + 2−N

2
=

−t− 2

2
(3.37)

where we have used Eq.(2.9) and M2
2 = (N − 2). The amplitudes thus give the universal

power-law behavior for string states at all mass levels

A ∼ sα(t) (in the RR) (3.38)

where

α(t) = a(0) + α′t, a(0) = 1 and α′ =
1

2
. (3.39)

IV. RATIOS ON THE FIXED ANGLE REGIME

We begin with a brief review of high-energy open string-string scattering in the fixed

angle regime, namely

s,−t → ∞, t/s ≈ − sin2 φ

2
= fixed (but φ 6= 0) (4.1)

where s, t and u are the Mandelstam variables and φ is the CM scattering angle. It was

shown that for the 26D open bosonic string the only states that will survive the high-energy

limit at mass level M2
2 = 2(N − 1) are of the form [7, 8]

|N, 2m, q〉 ≡ (αT
−1)

N−2m−2q(αL
−1)

2m(αL
−2)

q|0, k〉 (4.2)

where N,m and q are non-negative integers and N ≥ 2m + 2q. It can be shown that the

high-energy vertex in Eq.(4.2) are conformal invariants up to a subleading order term in

the high-energy expansion. Note that eP approaches to eL in the fixed angle regime [4][5].

For simplicity, one chooses k1, k3 and k4 to be tachyons. It turns out that the high-energy

fixed angle scattering amplitudes can be calculated by using the saddle-point method. The

complete ratios among the amplitudes at each fixed mass level can be calculated to be [7, 8]

T (N,2m,q)

T (N,0,0)
=

(

−
1

M2

)2m+q (
1

2

)m+q

(2m− 1)!!. (4.3)
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A calculation based on the decoupling of high-energy ZNS gave the same result as in

Eq.(4.3).

To compare the RR amplitudes Eq.(3.35) with the fixed angle amplitudes corresponding

to states in Eq.(4.2), we consider the RR amplitudes of the following closed string states

|N ; 2m, 2m′; q, q′〉

=
(
αT
−1

)N/2−2m−2q (
αP
−1

)2m (
αP
−2

)q
⊗
(
α̃T
−1

)N/2−2m′−2q′ (
α̃P
−1

)2m′ (
α̃P
−2

)q′
|0, k〉. (4.4)

where m,m′, q and q′ are non-negative integers. We can take the following values

p1 = N/2− 2m− 2q, p′1 = N/2− 2m′ − 2q′, (4.5)

q1 = 2m, q′1 = 2m′, (4.6)

q2 = q, q′2 = q′ (4.7)

in Eq.(3.35), and include the phase factor in Eq.(3.23) to get

A(N ;2m,2m′;q,q′) = (i)N−q−q′
(

−i

√

b̃0

)N−2(m+m′)−2(q+q′)(

i
b0 − 1

2M2

)q+q′ (

−
i

M2

)2m+2m′ ′

· B

(

a0 + 1,
b0 + 1−N

2

)min{2m,2m′}
∑

j=0

(−1)jj!

(
2m

j

)(
2m′

j

)(
b0 + 1−N

2

)

j

· U

(

−2m− 2m′ + 2j,
−b0 +N + 1

2
− 2m− 2m′ + j,−

b0 − 1

2

)

. (4.8)

It is now easy to calculate the RR ratios for each fixed mass level

A(N ;2m,2m′;q,q′)

A(N,0,0,0,0)
= (i)−q−q′

(

−i
b0 − 1

2b̃0M2

)q+q′ (
1

b̃0M2
2

)m+m′

·

min{2m,2m′}
∑

j=0

(−1)jj!

(
2m

j

)(
2m′

j

)(
b0 + 1−N

2

)

j

· U

(

−2m− 2m′ + 2j,
−b0 +N + 1

2
− 2m− 2m′ + j,−

b0 − 1

2

)

(4.9)

which is a b0-dependent function.

Before studying the fixed angle ratios for string D-particle scatterings, we first make a

pause to review previous results on string-string scatterings.
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A. String-String Scatterings

1. Open String

For open string-string scatterings, either the saddle-point method (t − u channel only)

or the decoupling of high-energy zero-norm states (ZNS) can be used to calculate the fixed

angle ratios [4–9]. It was discovered that there was an interesting link between high-energy

fixed angle amplitudes T and RR amplitudes A. To the leading order in energy, the ratios

among fixed angle amplitudes are φ-independent numbers, whereas the ratios among RR

amplitudes are t-dependent functions. However, It was discovered [31] that the coefficients

of the high-energy RR ratios in the leading power of t can be identified with the fixed angle

ratios, namely [31]

lim
t̃′→∞

A(N,2m,q)

A(N,0,0,)
=

(

−
1

M2

)2m+q (
1

2

)m+q

(2m− 1)!! =
T (N,2m,q)

T (N,0,0)
. (4.10)

To ensure this identification, one needs the following identity [31–34]

2m∑

j=0

(−2m)j

(

−L−
t̃′

2

)

j

(−2/t̃′)j

j!

= 0(−t̃′)0 + 0(−t̃′)−1 + ...+ 0(−t̃′)−m+1 +
(2m)!

m!
(−t̃′)−m +O

{(
1

t̃′

)m+1
}

(4.11)

where L = 1 − N and is an integer. Note that L effects only the subleading terms in

O
{(

1
t̃′

)m+1
}

. Mathematically, the complete proof of Eq.(4.11) for arbitrary real values L

was recently worked out in [34] by using an identity of signless Stirling number of the first

kind in combinatorial theory.

2. Open Superstring

For all four classes [10] of high-energy fixed angle open superstring scattering amplitudes,

both the corresponding RR amplitudes and the complete ratios of the leading (in t) RR

amplitudes can be calculated [33]. For the fixed angle regime [10], the complete ratios can

be calculated by the decoupling of high-energy zero norm states. It turns out that the

identification in Eq.(4.10) continues to work, and L is an integer again for this case [33].
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3. Compactified Open String

For compactified open string scatterings, both the amplitudes and the complete ratios

of leading (in t) RR can be calculated [35]. For the fixed angle regime, the complete ratios

can be calculated by the decoupling of high-energy zero norm states. The identification

in Eq.(4.10) continues to work. However, only scattering amplitudes corresponding to the

cases m = 0 were calculated. The difficulties has been as following. First, it seems that

the saddle-point method is not applicable here. On the other hand, it was shown that [4–6]

the leading order amplitudes containing (αL
−1)

2m component will drop from energy order

E4m to E2m, and one needs to calculate the complicated naive subleading order terms in

order to get the real leading order amplitude. One encounters this difficulty even for some

cases in the non-compactified string calculation. In these cases, the method of decoupling

of high-energy ZNS was adapted.

It was important to discover [35] that the identity in Eq.(4.11) for arbitrary real values

L can only be realized in high-energy compactified string scatterings. This is due to the

dependence of the value L on winding momenta K25
i [35]

L = 1−N − (K25
2 )2 +K25

2 K25
3 . (4.12)

All other high-energy string scatterings calculated previously [31–33] correspond to integer

value of L only.

4. Closed String

For closed string scatterings [32], one can use the KLT formula [36], which expresses

the relation between tree amplitudes of closed and two channels of open string (α′
closed =

4α′
open = 2), to simplify the calculations. Both ratios of leading (in t) RR and fixed angle

amplitudes were found to be the tensor product of two ratios in Eq.(4.10), namely [32]

lim
t̃′→∞

A

(

N ;2m,2m
′

;q,q
′
)

closed

A
(N ;0,0;0,0)
closed

=

(

−
1

M2

)2(m+m
′

)+q+q
′ (

1

2

)m+m
′

+q+q
′

(2m− 1)!!(2m
′

− 1)!!

=
T

(

N ;2m,2m
′

;q,q
′
)

closed

T
(N ;0,0;0,0)
closed

. (4.13)
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We now begin to discuss the RR closed string, D-particle scatterings considered in this

paper.

B. Closed String D-particle Scatterings

1. m = m

′

= 0 Case

In [19], the high-energy scattering amplitudes and ratios of fixed angle closed string D-

particle scatterings were calculated only for the case m = m
′

= 0. For nonzero m or m
′

cases, one encounters similar difficulties stated in the paragraph before Eq.(4.12) to calculate

the complete fixed angle amplitudes. A subset of ratios was found to be [19]

T
(N,0,0,q,q

′

)
SD

T
(N,0,0,0,0)
SD

=

(

−
1

2M2

)q+q
′

. (4.14)

In view of the non-factorizability of Regge string D-particle scattering amplitudes calculated

in Eq.(3.35), one is tempted to conjecture that the complete ratios of fixed angle closed

string D-particle scatterings may not be factorized. On the other hand, the decoupling of

high-energy ZNS implies the factorizability of the fixed angle ratios.

2. General Case

We can show explicitly that the leading behaviors of the inner products in Eq.(3.26)

involving k1, k2, e
T , eP and D are not affected by the replacement of eP with eL if we take

the limit b0 → ∞ after taking the Regge limit. Therefore we proceed as in the previous

works on Regge scattering. The calculation for the complete ratios of leading (in b0) RR
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closed string, D-particle scatterings from Eq.(4.9) gives

lim
b0→∞

A
(N ;2m,2m′;q,q′)
SD

A
(N,0,0,0,0)
SD

= (i)−q−q′
(

−i
b0

2b0M2

)q+q′ (
1

b0M
2
2

)m+m′

·

min{2m,2m′}
∑

j=0

(−1)jj!

(
2m

j

)(
2m′

j

)(
b0
2

)j
(2m+ 2m′ − 2j)!

(m+m′ − j)!
2−2m−2m′+2jbm+m′−j

0

= (i)−q−q′
(

−i
1

2M2

)q+q′ (
1

2M2

)2m+2m′

·

min{2m,2m′}
∑

j=0

j!

(
2m

j

)(
2m′

j

)

(−2)j
(2m+ 2m′ − 2j)!

(m+m′ − j)!
. (4.15)

In deriving Eq.(4.15), we have made use of Eq.(3.34) and Eq.(4.11). Note that each term in

the summation of Eq.(4.15) is not factorized. Surprisingly, the summation in Eq.(4.15) can

be performed, and the ratios can be calculated to be

lim
b0→∞

A
(N ;2m,2m′;q,q′)
SD

A
(N,0,0,0,0)
SD

= (−)q+q′
(
1

2

)q+q′+2m+2m′ (
1

M2

)2m+2m′+q+q′

·
22m+2m′

π sec
[
π
2
(2m+ 2m′)

]

Γ
(
1−2m

2

)
Γ
(
1−2m′

2

)

=

(

−
1

M2

)2m+q (
1

2

)m+q

(2m− 1)!!

(

−
1

M2

)2m′+q′ (
1

2

)m′+q′

(2m
′

− 1)!! (4.16)

which are factorized. They are exactly the same with the ratios of the high-energy, fixed

angle closed string-string scattering amplitudes calculated in Eq.(4.13) and again consistent

with the decoupling of high-energy zero norm states [4–11]. We thus conclude that the iden-

tification in Eq.(4.10) continues to work for string D-particle scatterings. So the complete

ratios of fixed angle closed string D-particle scatterings are

T

(

N ;2m,2m
′

;q,q
′
)

SD

T
(N ;0,0;0,0)
SD

=

(

−
1

M2

)2(m+m
′

)+q+q
′ (

1

2

)m+m
′

+q+q
′

(2m− 1)!!(2m′ − 1)!!

= lim
b0→∞

A
(N ;2m,2m′;q,q′)
SD

A
(N,0,0,0,0)
SD

(4.17)

where the first equality can be deduced from the decoupling of high-energy ZNS. Note that,

for m = m
′

= 0, Eq.(4.17) reduces to Eq.(4.14) calculated previously [19].
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It is well known that the closed string-string scattering amplitudes can be factorized

into two open string-string scattering amplitudes due to the existence of the KLT formula

[36]. On the contrary, there is no physical picture for open string D-particle tree scattering

amplitudes and thus no factorizaion for closed string D-particle scatterings into two channels

of open string D-particle scatterings, and hence no KLT-like formula there. Here what we

really mean is: two string, two D-particle scattering in the limit of infinite D-particle mass.

This can also be seen from the nontrivial string D-particle propagator in Eq.(2.6), which

vanishes for the case of closed string-string scattering. Thus the factorized ratios in high-

energy fixed angle regime calculated in the RR in Eq.(4.16) and Eq.(4.17) came as a surprise.

However, these ratios are consistent with the decoupling of high-energy zero norm states

calculated previously [4–11]. It will be interesting if one can calculate the complete fixed

angle amplitudes directly and see how the non-factorized amplitudes can give the result of

factorized ratios. We hope to pursue this issue in the future.

V. CONCLUSION

In this paper, we study scatterings of higher spin massive closed string states from D-

particle in the Regge regime. We extract the complete infinite ratios among high-energy

scattering amplitudes of different string states in the fixed angle regime from these Regge

string scattering amplitudes. The ratios calculated by this indirect method include a subset

of ratios calculated previously by direct fixed angle calculation [19]. Moreover, we discover

that in spite of the non-factorizability of the closed string D-particle scattering amplitudes,

the complete ratios derived for the fixed angle regime are found to be factorized. The ratios

for string D-particle scattering amplitudes are consistent with the decoupling of high-energy

zero norm states calculated previously. [4–11].
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