
ar
X

iv
:1

10
1.

31
25

v1
  [

nu
cl

-e
x]

  1
7 

Ja
n 

20
11

THE ASYMMETRY TERM IN THE NUCLEAR-MATTER

INCOMPRESSIBILITY FROM MEASUREMENTS ON

THE GIANT MONOPOLE RESONANCE: AN UPDATE
∗

U. Garg

Physics Department, University of Notre Dame, Notre Dame, IN 46556, USA

We have investigated the isoscalar giant monopole resonances (ISGMR)
in 112−124Sn and 106−116Cd nuclei using inelastic scattering of 386-MeV
α-particles at extremely forward angles, including 0◦. The strength distri-
butions for various multipoles were extracted by a multipole decomposition
analysis based on the expected angular distributions of the respective mul-
tipoles. From the ISGMR results, a value of Kτ ∼ −500 MeV is obtained
for the asymmetry term in the nuclear incompressibility.

PACS numbers: 24.30.Cz; 21.65.+f; 25.55.Ci; 27.40.+z

1. Introduction

Investigation of giant resonances has had a rich history over the past six
decades since the discovery of the isovector giant dipole resonance (IVGDR) [1,
2, 3]. Of the various giant resonances that have been identified and inves-
tigated since, the compression-mode giant resonances–the isoscalar giant
monopole resonance (ISGMR; the “breathing mode”) and the isoscalar gi-
ant dipole resonance (ISGDR; the “squeezing mode”)–occupy the pride of
place because their energy is directly related to the nuclear incompressibil-
ity, KA, from which the incompressibility of infinite nuclear matter, K∞,
may be deduced [4]. The latter is critical in our understanding of a number
of interesting phenomena from collective excitations of nuclei to supernova
explosions and radii of neutron stars.

In this review, we discuss some recent results on the ISGMR over a
series of isotopes of Sn and Cd. This data has provided an “experimental”
value for the asymmetry term, Kτ , of nuclear incompressibility; this term,
associated with the neutron excess (N − Z) is important, for example, in
obtaining radii of neutron stars in EOS calculations.
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2. Experimental Techniques

The experiment was performed at the ring cyclotron facility of the Re-
search Center for Nuclear Physics (RCNP), Osaka University, using inelas-
tic scattering of 386-MeV α particles at extremely forward angles, includ-
ing 0◦. Details of the experimental procedures and data-analysis tech-
niques have been provided elsewhere [5, 6] and are only briefly described
here. Self-supporting target foils of enriched 112,114,116,118,120,122,124Sn and
106,110,112,114,116Cd isotopes of thickness ∼5–10 mg/cm2 were employed; spe-
cial target frames with a large aperture were used in order to reduce the
background caused by the beam-halo hitting the frames. Data were also
taken with a natC target at the actual field settings used in the experiments
and energy calibration was obtained from the peak positions of the 7.652-
and 9.641-MeV states in the 12C(α,α′) spectra.

Inelastically-scattered α particles were momentum-analyzed with the
high-resolution magnetic spectrometer “Grand Raiden” [7] and the vertical
and horizontal positions of the α particles were measured with a focal-plane
detector system comprised of two position-sensitive multi-wire drift cham-
bers (MWDCs) and two scintillators [8]. The MWDCs and scintillators en-
abled us to make particle identification and to reconstruct the trajectories of
the scattered particles. The scattering angle at the target and the momen-
tum of the scattered particles were determined by the ray-tracing method.
The vertical-position spectrum obtained in the double-focusing mode of the
spectrometer was exploited to eliminate the instrumental background [8, 9].
Examples of such “free-from-instrumental-background” inelastic scattering
spectra for the Sn isotopes have been provided in Refs. [5, 6].

A multipole decomposition analysis (MDA) procedure [10] was employed
to extract the strengths of the ISGMR, along with those for other isoscalar
resonances (up to L = 3). The associated DWBA calculations were per-
formed with the computer code PTOLEMY [11], following the method of
Satchler and Khoa [12], using the density-dependent single-folding model
for the real part, obtained with a Gaussian α-nucleon potential, and a phe-
nomenological Woods-Saxon potential for the imaginary term. The optical-
model (OM) parameters were determined by fitting the differential cross
sections of elastic α scattering measured in a companion experiment; the
efficacy of the OM parameters was tested by comparing the experimental
cross sections for the first 2+ states in these nuclei with calculated cross sec-
tions using a collective form factor and previously-established B(E2) values.
Again, examples of MDA fits to the experimental angular distributions of
the differential cross sections have been provided in Refs. [5, 6].
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3. Results and Discussion

We have extracted strength distributions for L=0, 1, 2, and 3 multipoles
over the energy range 8.5 MeV–31.5 MeV in all the Sn and Cd isotopes
investigated in this work. The ISGMR strength distributions for the Cd
isotopes are presented in Fig. 1. The L = 0 strength distributions were
fitted with a Lorentzian function to determine the centroid energies and
widths of the ISGMR. These fits are shown superimposed in Fig. 1; the
corresponding fitting parameters are presented in Table 1. Also presented
are the various moment ratios for the experimental ISGMR strength distri-
butions calculated over the excitation-energy range, Ex = 10.5–20.5 MeV,
encompassing the ISGMR peak. The results for the Sn isotopes have been
presented previously [5, 6].

Fig. 1. ISGMR strength distributions obtained for the Cd isotopes in the present

experiment. Error bars represent the uncertainties from fitting the angular distri-

butions in the MDA procedure. The solid lines show Lorentzian fits to the data.

These results should be considered preliminary.

A note of caution is apt here. There is a small, near-constant ISGMR
strength up to the highest excitation energies measured in this experiment.
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The exact reason behind this extra strength is not quite well understood.
However, similarly enhanced E1 strengths at high excitation energies were
noted previously [8, 13] and have been attributed to contributions to the
continuum from three-body channels, such as knockout reactions [14]. These
processes are implicitly included in the MDA as background and may lead
to spurious contributions to the extracted multipole strengths at higher
energies where the associated cross sections are very small.

Table 1. Lorentzian-fit parameters, as extracted from MDA and the various mo-

ment ratios for the ISGMR strength distributions in the Cd isotopes. All moments

have been calculated over Ex = 10.5–20.5 MeV. These results should be con-

sidered preliminary.

Target EGMR(MeV ) Γ(MeV ) m1

m0
(MeV)

√

m1

m−1
(MeV)

√

m3

m1
(MeV)

106Cd 16.4 ± 0.1 4.4 ± 0.5 16.7 ± 0.1 16.5 ± 0.2 17.2 ± 0.3
110Cd 16.1 ± 0.1 4.1 ± 0.6 16.3 ± 0.1 16.1 ± 0.2 16.9 ± 0.3
112Cd 15.8 ± 0.1 4.9 ± 0.7 16.2 ± 0.1 16.0 ± 0.2 16.8 ± 0.2
114Cd 15.5 ± 0.1 5.0 ± 0.6 16.1 ± 0.1 15.8 ± 0.2 16.7 ± 0.4
116Cd 15.4 ± 0.1 5.0 ± 0.4 15.9 ± 0.1 15.7 ± 0.1 16.6 ± 0.3

The excitation energy of the ISGMR is expressed in the scaling model [15]
as:

EISGMR = h̄

√

KA

m < r2 >
(1)

where m is the nucleon mass, < r2 > the ground-state mean-square radius,
and KA, the incompressibility of the nucleus.

Further, the incompressibility of a nucleus, KA, may be expressed as:

KA ∼ Kvol(1 + cA−1/3) +Kτ ((N − Z)/A)2 +KCoulZ
2A−4/3 (2)

Here, c ≈ -1 (see, for example, Ref. [16], and KCoul is essentially model
independent (in the sense that the deviations from one theoretical model
to another are quite small), so that the associated term can be calcu-
lated for a given isotope. Thus, for a series of isotopes, the difference
KA − KCoulZ

2A−4/3 may be approximated to have a quadratic relation-
ship with the asymmetry parameter ((N - Z)/A)), of the type y = A +
Bx2, with Kτ being the coefficient, B, of the quadratic term. It has been
established previously [17, 18] that direct fits to the Eq. 2 do not provide
good constraints on the value of K∞. However, this expression has been
used in this case not to obtain a value for K∞, but only to demonstrate the
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approximately quadratic relationship between KA and the asymmetry pa-
rameter. In addition, it should be understood that this expression provides
only an “average” value for Kτ and the available data is not sensitive to
higher-order effects like the “surface” part of this term. Here, c ≈ -1 (see,
for example, Ref. [16], and KCoul is essentially model independent (in the
sense that the deviations from one theoretical model to another are quite
small), so that the associated term can be calculated for a given isotope.
Thus, for a series of isotopes, the difference KA − KCoulZ

2A−4/3 may be
approximated to have a quadratic relationship with the asymmetry param-
eter ((N - Z)/A)), of the type y = A + Bx2, with Kτ being the coefficient,
B, of the quadratic term. It has been established previously [17, 18] that
direct fits to the Eq. 2 do not provide good constraints on the value of K∞.
However, this expression has been used in this case not to obtain a value
for K∞, but only to demonstrate the approximately quadratic relationship
between KA and the asymmetry parameter. In addition, it should be un-
derstood that this expression provides only an “average” value for Kτ and
the available data is not sensitive to higher-order effects like the “surface”
part of this term.

From such an analysis of the ISGMR data in the Sn isotopes, we had
obtained a value of Kτ = −550 ± 100 MeV (see Fig. 4 in Ref. [5]). An
identical analysis of the ISGMR data in the Cd isotopes gives a prelim-
inary value of Kτ = −480 ± 100 MeV (see Fig. 2). These numbers
are in good agreement with each other, and are also consistent with the
value of Kτ = − 370 ± 120 MeV obtained from an analysis of the iso-
topic transport ratios in medium-energy heavy-ion reactions [19], the value
Kτ = −500+125

−100 MeV obtained by Centelles et al. [20] from constraints
put by neutron-skin data from anti-protonic atoms across the mass table,
and Kτ = −500 ± 50 MeV obtained by Sagawa et al. by comparing our
Sn ISGMR data with calculations using different Skyrme Hamiltonians and
RMF Lagrangians [21]. A more precise determination of Kτ will likely re-
sult from extending the ISGMR measurements to longer isotopic chains.
This provides strong motivation for measuring the ISGMR strength in un-
stable nuclei, a focus of current investigations at the new rare isotope beam
facilities at RIKEN, GANIL, GSI, and NSCL.

From the ISGMR and ISGDR data, one now has a consistent value for
K∞ = 240 ± 20 MeV [22, 23, 24, 25].1 Combined with the “experimental”
value of Kτ , this can provide a means of selecting the most appropriate of
the interactions used in EOS calculations. For example, this combination
of “experimental” values for K∞ and Kτ appears to rule out a vast ma-
jority of the Skyrme-type interactions currently in use in nuclear structure

1 We are using a more conservative uncertainty in the value than that cited previously.
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Fig. 2. Systematics of the difference KA −KCoulZ
2A−4/3 in the Cd isotopes as a

function of the “asymmetry-parameter” ((N-Z)/A); KCoul = -5.2±0.7 MeV [21].

The solid line represents a least-square quadratic fit to the data. The dashed line

shows, for comparison, results with the value Kτ = -550 MeV previously obtained

from the Sn data. These results should be considered preliminary.

calculations [26, 27].
Pearson et al. [28] have recently suggested that our data for the Sn

isotopes may be fitted with Kτ = -300 MeV, a value they claim is more
amenable to many theoretical calculations. They fix the Kτ term at this
value and by introducing a higher-order term, KssA

1/3, with Kτ in the
expansion, obtain a reasonable fit to the data. In effect, they have changed
the fitting expression from y = A + Bx2 (which we had used) to y = A’
+ (B’+C’)x2 and fixed A’ and B’, to obtain a value for C’ from fit to
the data. Clearly, there are several problems with their approach. First,
considering that C’ would change very little (∼3%) over the range of the fit
while the x2 term changes by 230%, C’ is, for all practical purposes (and
definitely for the uncertainties involved in the extraction of the coefficient),
a constant. So, the fit of Pearson et al. replaces one constant with two and,
of course, one can find a large number of combinations of B’ and C’ that
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would give essentially the same fit as the one given by B! [Because Pearson
et al. choose to fix B’ at -300 MeV, they obtain a value of -1900A1/3 MeV
for C’. Indeed, if they had chosen the value of -100 MeV for B’, they would
get the same fit for C’ = -2880A1/3 MeV!]. Second, they do not discuss at
all the “reasonableness” of the value for Kss (-1900 MeV) that is obtained
in their fit. Nominally, one expects the higher order terms to be smaller
than the leading terms. In this case, the higher-order term is nearly 30%
larger! In this context, we note that the value for Kss that they obtain with
Kτ = -550 MeV, leads to the higher-order term being only about 30% of
the leading-order term, a much more reasonable situation. Finally, there is
also the issue of their use of a value of 370 MeV for the surface term Ksf

(=cKvol in Eq. 2 above). Per almost all theoretical estimates, the value of
c ≃ 1 (see Refs. [16, 21]). Pearson et al. obtain c = 1.54 but, again, do not
justify a number at such variance from other theoretical work.

4. Summary

We have measured the strength distributions of the isoscalar giant monopole
resonance (ISGMR) in the even-A Sn and Cd isotopes via inelastic scatter-
ing of 386-MeV α particles at extremely forward angles, including 0◦. The
asymmetry-term, Kτ , in the expression for the nuclear incompressibility has
been determined to be ∼ -500 MeV from the ISGMR data and is found to be
consistent with a number of indirectly extracted values for this parameter.
Measurements with the new rare isotope beam facilities would go a long
way in extending the isotopic chains, thus greatly reducing the uncertainty
in the extracted value of Kτ .

5. Acknowledgments

It is with profound gratitude that I acknowledge my collaborators in
this work: G.P.A. Berg, T. Li, Y. Liu, R. Marks, B.K. Nayak, D. Patel,
and P.V. Madhusudhana Rao (University of Notre Dame); M. Fujiwara,
H. Hashimoto, K. Kawase, K. Nakanishi, S. Okumura, and M. Yosoi (RCNP,
Osaka, Japan); M. Itoh, M. Ichikawa, R. Matsuo, T. Terazano, and H.P.
Yoshida (Tohuku University, Sendai, Japan); M. Uchida (Tokyo Institute of
Technology, Tokyo, Japan); H. Akimune (Konan University, Kobe, Japan);
Y. Iwao, T. Kawabata, T. Murakami, H. Sakaguchi, S. Terashima, Y. Ya-
suda and J. Zenihiro (Kyoto University, Kyoto, Japan); and, M.N. Harakeh
(KVI, Groningen, The Netherlands). Thanks are also due to the RCNP
staff for providing high-quality α beams required for these measurements.
This work has been supported in part by the US-Japan Cooperative Science
Program of the JSPS, and by the U.S. National Science Foundation (Grants
No. INT03-42942, PHY04-57120, and PHY07-58100).



8

REFERENCES

[1] G.C. Baldwin and G.S. Klaiber, Phys. Rev. 71, 3 (1947).

[2] G.C. Baldwin and G.S. Klaiber, Phys. Rev. 73, 1156 (1948).

[3] M. Goldhaber and E. Teller, Phys. Rev. 74, 1046 (1948).

[4] J. Blaizot et al., Nucl. Phys. A 591, 435 (1995).

[5] T. Li et al., Phys. Rev. Lett. 99, 162503 (2007).

[6] T. Li et al., Phys. Rev. C 81, 034309 (2010).

[7] M. Fujiwara et al., Nucl. Instrum. Methods Phys. Res. Sect. A 422, 484 (1999).

[8] M. Itoh et al., Phys. Rev. C 68, 064602 (2003).

[9] M. Uchida et al., Phys. Lett. B 557, 12 (2003).

[10] B. Bonin et al., Nucl. Phys. A 430, 349 (1984).

[11] M. Rhoades-Brown, M.H. Macfarlane, and S.C. Pieper, Phys. Rev. C 21, 2417
(1980).

[12] G.R. Satchler and D.T. Khoa, Phys. Rev. C 55, 285 (1997).

[13] M. Uchida et al., Phys. Rev. C 69, 051301(R) (2004).

[14] S. Brandenburg et al., Nucl. Phys. A 466, 29 (1987).

[15] S. Stringari, Phys. Lett. B 108, 232 (1982).

[16] S.K. Patra et al., Phys. Rev. C 65, 044304 (2002).

[17] S. Shlomo and D. H. Youngblood, Phys. Rev. C 47 529 (1993).

[18] J. M. Pearson, Phys. Lett. B 271 12 (1991).

[19] L.-W. Chen et al., Phys. Rev. C 80, 014322 (2009).

[20] M. Centelles et al., Phys. Rev. Lett. 102, 122502 (2009).

[21] H. Sagawa et al., Phys. Rev. C 76, 034327 (2007).

[22] U. Garg, Nucl. Phys. A 731, 3 (2004).
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