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1. Introduction

The arena for a noncommutative field theory is a noncommutative manifold, which is defined
by replacing the usual point-wise product of functions by a noncommutative star product. This star
product depends on a deformation parameterh, and the first term in theh-expansion is essentially
the Poisson bracket of functions. It is a known result by Kontsevich [18] that the Poisson structure
defines the star product up to an equivalence. This, however,does not imply that the star product
for a given Poisson structure is unique. On the opposite, thefamily of equivalence transformations
is very rich, it depends on an infinite number of arbitrary functions. Consequently, the ambiguity
in definition of the star product has an infinite functional dimension. This ambiguity is physically
relevant as equivalent star products lead, in general, to inequivalent field theories. Therefore, before
going on with constructing a field theory on noncommutative space one has to decide which of the
star products has to be used in this construction.

It is natural to request that the algebra equipped with the star product has a number of deriva-
tions (represented by covariant derivatives) which satisfy the usual Leibniz rule. However, since
derivative of a scalar is a vector, and a product of two vectors is a rank-two tensor, to impose the
Leibniz rule one has to extend the star product to all tensor fields. Tensors are characterized by their
transformation properties with respect to diffeomorphisms, these properties should be respected by
the deformation. Consequently, the star product has to be covariant. This is why we address here
the problems of covariance and uniqueness simultaneously.

The paper is organized as follows. In Sec. 2 we introduce starproducts and describe ambigu-
ities in their definition. Covariant star products are treated in a very short Sec. 3. Our main result
[27] is a set of natural conditions which allow to remove the ambiguity almost completely (Sec.
4). Some ambiguity, however, remains. In Sec. 5 we show that it leads to classically equivalent
noncommutative field theories. In Sec. 6 we discuss possibleextension of the results (to Yang-
Mills symmetries, Poisson manifolds, strict deformation quantization) as well as implications for
noncommutative gravity.

2. Non-uniqueness of star products

In the approach adopted here, which goes back to the seminal papers [3, 4] (see also [8]), the
star product is defined through a noncommutative deformation of the algebraA . For simplicity, in
this section we suppose thatA is the algebraC∞(Rn) of smooth functions onRn. Next, we replace
A by an algebra offormal power seriesA [[h]] of the deformation parameterh, i.e., of elements of
the form

a= a0+ha1+h2a2+ . . . (2.1)

Here, eacha j is a smooth function. A new product is then defined as

a⋆b= a·b+
∞

∑
r=1

hrCr(a,b) , (2.2)

where eachCr is a bidifferential operator. This means, for one argument fixedCr is a differential
operator acting on the other argument. We stress, that the series (2.1) and (2.2) are formal, i.e., no
convergence is assumed.
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In physical applications the deformation parameterh is usually taken to be imaginary.
It is required that the star product is associative,(a⋆b)⋆c = a⋆ (b⋆c). In the first order ofh

this yields
C1(a,b)−C1(b,a) = 2{a,b} , (2.3)

where{a,b} is a Poisson bracket,

{a,b} = ωµν∂µa∂νb (2.4)

with some Poisson bivectorωµν .
Another common requirement is the Moyal symmetry,

Cr(a,b) = (−1)rCr(b,a) . (2.5)

ThenC1(a,b) is defined to be a Poisson bracket. One says that the star product (2.2) is a deforma-
tion of the point-wise product in the direction ofωµν . The problem is to find all star products for a
given Poisson structure. Up to second order, a solution may be found by straightforwardly solving
the associativity condition,

a⋆b= ab+hωµν∂νa∂νb+h2
(

1
2

ωµνωρσ (∂µ∂ρa)(∂ν ∂σ b)

+
1
3

ωµν∂ν ωρσ ((∂µ∂ρa)(∂σ b)− (∂ρa)(∂µ ∂σ b))

)

+O(h3) . (2.6)

The existence of a solution to the deformation problem to allorders for an arbitrary Poisson
structure was demonstrated by Kontsevich [18], and the solution is not unique. If⋆ is a product
corresponding to some fixed Poisson bivectorωµν , then one can define another product⋆

′ by

a⋆′ b= D−1(Da⋆Db), (2.7)

where
D = 1+hL. (2.8)

andL being a formal differential operator (a sum of differentialoperators of arbitrary order with
arbitrary polynomial dependence onh). Clearly,⋆′ is also an associative product corresponding to
the same Poisson bivector1. The transformation⋆→ ⋆

′ was called a gauge transformation in [18].
The products⋆ and ⋆

′ are equivalent and correspond to isomorphic algebras, but they are
different. As we shall see below, field theory models constructed with equivalent star products
are in general non-equivalent. Therefore, one has an ambiguity in the choice of the star product
corresponding to the ambiguity in the choice ofD in (2.7). It is easy to understand that the freedom
in D has an infinite functional dimension (infinite number of parameters per point inRn).

The situation in noncommutative theories differs drastically from that in, say, general relativity.
The metric tensor defines the whole (pseudo-)riemannian structure of the manifold, while to define
a star product2 (which is the basic structure on a noncommutative space) onehas to specify an
infinite number of fields contained inD in addition to a Poisson tensor.

1Actually, Kontsevich [18] demonstrated a more refined statement. One defines aformal Poisson structure, which
is, roughly speaking, a Poisson structure which is a formal polynomial in h. The classes of equivalence of the star
products are in one-to-one correspondence with equivalence classes of formal Poisson structures.

2Actual calculation of a star product may also be problematic. The formulae in [19] work till the 5th order inh, and
beyond this order little is known.
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3. Covariant star products

The product (2.6) is not covariant at the second order of the expansion inh since it contains
usual derivatives of the Poisson tensor. Over last years much progress has been achieved in covari-
antization of the Kontsevich procedure [9, 1] and in extending star products to differential forms
[17, 6, 21], to Lie algebra valued differential forms [5], and in covariant holomorphic products [7].

In the symplectic case (non-degenerateωµν) situation is much better understood. A covariant
star product was suggested already in the seminal paper [3].An extension of this product to all
tensor fields is rather straightforward [26, 27]. The generic construction by Fedosov [10, 11] is
manifestly covariant.

There is a general feature of (almost) all covariant approaches: to make the star product co-
variant one needs a connection in addition to the Poisson or symplectic structure.

4. Reducing the gauge freedom

From now on we restrict ourselves to symplectic manifolds.
To construct a star product we need some geometric data, which are going to be a symplectic

manifoldM with a flat symplectic connection∇. Let ωµν be a symplectic form (with the Poisson
bivectorωµν being its’ inverse,ωµνωνρ = δ ρ

µ ). Let us choose a Christoffel symbol onM such that
the symplectic form is covariantly constant,

∇µωνρ = ∂µωνρ −Γσ
µνωσρ −Γσ

µρωνσ = 0. (4.1)

Therefore,M becomes a Fedosov manifold [14]. Let us suppose that this connection is flat and
torsion-free, i.e.,

[∇µ ,∇ν ] = 0. (4.2)

Locally, one can choose a coordinate system such thatωµν = const. andΓσ
µν = 0. Such coordinates

will be called the Darboux coordinates.
We are going to construct star products for arbitrary tensorfieldsαn,m∈ TMn⊗T∗Mm≡ Tn,m.

This means,αn,m hasn contravariant andm covariant indices. Next, we define a covariant Poisson
bracket for the tensors

{α ,β}= ωµν∇µα ·∇νβ (4.3)

possesing all the standard properties of a Possion bracket (antisymmetry, Jacobi identity, etc.).
Besides,

∇{α ,β}= {∇α ,β}+{α ,∇β}. (4.4)

Now, we are ready to construct a star product, which has to be an associative deformation of
the point-wise product in the direction of the Poisson bracket (4.4), i.e., it is a product onT[[h]]
having the form (2.2) subject to (2.3) (witha,b replaced byα ,β ). We are interested in covariant
products only, meaning thatTn1,m1[[h]]⋆Tn2,m2[[h]] ⊂ Tn1+n2,m1+m2[[h]]. Besides, we impose a few
"natural" restrictions. Namely, we require stability on covariantly constant tensors

α ⋆β = α ·β if ∇α = 0 or ∇β = 0, (4.5)
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the Moyal symmetry
Ck(α ,β ) = (−1)kCk(β ,α) (4.6)

and that∇ is a derivation
∇α ⋆β = (∇α)⋆β +α ⋆ (∇β ). (4.7)

Let us discuss the meaning of (4.5) - (4.7). The first condition (4.5) replaces the usual require-
ment that the unit element of algebra is not deformed. Physically, it means that slowly varying
fields do not see noncommutativity. In applications, the deformation parameterh is imaginary.
Therefore, the Moyal symmetry ensures hermiticity of the star product. The last condition (4.7),
which nothing else than the Leibniz rule, means that the starproduct transforms in a controlled
way under infinitesimal translations (those generators arethe covariant derivatives). In a sense,
(4.7) replaces locality of commutative products.

The conditions (4.5) - (4.7) appear to be very restrictive. One can show [27], that if they are
satisfied, the star product has the form

α ⋆N β = D−1(Dα ⋆RDβ ) , (4.8)

where

α ⋆Rβ = ∑
k

hk

k!
ωµ1ν1

R . . .ωµkνk
R (∇µ1 . . .∇µkα) · (∇ν1 . . .∇νkβ ) , (4.9)

which depends on a “renormalized” symplectic structure

ωµν
R = ωµν +h2ωµν

1 +h4ωµν
2 + . . . (4.10)

with all correction termsωµν
j being covariantly constant,

∇ρωµν
j = 0. (4.11)

The operatorL in the transformationD, see (2.8), must have the form

L =
∞

∑
k=2

Lµ1...µk∇µ1 . . .∇µk , (4.12)

and be a scalar (i.e.,L has to be proportional to a unit matrix in the tensor indices)and allLµ1...µk

have to be covariantly constant,
∇νLµ1...µn = 0, (4.13)

and may contain odd powers of the deformation parameter only.
The product (4.9) is nothing else than a covariantization ofthe Moyal product [3] extended to

tensors [26, 27].
The proof [27] of this statement is rather hard and technical, but we shall try to give here a

rough idea how does it go. First, let us note that the product (4.8) with an arbitrary form differential
operatorD is a deformation of the pointwise product of tensors in the direction of the Poisson
brackets (4.3). Therefore, our task is to analyze restrictions onD. The "gauge freedom" contained
in D is much larger than in the scalar case. Besides being a differential operator,L may be a
complicated linear transformation of tensors. Mixing up tensors of different degree is forbidden
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by the covariance. Therefore,Lµ1...µn = ⊕n,mLµ1...µn
n,m , whereLµ1...µn

n,m is a restriction to the tensors of
degree(n,m). Next, by using (4.5), one can show thatLµ1...µn

n,m = I(n,m)L
µ1...µn
0,0 , whereI(n,m) is the

identity map. Further restrictions are then obtained by analyzing the Leibniz rule (4.7). The Moyal
symmetry (4.6) is not very essential, though useful to remove certain powers of the deformation
parameter, as, e.g., odd powers ofh in (4.10).

The ambiguity in the star products has been reduced enormously. Instead of an infinity number
of fields in the gauge operatorD we have just an infinite number of constants. Nevertheless, some
freedom still remains, and we like to discuss its’ meaning. The freedom encoded in (4.10) is rather
harmless. This is the price to pay for working in formal setup. In physical application the series in
(4.10) must be summed up somehow. Only the "renormalized" value ωR is of relevance, while the
way how we split it in the perturbation series is no more than atechnical device. The rest of the
gauge freedom is discussed in the next section.

5. Classical field theory

To understand consequences of the freedom encoded in remaining gauge transformations one
has consider the integration. There is a natural measure on symplectic manifolds [12]

dµ(x) = (det(ωµν))−
1
2 dx. (5.1)

With respect to this measure, the star product⋆R is closed, i.e.,

∫

M
dµ(x)αµν ...ρ ⋆β µν ...ρ =

∫

M
dµ(x)αµν ...ρ ·β µν ...ρ

. (5.2)

provided all indices are contracted in pairs (or, equivalently, if the integrand is diffeomorphism
invariant). Among the products⋆N not all are closed.

Consider an action of a classical field theory on noncommutative space equipped with the
product⋆N

S=
∫

dµ(x)P( fi ,∇)⋆N , (5.3)

where fi are some fields,P is a polynomial, where all products are⋆N products. We can rewriteS
as

S=

∫

dµ(x)D−1(P(D fi ,∇)⋆R) =

∫

dµ(x)P(D fi ,∇)⋆R . (5.4)

This means, that the replacement⋆N by ⋆R is compensated by the transformationfi → D fi . Since
the operatorD is invertible, the theories based on the two star products are classically equivalent.
Therefore, the remaining freedom is also harmless. For physical applications, the star products
related by gauge transformations with covariantly constant coefficients inL are equivalent.

The same calculations also shows why the theories based on gauge-equivalent star products
are, in general, non equivalent. If the tensorsLµ1...µk are not all covariantly constant, one cannot
delete the operatorD−1 is (5.4).
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6. What is next?

6.1 Yang-Mills gauge covariance

For physical applications is important to have a star product which is covariant with respect to
the Yang-Mills gauge transformation. A product of this typewas constructed in [25] by introduc-
ing a flat (gauge-trivial) connection and covariantizationof the Moyal product. That paper did not
consider the problem of uniqueness of gauge-covariant starproducts, and here we briefly comment
on how this can be achieved. First of all, introducing a matter field belonging to certain represen-
tation of the gauge group requires an extension of the space of function on which the star product
is defined to a direct sum of all representations appearing intensor powers of the initial one. This
is similar to introducing the spacesTn,m, see above. Then, one has to impose a set of "natural"
restrictions on the star product, with most important ones being the stability on covariantly con-
stant fields, the Leibniz rule, and the Moyal symmetry (exactly in parallel to Eqs. (4.5) - (4.7)).
Then one observes that the Moyal-type product (4.9) with thegauge connection introduced above
satisfies all the requirements. Therefore, the problem is tofind the restrictions of the Kontsevich
transformationsD which also respect that requirements. The calculations go like in the previous
case, but are much simpler as the gauge connection does not change the representation of the gauge
to which the field belongs (in contrast to the tensor degree).It is not surprising therefore that the
final result looks precisely as before with just the connection being suitably modified.

6.2 Poisson manifolds

On the physical grounds it is hard to explain whyωµν has to be non-degenerate. Therefore,
one has to be able to work in a more general setting of Poisson manifolds. This case is much more
complicated than the symplectic one, as, for example, no Moyal-type formula (see (4.9) exists.
This is related to non-existence of a connection such that∇ωµν = 0 since covariant constancy of
ω implies that its’ rank is a constant, which is not always trueon Poisson manifolds. This can
be partially corrected by introducing the so-called contravariant connection [24]. On the other
hand, the construction of the universal star product [1] starts with an arbitrary connection, and one
can be quite optimistic about a possibility to extend this construction to tensors and to study the
consequence of the Leibniz rule and other restrictions which we imposed above in the symplectic
case. As we have already explained above, a honest implementation of the Leibniz rule requires an
extension to tensors.

6.3 Beyond formality

In physical applications it is desirable to sum up the seriesin deformation parameter to obtain
a star product between functions on a manifold rather than between formal power series. One has
to be able to give a numerical value toh, and to make sense of the notions like "the characteristic
scale of noncommutativity". From mathematical point of view, summing up formal series is a step
towards using the full power of noncommutative geometry [15]. The problem of going beyond
formality is extremely complicated. There are just a few manifolds which are noncommutative
in the strict sense. Therefore, it is probably more reasonable to restrict ourselves to construcing
new examples. The existence of a flat torsionless symplecticconnection (and of some more useful
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structures) is guaranteed on rigid special Kähler manifolds [13, 20, 2] which seem to be ideal
candidates for (strict) noncommutative deformations3.

6.4 Towards noncommutative gravity

Proper realization of the diffeomorphism invariance is oneof the most important issues for
constructing noncommutative gravity theories [23]. Of course, having a diffeomorphism covariant
star product helps a lot. In particular, one can construct [26] noncommutative counterparts for
all dilaton gravities in two dimension [16] having a full diffeomorphism invariance group, which
by itself looks as a rather strong result. Since one of the models appeared to be integrable to all
orders of the noncommutativity parameter, analyzing the solutions allows to highlight some general
problems arising in noncommutative gravity models. The dilaton gravity models in the first order
formulation contain a zweibein which can be represented through a complex one-formeµ so that
the Lorentz transformations become multiplications with alocal phase factor. In NC models this
multiplications becomes a star multiplication, which can be fixed to be a left star multiplication

δeµ = iλ ⋆eµ , δ ēµ =−iēµ ⋆λ , (6.1)

whereλ is a parameter. The transformation of complex conjugate zweibein ēµ involves right star
multiplication. (This follows from the Moyal symmetry and the fact thath has to be considered
imaginary). There is then a unique metric

gµν =
1
2
(ēµ ⋆eν + ēν ⋆eµ), (6.2)

which is real, symmetric, invariant with respect to (6.1) and does not contain derivatives. (The
derivatives inside the star product do not count). Since thestar product is diffeomorphism co-
variant, the metric (6.2) defines a diffeomorphism invariant line element. Dilator gravity models
also contain a dilaton, a connection one-form, and two auxiliary fields which generate torsion con-
straints. None of them will be important below. It is not hardto construct a noncommutative 2D
dilaton gravity that is integrable and admits gauge-trivial solutions only [26]. In other words, up to
a Lorentz transformation,

eµ = ∂µE , (6.3)

whereE is a complex scalar function. By a suitable choice of the coordinate, takingE = x1 +

ix2, the zweibein can be made the unit matrix. On the other hand, there is a coordinate system
where the symplectic structure is constant and the connection is trivial. In such a system the star
product becomes just the usual Moyal product. The Moyal product of two unit zweibeins is a unit
metric, and one may conclude that the model describes a flat space geometry, as expected. The last
statement is however wrong as the zweibein and the symplectic structure trivialize intwo different
coordinate systems, in general. To understand the consequences, let us consider an example. As we
have just mentioned above, one can choose a coordinate system to simplify the symplectic structure
and to make the star product the usual Moyal product,

α ⋆β = exp(iθ(∂ x
1∂ y

2 −∂ x
2∂ y

1)α(x)β (y)|y=x. (6.4)

3I am grateful to Paolo Aschieri for drawing my attention to special Kähler geometries.
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Let us take the functionE in most simple but yet nontrivial form,E = sin(x1)+ i sin(x2). Calcu-
lating the metric and corresponding invariants is an easy exercise, (one can also look up in[27]),
showing that in this example we are dealing with a very non-trivial geometry. The metric even
changes signature at some values ofx1 andx2. The lesson one can learn from this example is not
that noncommutative gravity predicts signature changes, but rather that the metric can behave in a
very wild way. To avoid this, one needs to impose a relation between the metric and the symplectic
structure. Interesting relations of that kind follow from the matrix models [22].

Same problem exists in most of the approaches to noncommutative gravity, specifically in
that based on a fixed star product. Many such models are presented in the review paper by Szabo
[23]. For each of these models one should either demonstratethat noncommutative corrections
to a classical geometry (say, Schwarzschild black hole) arephysically equivalent independently in
which particular coordinate system (e.g., Schwarzschild or Eddington-Finkelstein) the star product
is Moyal, or to propose a principle which relates the metric to the star product.
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