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1. Introduction

One of the most fascinating ideas in recent years is the proposal that matrix models of Yang-
Mills type, in particular certain models which have been putforward in string theory [1, 2], may
provide a description for the quantum structure of space-time and geometry. The beauty of the
proposal lies in the simplicity of these models, whose structure is essentially

S= Tr[Xa,Xb][Xa′ ,Xb′]gaa′gbb′ + fermions. (1.1)

HereXa, a= 1, ...,D are a set of hermitian matrices, and we restrict ourselves tothe case of Eu-
clidean signature withgab = δab in this article. No notion of differential geometry and classical
space-time whatsoever is used in this action. The geometrical structures arise in a certain “semi-
classical limit”, in terms of solutions of these models. Theaim of this article is to clarify the scope
and the mathematical description of this “emergent“ geometry.

Simple examples of such matrix geometries, notably the fuzzy sphereS2
N or more general

quantized homogeneous spaces including the Moyal-Weyl quantum plane IR2n
θ , have been studied

in great detail. However in order to describe the general geometries required for gravity, one
cannot rely on the special group-theoretical structure of these simple examples. This obstacle was
removed recently by realizing [3, 4] that there is a sufficiently large class of matrix geometries with
generic geometry, which can play the role of space-time (possibly with extra dimensions) in Yang-
Mills matrix models. The key to understand their geometry isto realize that these generic matrix
geometries should be considered asembedded noncommutative (NC) spacesresp. NC branesM ⊂
IRD. The effective geometry is very clear in the ”semi-classical limit“ of the matrix geometry, where
commutators are replaced by Poisson brackets. As we will recall below,M then inherits the pull-
back metricgµν of IRD, which combines with the Poisson (or symplectic) structureθ µν(x) to form
an effective metricGµν(x), much like the open string metric in string theory.

However, the description of matrix geometries in terms of a semi-classical limit is based on
certain assumptions, and is may seem desirable to have a moreprecise characterization of “ma-
trix geometries“. This is possible in the simple examples mentioned above, introducing e.g. a
differential calculus and using ideas of noncommutative differential geometry. The standard re-
alization of these structures for the homogeneous spaces [5, 6, 7] however relies on the special
group-theoretical structure. Moreover, it turns out that this differential calculus is essentially that
of the ambient space IRD, and does not know about the intrinsic geometry of the fuzzy space. One
might consider to use Connes NC differential calculus, which however is not naturally adapted to
fuzzy geometries (e.g. there is an issue with chirality). Instead, we will follow an important lesson
from Yang-Mills matrix models: there is no need for any additional structure, the models contain
all the ingredients required for physics. Our task is merelyto extract this information without
mathematical prejudice. This is the strategy adopted here.

In this article, various aspects of matrix geometry arisingin Yang-Mills matrix models and
their mathematical description will be discussed. We first recall some examples of finite matrix ge-
ometries, described by finite-dimensional matrix algebrasA = Mat(N,C). This includes a series
of very clear and well-known examples such as the fuzzy sphere S2

N, which can be considered for
anyN∈ IN. However matrix geometries are much more general, and also cover singular geometries
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such as intersecting branes. Transitions between different topologies are conceivable, and physi-
cally very interesting. Therefore the meaning of matrix geometry and even topology can in general
only be approximate, since for smallN there can be no way to exactly separate and characterize
them. The appropriate concept is that of an effective or ”emergent“ geometry, which is valid within
a certain range of energies. This is entirely sufficient for any physical application and in fact to be
expected, since the Planck scale provides a natural limitation for geometry. Our task is therefore
to find an appropriate and useful description of generic matrix geometries, where mathematical
axioms on the geometry are replaced by estimates on the validity of certain effective descriptions.
We will discuss the appropriate tools for this description here, delegating the estimates for future
work.

2. Examples of matrix geometries

2.1 Prototype: the fuzzy sphere

The fuzzy sphereS2
N [5, 8] is a quantization resp. matrix approximation of the usual sphereS2,

with a cutoff in the angular momentum. We first note that the algebra of functions on the ordinary
sphere can be generated by the coordinate functionsxa of IR3 modulo the relation∑3

a=1xaxa = 1.
The fuzzy sphereS2

N is a non-commutative space defined in terms of threeN×N hermitian matrices
Xa,a= 1,2,3 subject to the relations

[Xa,Xb] =
i√
CN

εabcXc ,
3

∑
a=1

XaXa = 1l (2.1)

whereCN = 1
4(N

2 − 1) is the value of the quadratic Casimir ofsu(2) on CN. They are realized
by the generators of theN-dimensional representation(N) of su(2). The matricesXa should be
interpreted as quantized embedding functions in the Euclidean space IR3,

Xa ∼ xa : S2 →֒ IR3. (2.2)

They generate an algebraA ∼= Mat(N,C), which should be viewed as quantized algebra of func-
tions on the symplectic space(S2,ωN) whereωN is the canonicalSU(2)-invariant symplectic form
on S2 with

∫

ωN = 2πN. The best way to see this is to decomposeA into irreps under the adjoint
action ofSU(2), which is obtained from

S2
N
∼= (N)⊗ (N̄) = (1)⊕ (3)⊕ ...⊕ (2N−1)

= {Ŷ0
0 } ⊕ ... ⊕ {ŶN−1

m }. (2.3)

This provides the definition of the fuzzy spherical harmonics Ŷl
m, and defines thequantization map

I : C (S2) → A = Mat(N,C)

Yl
m 7→

{

Ŷl
m, l < N
0, l ≥ N

(2.4)

It follows easily thatI (i{xa,xb}) = [Xa,Xb] where{,} denotes the Poisson brackets correspond-
ing to the symplectic formωN = N

2 εabcxadxbdxc on S2. Together with the fact thatI ( f g) →

3
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I ( f )I (g) for N → ∞ (which is not hard to prove),I (i{ f ,g}) ≈ [I ( f ),I (g)] follows. This
means thatS2

N is the quantization of(S2,ωN).
Moreover, there is a natural Laplace operator onS2

N defined as

�= [Xa, [Xb, .]]δab (2.5)

which is invariant underSO(3). Its spectrum coincides with the spectrum of the classical Laplace
operator onS2 up to the cutoff, and the eigenvectors are given by the fuzzy spherical harmonicŝYl

m.
In this special example, (2.3) allows to construct a a seriesof embeddings

AN ⊂ AN+1 ⊂ ... (2.6)

with norm-preserving embedding maps. This allows to recover the classical sphere by taking the
inductive limit. While this is a very nice structure, we do not want to rely on the existence of such
series of embeddings, for reasons explained below.

2.2 Other examples

A straightforward generalization of the fuzzy sphere leadsto the fuzzy complex projective
spaceCPn−1

N , which is defined in terms of hermitian matricesXa, a= 1,2, ...,n2 −1 subject to the
relations

[Xa,Xb] =
i

√

C′
N

f ab
c Xc , dc

abX
aXb = DNXc, XaX

a = 1l (2.7)

(adopting a sum convention). Heref ab
c are the structure constants ofsu(n), dabc is the totally

symmetric invariant tensor, andC′
N,DN are group-theoretical constants which are not needed here.

These relations are realized by the generators ofsu(n) acting on irreducible representationsCdN

with highest weight(N,0, ...,0) or (0,0, ...,N). Again, the matricesXa should be interpreted as
quantized embedding functions in the Euclidean spacesu(n)∼= IRn2−1,

Xa ∼ xa : CPn−1 →֒ IRn2−1. (2.8)

They generate an algebraA ∼= Mat(dN,C), which should be viewed as quantized algebra of func-
tions on the symplectic space(CPn−1,Nω) whereω is the canonicalSU(n)-invariant symplectic
form onCPn−1. It is easy to write down a quantization map analogous to (2.4),

I : C (CPn−1)→ A (2.9)

using the decomposition ofA into irreps ofsu(n). Again, there is a natural Laplace operator on
CPn−1

N defined as in (2.5) whose spectrum coincides with the classical one up to the cutoff. A
similar construction can be given for any coadjoint orbit ofa compact Lie group.

Thefuzzy torus T2θ can be defined in terms of clock- and shift operatorsU,V acting onCN with
relationsUV = qVU for qN = 1, with UN =VN = 1. However one can also view it as embedded
noncommutative space in IR4, by defining 4 hermitian matricesU =X1+ iX2, V =X3+ iX4 which
satisfy the relations

(X1)2+(X2)2 = 1= (X3)2+(X4)2,

(X1+ iX2)(X3+ iX4) = q(X3+ iX4)(X1+ iX2). (2.10)

4
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They can again be viewed as embedding maps

Xa ∼ xa : T2 →֒ IR4. (2.11)

These matrices generate the algebraA ∼= Mat(N,C), which using the decomposition into irreps
underU(1)×U(1) can be viewed as quantization of the function algebraC (T2) on the symplectic
space(T2,ωN). The spectrum of the matrix Laplacian (2.5) approximately coincides with the
classical case below the cutoff.

Finally, theMoyal-Weyl quantum planeIR2n
θ is defined in terms of 2n (infinite-dimensional)

hermitian matricesXa ∈ L (H ) subject to the relations

[Xµ ,Xν ] = iθ µν1l (2.12)

whereθ µν =−θν µ ∈ IR. HereH is a separable Hilbert space. This generates the (n-dimensional)
Heisenberg algebraA (or some suitable refinement of it, ignoring operator-technical subtleties
here), which can be viewed as quantization of the algebra of functions on IR2n using e.g. the Weyl
quantization map1. Of course, the matricesXµ should be viewed as quantizations of the classical
coordinate functionsXµ ∼ xµ : IR2n → IR2n. Again the Laplacian (2.5) coincides with the classical
one, for the effective metric specified in (4.6).

This concludes our brief exhibition of matrix geometries, whose geometry is obvious because
of their symmetry. We will learn below how to generalize themfor generic geometries, and how
to systematically extract their geometry without using this symmetry. Besides these and other nice
examples, there are also more exotic and singular spaces that can be modeled by matrices, such as
intersecting spaces, stacks of spaces, etc.

2.3 Lessons and cautions

We draw the following general lessons from the above examples:

• The algebraA = L (H ) of linear operators onH should be viewed as quantization of the
algebra of functions on some symplectic space(M ,ω). However as abstract algebra,A car-
ries no geometrical information, not even the dimension or the topology of the corresponding
space. dim(H ) merely counts the number of “quantum cells”, more preciselyit measures
the volume via the semi-classical relation (cf. (4.1))

∫ ωn

n!
f ∼ (2π)nTrI ( f ) (2.13)

• The geometrical information is encoded in thespecific matrices Xa, which should be inter-
preted as embedding functions

Xa ∼ xa : M →֒ IRD. (2.14)

They encode the embedding geometry, which is contained e.g.in the matrix Laplacian (2.5).
We will learn below how to extract this more directly. The Poisson resp. symplectic structure
is encoded in their commutation relations. In this way, evenfinite-dimensional matrices can
describe various geometries to a high precision.

1which in turn is defined in terms of plane waves i.e. irreducible representations of the translation group.
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• In some sense, every non-degenerate and “regular” fuzzy space locally looks like the quan-
tization of some Poisson manifold, in particular like some Moyal-Weyl quantum plane IR2n

θ .
The algebra of functions on IR2n

θ is infinite-dimensional only because its volume is infinite.
For example,CPn

N can be viewed as particular compactification of IR2n
θ .

This leads to the idea that generic geometries can be described similarly asembedded non-
commutative spacesin matrix models, interpreting the matricesXa as quantized embedding maps
Xa ∼ xa : M →֒ IRD. However, some cautionary remarks on matrix geometries arein order.

The problem of identifying the geometry corresponding to some given configuration{Xa} in
the matrix model is clearly hard2, since general matrices do not necessarily admit a geometrical
interpretation. There is not even a notion of dimension at this level of generality. In fact matrix
models can describe much more general situations, such as multiple submanifolds (”branes“), in-
tersecting branes, manifolds suspended between branes, etc., essentially the whole zoo of string
theory. Each of these are very interesting and should be treated separately. Therefore we have to
make some simplifying assumptions, and focus on the simplest case of classical submanifolds (and
possibly stacks of coinciding branes.). Indeed, there is a large class of configurations which clearly
have such a geometrical interpretation. For example, we will show in section 5 how to realize a
large class of generic 4d geometries through such matrix geometries.

A sharp separation between admissible and non-admissible matrix geometries would in fact
be inappropriate in the context of matrix model, whose main merit is the definition of quantization
in terms of an integral over the space ofall matrices,

Z =
∫

dXae−S[X] (2.15)

and similarly for correlation functions. The ultimate aim is to show that the dominant contributions
to this integral correspond to matrix configurations which have a geometrical meaning and are
relevant to physics. However, the integral is over all possible matrices, including geometries with
different dimensions and topologies. It is therefore clearthat such a geometric notion can only be
approximate or “emergent”.

Finally, we want to address the issue of finite-dimensional versus infinite-dimensional matrix
algebras. Imagine that our space-time was fuzzy, with an area quantization characterized by the
scaleΛNC (one may expectΛNC ≈ ΛPlanck), and perhaps even compact of sizeR (e.g. with the
topology ofT4). Then there would be only finitely many “quantum cells”, andthe geometry should
be modeled by some finiteN -dimensional (matrix) algebra. No experiment on earth, noteven at
CERN, can directly access the Planck scale, and all measurements about the geometry could be
in perfect agreement with such a model in terms of a finite matrix geometry. Therefore the limit
N → ∞ is not essential for local physics, however there must be a large “separation of scales“. Let
Λcosm∼ 1/R some cosmological scale. Then as long asΛcosm≪ ΛNC and Λphys≪ ΛNC where
Λphys is the maximal available energy for experiments, then a description in terms of finite matrix
geometries should be perfectly adequate. The effective geometry would be arguably the same if
the spectrum of the corresponding fuzzy Dirac or Laplace operator approximately coincides with
the continuum caseup to energies of orderΛNC. There is no obvious requirement above that scale.

2A priori one does not have a sequence of matrices as in (2.6).
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3. Spectral matrix geometry

We want to understand more generally such “matrix geometries”, described by a number of
hermitian matricesXa ∈ A = L (H ). HereH is a finite-dimensional or infinite-dimensional
(separable) Hilbert space.

From an algebraic point of view, such matrix algebras are quite boring and in a sense trivial.
In fact, Wedderburns theorem implies that the algebra generated by finite-dimensional hermitian
matrices is always the product of simple matrix algebras. However, the point is that even simple
matrix algebras can describe non-trivial geometries, as demonstrated by the above examples. It is
the additional structure provided by the specific embeddingmatricesXa which makes such matrix
geometries interesting and non-trivial.

One way to extract geometrical information from a spaceM which naturally generalizes to
the noncommutative setting is via spectral geometry. In theclassical case, one can consider the
heat kernel expansion of the Laplacian∆g of a compact Riemannian manifolds(M ,g) [9],

Tre−α∆g = ∑
n≥0

α(n−d)/2
∫

M
ddx

√

|g|an(x). (3.1)

The Seeley-de Witt coefficientsan(x) of this asymptotic expansion are determined by the intrinsic
geometry ofM , e.g. a2 ∼ −R[g]

6 whereR[g] is the curvature scalar. This provides physically
valuable information onM , and describes the one-loop effective action. In particular, the leading
term allows to compute the number of eigenvalues below some cutoff,

N∆(Λ) := #{µ2 ∈ spec∆; µ2 ≤ Λ2}. (3.2)

dropping the subscriptg of the Laplacian. One obtains Weyls famous asymptotic formula

N∆(Λ)∼ cdvolM Λd, cd =
volSd−1

d(2π)d . (3.3)

In particular, the (spectral) dimensiond of M can be extracted the from the asymptotic density
of the eigenvalues of∆g. However, although the spectrum of∆g contains a lot of information on
the geometry, it does not quite determine it uniquely, and there are inequivalent but isospectral
manifolds3.

Now consider the spectral geometry of fuzzy spaces in more detail. In the finite-dimensional
case, the asymptotic density of eigenvalues strictly speaking vanishes, which would give the naive
conclusion that fuzzy spaces (and all finite matrix geometries) have spectral dimension zero. Of
course this completely misses the point. The proper definition of a spectral dimension in the fuzzy
case with Laplacian� should be something like

N�(Λ)∼ cdvolM Λd for Λ ≤ Λmax (3.4)

whereΛmax is the cutoff of the spectrum. This is of course a bit hard to make precise, but the idea
is clear. Similarly, the information about the geometry ofM is encoded in the spectrum of its

3One way to close this gap is to consider spectral triples associated to Dirac operators [10]. In the matrix model,
the geometrical information will be extracted more directly using the symplectic structure and the embedding defined
by the matricesXa.
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Laplacian or Dirac operatorbelow its cutoff. Such a cutoff is in fact essential to obtain meaningful
Seeley-de Witt coefficients in the noncommutative case, see[11]. Thus if spec� has a clear enough
asymptotics forΛ ≤ Λmax and approximately coincides with spec∆g for some classical manifold
(M ,g) for Λ ≤ Λmax, then its spectral geometry is that ofM .

To proceed, we need to specify a Laplacian for matrix geometries. Here the (Yang-Mills)
matrix model provides a natural choice: For any given background configuration in the matrix
model defined byD hermitian matricesXa, there is a natural matrix Laplace operator4

�= [Xa, [Xb, .]]δab (3.5)

which is a (formally) hermitian operator onA . We can study its spectrum and the distribution
of eigenvalues. As we will explain below, this Laplacian governs the fluctuations in the matrix
model, and therefore encodes its effective geometry. Henceif there is a classical geometry which
approximates the matrix backgroundXa up to some scaleΛNC, the spectrum of its canonical (Levi-
Civita) Laplacian∆g must approximately coincide with the spectrum of�, up to some possible
cutoff Λ. In particular, there should be a map between classical functions and NC functions

I : CΛ(M ) → A ⊂ Mat(∞,C)
f (x) 7→ F

(3.6)

which approximately intertwines the LaplaciansI (∆g f ) ≈ �(I ( f )). HereCΛ(M ) denotes the
space of functions onM whose eigenvalues are bounded byΛ, andI should be injective. The
fuzzy sphere is an example where the matrix Laplacian precisely matches the classical Laplacian
up to the cutoff. Its special symmetry is not essential here.

4. Embedded noncommutative spaces and semi-classical limit.

Although the idea of spectral geometry is clear and appropriate, it is very hard in practice to
extract information on the metric from the spectrum. It would be much nicer to have a more direct
handle on the geometry. This can indeed be achieved, assuming that the matrix configuration can
be understood as quantization of an approximate classical symplectic manifold(M ,θ µν). We can
then take advantage of the noncommutative structure of the algebra encoded in the commutators,
and interpret commutators as quantization of the Poisson structure onM . In particular, the matrices
Xa will be interpreted as quantized embedding functions. Thismakes the framework of matrix
model much more accessible than the geometry of abstract NC spaces.

Quantization of Poisson manifolds. The quantization of a Poisson (or symplectic) structure on
M is given by a quantization map (generalizing (3.6)) such that

I : CΛ(M ) → A ⊂ Mat(∞,C)

f (x) 7→ F

f g 7→ FG+O(θ), { f ,g} 7→ −i[F,G]+O(θ2). (4.1)

4This operator arises e.g. as equation of motion for the Yang-Mills matrix model. There is also a natural matrix
Dirac operator/DΨ = Γa [Xa,Ψ] whereΓa generates the Clifford algebra ofSO(D). However we will not discuss it here.

8
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Hereθ encodes the scale of the Poisson tensorθ µν = {xµ ,xν} in some local coordinates, andO(θ2)

stands for higher-order correction terms (which are unavoidable). This will allow to explicitly
understand the geometry encoded in the matrix model backgroundXa, as explained below. In any
case, it is clear thatθ µν – if it exists in nature – must play some dynamical physical role, which
remains to be clarified.

The bottom line will be that any configurations in the matrix model which correspond to
“almost-commutative” geometries can be related to this underlying classical space using (4.1).
We can then talk about thesemi-classical limitof the matrix model background. This means that
every matrixF will be replaced by its classical pre-imageI −1(F) =: f , and commutators will
be replaced by Poisson brackets. This allows to use the toolsof classical differential geometry,
and provides the leading approximation of the geometry. However one can go beyond this semi-
classical limit, by defining an associative product onC (M ) via

f ⋆g := I −1(I ( f )I (g)). (4.2)

This allows to systematically compute higher-order corrections of the NC case in the language of
classical functions and geometry. The matrix model action (and any action in NC field theory) can
then be considered as a deformed action on the underlying classical space. One can moreover ex-
pand the star product “formally” in powers ofθ , as in deformation quantization. This is very useful
to improve the leading (semi-classical) description systematically by higher-order corrections inθ .
In the context of noncommutative gauge theories (which arise in particular in matrix models), this
leads to the concept of a Seiberg-Witten map [12].

Going beyond the semi-classical limit, the existence of a quantization map implies in particular
a generalized Poincare-Birkhoff-Witt (PBW) property, in the sense that there should be a basis ofA

organized e.g. as ordered polynomials inXµ (times some cutoff function such ase−x2
). This means

essentially that these “independent generators”Xµ can be ordered in some standard way. Hence the
dimension ofMθ could be characterized by the minimal number of generatorsXa which generate
A , which are functionally independent and satisfy such a PBW property.

Embedded noncommutative spaces. We are now ready to understand the geometric meaning of
“generic but smooth“ configurations in the matrix model. Thekey is to interpret the matricesXa as
quantization of the Cartesian embedding map ofM ⊂ IRD, i.e.

Xa ∼ xa : M →֒ IRD. (4.3)

In particular, we can write

[Xa,Xb]∼ i{xa,xb}= iθ µν ∂µxa∂νxb (4.4)

in the semi-classical limit, whereθ µν is the Poisson tensor in some local coordinates onM . With
a little more effort [4, 3], one can now show that

�φ ≡ [Xa, [Xb,φ ]]δab ∼−{Xa,{Xb,φ}}δab =−eσ ∆Gφ(x) (4.5)

9
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for any matrix resp. functionφ ∈ A ∼ φ(x). Here∆G is the standard Laplace operator associated
to the effective metricGµν defined as follows [4]

Gµν(x) := e−σ θ µµ ′
(x)θνν ′

(x)gµ ′ν ′(x) (4.6)

gµν(x) := ∂µxa∂νxbδab , (4.7)

e−(n−1)σ :=
1

θn |gµν(x)|−
1
2 , θn = |θ µν |1/2. (4.8)

All of these are tensorial objects onM , e.g.gµν(x) is the metric induced onM ⊂ IRD via pull-back
of δab. The normalization factore−σ is determined uniquely such that

1
θn =

√

|Gµν |e−σ , (4.9)

except forn= 1 which we exclude for simplicity. This provides the desiredexplicit description of
the matrix geometry at the semi-classical level. Higher-order corrections could be computed as an
expansion inθ , in the spirit of deformation quantization. This generalizes the known results for
spaces with additional symmetry such as the fuzzy sphere to the case of generic matrix geometries.

The easiest way to see (4.5) is to consider the action for a scalar field coupled to the matrix
model background

S[ϕ ] ≡ −Tr[Xa,φ ][Xb,φ ]δab ∼
1

(2π)n

∫

d2nx
√

|Gµν |Gµν(x)∂µ φ∂ν φ . (4.10)

Writing the lhs as Trφ�φ , we obtain (4.5). Moreover, note thatφ in this action can be viewed
as additional (i.e. transversal) matrix componentφ ≡ XD+1 in an extended matrix model. For
the same reason, (4.10) is precisely the action which governs e.g. nonabelian scalar fields in the
original matrix model, which arise as fluctuations of thetransversalmatrices on stacks of such
backgroundsXa⊗ 1ln, cf. (7.1). This implies that these nonabelian scalar fieldsare governed by
the effective metricGµν . Similarly, one can show that all fields which arise in the matrix model as
fluctuations of the matrices around such a background (i.e. scalar fields, gauge fields and fermions)
are governed byGµν , possibly up to a conformal factor∼ eσ . This means thatGµν is the effective
gravitational metric.

We note the following observations:

• Assume that dimM = 4. ThenGµν = gµν if and only if the symplectic form

ω =
1
2

θ−1
µν dxµdxν (4.11)

is self-dual or anti-selfdual [3].

• There is a natural tensor

J η
γ = e−σ/2θηγ ′gγ ′γ =−eσ/2 Gηγ ′θ−1

γ ′γ . (4.12)

Then the effective metric can be written as

Gµν = J µ
ρ J ν

ρ ′ gρρ ′
=−(J 2)

µ
ρ gρν . (4.13)

10
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In particular,J defines an almost-complex structure if and only ifGµν = gµν , hence for
(anti-)selfdualω . In that case,(M , g̃,ω) defines an almost-Kähler structure onM where

g̃µν := e−σ/2 gµν . (4.14)

• The matrix model is invariant under gauge transformationsXa → Xa′ = U−1XaU , which
semi-classically correspond to symplectomorphismsΨU on (M ,ω). This can be viewed in
terms of modified embeddingsxa′ = xa ◦ΨU : M → IRD with equivalent geometry.

• Matrix expressions such as[Xa,Xb]∼ iθ µν ∂µxa∂νxb should be viewed as (quantizations of)
tensor fields onM ⊂ IRD, written in terms of Cartesian coordinatesa,b of the ambient space
IRD. Note that they are always tangential, because∂νxb ∈TpM . Using appropriate projectors
on the tangential resp. normal bundles ofM , this can be used to derive matrix expressions
which encode e.g. the intrinsic curvature ofM , cf. [13, 14]. This is important for gravity.

5. Realization of certain generic 4D geometries in matrix models

In this section, we want to show how a large class of generic 4-dimensional geometries can be
realized as NC branes in matrix models withD = 10. This should eliminate any lingering doubts
about the geometrical scope of the matrix model approach to gravity. One way to see this is as
follows:

1. Consider some ”reasonable” generic geometry(M 4,gµν) with nice properties, as explained
below.

2. Choose an embeddingM →֒ IRD. This is in general not unique, and requires thatD is
sufficiently large. Using classical embedding theorems [15], D = 10 should be enough to
embed generic physically relevant 4-dimensional geometries (at least locally).

3. EquipM with an (anti-)selfdual closed 2-formω . Notice that this meansdω = d⋆g ω = 0,
i.e. ω is a special solution of the free Maxwell equations onM . Such a solution generically
exists for mild assumptions onM , for example by solving the corresponding boundary value
problem withω being (anti-)selfdual on the boundary or asymptotically5. The requirements
in step 1) should ensure that this is possible. For asymptotically flat spaces,ω should be
asymptotically constant in order to ensure that the dilatone−σ is asymptotically constant. In
the case of compact extra dimensionsM 4×K, this requirement may be relaxed.

As explained above, it follows that(g̃,ω) (4.14) is almost-Kähler. Under mild assumptions,
one can then show [17] that there exists a quantization (4.1)of the symplectic space(M ,ω)

in terms of operators on a Hilbert space6.

In particular, we can defineXa := I (xa) ∈ A to be the matrix obtained as quantization of
xa, so that

Xa ∼ xa : M → IRD. (5.1)

5However, it may happen thatω vanishes at certain locations, cf. [16]. This might be curedthrough compact extra
dimensions.

6The use of the almost-Kähler structure may only be technicaland should actually not be necessary.
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The effective metric onM is thereforeGµν as explained above.

4. Sinceω is (anti-)selfdual it follows thatG= g, and we have indeed obtained a quantization of
(M ,g) in terms of a matrix geometry. In particular, the matrix Laplacian� will approximate
∆g for low enough eigenvalues, and fluctuations of the matrix model around this background
describe fields propagating on this effective geometry.

6. Deformations of embedded NC spaces

Assume thatXa ∼ xa : M →֒ IRD describes some quantized embedded space as before. The
important point which justifies the significance of this class of configurations is thatit is preserved
by small deformations. Indeed, consider a small deformationX̃a = Xa+Aa by generic matrices
Aa ∈A . By assumption, there is a local neighborhood for any pointp∈M where we can separate
the matricesXa into independent coordinates and embedding functions,

Xa = (Xµ ,φ i(Xµ)) (6.1)

such that theXµ generate the full7 matrix algebraA . Therefore we can write in particularAa =

Aa(Xµ), and assume that it is smooth (otherwise the deformation will be suppressed by the action).
We can now consider̃Xµ = Xµ +Aµ ∼ x̃µ (xν) as new coordinates with modified Poisson structure
[X̃µ , X̃ν ] ∼ i{x̃µ , x̃ν}, andφ̃ i = φ i +Ai ∼ φ̃ i(x̃µ) as modified embedding ofM̃ →֒ IRD. Therefore
X̃a describes again a quantized embedded space. This property should also ensure that embedded
NC spaces play a dominant role in the path integral (2.15).

If we do not want to assume the existence of a quantized embedded space, things are more
difficult. The existence of a PBW property for a subsetXµ of the matrices might be a substitute,
so that general functionsφ(Xµ) can be expanded in some basis of ”ordered“ functions ofXµ ,
in particular [Xµ ,Xν ] = iθ µν(Xρ). This should essentially imply the existence of some sort of
quantization map (4.1). However this seems not very ”intrinsic“.

One particularly interesting point is the notion of dimension, which should be the number
of independent generators in (6.1), or the rank of[Xa,Xb]. Semi-classically, this dimension can
be extracted purely algebraically fromJa

b := −i[Xa,Xc]δcb, which semi-classically reduces to the
tensor fieldeσ/2J

µ
ν (4.12). Therefore it satisfies a characteristic equation oforder dimM [3].

However it is not clear if this still holds e.g. for higher-order corrections inθ . If so, this would
provide a very useful intrinsic characterization of matrixgeometry.

To obtain an intuition and to understand the meaning of ”local description”, consider the ex-
ample of the fuzzy sphere. For example, we can solve forX3 = ±

√

1− (X1)2− (X2)2, and use
X1,X2 as local coordinate near the north poleX3 =+1 resp. the south poleX3 =−1. Each branch
of the solution makes sense provided some restriction on thespectrum ofX3 is imposed, and in
general “locality“ might be phrased as a condition on the spectrum of some coordinate(s). Then
theX1,X2 ”locally” generate the full matrix algebraA , and satisfy a PBW property.

The existence of a splitting (6.1) can be exploited further using theISO(D) symmetry of Yang-
Mills matrix models. In the semi-classical picture, one canthus assume for any given pointp∈ M

7In topologically non-trivial situations they will individually generate only “almost“ the fullA , andA is recovered
by combining various such local descriptions. This will become more clear in the example ofS2

N.
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that ∂µφ i = 0, i.e. the tangent space is spanned by the firstd coordinates in IRD. Moreover, p
can be moved to the origin using theD-dimensional translations. Then the matrix geometry looks
locally exactly like IRd

θ , which is deformed geometrically by non-trivialφ i(Xµ) and a non-trivial
commutator[Xµ ,Xν ] = i(θ̄ µν + δθ µν(Xα)). TheseXµ define ”local embedding coordinates“,
which are analogous to Riemannian normal coordinates. Hence any deformation of IRdθ gives a
matrix geometry as considered here, and vice versa any matrix geometry which is in some sense
locally smooth should have such a local description. This completes the (heuristic) justification of
our treatment of matrix geometry.

Finally, we are free in principle to use any other noncommutative ”local coordinates“, i.e.
Yµ(Xν), and write the resulting action in terms ofYµ . In the infinite-dimensional case, one can in
particular try to choose8 the analog of local Darboux coordinates, defined as[Yµ ,Yν ] = iθ̄ µν for
constantθ̄ µν . This amounts to the Moyal-Weyl quantum plane. However, theaction then takes a
highly non-trivial non-polynomial form9.

7. Further aspects and generalizations

Although we focused so far on matrix geometries which are quantizations of classical sym-
plectic manifolds, it should be stressed again that matrix models are much richer and accommodate
structures such as multiple branes, intersecting branes, manifolds suspended between branes, etc.

Recall that the algebra generated by (finite-dimensional) hermtitian matricesXa is always a
product of simple matrix algebras, i.e. it decomposes into diagonal blocks. One particularly simple
and important case is that of coinciding branes. Suppose that Xa ∈ L (H ) is some matrix realiza-
tion resp. quantization ofxa : M →֒ IRD as discussed above. Then the following configuration

Ya = Xa⊗1ln =













Xa 0 0 0
0 Xa 0 0

0 0
... 0

0 0 0 Xa













(7.1)

should be interpreted asn coinciding branes. This is instructive because the underlying algebra
A ⊗Mat(n,C) can be interpreted in two apparently different but nonetheless equivalent ways:
1) assu(n) valued functions onM or 2) describing a higher-dimensional spaceM ×K, where
Mat(n,C) is interpreted as quantization of some compact symplectic spaceK. Which of these two
interpretations is physically correct depends on the actual matrix configuration, generalizing (7.1).
Such extra dimensions provide a natural way of adding more structure to the effective physics such
as physically relevant gauge groups etc., cf. [18].

Another variation of this idea allows to describe continuous superpositions of such branes,
which involves a classical direction. For example, consider Ya = (Xµ ⊗ 1l,1⊗C) whereC is a
selfadjoint operator with continuous spectrum, such as a quantum mechanical position operator.
This would describe the geometry ofM × IR. However, in this case the matrixXi = 1l⊗C commutes
with the Xµ ⊗ 1l, andM × IR is really a foliation with symplectic leaves{M ×{c}; c∈ IR} and

8this is clearly related to rigidity theorems for the Heisenberg algebra.
9I would like to thank Alexander Schenkel for discussions on this point.
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an extra classical direction. In that case, the effective metric Gµν (4.6) in the matrix model is
degenerate along the classical direction, so that fluctuations propagate only along the symplectic
leaves. This is a very important property of the matrix model. It means that its effective geometry is
necessarily non-commutative, justifying our focus on quantized symplectic spaces. This is also an
important difference to the standard string theory picturewhere D-branes with a B-field do couple
to the bulk physics. In our matrix model backgrounds, the bulk is essentially decoupled.

It is interesting to compare the present picture of embeddedNC branes with other types of
solutions of the IKKT model, such as the compactification on noncommutative tori in [19]. The
latter are configurations of the typeU−1XiU = Xi +Ri, which allow to obtain 10-dimensional
compactified solutions such as IR4×T6. These solutions do not belong to the class of embedded
NC branes considered here. They are ”space-filling“ branes,whose tori are infinite-dimensional
algebras which in some sense contains also a ”winding“ sector. They are not stable under small
deformations (e.g. it makes an important difference whether θ is rational or irrational). In contrast,
embedded NC spaces as considered here with extra dimensionssuch as (2.10) can be at most 8-
dimensional. They contain no winding modes and are stable under deformations. Therefore we are
considering a different sector of the matrix model, which isbetter behaved in many ways.

Last but not least, it should be emphasized that the geometryand therefore gravity described
by Xa is not fixed but determined dynamically in these matrix models, depending notably on the
presence of matter. The quantization of the IKKT model in terms of an integral over all (bosonic
and fermionic) matrices (2.15) can be expected to be well-defined, because of maximal supersym-
metry. Therefore this and related models provide excellentcandidates for a quantum theory of
gravity coupled to matter.
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