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1 Introduction and Summary

AdS/CFT is a conjecture dictating that the spectrum of AdS5 × S5 is dual to the dimension of

D = 4, N = 4 SYM local operators [1]. The exact spectrum of both theories have recently been

studied intensively based on integrability methods. One of the central ideas is Thermodynamic

Bethe Ansatz (TBA) equations.1 The TBA equations are used to compute the exact ground

state energy of a finite-volume field theory by interchanging the space and time directions [5].

Such strategy was followed by the study of worldsheet theory with space- and time- coordinates

interchanged [6]. This theory is also called mirror AdS5×S5 model, and thoroughly investigated

in [7].

The partition function of the mirror AdS5×S5 can be computed by asymptotic Bethe Ansatz

[8, 9] under the assumption called string hypothesis [4, 10]. Variational method is applicable

in the thermodynamic limit, and the TBA equations arise as the condition for extremality

[11, 12, 13]. The TBA consists of a set of nonlinear integral equations for Y-functions. Each

Y-function corresponds to a particular type of boundstates which contribute to the mirror

partition function.

In the meantime, Y-system on the su(2|4|2)-hook has been proposed and solved explicitly

in the asymptotic limit [14].2 The Y-system is a set of difference equations for Y-functions,

and the Y-system can be expressed as T-system, namely another set of difference equations

for T-functions [17, 18]. The T-system is closely related to global symmetry of the given

model [19, 16], and can be derived from simplified TBA equations by the ‘projection’ operator

(log f) ⋆ s−1
K ≡ log(f+f−) [13, 20]. If proper analyticity data are provided, one can integrate

the Y-system to obtain most of the TBA equations [21, 22], except for the formula for the exact

energy.

The original TBA equations capture the exact ground state energy, which is zero in the case

of AdS/CFT [23]. A common wisdom to compute the exact spectrum of excited states is to

deform the integration contours in the TBA equations, which was observed first in integrable 2D

vertex models [24] and later in perturbed CFT [25, 26]. Upon contour deformation, the integrals

pick up additional terms coming from singularities of Y-functions. As such, the excited-state

TBA equations depend on the state and the value of coupling constant under consideration

[21]. Numerical study also indicates that (the gradient of) the exact energy may exhibit a

noticeable change at the critical value of coupling constant [27].

As applications, the exact dimension of Konishi state has been computed numerically up

1The TBA equations appeared first in [2] and generalized to the Heisenberg spin chain in [3, 4].
2By su(2|4|2)-hook we always mean the T-hook drawn as Figure 2 in Appendix B. There are other T-hooks

of su(2|4|2) type, corresponding to different choices of Kac-Dynkin diagram. [15, 16].
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to λ ≈ 664 [28] and λ ≈ 2046 [29], and it matches string theory results at strong coupling

[30, 31, 32, 33]. Five-loop dimension of Konishi state has been obtained numerically [34]

and analytically [35], which agrees with the prediction of the generalized Lüscher formula

[36, 37, 38, 39], although no field theoretical computation has been done as in the four-loop case

[40, 41, 42]. Such agreement has been extended to general twist-two states in the sl(2) sector

[43, 44]. At strong coupling, the Y-system can be solved by character formula [45], and the

result agrees with the exact energy of semiclassical strings [46, 19]. See also [47, 48, 49, 50, 51]

towards the exact spectrum of twisted theories.

Behind these successes of TBA there has always been a huge amount of numerical com-

putation, because infinitely many Y-functions must be determined. Therefore, to simplify the

spectral problem we need nonlinear integral equations (NLIE) for finitely many degrees of free-

dom. Several types of NLIE are known in other integrable models. For example, in the NLIE

of Destri-de Vega (DdV) type, each integral is evaluated on the real axis (or a path around

the real axis if there are branch cuts). Such NLIE was derived from Bethe Ansatz equations

[52, 53, 54, 55] or from T-system [24, 56]. As another example, in the NLIE of Takahashi

type, one unknown variable is integrated over a contour on the complex plane [57, 58]. The

Takahashi-type NLIE consists of smaller number of equations than the NLIE of DdV type, but

comprehensive understanding of the analyticity data is required for its formulation. In this

paper we are interested in the DdV-type NLIE.

At first sight, it is not even clear if the NLIE for the mirror AdS5 × S5 exists at all. A

hint for the derivation of NLIE comes from the linearization of T-system by Q-functions [59].

The linearized equations, or so-called TQ-relations [60], have been studied a lot so far, and

are solved by Bäcklund transformation [61, 62], or explicitly by the Wronskians of Q-functions

[63, 64]. Remarkably, in the Wronskian formula all T-functions of su(2|4|2)-hook are expressed

by the Wronskian of eight fundamental Q-functions. It does not immediately imply, however,

that the spectral problem gets simpler. In TBA it is enough to compute each Y-function on

the real axis. In the Wronskian formula, each fundamental Q-function has to be evaluated on

the whole complex plane. Hence, one more step is needed after having solved the TQ-relations.

Motivated to get something practical, we start investigating a mixture of NLIE and TBA,

called hybrid NLIE. Hybrid NLIE was first formulated in the XXX model at spin S = k/2 [65],

generalizing earlier successes of [52, 53]. The idea is to add auxiliary variables to the T-system

such that the mixed system of equations is closed within a finite number of variables. The

Y-function Yk is replaced by (1 + Yk) = (1 + a)(1 + a), where a pair of variables a, a represent

the degrees of freedom of spinons, and all Y-functions Yj>k disappear from the equations.

Here the term ‘spinon’ is used in the following sense. According to [66], the S-matrix of
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XXX spin chain at spin S = k/2 factorizes into the RSOS R-matrix at level k and the S-matrix

of spin 1
2
excitations. The former degree of freedom, called RSOS excitation, does not couple to

external magnetic field. The latter degree of freedom, called spinon, couples to magnetic field.

It turns out that only the auxiliary fields a, a are sensitive to magnetic field, while Y-functions

are insensitive. Thus the auxiliary fields are identified as spinons [65].

When k = 1, there are further intimate relations between the auxiliary fields and ‘spinons’

in the usual sense, that is momentum-carrying excitations over the antiferromagnetic vacuum.

For one thing, one can derive the character formula of ŝl(2)k=1 as summation over spinons

[67, 68]. For another, as mentioned in [69], the hybrid NLIE of XXX model at k = 1 reduces to

the NLIE of Destri and de Vega [54, 55].3 In the DdV approach, the fundamental excitations

are usual spinons, and we expect that the auxiliary fields of hybrid NLIE will play the same

rôle. More insights have been found in the NLIE’s of O(4) sigma model [69, 70, 71], sine-Gordon

model [54, 55, 72, 73, 74] and other integrable lattice models [75, 76].

Summary of results

In this paper, we first revisit the derivation of hybrid NLIE in XXX model [65] in a slightly

different way. We start our discussion from new recursion relations for spinon variables, instead

of following computations using explicit form of T-functions. From these lessons we learn how

to proceed in the AdS5 × S5 case.4

Next, we repeat the discussions from the TQ-relations which appear in the horizontal strips

(|s| ≥ 2) of the su(2|4|2)-hook. We derive a set of NLIE which decomposes the TBA equations

for YM |w-strings of the mirror AdS5 × S5. This set of NLIE can be glued to the other parts

of TBA equations together with the exact Bethe equation, and hence our formalism is hybrid.

Using analyticity assumptions, the NLIE can be truncated within a finite number of variables.

In the literature, it is commonly recognized that TQ-relations are important to derive DdV-

type NLIE (see for instance [56], or appendices of [77, 78]). Our discussions goes almost in

parallel, but the derivation is a bit more general. We use the explicit form of T- and Q-functions

only for checking analyticity assumptions, and the rest of arguments follows immediately from

the symmetry structure of A1 TQ-relations. Note that, in the integrable models studied so far,

there is a gauge choice in which all T-functions on the boundary of A1-type strip are either

3At k = 1, Y-functions disappear from the hybrid NLIE, and thus the NLIE is no longer hybrid.
4An object called quantum transfer matrix was studied in [65]. In AdS/CFT, it is not known how to construct

usual or quantum transfer matrices. With a different motivation in mind in contrast to [65], we consider the

usual transfer matrix analytically continued to the mirror region as the asymptotic solution of T-system. Despite

differences in the physical interpretation, the same mathematical techniques are applicable.
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Figure 1: The horizontal strip of the su(2|4|2)-hook. The symbol � means the TBA equation

for the corresponding site is decomposed. Under analyticity assumptions, we can excise the

nodes of �.

unity, or some known functions independent of Bethe roots.5 We do not use such conditions in

the case of AdS5 × S5, because it is unclear if there exists such a gauge choice.

To be specific, let us introduce a set of parameters for the hybrid NLIE as

{
Y1|w , . . . , Ys−2|w

} ⋃




aαs

a
α
s



 , (s ≥ 3), (1.1)

where α is either I or II, and it refers to two linearly independent pairs of Q-functions that solve

the TQ-relations. Our notation is summarized in Appendix A. The pair of variables (aαs , a
α
s )

satisfy

1 + Ys−1|w = (1 + a
α [+γ]
s ) (1 + a

α [−γ]
s ), (1.2)

where γ is a small parameter for regularization. The parameter γ is arbitrary as long as

0 < γ < 1, and it facilitates numerical computation. The parametrization (1.1) means that

the TBA equation for YM |w (M ≥ s) are decomposed into an infinite set of NLIE for auxiliary

variables. Furthermore, under the assumptions on analyticity (3.21), (3.24) and (3.28), we can

truncate the NLIE for auxiliary variables at finite s. This structure is summarized in Figure 1

Below we summarize the minimal set of NLIE’s in the case of Konishi state in the sl(2) at

weak coupling. We use the mirror TBA equations to determine YQ , YM |vw , Y±, and also the

5There is another gauge in which the T-function on the boundary is a polynomial of a fixed degree.
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exact Bethe equations to determine Bethe roots [12, 21]. The simplified TBA for Y1|w is given

in [21], which we rewrite as

log Y1|w = log(1 + a
α [+γ]
3 ) (1 + a

α [−γ]
3 ) ⋆ sK + log

1− 1
Y
−

1− 1
Y+

⋆̂ sK . (1.3)

The pair of parameters (aα3 , a
α
3 ) are determined by

log aα3 = log(1 + a
α
3 ) ⋆ Kf − log(1 + a

α
3 ) ⋆ K

[+2−2γ]
f + log(1 + Y

[−γ]
1|w ) ⋆ sK + Jα

3 , (1.4)

log aα3 = log(1 + a
α
3 ) ⋆ Kf − log(1 + a

α
3 ) ⋆ K

[−2+2γ]
f + log(1 + Y

[+γ]
1|w ) ⋆ sK + J

α

3 , (1.5)

where J I
3 = J

I

3 = 0 and

J II
3 = − log Sf(v)− logSf

(
v +

2i (1− γ)

g

)
− πi,

J
II

3 = + logSf (v) + log Sf

(
v − 2i (1− γ)

g

)
+ πi, (1.6)

with possibly a multiple of 2πi in addition. The source terms (1.6) come from the branch cut

discontinuity of log(1+ aII3 ) , log(1+ a
II
3 ) at the origin. These equations can be checked by using

the asymptotic solution shown in Appendix C.

This paper is organized as follows. In Section 2, we review the derivation of hybrid NLIE

in the XXX model, with a slight modification from [65]. In Section 3, we derive hybrid NLIE

from TQ-relations in the horizontal strips of su(2|4|2)-hook, which is of A1 type. Section 4 is

for discussions. In appendices, we summarize the notation, the relation between TBA, Y- and

T-system of AdS5 × S5, and the asymptotic solutions of recursion relations discussed in the

main text.

2 Hybrid NLIE in XXX model

As a warm-up, we revisit the derivation of hybrid NLIE in the XXX model at spin k/2 [65].

2.1 Quantum transfer matrix in spin k/2 XXX model.

The quantum transfer matrix (QTM) is a method to compute the free-energy of spin k/2 XXX

model at finite temperature without string hypothesis [79, 77]. In this method, we first map

the XXX model of size L to two-dimensional vertex model of size L × R, where R is called

Trotter number [79, 77]. The time (or temperature) direction is replaced by a discrete spatial
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direction. Then we consider states which look like M-particle state over ferromagnetic vacuum,

and take the Trotter limit R → ∞. In this limit, the largest eigenvalue of QTM Tk is equal

to the free-energy at finite temperature, under appropriate identification of parameters. For

instance, the number M also goes to infinity, with M/R = k/2 fixed.

Just like ordinary transfer matrix, QTM depends on the ‘mirror’ Bethe roots x1 , x2 , . . . xM .

Since we do not postulate string hypothesis, we do not know their exact position. Instead, we

compute the largest eigenvalue of QTM in the Trotter limit by solving a set of NLIE. We

relegate the precise definition of QTM to [65, 80] and references therein, as we are interested

in the algebraic structure, rather than the physical origin, of QTM.

Let us use the notation f [+Q] = f(v + iQ), f± = f [±1]. The elementary QTM T1(v) reads

[65]

T1(v) = eβH φ
[−k+1]
+ φ

[−k−1]
−

Q[+2]

Q
+ e−βH φ

[k+1]
+ φ

[k−1]
−

Q[−2]

Q
, (2.1)

φ±(v) = (v ± iu)R/2, Q(v) =
M∏

i=1

(v − xi). (2.2)

The QTM for higher representations satisfy the T-system equations (also called functional

relations among the fusion hierarchy) [24, 17, 18],

T+
j T−

j = Tj−1 Tj+1 + fj , fj =

j∏

m=1

∏

σ=±

φ[σ(j−k−2m+1)]
σ φ[σ(−j+k+2m+1)]

σ , (2.3)

with j ≥ 1 and T0 = 1. The temperature is related to the parameter u, which goes to zero in

the Trotter limit. Explicit form of Tj(v) reads [65]

Tj(v) =

j+1∑

ℓ=1

λ
(k)
j (v, ℓ) =

j+1∑

ℓ=1

eβH(j+2−2ℓ) ψ
(k)
j (v, ℓ)

Q[j+1]Q[−j−1]

Q[2ℓ−j−1]Q[2ℓ−j−3]
, (2.4)

ψ
(k)
j (v, ℓ) =

j−ℓ+1∏

m=1

φ
[j−k−2m]
− φ

[j−k+2−2m]
+ ×

ℓ−1∏

m=1

φ
[−j+k−2+2m]
− φ

[−j+k+2m]
+ ,

The T-system (2.3) is invariant under the gauge transformation

Tj → g
[+j]
1 g

[−j]
2 Tj , fj → g

[j−1]
1 g

[j+1]
1 g

[−j+1]
2 g

[−j−1]
2 fj . (2.5)
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2.2 Spinon variables

We define auxiliary variables by the top and the bottom component of the sum in (2.4),

Aj(v) = λ
(k)
j (v, j + 1) = e−jβH ψ

(k)
j (v, j + 1)

Q[−j−1]

Q[+j−1]
,

Aj(v) = λ
(k)
j (v, 1) = e+jβH ψ

(k)
j (v, 1)

Q[+j+1]

Q[−j+1]
. (2.6)

By X and X we denote independent degrees of freedom. We will call them conjugate, as they

are sometimes (but not always) complex conjugate with each other.

It is straightforward to check the following pair of recursion relations

T+
j −A+

j =
A

+

j

Aj−1

Tj−1 , T−
j − A

−

j =
A−

j

Aj−1

Tj−1 , (j ≥ 1), (2.7)

with A0 = A0 = T0 = 1. To maintain the full gauge symmetry of the T-system, we require that

Aj , Aj behave in the same way as Tj under the gauge transformation (2.5). The ratio of two

gauge-covariant variables are gauge-invariant,

T+
j

A+
j

= 1 + bj ,
T−
j

A
−

j

= 1 + bj . (2.8)

Following the discussion of [65], we call Aj , Aj or bj , bj spinon variables, and (2.7) covariant

recursions for spinons. In the literature, the right hand side of (2.7) was recognized only as

(something) × Tj−1 , with ‘something’ determined case by case. The new recursions (2.7) are

the basis of the following discussions in this section.

The pair of recursions (2.7) with the definition of auxiliary variables (2.6) appear in various

integrable models. For example, the QTM (2.1), (2.4) look similar to the ordinary transfer

matrix of the XXX model and the O(4) model [81, 69]. They differ only by the form of the

function ψ
(k)
j (v, ℓ). Not surprisingly, the pair of covariant recursions (2.7) are satisfied with the

definition of (2.6).

In fact, the recursions (2.7) follow from A1 TQ-relations, as discussed later in Section 3.6

Let us identify

Aα
j =

Q
α−

j−1

Qα−
j−1

Lj , A
α

j =
Qα+

j−1

Q
α+

j−1

Lj , (α = I, II), (2.9)

where the index α refers to two linearly independent solutions of A1 TQ-relations. In the

(twisted) XXX model, the two sets of Q-functions are given by a polynomial of Bethe roots

6The author thanks Zoltan Bajnok for these remarks and suggestion for this identification.
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and holes as (2.2) [82, 83, 84].7 The pair (Aj , Aj) shown in (2.6) should correspond to the case

of Bethe roots.

As shown in Appendix C, one can solve the recursions (2.7) by using the asymptotic transfer

matrix Ta,1 in the sl(2) sector, with the definition of A’s similar to (2.6). This also means that

the asymptotic transfer matrix T1,s in the su(2) sector satisfies the recursions in the same way,

because the transfer matrices in the sl(2)- and su(2)-sectors are related by the flip Ta,s ↔ Ts,a

with the interchange ± ↔ ∓.

2.3 Decomposing the Y-system of XXX model

Let us discuss the consequences of the covariant recursions for spinons (2.7).

First, using (2.7), we express Tj+1 by Tj−1 in two ways. The first expression is given through

Tj+1 → T−
j → Tj−1 , while the second expression is through Tj+1 → T+

j → Tj−1 . Since both

results are equivalent, we obtain the compatibility condition

∆(Aj) = ∆(Aj) ≡ 1 + Xj , ∆(Xj) ≡
X−

j X
+
j

Xj−1Xj+1
. (2.10)

The operator ∆ is called discrete Laplacian. When this condition is satisfied, we obtain

T−
j T+

j − (1 + Xj) Tj−1 Tj+1 = A+
j A

−

j , (2.11)

which is equivalent to the T-system (2.7) if

Xj = 0, fj = A+
j A

−

j . (2.12)

We set Xj to zero below, which is indeed true in all examples mentioned so far. Only then,

the recursion pair (2.7) can be recognized as the linearization of the T-system. In the gauge-

invariant language, the equation (2.11) translates into

(1 + bj) (1 + bj) = 1 + Yj , 1 + Yj ≡
T−
j T+

j

fj
. (2.13)

Second, we rewrite the recursion in terms of b’s as

bj =
A

+

j

A+
j

Tj−1

Aj−1

=
1 + bj

1 + b
[+2]

j

(1 + b
+

j−1), bj =
A−

j

A
−

j

Tj−1

Aj−1
=

1 + bj

1 + b
[−2]
j

(1 + b
−
j−1). (2.14)

7The term ‘hole’ refers to the excitations from the highest energy state of ferromagnetic nature, and not to

the excitations from the antiferromagnetic state.
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By taking the ratio (LHS)j+1/(LHS)
∓
j we find the following recursion,

1 +
1

b
−
j+1

=
1

1 + 1
Yj

(
1 +

1

bj

)
, 1 +

1

b
+

j+1

=
1

1 + 1
Yj

(
1 +

1

bj

)
. (2.15)

Using (2.13) and (2.15), we can derive alternative expressions of gauge-invariant recursions,

bj (1 + b
+

j+1) = bj (1 + b
−
j+1) = Yj . (2.16)

Let us count the number of gauge-invariant variables and the number of equations. The list

of gauge-invariant variables is given by

{Y1 , Y2 , . . . , Yj−1}
⋃





bj

bj



 . (2.17)

We define Y-functions by

1 + Ym =
T−
m T+

m

fm
(m = 1, 2, . . . , j − 1),

1 + Ym = (1 + bm) (1 + bm) (m = j), (2.18)

where j ≥ 1 is an arbitrary positive integer. Then, the T-system at site m is equivalent to the

Y-system at site m,

Y −
m Y +

m = (1 + Ym−1) (1 + Ym+1) (m = 1, 2, . . . , j − 2),

Y −
j−1 Y

+
j−1 = (1 + Yj−2) (1 + bj) (1 + bj), (2.19)

where we used Y0 = 0 and f−
m f

+
m = fm−1 fm+1 . There are j − 1 Y-functions and a pair of

auxiliary variables, while there are only j − 1 equations in (2.19). Therefore two equations are

missing.

One equation comes from the product of (2.14) as

b
−
j b

+

j = (1 + bj−1) (1 + bj−1) = 1 + Yj−1 . (2.20)

From algebraic point of view, there is no other way to relate (bj , bj) with Yj−1 . A closed set

of equations can be obtained with the help of analyticity assumptions, which will be reviewed

in Section 2.4.

One may try to enclose the equations by extending the parameter list, like

{Y1 , Y2 , . . . , Yj−1}
⋃





bj bj+1

bj bj+1



 . (2.21)
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Now two more variables (bj+1 , bj+1) are introduced compared to (2.17). They are constrained

by the recursion (2.15). Actually it is possible to find more than two equations: the equation

(2.20) at (j, j + 1), the discrete Laplace equation for (1 + bj), and the Y-system at site j.

However, these extra equations never bring new constraints, because all of them follow from

the algebraic relations we have already used. For example, the equation

b
−
j+1 b

+

j+1 = (1 + bj) (1 + bj) = 1 + Yj , (2.22)

is a corollary of (2.13) and (2.15). The discrete Laplacian ∆(1 + bj) = 1 + 1/Y +
j is a corollary

of two recursions (2.14), (2.16). The Y-system at site j follows from (2.16), (2.20) as

Y −
j Y +

j = b
−
j (1 + bj+1) b

+

j (1 + bj+1) = (1 + Yj−1) (1 + Yj+1). (2.23)

Therefore, after having pondered over the parameter list (2.21), we again find that one variable

is yet undetermined.

Similarly, we cannot get the one missing equation even if we extend the parameter list to

{Y1 , Y2 , . . . , Yj−1}
⋃





bj bj+1 . . . bj+ℓ

bj bj+1 . . . bj+ℓ



 , (2.24)

as long as ℓ is finite. When we take the limit ℓ → ∞, we will just find that the Y-system (or

TBA equations) for Ym≥j are decomposed into the NLIE for spinon variables.

2.4 Analyticity conditions in the XXX model

We derive two more equations from analyticity assumptions, following [65].

Let us evaluate the first equalities of (2.14) by using the explicit form of A’s (2.6),

bj = e+(j+1)βH
ψ

(k)
j (v + i, 1)

ψ
(k)
j (v + i, j + 1)ψ

(k)
j−1(v, 1)

Q[+j+2]

Q[−j]
Tj−1 ≡ Wj

Q[+j+2]

Q[−j]
Tj−1 , (2.25)

bj = e−(j+1)βH
ψ

(k)
j (v − i, j + 1)

ψ
(k)
j (v − i, 1)ψ

(k)
j−1(v, j)

Q[−j−2]

Q[+j]
Tj−1 ≡ W j

Q[−j−2]

Q[+j]
Tj−1 . (2.26)

We want to take the Fourier transform of the logarithmic derivative of these equations, denoted

as

d̂lf ≡
∫ ∞

−∞

dv eiqv
∂

∂v
log f(v). (2.27)

The Fourier transform is well-defined only if there are no poles nor branch cuts over the path

of integration. As for the left hand side of (2.25), (2.26), we introduce the regularization

aj(v) = bj(v − iγ), aj(v) = bj(v + iγ), (2.28)

11



with γ > 0 a small parameter, and take the Fourier transform on the real axis of (aj(v) , aj(v)).

As for the right hand side, we assume the analyticity of each factor in (2.25) for −γ ≤ Im v ≤ 0,

and similarly in (2.26) for 0 ≤ Im v ≤ +γ.8 Then these equations become

d̂laj = e−γq
{
d̂lWj + d̂lQ[+j+2] − d̂lQ[−j] + d̂lTj−1

}
,

d̂laj = e+γq
{
d̂lW j + d̂lQ[−j−2] − d̂lQ[+j] + d̂lTj−1

}
. (2.29)

We will see later that ( d̂lQ[+j] , d̂lQ[−j]) are related to ( d̂l(1 + bj) ŝK(q), d̂l(1 + bj) ŝK(q)),

where

ŝK(q) =

∫ ∞

−∞

dv eiqv sK(v) =
1

2 cosh q
. (2.30)

Here we rescaled the kernel sK defined in (A.6) by a factor of g, because f± = f(v ± i) in the

XXX model.

The terms d̂lQ[+j+2] and d̂lQ[−j−2] in (2.29) are dangerous in the following sense. Under

proper conditions, one may analytically continue them as

d̂lQ[+j+2] = e+2q d̂lQ[+j] , d̂lQ[−j−2] = e−2q d̂lQ[−j] . (2.31)

Then, the corresponding terms in (2.29) behave, in the limit Re q → ±∞, as

e+2q d̂lQ[+j] ∼ d̂l(1 + bj) ŝK(q) e
+2q → 1

2
d̂l(1 + bj) e

+2q−|q| ,

e−2q d̂lQ[−j] ∼ d̂l(1 + bj) ŝK(q) e
−2q → 1

2
d̂l(1 + bj) e

−2q−|q| , (2.32)

which are exponentially growing. If one applies the inverse Fourier transform, one finds that the

functions (log(1 + bj), log(1 + bj)) are convoluted with the kernel which diverges exponentially

as Re v → ±∞. As discussed below, we use analyticity conditions such that both d̂lQ[+j] and

d̂lQ[−j] vanish in the region where the kernels are exponentially growing.

ANZC conditions

We fix a gauge for the symmetry of T-system (2.5) by the explicit form of Tj in (2.4), and

assume that in this gauge T-functions are analytic, nonzero and constant at infinity (ANZC),

namely

Tj(v) is ANZC for − 1 ≤ Im v ≤ 1, 1 ≤ j ≤ k. (2.33)

8These assumptions are part of the analyticity conditions discussed later in (2.33), (2.38).
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The upper bound for j comes from an empirical observation that Tj(v) may have zeroes around

the lines Im v = ±(k+2− j) [65]. Let D be a strip |Im v| ≤ 1, and consider an integral running

along the boundary of D. By virtue of the ANZC for [log Tj ]
′, we find

0 =

∫

∂D

dv eiqv
∂

∂v
log Tj(v) = e+q d̂lTj(v − i)− e−q d̂lTj(v + i) ,

= e+q d̂l
(
(1 + bj(v))Aj(v − i)

)
− e−q d̂l

(
(1 + bj(v))Aj(v + i)

)
. (2.34)

We assume that the Fourier transform of the logarithmic derivative of each factor is unambigu-

ous, namely 1 + bj(v), 1 + bj(v), Aj(v + i) and Aj(v − i) do not have poles nor branch cuts on

the real axis of v. Then we obtain9

0 = e+q d̂l(1 + bj)− e−q d̂l(1 + bj) + e+q d̂lA
−

j − e−q d̂lA+
j . (2.35)

The last two terms can be explicitly evaluated by using (2.6), as

0 = e+q d̂l(1 + bj)− e−q d̂l(1 + bj) + 2 cosh q
(
d̂lQ[+j] − d̂lQ[−j]

)
+ ωj(q) , (2.36)

ωj(q) ≡ e+q d̂lψ
(k)
j (v − i, 1)− e−q d̂lψ

(k)
j (v + i, j + 1). (2.37)

Next we assume that, for j ≥ k,

Q[+j](v) is ANZC for Im v ≥ 0 Q[−j](v) is ANZC for Im v ≤ 0. (2.38)

By closing the contour of Fourier integral over the upper or lower half plane, we find

d̂lQ[+j](q) = 0 for Re q > 0, d̂lQ[−j](q) = 0 for Re q < 0. (2.39)

The assumption j ≥ k comes from another empirical fact. It is expected that the zeroes of

Q-functions lie around Im v = k− 1, k− 3, · · ·− k+1, forming k-strings. If so, the Q-functions

are ANZC only outside the strip −k + 1 ≤ Im v ≤ k − 1 [65]. Now by applying the analyticity

(2.38) to (2.36), we obtain for j ≥ k,

d̂lQ[+j](q) =




0 Re q > 0,
(
+e−q d̂l(1 + bj)− e+q d̂l(1 + bj)− d̂lωj

)
ŝK(q) Re q < 0,

d̂lQ
[−j]

(q) =





(
−e−q d̂l(1 + bj) + e+q d̂l(1 + bj) + d̂lωj

)
ŝK(q) Re q > 0,

0 Re q < 0.
(2.40)

9Here Aj(v + i) is equivalent to A+
j = Aj(v+ i− i0) thanks to the analyticity assumption; similarly for A

−

j .
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When q = 0, the Fourier transform (2.27) is equal to the difference

d̂lf(q = 0) = log f(+∞)− log f(−∞),

which is not so important in computing the inverse Fourier transform.

For later use, we apply the regularization (2.28) to (1 + bj) , (1 + bj). Provided that

1 + bj(v) is ANZC for −γ ≤ Im v ≤ 0,

1 + bj(v) is ANZC for 0 ≤ Im v ≤ +γ, (2.41)

we obtain

d̂l(1 + bj) = e+γq d̂l(1 + aj), d̂l(1 + bj) = e−γq d̂l(1 + aj). (2.42)

Derivation of NLIE

We shall set j = k to comply with the ANZC conditions of (2.33) and (2.38). Let us rewrite

the T-function in the equations (2.29) by Y-functions using (2.33) and (2.18), as

e+γq d̂lak = d̂lWk + e+2q d̂lQ[+k] − d̂lQ[−k] +
{
d̂lfk−1 + d̂l(1 + Yk−1)

}
ŝK(q),

e−γq d̂lak = d̂lW k + e−2q d̂lQ[−k] − d̂lQ[+k] +
{
d̂lfk−1 + d̂l(1 + Yk−1)

}
ŝK(q), (2.43)

with fk−1 = A+
k−1A

−

k−1 = ψ
(k)
k−1(v + i, k)ψ

(k)
k−1(v − i, 1). We then substitute the results (2.40),

(2.42) into these equations, and find

d̂lak =
e−|q|

2 cosh q
d̂l(1 + ak)−

e2q(1−γ)−|q|

2 cosh q
d̂l(1 + ak) +

e−γq

2 cosh q
d̂l(1 + Yk−1)

+ e−γq d̂lWk +
e−γq

2 cosh q
d̂lfk−1 +

eq(1−γ)−|q|

2 cosh q
d̂lωk , (2.44)

d̂lak =
e−|q|

2 cosh q
d̂l(1 + ak)−

e−2q(1−γ)−|q|

2 cosh q
d̂l(1 + ak) +

e−γq

2 cosh q
d̂l(1 + Yk−1)

+ e+γq d̂lW k +
e+γq

2 cosh q
d̂lfk−1 +

e−q(1−γ)−|q|

2 cosh q
d̂lωk . (2.45)

The second lines of (2.44), (2.45) are known functions in the XXX model, so we can regard all

of them as part of the source terms.10 By applying the inverse Fourier transform, we obtain

the missing equations for hybrid NLIE. The results can be summarized as,

log ak = log(1 + ak) ⋆ Kf − log(1 + ak) ⋆ K
[+2−2γ]
f + log(1 + Y

[−γ]
k−1 ) ⋆ sK + (source), (2.46)

log ak = log(1 + ak) ⋆ Kf − log(1 + ak) ⋆ K
[−2+2γ]
f + log(1 + Y

[+γ]
k−1 ) ⋆ sK + (source), (2.47)

10These extra terms will be studied carefully in Section 3.
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where the analyticity of Yk−1(v) for −γ ≤ Im v ≤ +γ is assumed, and the kernel Kf is defined

by

Kf(v) =
1

2πi

∂

∂v
logSf (v), Sf (v) =

Γ
(
2−iv
4

)
Γ
(
iv
4

)

Γ
(
− iv

4

)
Γ
(
2+iv
4

) . (2.48)

In the limit γ → 0 the kernels s̃K and K
[±2]
f have a pole at the origin, and we need the principal

value prescription as in (A.9). Numerical computation is easier if we leave γ > 0 finite. The

source terms can be fixed by considering the asymptotic behavior Re v → ±∞ [65].

The two NLIE (2.47) provides a closed set of equations for the minimal parameter list (2.17).

The product type relation (2.20) is a corollary of (2.47),

log a
[−1+γ]
k a

[+1−γ]
k = log(1 + Yk−1). (2.49)

Cancellation of the whole source terms can be checked from the explicit results of [65].

3 Hybrid NLIE from TQ-relations

We will derive the hybrid NLIE starting from TQ-relations in the horizontal strips of the

su(2|4|2)-hook. The TQ-relations will play the same rôle as the covariant recursions for spinons

in Section 2. Since we also use the TBA equations for the mirror AdS5 × S5 in the sl(2) sector,

we assume that all Y- and T-functions are invariant under the interchange (a, s) ↔ (a,−s).11

3.1 TQ-relation from Wronskian

First of all, we rederive the TQ-relations in the horizontal strip s ≥ 2 of the su(2|4|2)-hook,
starting from the Wronskian formula of [64]. The formula says that the T-functions Ta,s for

a = 0, 1, 2 are given by

T0,s = Q
[−s]

∅
,

T1,s = Q
[+s]
1 Q

[−s]

1
− Q

[−s]

2
Q

[+s]
2 (s ≥ 1), (3.1)

T2,s = Q
[+s]
12 Q

[−s]

12
(s ≥ 2).

By solving the T-system

T−
a,s T

+
a,s = Ta,s−1 Ta,s+1 + Ta−1,s Ta+1,s , (3.2)

11Recall that Ta,s depend on gauge choice. It is helpful to introduce τa as in Appendix B to discuss Ta,s>0

and Ta,s<0 in a symmetric way.
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at (a = 1, s ≥ 2), we find

Q
[+s]
12 = det

(
Q

[s+1]
1 Q

[s+1]
2

Q
[s−1]
1 Q

[s−1]
2

)
, Q

[−s]

∅
Q

[−s]

12
= det

(
Q

[−s−1]

1
Q

[−s−1]

2

Q
[−s+1]

1
Q

[−s+1]

2

)
. (3.3)

Given (3.1), one can derive the relations

Q
[s−2]
1 T1,s − Q

[+s]
1 T−

1,s−1 = Q
[−s]

2
Q

[s−1]
12 ,

Q
[−s+1]

1
T1,s − Q

[−s]

1
T+
1,s−1 = Q

[+s]
2

(
Q

[−s+1]

∅
Q

[−s+1]

12

)
,

Q
[s−2]
2 T1,s − Q

[+s]
2 T−

1,s−1 = Q
[−s]

1
Q

[s−1]
12 ,

Q
[−s+2]

2
T1,s − Q

[−s]

2
T+
1,s−1 = Q

[+s]
1

(
Q

[−s+1]

∅
Q

[−s+1]

12

)
, (3.4)

for s ≥ 2. They can be summarized as the TQ-relations of A1 theory [60]:

Qα−
1,s−1 T1,s −Qα

1,s T
−
1,s−1 = Q

α−

1,s−1 L1,s ,

Q
α+

1,s−1 T1,s −Q
α

1,s T
+
1,s−1 = Qα+

1,s−1 L1,s , (3.5)

where

L1,s = Q
[s−1]
12 , L1,s = Q

[−s+1]

∅
Q

[−s+1]

12
, (3.6)

and α = I, II refers to

(QI
1,s , Q

I

1,s) = (Q
[+s]
1 ,Q

[−s]

2
), (QII

1,s , Q
II

1,s) = (Q
[+s]
2 ,Q

[−s]

1
). (3.7)

From (3.6) it follows that

T2,s T0,s = L+
1,s L

−

1,s (s ≥ 2). (3.8)

We wrote down the TQ-relations (3.5) in a covariant way; the equations maintain the full

gauge symmetry of the T-system, as long as X1,s , i.e. any quantity with the lower index (1, s),

behaves in the same way as T1,s . One can apply any gauge transformation Φ1,s to them, and

the equations remain invariant. Since the Q-functions were originally translationally invariant

(X1,s = X+
1,s−1 , X1,s = X

−

1,s−1) , the new Q-functions are now translationally invariant modulo

gauge transformation,

L1,s

L+
1,s−1

=
Qα

1,s

Qα+
1,s−1

=
Φ1,s

Φ+
1,s−1

,
L1,s

L
−

1,s−1

=
Q

α

1,s

Q
α−

1,s−1

=
Φ1,s

Φ−
1,s−1

,
Φ−

1,sΦ
+
1,s

Φ1,s−1 ,Φ1,s+1
= 1. (3.9)

These equations are valid for s ≥ 3, because (L1,s , L1,s) are not defined at s = 1. The last

equation of (3.9) means that Φ is a gauge degree of freedom.
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Now consider the inverse problem, that is to obtain Q-functions when T1,s are given for

a certain range of s. If (L1,s , L1,s) are also given, it reduces to the problem to solve some

second-order difference equations [60]. To see this, we rearrange the first line (resp. the second

line) of (3.5) into a difference equation for Q’s (resp. Q’s) as

L
[−2]
1,s Q1,s

Φ
[−2]
1,s

+
L1,sQ

[−4]
1,s

Φ
[−4]
1,s

− RsQ
[−2]
1,s

Φ
[−2]
1,s

= 0,
L

[+2]

1,s Q1,s

Φ
[+2]
1,s

+
L1,sQ

[+4]

1,s

Φ
[+4]
1,s

− RsQ
[+2]

1,s

Φ
[+2]
1,s

= 0, (3.10)

where

Rs =
Φ−

1,s−1

T−
1,s−1

(
L1,s T

[−2]
1,s−2

Φ
[−2]
1,s−2

+
L
[−2]
1,s T1,s

Φ
[−2]
1,s

)
, Rs =

Φ+
s−1

T+
1,s−1

(
L1,s T

[+2]
1,s−2

Φ
[+2]
s−2

+
L

[+2]

1,s T1,s

Φ
[+2]
1,s

)
. (3.11)

In general, the second order difference equations have two linearly independent solutions, in

agreement with (3.7).

In the spectral problem of AdS5×S5, we do not try to solve the difference equations (3.10),

because we do not know the exact form of (L1,s , L1,s). Instead, we will construct a set of hybrid

NLIE from the covariant TQ-relations (3.5). To formulate hybrid NLIE, we use the analyticity

data of the asymptotic solutions, which will be discussed in Appendix C.2.

3.2 Decomposing TBA from TQ-relations

In this subsection, we decompose the TBA equations (or the Y-system) of A1 theory using

TQ-relations. Just like (2.9), we introduce the ‘spinon’ variables by

Aα
1,s =

Q
α−

1,s−1

Qα−
1,s−1

L1,s , A
α

1,s =
Qα+

1,s−1

Q
α+

1,s−1

L1,s , (s ≥ 2, α = I, II), (3.12)

and simplify the covariant A1 TQ-relations (3.5) as

T+
1,s −Aα+

1,s =
A

α+

1,s

A
α

1,s−1

T1,s−1 , T−
1,s −A

α−

1,s =
Aα−

1,s

Aα
1,s−1

T1,s−1 , (s ≥ 3). (3.13)

The lower bound of s has increased by one, because (L1,s , L1,s) are defined only for s ≥ 2.

Following Section 2.3, let us define new gauge-invariant variables by

1 + b
α
s =

T+
1,s

Aα+
1,s

=
Qα

1,s−1

Q
α

1,s−1

T+
1,s

L+
1,s

, 1 + b
α

s =
T−
1,s

A
α−

1,s

=
Q

α

1,s−1

Qα
1,s−1

T−
1,s

L
−

1,s

, (s ≥ 2), (3.14)

and count the number of variables and the number of equations. The Y-functions Y1,M≥s are

now replaced by

(1 + b
α
M) (1 + b

α

M) =
T−
1,M T+

1,M

T0,M T2,M
= 1 + Y1,M , (α = I, II). (3.15)
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This procedure corresponds to the middle of Figure 1, where the TBA equations are decomposed

into new degrees of freedom.

Unfortunately, as discussed in Section 2.3, there is always one more unknown variables than

the number of the equations that can be derived algebraically. For example, one can consider

the general parameter list

{Y1,2 , . . . Y1,s−1}
⋃





bαs bαs+1 . . . bαs+ℓ

b
α

s b
α

s+1 . . . b
α

s+ℓ



 , (s ≥ 3), (3.16)

where α is either I or II. Just like (2.24), the equations cannot be closed as long as ℓ is finite. In

other words, the equations can be closed if in the limit ℓ→ ∞ we require that lims→∞

(
bs , bs

)

approach the asymptotic functions.12 This conclusion is unchanged even if one includes both

α = I, II in the above parameter list.

The shortage of one equation can be understood as follows. As we saw in Section 3.1,

the most general solution of T-system or TQ-relations is given by fundamental Q-functions.

However, it also implies that there is no equation which determines the fundamental Q-functions

in an algebraic manner. To supply more constraints, we need to study analyticity conditions.

3.3 Analyticity conditions in the horizontal strip

We repeat the discussion in Section 2.4 in the case of the horizontal part of the su(2|4|2)-hook.
Although the asymptotic Q-functions on the su(2|4|2)-hook are different from those of the XXX

model, both of them have good analytic properties on the upper or lower half of the complex

rapidity plane.

From (3.13), we can derive the relation

b
α
s =

A
α+

1,s

Aα+
1,s

T1,s−1

A
α

1,s−1

=
Q

α [+2]
1,s−1

Q
α

1,s−1

T1,s−1

L
[+2]
1,s−1

, (3.17)

b
α

s =
Aα−

1,s

A
α−

1,s

T1,s−1

Aα
1,s−1

=
Q

α [−2]

1,s−1

Qα
1,s−1

T1,s−1

L
[−2]

1,s−1

, (3.18)

for s ≥ 3. We take the Fourier transform of the logarithmic derivative. As for the left hand

side, we introduce the regularization

a
α
s (v) = b

α
s

(
v − iγ

g

)
, a

α
s (v) = b

α

s

(
v +

iγ

g

)
, 0 < γ < 1, (3.19)

and take the Fourier transform on the real axis of (as(v), as(v)). The upper bound of γ comes

from the definition of b’s in (3.14); for instance, the variable L
[+1−γ]
1,s should stay on the upper

12See [46, 35] for the discussion on boundary conditions of Ya,s as a → ∞ or s → ∞.
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half plane. As for the right hand side, we assume that each factor in (3.17) is analytic inside

the strip −γ
g
≤ Im v ≤ 0, and each factor in (3.18) is analytic inside the strip 0 ≤ Im v ≤ +γ

g
.13

Then we obtain, for s ≥ 3,

d̂laαs = e−γ q

g

{
d̂lQ

α [+2]
1,s−1 − d̂lQ

α

1,s−1 − d̂lL
[+2]
1,s−1 + d̂lT1,s−1

}
,

d̂laαs = e+γ q

g

{
d̂lQ

α [−2]

1,s−1 − d̂lQα
1,s−1 − d̂lL

[−2]

1,s−1 + d̂lT1,s−1

}
. (3.20)

Note that the terms d̂lQ
α [+2]
1,s−1 , d̂lQ

α [−2]

1,s−1 are again as dangerous as in (2.32).

ANZC conditions

We assume that the analyticity data of the relevant functions are same as in the asymptotic

case. The asymptotic expressions for T1,s , L1,s , L1,s are discussed in Appendix C. We use the

gauge T1,s = TH1,s and set Φ1,s = 1.14

Suppose that for s ≥ 2,

T1,s(v) is ANZC for − 1

g
≤ Im v ≤ 1

g
. (3.21)

Following the same argument as before, and keeping in mind the definition of b’s in (3.14) and

f± in (A.1), we obtain

0 = e+
q

g d̂lT−
1,s − e−

q

g d̂lT+
1,s,

= e+
q

g d̂l

{
(1 + b

α

s )L
−

1,s

Qα
1,s−1

Q
α

1,s−1

}
− e−

q

g d̂l

{
(1 + b

α
s )L

+
1,s

Q
α

1,s−1

Qα
1,s−1

}
. (3.22)

If the Fourier transform of the logarithmic derivative of each factor is well-defined, we get

0 = e+
q

g d̂l(1 + b
α

s )− e−
q

g (1 + b
α
s )

+ 2 cosh

(
q

g

)(
d̂lQα

1,s−1 − d̂lQ
α

1,s−1

)
+ e+

q

g d̂lL
−

1,s − e−
q

g d̂lL+
1,s . (3.23)

We also assume that for s ≥ 3,

Qα
1,s−1(v) is ANZC for Im v ≥ 0, Q

α

1,s−1(v) is ANZC for Im v ≤ 0,

L1,s−1(v) is ANZC for Im v ≥ +
1

g
, L1,s−1(v) is ANZC for Im v ≤ −1

g
. (3.24)

13Again, these assumptions are part of the analyticity conditions we will use below.
14This is equivalent to Θ1,s = 1 in the notation of Appendix C.
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As corollaries, it follows that

d̂lQα
1,s−1(q) = 0 for Re q > 0, d̂lQ

α

1,s−1(q) = 0 for Re q < 0,

d̂lL+
1,s−1(q) = 0 for Re q > 0, d̂lL

−

1,s−1(q) = 0 for Re q < 0. (3.25)

By using the analyticity and the translational properties (3.9) for the gauge Φ1,s = 1, we find

e−
q

g d̂lL+
1,s = e−

q

g d̂lL
[+2]
1,s−1 = d̂lL+

1,s−1 , e+
q

g d̂lL
−

1,s = e+
q

g d̂lL
[−2]

1,s−1 = d̂lL
−

1,s−1 . (3.26)

The equation (3.23) leads to

d̂lQα
1,s−1 − d̂lL+

1,s−1 ŝK(q) =




0 Re q > 0,
(
− e+

q

g d̂l(1 + b
α

s ) + e−
q

g d̂l(1 + bαs )
)
ŝK(q) Re q < 0,

d̂lQ
α

1,s−1 − d̂lL
−

1,s−1 ŝK(q) =





(
− e−

q

g d̂l(1 + bαs ) + e+
q

g d̂l(1 + b
α

s )
)
ŝK(q) Re q > 0,

0 Re q < 0.

(3.27)

We employ the regularization (3.19) also for (1 + bs) , (1 + bs), assuming that

1 + bs(v) is ANZC for −γ
g
≤ Im v ≤ 0,

1 + bs(v) is ANZC for 0 ≤ Im v ≤ +
γ

g
. (3.28)

It follows that

d̂l(1 + bs) = e+γ q

g d̂l(1 + as), d̂l(1 + bs) = e−γ q

g d̂l(1 + as). (3.29)

Derivation of NLIE

Let us rewrite T-function into Y-function (3.15) using analyticity (3.21),

d̂lT1,s−1 =
(
d̂lL+

1,s−1 + d̂lL
−

1,s−1 + d̂l(1 + Y1,s−1)
)
ŝK(q), s ≥ 3. (3.30)

The equation (3.20) then simplifies with the help of (3.24), and we obtain

e+γ q

g d̂laαs = e+
2q

g

[
d̂lQα

1,s−1 − d̂lL+
1,s−1 ŝK(q)

]

−
[
d̂lQ

α

1,s−1 − d̂lL
−

1,s−1 ŝK(q)
]
+ d̂l(1 + Y1,s−1) ŝK(q),

e−γ q

g d̂laαs = e−
2q

g

[
d̂lQ

α

1,s−1 − d̂lL
−

1,s−1 ŝK(q)
]

−
[
d̂lQα

1,s−1 − d̂lL+
1,s−1 ŝK(q)

]
+ d̂l(1 + Y1,s−1) ŝK(q). (3.31)
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We substitute (3.27) to these equations, keeping in mind that the terms in the square brackets

are identical to the combination we found in (3.27). Recalling also (2.42), we find

d̂laαs =
e−|

q

g |
2 cosh q

g

d̂l(1 + a
α
s )−

e+2 q

g
(1−γ)−| qg |

2 cosh q
g

d̂l(1 + a
α
s ) +

e−γ q

g

2 cosh q
g

d̂l(1 + Y1,s−1),

d̂laαs =
e−| qg |

2 cosh q
g

d̂l(1 + a
α
s )−

e−2 q

g
(1−γ)−| qg |

2 cosh q
g

d̂l(1 + a
α
s ) +

e−γ q

g

2 cosh q
g

d̂l(1 + Y1,s−1). (3.32)

The inverse Fourier transform gives

log aαs = log(1 + a
α
s ) ⋆ Kf − log(1 + a

α
s ) ⋆ K

[+2−2γ]
f + log(1 + Y

[−γ]
1,s−1) ⋆ sK + (source),

log aαs = log(1 + a
α
s ) ⋆ Kf − log(1 + a

α
s ) ⋆ K

[−2+2γ]
f + log(1 + Y

[+γ]
1,s−1) ⋆ sK + (source), (3.33)

where the kernel Kf is now defined by (A.7), and the source terms can be fixed by analyticity

data, as done in Introduction.

In summary, the minimal parameter list for the horizontal strips of the su(2|4|2)-hook is

{
Y1|w , . . . , Ys−2|w

} ⋃




as

as



 , (s ≥ 3). (3.34)

We cannot remove Y1|w , because the pair (a2 , a2) are not related to Y1,1 = −1/Y− in (3.20).15

To determine
{
Y1|w , . . . , Ys−2|w

}
, we use the simplified TBA for YM |w (M = 1, . . . , s− 3),

log Y1,M+1 = log(1 + Y1,M)(1 + Y1,M+2) ⋆ sK + δM,1 log
1− 1

Y
−

1− 1
Y+

⋆̂ sK , (3.35)

with Y0|w = 0, and as for Ys−2|w

log Ys−2|w = log(1 + Ys−3|w) (1 + a
α [+γ]
s ) (1 + a

α [−γ]
s ) ⋆ sK + δs−2,1 log

1− 1
Y
−

1− 1
Y+

⋆̂ sK . (3.36)

The NLIE (3.33) are used to determine (as , as).

4 Discussion

In this paper, we derived hybrid NLIE from two setups. The first setup was a pair of covari-

ant recursions for spinons, and the second setup was A1 TQ-relations. The A1 TQ-relations

15In fact, we can find
T+
1,1 T−

1,1

L+
1,1 L

−

1,1

= 1−1/Y
−

1−1/Y+
, if we use the asymptotic formulae of L1,s , L1,s at s = 1.
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appeared in the horizontal strips of the su(2|4|2)-hook. By combining TBA equations and the

equations for auxiliary variables, we replaced the TBA equations for YM |w for M ≥ 2 by a

couple of auxiliary variables. We used the assumptions (3.21), (3.24) and (3.28).

The hybrid NLIE provides us with an efficient algorithm to compute the exact spectrum of

AdS5 × S5 string theory, both numerically and analytically. It is desirable to develop similar

techniques to truncate the vertical strip a ≥ 2 of the su(2|4|2)-hook, by generalizing TQ-

relations and hybrid NLIE for a higher-rank system [60, 85, 86]. In the horizontal strip, the

analyticity data were relatively simple, and the source terms in NLIE have simple structure.

In the vertical strip, however, the analytic structure would be much complicated.

It is interesting to clarify the physical and mathematical interpretation of new auxiliary

degrees of freedom. The relation (1.2) suggests that the M |w-strings appearing in the string

hypothesis of the mirror AdS5×S5 are boundstates of two fundamental excitations; like mesons

and quarks. Moreover, the su(2|4|2)-hook is replaced by another hook as in Figure 1, which

would have deeper relation with representation theory of su(2|4|2), like [68]. Such observation

might give us a hint in searching for hidden structure of the mirror AdS5×S5 theory, along the

line of [87, 88, 89, 90, 91, 92, 93].

Note added in v4

After the submission to arXiv, we are reminded of the talk [94] in Stockholm, where another

way to truncate the horizontal wings was announced. The claim is as follows. By choosing a

suitable gauge, one can assume that the exact T-function T1,s is given by the ansatz16

T1,s(v) = s+

∫ +∞

−∞

dt Ks(v − t)f(t), (s ≥ 1). (4.1)

The variable f is the density responsible for the discontinuities of T1,s , and this unknown

variable is determined by solving17

1 + Y1,1
1 + 1/Y2,2

=
T−
1,1 T

+
1,1 T2,3

T−
2,2 T

+
2,2 T0,1

=
(1 +K+

1 ⋆p.v. f + f/2) (1 +K−
1 ⋆p.v. f + f/2)

(1 +K+
1 ⋆p.v. f − f/2) (1 +K−

1 ⋆p.v. f − f/2)
. (4.2)

The equation (4.2), allows us to truncate the horizontal strips of the su(2|4|2)-hook, and this

result is claimed to be consistent with the numerical data for Konishi state for 0 . λ . 1000.

16Reasoning for this ansatz has recently been explained in [95]. The author thanks N. Gromov, S. Leurent

and D. Volin for discussions about this method.
17Here the definition of f± can be different from (A.1).
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A Notations

We use the notation

g =

√
λ

2π
, f(v)[±m] ≡ f

(
v ± im

g
∓ i0

)
, f(v)± = f(v)[±1], (A.1)

xs(v) =
v

2

(
1 +

√
1− 4

v2

)
, x(v) =

1

2

(
v − i

√
4− v2

)
. (A.2)

Let us define

R(±)(v) =

K∏

j=1

x(v)− x±s,j√
x±s,j

, B(±)(v) =

K∏

j=1

1
x(v)

− x±s,j√
x±s,j

, Q(v) =

K∏

j=1

(v − uj) , (A.3)

where K is the number of physical excitations and x±s,j = xs(uj ± i
g
). The rapidity uj sits in

the physical region of string theory.18 There are identities

R[m]
(±)(v)B

[m]
(±)(v) = (−1)K Q

(
v +

i

g
(m∓Qj)

)
, R+

(+) B+
(+) = R−

(−) B−
(−) = (−1)K Q. (A.4)

Since x(v) = xs(v) for Im v < 0 and 1/x(v) = xs(v) for Im v > 0, we observe that

R(±)(v) have no zeroes for Im v > 0, B(±)(v) have no zeroes for Im v < 0. (A.5)

The zeroes of Q(v) lie on the real axis of v if there are no boundstates. The branch cuts of

R,B lie along the real axis of v.

We use the kernel

sK(v) =
g

4 cosh πgv
2

, s̃K = s−K = −s+K , (A.6)

Kf(v) =
1

2πi

∂

∂v
logSf (v), Sf(v) =

Γ

(
g

4i

(
v +

2i

g

))
Γ
(
−gv
4i

)

Γ
( gv
4i

)
Γ

(
− g

4i

(
v − 2i

g

)) , (A.7)

18Our definition of (±) is different from [14, 12, 28].
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and the notation

F ⋆ K(v) =

∫ ∞

−∞

dt F (t)K(v − t), F ⋆̂K(v) =

∫ 2

−2

dt F (t)K(v − t). (A.8)

Note that all kernels in (A.7) are symmetric, K(v) = K(−v). The asymptotic behavior of

Sf(v) is Sf (v) → ∓i as v → ±∞.

As for the convolution with s̃K and K
[±2]
f , one may use the principal-value prescription:

log f∓ ⋆ sK =
1

2
log f ∓ log f ⋆p.v. s̃K ,

log f ⋆ K
[+2±0]
f = ∓1

2
log f + log f ⋆p.v. K

[+2]
f ,

log f ⋆ K
[−2±0]
f = ±1

2
log f + log f ⋆p.v. K

[−2]
f . (A.9)

B Review of Y-system and T-system

Most of the mirror TBA equations on AdS5 × S5, except for the exact energy and the exact

Bethe roots, can be regarded as the Y-system on su(2|4|2) supplemented by certain analyticity

conditions. The canonical definition of the su(2|4|2) Y-system is

Y +
a,sY

−
a,s =

(1 + Ya,s+1) (1 + Ya,s−1)(
1 + 1

Ya+1,s

)(
1 + 1

Ya−1,s

) , v ∈ (−2, 2), (B.1)

where (a, s) runs through the lattice points shown in Figure 2.

Figure 2: The su(2|4|2)-hook, whose boundaries lie along (0, s), (2, s), (a,±2).

We assume the interchange symmetry (a, s) ↔ (a,−s) in what follows. The Y-functions

Ya,s are defined by

Y1,1 ↔ − 1

Y−
, Y2,2 ↔ −Y+ , YM+1,1 ↔

1

YM |vw
, Y1,M+1 ↔ YM |w ,

YQ,0 ↔ YQ , (B.2)
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where we set chemical potentials to zero. We introduce the T-functions by

Ya,s ≡





τa
Ta,1 Ta,−1

Ta+1,0 Ta−1,0
(s = 0) where

τ+a τ
−
a

τa+1 τa−1
= 1,

Ta,s+1 Ta,s−1

Ta+1,s Ta−1,s
(s 6= 0).

(B.3)

The canonical Y-system (B.1) are then solved by the T-system which live on the su(2|4|2)-hook,

T+
a,s T

−
a,s = Ta+1,s Ta−1,s + Ta,s+1 Ta,s−1 , (a ≥ 1, s 6= 0), (B.4)

and the Y-system at |s| = 0, 1 are solved by

T+
a,0 T

−
a,0 = Ta+1,0 Ta−1,0 + τa Ta,1 Ta,−1 , (a ≥ 1). (B.5)

we introduced an extra ‘gauge’ factor τa in order to take the asymptotic limit τa → 0 easily.

By redefinition of Ta,s (s 6= 0) one can recover the standard definition of T-system, as will be

discussed later.

T-functions vanish outside the su(2|4|2)-hook, T−1,s = T3,±Q = TQ,±3 = 0 for s ∈ Z, Q ≥ 3.

Along the boundary of the hook, the T-system reduces to the discrete Laplace equation without

source term.

The T-system equations (B.4), (B.5) are invariant under the gauge transformation

Ta,s → g
[a+s]
1 g

[a−s]
2 g

[−a+s]
3 g

[−a−s]
4 Ta,s , (B.6)

with τa left intact. We need two gauge degrees of freedom to impose the boundary conditions

T0,s = 1 for all s.

There are subtle points in the study of the exact spectrum from the Y- and T-system on the

su(2|4|2)-hook, compared to the study from the mirror TBA equations on AdS5 × S5. Firstly,

The Y-system at the corner (a, s) = (2,±2) does not follow directly from the mirror TBA. To

derive them, we have to use the parametrization (B.3) and the T-system (B.4) except at the

corner. Then, the T- and Y-system at the corner can be derived from the equations in the

neighborhood. Secondly, if the mirror rapidity v lies (−∞,−2) ∪ (2,∞), the Y-system is no

longer canonical, and we need to know the gap on branch cuts.19

Meaning of τa . There is no τa in the usual T-system, so one may wonder if the system above

is equivalent to them. To show the equivalence we consider the following transformation20

Ta,s → Ta,s
Fa−s+1Fa−s+3 · · ·Fa+s−3Fa+s−1

, s ≥ 1 , (B.7)

Ta,s → Ta,s , s ≤ 0 , (B.8)

19The Y-system remains canonical if we use f± = f(v ± i
g + i0) or f± = f(v ± i

g − i0) instead of (A.1) [23].
20We thank Sergey Frolov for the explanation of this subsection.
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where Fa are arbitrary functions satisfying

F+
a F−

a = Fa+1 Fa−1 . (B.9)

Then it is not difficult to show that under this transformation the Y-functions with s 6= 0 are

invariant. We can also do a similar transformation with the change s → −s, so there are two

independent set of functions FL
a and FR

a which can be used for this purpose. Ya,0 transforms as

Ya,0 → τa
FL
a F

R
a

Ta,1 Ta,−1

Ta+1,0 Ta−1,0
. (B.10)

Then, eqs.(B.4) are invariant, and (B.5) transforms as

T+
a,0 T

−
a,0 = Ta+1,0 Ta−1,0 +

τa
FL
a F

R
a

Ta,1 Ta,−1 . (B.11)

Thus, if we choose FL
a F

R
a = τa we get the T-system in the usual form. This consideration

shows that introducing τa is just a matter of convenience.

C Asymptotic solutions

C.1 Asymptotic transfer matrix

We will discuss the su(2|2) transfer matrix for the totally symmetric representations on the level-

one vacuum, namely when there are no auxiliary Bethe roots among the physical excitations.

Via analytic continuation of the rapidity into the mirror region, this transfer matrix generates

the solution of the excite-state TBA equations for the sl(2) sector [21] in the asymptotic limit.

As discussed in [14, 97], such transfer matrices, here denoted by Ta,1 , are given by

Ta,1 = 1 +
R[−a]

(−) B[−a]
(+)

R[+a]
(−) B[+a]

(+)

− 2
R[+a]

(+)

R[+a]
(−)

+
a−1∑

k=1

(
−2 +

R[a−2k]
(−)

R[a−2k]
(+)

+
B[a−2k]
(−)

B[a−2k]
(+)

)
R[+a]

(+)

R[+a]
(−)

Q[a−1−2k]

Q[a−1]
. (C.1)

This formula consists of 4a terms, and only four terms lie outside the sum. It is possible to

include all terms under summation, as

Ta,1 =
a∑

k=0

λ
(B1),a
k +

a−1∑

k=1

λ
(B2),a
k −

a−1∑

k=0

(
λ
(F1),a
k + λ

(F2),a
k

)
, (C.2)

where

λ
(B1),a
k =

R[a−2k]
(−)

R[a−2k]
(+)

R[+a]
(+)

R[+a]
(−)

Q[a−1−2k]

Q[a−1]
, λ

(B2),a
k =

B[a−2k]
(−)

B[a−2k]
(+)

R[+a]
(+)

R[+a]
(−)

Q[a−1−2k]

Q[a−1]
,

λ
(F1),a
k = λ

(F2),a
k =

R[+a]
(+)

R[+a]
(−)

Q[a−1−2k]

Q[a−1]
. (C.3)
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The auxiliary variables in the vertical direction are defined by taking four terms out of Ta,1

as

Aa,1 = λ
(B1),a
0 + λ

(B2),a
1 − λ

(F1),a
0 − λ

(F2),a
0 =

R[+a]
(+)

R[+a]
(−)

(
R[+a]

(−)

R[+a]
(+)

+
R[a−2]

(+)

R[a−2]
(−)

− 2

)
,

Aa,1 = λ(B1),a
a + λ

(B2),a
a−1 − λ

(F1),a
a−1 − λ

(F2),a
a−1 =

Q[−a+1]

Q[+a−1]

R[+a]
(+)

R[+a]
(−)

(
B[−a]
(+)

B[−a]
(−)

+
B[−a+2]
(−)

B[−a+2]
(+)

− 2

)
. (C.4)

It is easy to check that the covariant recursions (2.7) are satisfied for a ≥ 2, under the condition

Xa,1 = 0.21 As a corollary, we find

Ta,0 Ta,2 = A+
a,1A

−

a,1 , (a ≥ 2), (C.5)

in consistency with (2.11).

The transfer matrices in the horizontal direction T1,s are generated by Bazhanov-Reshetikhin

formula [98] (see also [99, 14, 97]):

Ta,s ≡ det




T
[−s+1]
a,1 T

[−s+2]
a−1,1 · · · T

[−1]
a+2−s,1 Ta+1−s,1

T
[−s+2]
a+1,1 T

[−s+3]
a,1 · · · Ta+3−s,1 T

[+1]
a+2−s,1

...
...

...
...

T
[−1]
a−2+s,1 Ta−3+s,1 · · · T

[s−3]
a,1 T

[s−2]
a−1,1

Ta−1+s,1 T
[+1]
a−2+s,1 · · · T

[s−2]
a+1,1 T

[s−1]
a,1




,

Ta,0 = 1, T0,s = 1, Ta<0,s = 0. (C.6)

Note that the boundary conditions Ta,0 = T0,s = 1 are important in applying this formula.

From explicit computation we obtain the following results:

T1,s ≡ Θ1,sTH1,s , Θ1,s = (−1)s

(
s−1∏

k=1

R[−s+2k]
(+)

R[−s+2k]
(−)

)
, (C.7)

TH1,s ≡ (s+ 1)
R[+s]

(+)

R[+s]
(−)

− s− s
R[+s]

(+)

R[+s]
(−)

B[−s]
(+)

B[−s]
(−)

+ (s− 1)
B[−s]
(+)

B[−s]
(−)

, (C.8)

for s ≥ 1. We have T1,0 = 1 at s = 0. The factor Θ1,s satisfies

Θ−
1,sΘ

+
1,s = Θ1,s−1Θ1,s+1 , (s ≥ 2), (C.9)

21Furthermore, for each sum of (C.2) one can solve the recursion, e.g. T
(B1)+
a,1 −A

(B1)+
a,1 =

A
(B1) +
a,1

A
(B1)
a−1,1

T
(B1)
a−1,1 .
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and can be regarded as an artifact of our gauge choice.22

The gauge choice T1,s = TH1,s is useful to discuss the horizontal strip of su(2|4|2)-hook.
Note that TH1,0 6= 1 in this gauge. To see this, consider gauge transformation of the T-system

at (1, 1),

Θ−
1,1Θ

+
1,1TH

−
1,1TH

+
1,1 = Θ1,2Θ1,0TH1,2TH1,0 +Θ2,1Θ0,1TH2,1TH0,1 , (C.10)

where Θ1,0TH1,0 = 1, because the original transfer matrix satisfies T1,0 = 1. Gauge-covariance

requires

1 = Θ−
1,1Θ

+
1,1 = Θ1,2Θ1,0 = Θ2,1Θ0,1 , ⇒ Θ1,0 =

1

Θ1,2

=
R(−)

R(+)

, (C.11)

showing that TH1,0 = 1/Θ1,0 6= 1.

C.2 Asymptotic Wronskian formula

We compare the Wronskian formula (3.1) and the asymptotic transfer matrix T1,s in the sl(2)

sector to find the asymptotic form of Q-functions. The result should agree with [64] modulo

gauge transformation.

We begin with the relation

T0,s T2,s =
Q[+s−2]

Q[−s+2]

R[−s+1]
(−)

R[−s+1]
(+)

R[s−1]
(−)

R[s−1]
(+)

(Θ1,sAs,1)
+ (Θ1,sAs,1)

− = L+
1,s L

−

1,s . (C.12)

There are many ways to define L1,s and L1,s . We choose the definition such that both L1,s/Θ1,s

and L1,s/Θ1,s are translationally invariant (X1,s = X+
1,s−1 , X1,s = X

−

1,s−1), as

L+
1,s

Θ+
1,s

= A+
s,1 = 1 +

R[s+1]
(+)

R[s+1]
(−)

R[s−1]
(+)

R[s−1]
(−)

− 2
R[s+1]

(+)

R[s+1]
(−)

,

L
−

1,s

Θ−
1,s

=
Q[+s−2]

Q[−s+2]

R[−s+1]
(−)

R[−s+1]
(+)

R[s−1]
(−)

R[s−1]
(+)

A
−

s,1 = 1 +
B[−s−1]
(+)

B[−s−1]
(−)

B[−s+1]
(+)

B[−s+1]
(−)

− 2
B[−s+1]
(+)

B[−s+1]
(−)

, (C.13)

where we used the explicit form of A’s (C.4).

We define auxiliary variables (C1,s , C1,s) by

C1,s = Θ1,s

(
R[+s]

(+)

R[+s]
(−)

− 1

)
, C1,s = Θ1,s

(
1−

B[−s]
(+)

B[−s]
(−)

)
, (C.14)

22Here Θ1,s means the gauge transformation from T1,s in (C.6) to TH1,s in (C.8). In the main text, Φ1,s

means a general gauge transformation.
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and (U1,s , U1,s) by

L+
1,s =

1

Θ−
1,s

det

(
C+

1,s U+
1,s

C−
1,s U−

1,s

)
, L

−

1,s =
1

Θ+
1,s

det

(
C

+

1,s U
+

1,s

C
−

1,s U
−

1,s

)
. (C.15)

The explicit form of (U1,s , U1,s) can be obtained by solving the difference equations (C.15).

The general solutions of these difference equations are

U1,s = −Θ1,s −
{
g

2i

(
v +

is

g

)
+ F1,s

}
C1,s , F−

1,s = F+
1,s ,

U 1,s = +Θ1,s −
{
g

2i

(
v − is

g

)
+ F 1,s

}
C1,s , F

+

1,s = F
−

1,s . (C.16)

We constrain two periodic functions F , F by comparing T1,s = Θ1,sTH1,s in (C.8) with the

Wronskian formula,

TH1,s =
1

Θ1,s

(
C1,s U 1,s − C1,s U1,s

)
, (C.17)

which gives

Ψ1,s ≡ F1,s = F 1,s , Ψ−
1,s = Ψ+

1,s . (C.18)

The variable Ψ corresponds to the freedom of superposing two linearly independent solutions

U → U +ΨC. The Wronskian formulae (C.15), (C.17) do not change as long as Ψ+ = Ψ−, so

we may set Ψ1,s = 0. Therefore, the asymptotic formula (C.16) can be summarized as

U1,s = −Θ1,s −
g

2i

(
v +

is

g

)
C1,s , U 1,s = +Θ1,s −

g

2i

(
v − is

g

)
C1,s . (C.19)

Let us relate (C,L, U) and the conjugates to the Q-functions in Section 3.1. We can iden-

tify23




C1,s

C1,s

U1,s

U1,s




≃




Q
[+s]
1

Q
[−s]

2

Q
[+s]
2

Q
[−s]

1




=




QI
1,s

Q
I

1,s

QII
1,s

Q
II

1,s



,


L1,s

L1,s


 ≃


 Q

[s−1]
12

Q
[−s+1]

∅
Q

[−s+1]

12


 . (C.20)

where ≃ means that they are equal up to gauge transformation. One can also check that

(C,L, U) and the conjugates solve the difference equations (3.10). The determinant formula

(C.15) turns out to be identical to (3.3) if Q∅ = −1.

23Such identification of C’s is motivated by the expression of [64]. Note that their definition of x(v) in the

mirror region is opposite to ours.
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C.3 Analyticity data

We enlist the analyticity data of the asymptotic solution in the sl(2) sector. Since the two pairs

of fundamental Q-functions (C1,s , C1,s) and (U1,s , U1,s) have almost the same analytic structure

(like the location of poles and branch cuts), we denote them collectively by (Qα
1,s , Q

α

1,s).

The location of poles is:

TH1,s(v) = ∞ at v = uj −
i(s+ 1)

g
,

L1,s(v) = ∞ at v = uj −
i(s− 1)

g
,

Qα
1,s(v) = ∞ at v = uj −

i(s+ 1)

g
. (C.21)

The conjugate variables L1,s , Q
α

1,s are not singular on the top sheet of the complex plane for v.

The location of branch cuts is:

TH1,s(v + i0) 6= TH1,s(v − i0) at Im v = ±s
g
,

L1,s(v + i0) 6= L1,s(v − i0) at Im v = −s− 2

g
, −s

g
,

L1,s(v + i0) 6= L1,s(v − i0) at Im v = +
s− 2

g
, +

s

g
,

Qα
1,s(v + i0) 6= Qα

1,s(v − i0) at Im v = −s
g
,

Q
α

1,s(v + i0) 6= Q
α

1,s(v − i0) at Im v = +
s

g
, (C.22)

In the limit Re v → ±∞, these functions approach a constant. In short, if s ≥ 3, the quantities

(L ,Q) are analytic in the upper half plane, whereas (L ,Q) are analytic in the lower half plane.

One has to be careful about (L1,2 , Q
−
1,1) and (L1,2 , Q

+

1,1) on the real axis.

As for the variables (bαs , b
α

s ), we find the branch cuts at:

b
α
s (v + i0) 6= b

α
s (v − i0) at Im v = ±s− 1

g
, −s + 1

g
,

b
α

s (v + i0) 6= b
α

s (v − i0) at Im v = ±s− 1

g
, +

s+ 1

g
. (C.23)

They do not have poles.

We find extra zeroes for U1,s , U 1,s

U1,s(v) = 0 at v = −i(r + s)

g
(r > 0), U1,s(v) = 0 at v =

i(r + s)

g
(r > 0), (C.24)
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and similarly for (bIIs , b
II

s ). Both r, r are far from the origin already at weak coupling, and they

run away from the real axis as g increases. For other functions we do not find extra zeroes, at

least in the weak coupling.
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[76] A. Klümper, T. Wehner and J. Zittartz, “Conformal spectrum of the six-vertex model,”

J. Phys. A 26 (1993), 2815.

36
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