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Mellin representation of the graviton bulk-to-bulk propagator in AdS.
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A Mellin-type representation of the graviton bulk-to-bulk propagator from Ref. [1] in terms of
the integral over the product of bulk-to-boundary propagators is derived.

PACS numbers: 11.25 Tq, 11.25 Hf

The correlation functions of the conformal N' = 4 SYM
at large coupling constant are reduced via AdS/CFT cor-
respondence [2-4] to Witten diagrams [4] in AdS space.
A powerful method to calculate Witten diagrams in AdS
space is to represent bulk-to-bulk propagators as Mellin
integrals over the bulk-to-boundary propagators, calcu-
late the tree-level “star” integrals with vertices over the
AdS space and then convert the remaining integrals over
the flat space into Mellin transforms of the conformal
ratios using Symanzik’s star formula [5] (see the discus-
sion in Ref. [6]). For the scalar propagator with mass

= (A —d)A the Mellin representation of bulk-to-bulk
propagator has the form [6, |7
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Here we used Poincare coordinates # = (2, 2%) where

Z is a d-dimensional Euclidean vector (our metric is
dz? = ( (1,)2 [(dz®)? + d7?] with the size of AdS space
R = 1). The above equation looks like the integral of
the product of two bulk-to-boundary propagators with

1/%2 — A2 over the
usual flat space and over A\. The easiest way to prove

this formula is to calculate explicitly the integral over z
in the r.h.s. of Eq. (). One obtains (cf. Ref. [§])
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Here F' is the hypergeometric function 2 F; and the vari-
able r(u) is defined as
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Substituting the integral (@) to Eq. () we get
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is regular in the right half-plane and behaves like Mgl
as M\ — oo one can close the contour over A in Eq. (B)
in the right semi-plane and get the result as a residue at
A=A-1¢
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It is easy to see that the r.h.s. of Eq. (@) is equal to the
bulk-to-bulk scalar propagator [9].

As we mentioned above, the formula (I]) is extremely
convenient for the calculation of Witten diagrams in the
Mellin representation so it would be advantageous to get
similar expression for the bulk-to-bulk graviton propaga-
tor. This propagator can be represented as [1]
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where D, is a covariant derivative and
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The remaining three functions X (u), Y (u) and Z(u) are
gauge artifacts. Hereafter the Greek indices from the first
half of alphabet refer to the point x and from the second
to y.

The Mellin representation of the graviton propagator
has the form
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(and similarly for other J's) while &;;.5 is a traceless
symmetric projector
0i;0k1
d
The d-dimensional Latin indices of this projector are
raised and lowered with the flat metric.
Note that the covariant derivative and the trace of the
graviton propagator (I0)) vanish:

GapGH (a,y) = 0, DG (2,y) = 0 (13)
Let us compare the integrand in the formula (I0) to bulk-
to-boundary propagator of the graviton. The general so-

lAution of the Dirichlet problem with the boundary data
hap has the form [10]:
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We see that similarly to the scalar case, the Mellin rep-

resentation (I0) looks like an integral of the product of
two bulk-to-boundary propagators with unphysical com-
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plex graviton masses m = +iy/% — A2 over the usual
flat space and over A.
Now let us prove the Eq. (). The central point of

the proof is the calculation of the following integral
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It can be decomposed in the same set of structures as the
propagator (8)
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A straightforward but somewhat lenghtly calculation
yields (cf. Ref. |]])
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for three gauge-dependent ones. Here
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One can easily see that the function F(g -1,2 - g, 1+
Ao T) is also regular at the right half-plane and behaves

like A271 as RA — oo, cf. Eq. ().
Let us now return to the proof of Eq. (I0)) which can
be rewritten as
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Let us discuss the two gauge-invariant structures G(u)
and H(u). The corresponding terms in the r.h.s of Eq.
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As we discussed above (see Egs. (@), (@), and (I3)), the
functions fx(u) and Fy(u) are regular in the right half-
plane and decrease as Ae—le=2IIn7l when RA — o0 so
one can close the contour over \ and take the residue at

A= %. One obtains
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which coincides with Eq. ([®) and Eq. (@) since
Od(u) = ﬁf% (u). Thus, we proved that the inte-
gral (IQ) can serve as a gravition bulk-to-bulk propagator
in the gauge D,G*#* = 0. It should be mentioned
that similar but somewhat more complicated represen-
tation of the graviton propagator was obtained in Ref.

[7]). It has a function % f W

in Eq. () as well as additional terms proportional to
the tensor structure obtained from that of Eq. ([IQ) by
replacement &;j.51 — ;50 and to the g g®P structure.

in place o

For completeness, let us briefly discuss the gauge boson
propagator [11]
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where the second structure depends on the choice of
gauge. The Mellin representaton of this propagator has
the form [1]
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The explicit calculation of the integral in the r.h.s. of
this equation confirms this expression obtained in Ref.
[7] by solution of Einstein equations. Again, the gauge
condition for the propagator 24) is D,G*"(z,y) = 0.

We have represented the graviton bulk-to-bulk prop-
agator in the form of the Mellin integral of the prod-
uct of bulk-to-boundary propagators (with nonphysical
masses). This formula permits us to apply the Mellin-
transformation method of Ref. [6] to Witten diagrams
with graviton (and gauge boson) propagators.
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