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A Mellin-type representation of the graviton bulk-to-bulk propagator from Ref. [1] in terms of
the integral over the product of bulk-to-boundary propagators is derived.

PACS numbers: 11.25 Tq, 11.25 Hf

The correlation functions of the conformalN = 4 SYM
at large coupling constant are reduced via AdS/CFT cor-
respondence [2–4] to Witten diagrams [4] in AdS space.
A powerful method to calculate Witten diagrams in AdS
space is to represent bulk-to-bulk propagators as Mellin
integrals over the bulk-to-boundary propagators, calcu-
late the tree-level “star” integrals with vertices over the
AdS space and then convert the remaining integrals over
the flat space into Mellin transforms of the conformal
ratios using Symanzik’s star formula [5] (see the discus-
sion in Ref. [6]). For the scalar propagator with mass
m2 = (∆−d)∆ the Mellin representation of bulk-to-bulk
propagator has the form [6, 7]

Π∆
d (x, y) (1)

= −
iΓ
(

d
2

)

4π
d
2
+1

∫ i∞

−i∞

dλ

(∆− d
2

)2
− λ2

∫

ddz

πd/2

×
(x0)

d
2
+λΓ

(

d
2 + λ

)

Γ(λ)[(x0)2 + (~x− ~z)2]
d
2
+λ

(y0)
d
2
−λΓ

(

d
2 − λ

)

Γ(−λ)[(y0)2 + (~y − ~z)2]
d
2
−λ

Here we used Poincare coordinates x = (x0, xi) where
~x is a d-dimensional Euclidean vector (our metric is
dx2 = 1

(x0)2 [(dx
0)2 + d~x2] with the size of AdS space

R = 1). The above equation looks like the integral of
the product of two bulk-to-boundary propagators with

unphysical complex masses m = ±i
√

d2

4 − λ2 over the

usual flat space and over λ. The easiest way to prove
this formula is to calculate explicitly the integral over z
in the r.h.s. of Eq. (1). One obtains (cf. Ref. [8])

Γ
(d

2

)

∫

ddz

πd/2

(x0)
d
2
+λΓ

(

d
2 + λ

)

Γ(λ)(|x − z|2)
d
2
+λ

(y0)
d
2
−λΓ

(

d
2 − λ

)

Γ(−λ)(|y − z|2)
d
2
−λ

= fλ(u) + f−λ(u) (2)

where |x− z|2 ≡ (x0)2 + (~x− ~z)2,

u(x, y) =
(x0 − y0)2 + (~x− ~y)2

2x0y0
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is the chordal distance between points x and y and

fλ(u) (3)

= r
d
4
+λ

2 (1 − r)−
d
2

Γ
(

d
2 + λ

)

Γ(λ)
F
(d

2
, 1−

d

2
, 1 + λ,

−r

1− r

)

Here F is the hypergeometric function 2F1 and the vari-
able r(u) is defined as

r(u) ≡
1 + u−

√

u(2 + u)

1 + u+
√

u(2 + u)
(4)

Substituting the integral (2) to Eq. (1) we get

Π∆
d (u) = −

i

2π
d
2
+1

∫ i∞

−i∞

dλ

(∆− d
2

)2
− λ2

fλ(u) (5)

Since r < 1 and the function

F
(d

2
, 1−

d

2
, 1 + λ,

−r

1− r

)

(6)

=
Γ(1 + λ)Γ−1

(

d
2

)

Γ
(

1 + λ− d
2

)

∫ 1

0

dt (1− t)λ−
d
2

[

t+
t2r

1− r

]
d
2
−1

is regular in the right half-plane and behaves like λ
d
2
−1

as ℜλ → ∞ one can close the contour over λ in Eq. (5)
in the right semi-plane and get the result as a residue at
λ = ∆− d

2

Πd
∆(u) =

f∆−d
2

(u)

πd/2(2∆− d)
=

π− d
2 Γ(∆)

2Γ
(

∆− d
2 + 1

)

× r
∆

2 (1− r)−
d
2 F

(d

2
, 1−

d

2
,∆−

d

2
+ 1,

−r

1− r

)

(7)

It is easy to see that the r.h.s. of Eq. (7) is equal to the
bulk-to-bulk scalar propagator [9].
As we mentioned above, the formula (1) is extremely

convenient for the calculation of Witten diagrams in the
Mellin representation so it would be advantageous to get
similar expression for the bulk-to-bulk graviton propaga-
tor. This propagator can be represented as [1]

Gαβ;µν(x, y)

= (∂α∂µu∂β∂νu+ α ↔ β)Πd
d(u) + gαβgµνH(u)

+{(Dα[∂β∂µu∂νuX(u)] +Dα[∂βu∂µu∂νuY (u)]

+ α ↔ β) + Dα[∂βZ(u)]gµν + (α ↔ µ, β ↔ ν)} (8)
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where Dµ is a covariant derivative and

H(u) = −
2

d− 1

[

(1 + u)2Πd
d(u)

− (d− 2)(1 + u)

∫ ∞

u

du′ Πd
d(u

′)
]

(9)

The remaining three functions X(u), Y (u) and Z(u) are
gauge artifacts. Hereafter the Greek indices from the first
half of alphabet refer to the point x and from the second
to y.
The Mellin representation of the graviton propagator

has the form

Gαβ;µν(x, y) (10)

=
iΓ(d/2)

2(d− 1)π
d
2
+1

∫ i∞

−i∞

dλ

(d/2)2 − λ2

(

d
2 + 1

)2
− λ2

Γ(λ)Γ(−λ)
∫

ddz

πd/2

(x0)
d
2
+λ+2Γ

(

d
2 + λ

)

(|x − z|2)
d
2
+λ

(y0)
d
2
−λ+2Γ

(

d
2 − λ

)

(|y − z|2)
d
2
−λ

× Jαi(x− z)Jβj(x− z)Eij;klJ
kµ(z − y)J lν(z − y)

where

Jµi(x− z) = δµi − 2
(x− z)µ(x− z)i

|x− z|2
(11)

(and similarly for other J ′s) while Eij;kl is a traceless
symmetric projector

Eij;kl =
1

2
(δikδjl + δilδjk)−

δijδkl
d

(12)

The d-dimensional Latin indices of this projector are
raised and lowered with the flat metric.
Note that the covariant derivative and the trace of the

graviton propagator (10) vanish:

gαβG
αβ;µν(x, y) = 0, DαG

αβ;µν(x, y) = 0 (13)

Let us compare the integrand in the formula (10) to bulk-
to-boundary propagator of the graviton. The general so-
lution of the Dirichlet problem with the boundary data

ĥab has the form [10]:

hα
β(x) =

(d+ 1)Γ(d)

(d− 1)Γ(d/2)
(14)

×

∫

ddz

πd/2

(x0)d

(|x − z|2)d
Jαi(x− z)Jβj(x − z)Eij;abĥab

We see that similarly to the scalar case, the Mellin rep-
resentation (10) looks like an integral of the product of
two bulk-to-boundary propagators with unphysical com-

plex graviton masses m = ±i
√

d2

4 − λ2 over the usual

flat space and over λ.
Now let us prove the Eq. (10). The central point of

the proof is the calculation of the following integral

Iαβ;µν(x, y;λ) = 2
[(d

2
+ 1

)2
− λ2

]

Γ(d/2) (15)

×

∫

ddz

πd/2

(x0)
d
2
+λ−2Γ

(

d
2 + λ

)

Γ(λ)(|x − z|2)
d
2
+λ

(y0)
d
2
−λ−2Γ

(

d
2 − λ

)

Γ(−λ)(|y − z|2)
d
2
−λ

× Jαi(x − z)Jβj(x− z)Eij;klJ
kµ(z − y)J lν(z − y)

It can be decomposed in the same set of structures as the
propagator (8)

Iαβ;µν(x, y;λ)

= (∂α∂µu∂β∂νu+ α ↔ β)Gλ(u) + gαβgµνHλ(u)

+ {(Dα[∂β∂µu∂νuXλ(u)] +Dα[∂βu∂µu∂νuYλ(u)]

+ α ↔ β) + (α ↔ µ, β ↔ µ)}

+ Dα[∂βZλ(u)]g
µν +Dµ[∂νZ−λ(u)]g

αβ (16)

A straightforward but somewhat lenghtly calculation
yields (cf. Ref. [8])

Gλ(u) =
[(d

2
− 1

)2
− λ2

]

fλ(u) + (λ ↔ −λ)

Hλ(u) = 2(1 + u)2fλ(u)−
2

d

(d2

4
− λ2

)

fλ(u)

+ 2(d− 2)(1 + u)Fλ(u) + (λ ↔ −λ) (17)

for the two physical structures and

[d2

4
− λ2

]

Xλ(u) =
[

(1 + u)2 −
1

d

]

f ′′
λ (u) +

[(d

2
+ 1

)2

− λ2
]

(1 + u)f ′
λ(u) + d

(d2

4
− λ2

)

fλ(u + (λ ↔ −λ)),

[d2

4
− λ2

]

Yλ(u) =
[

(1 + u)2 −
1

d

]

f ′′′
λ (u)

+ (d+ 1)(1 + u)f ′′
λ (u) +

d(d+ 1)

2
f ′
λ(u) + (λ ↔ −λ),

[d2

4
− λ2

]

Zλ(u) =
[

(1 + u)3 −
1

d

]

[f ′′
λ (u) + f ′′

−λ(u)]

+
[

(1 + d− 2λ)(1 + u) +
(d

2
+

2

d
λ2 −

1

d

)

]

× [f ′
λ(u) + f ′

−λ(u)] + 2(d− 1)λ(1 + u)[fλ(u) + f−λ(u)]

+
[

2(d− 1)λ+ (2− d− 2λ)
(d2

4
− λ2

)]

[Fλ(u) + F−λ(u)]

(18)

for three gauge-dependent ones. Here

Fλ(u) = −

∫ ∞

u

fλ(v)dv = −
Γ
(

d
2 + λ

)

Γ(d/2)
(19)

×
r

λ
2
+d−2

4 (1 − r)1−
d
2

(

d− 2 + 2λ
) F

(d

2
− 1, 2−

d

2
, 1 + λ,

−r

1− r

)

One can easily see that the function F
(

d
2 − 1, 2− d

2 , 1 +

λ, −r
1−r

)

is also regular at the right half-plane and behaves

like λ
d
2
−1 as ℜλ → ∞, cf. Eq. (6).

Let us now return to the proof of Eq. (10) which can
be rewritten as

Gαβ;µν(x, y) (20)

=
i(d− 1)−1

4π
d
2
+1

∫ i∞

−i∞

dλ

(d/2)2 − λ2
Iαβ;µν(x, y, λ)

Let us discuss the two gauge-invariant structures G(u)
and H(u). The corresponding terms in the r.h.s of Eq.
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(20) are

(∂α∂µu∂β∂νu+ α ↔ β)
i(d− 1)−1

4π
d
2
+1

∫ i∞

−i∞

dλ
d2

4 − λ2
Gλ(u)

+ gαβgµν
i(d− 1)−1

4π
d
2
+1

∫ i∞

−i∞

dλ
d2

4 − λ2
Hλ(u)

= (∂α∂µu∂β∂νu+ α ↔ β)
i(d− 1)−1

2π
d
2
+1

∫ i∞

−i∞

dλ
d2

4 − λ2

×
[(d

2
− 1

)2
− λ2

]

fλ(u)

+ gαβgµν
i(d− 1)−1

2π
d
2
+1

∫ i∞

−i∞

dλ
d2

4 − λ2
[2(1 + u)2fλ(u)

−
2

d

(d2

4
− λ2

)

fλ(u) + 2(d− 2)(1 + u)Fλ(u)] (21)

As we discussed above (see Eqs. (3), (6), and (19)), the
functions fλ(u) and Fλ(u) are regular in the right half-

plane and decrease as λ
d
2
−1e−

λ
2
| ln r| when ℜλ → ∞ so

one can close the contour over λ and take the residue at
λ = d

2 . One obtains

Gαβ;µν(x, y) =
fd/2(u)

dπd/2
(∂α∂µu∂β∂νu+ α ↔ β)

−
2

(d− 1)πd/2

[

(1 + u)2f d
2

(u) + (d− 2)(1 + u)F d
2

(u)
]

× gαβgµν + gauge− dependent structures (22)

which coincides with Eq. (8) and Eq. (9) since
Πd

d(u) = 1
dπd/2 f d

2

(u). Thus, we proved that the inte-

gral (10) can serve as a gravition bulk-to-bulk propagator
in the gauge DαG

αβ;µν = 0. It should be mentioned
that similar but somewhat more complicated represen-
tation of the graviton propagator was obtained in Ref.

[7]). It has a function
( d
2
+1)2−λ2

(d
2
−1)2−λ2

in place of
( d
2
+1)2−λ2

1−d

in Eq. (10) as well as additional terms proportional to
the tensor structure obtained from that of Eq. (10) by
replacement Eij;kl → δijδkl and to the gµνgαβ structure.

For completeness, let us briefly discuss the gauge boson
propagator [11]

Gα;µ(x, y) = −
f d

2
−1(u)

2πd/2
(

d
2 − 1

) ∂µ∂αu+ ∂µ∂νS(u) (23)

where the second structure depends on the choice of
gauge. The Mellin representaton of this propagator has
the form [7]

Gα;µ(x, y) (24)

=
iΓ(d/2)

4π
d
2
+1

∫ i∞

−i∞

dλ
(d/2)2 − λ2

[(

d
2 + 1

)2
− λ2

]2

∫

ddz

πd/2

(x0)
d
2
+λ+2Γ

(

d
2 + λ

)

Γ(λ)(|x − z|2)
d
2
+λ

(y0)
d
2
−λ+2Γ

(

d
2 − λ

)

Γ(−λ)(|y − z|2)
d
2
−λ

× Jαi(x− z)δikJ
kµ(z − y)

The explicit calculation of the integral in the r.h.s. of
this equation confirms this expression obtained in Ref.
[7] by solution of Einstein equations. Again, the gauge
condition for the propagator (24) is DαG

α;µ(x, y) = 0.
We have represented the graviton bulk-to-bulk prop-

agator in the form of the Mellin integral of the prod-
uct of bulk-to-boundary propagators (with nonphysical
masses). This formula permits us to apply the Mellin-
transformation method of Ref. [6] to Witten diagrams
with graviton (and gauge boson) propagators.
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