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Abstract

This paper investigates dividend optimization of an insurance corporation under a
more realistic model which takes into consideration refinancing or capital injections. The
model follows the compound Poisson framework with credit interest for positive reserve,
and debit interest for negative reserve. Ruin occurs when the reserve drops below the
critical value. The company controls the dividend pay-out dynamically with the objective
to maximize the expected total discounted dividends until ruin. We show that that the
optimal strategy is a band strategy and it is optimal to pay no dividends when the reserve
is negative.
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1 Introduction

Dividend optimization problems for financial and insurance corporations have attracted ex-
tensive attention over the last few decades. One of this type of problems is to find the optimal
dividend pay-out scheme, i.e. choosing the times and amounts of dividend payments to max-
imize the objective function - the expected total discounted dividend pay-outs until the time
of ruin.

In the area of non-life insurance, a well established model for the cash reserve is the
Cramér-Lundberg model (also called the compound Poisson model or the classical risk model),
which is based on Poisson claim-arrivals and linear premium income. Embrechts and Schmidli
(1994) claimed that “many of the ‘rules of thumb’ used in practice can be traced back
to the classical Cramér-Lundberg model”. However, starting from the middle of 1990’s,
a large number of papers dealing with optimization problems for insurance companies, use
the diffusion process - a limiting process of the Cramér-Lundberg model, to model the reserve
in the absence of the dividends, e.g. Jeanblanc-Picque and Shiryaev (1995), Cadenillas et al.
(2006) and Paulsen (2007). Diffusion process modeling of the reserve process allows the use
of optimal diffusion control techniques and is therefore more mathematically tractable. A
survey of optimal dividend control for diffusion processes can be found in Taksar (2000).
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There have been a few attempts to study the dividend optimization problem under the
Cramér-Lundberg model. Gerber (1969) considered the dividends optimization problem for a
classical Cramér-Lundberg model and proved that the corresponding optimal dividend strat-
egy is a band strategy. Azcue and Muler (2005) considered the Crámer-Lundberg model
with reinsurance and dividend payments and proved the optimal dividend payment pol-
icy maximizing the expected total discounted dividend pay-outs is also a band strategy.
Albrecher and Thonhauser (2008) studied the dividend optimization problem in the Crámer-
Lundberg setting including constant force of interest and pointed out that the optimal strat-
egy is also of band type. Kulenko and Schmidli (2008) found that the optimal dividend
strategy for the Crámer-Lundberg model with capital injections is a barrier strategy. For
applications of stochastic control in insurance, please refer to Schmidli (2008) and references
therein. A list of literature on dividend optimization problems under the Cramér-Lundberg
model can be found in Albrecher and Thonhauser (2009). For a review of dividend strategies
in the actuarial literature, see Avanzi (2009).

There has been extensive work dedicated to the generalization of the classical risk model to
suit more realistic situations. One way of generalization is to allow the company to refinance
when the company is in deficit and the deficit is not too large. The idea was developed by
Borch (1969), where he proposed that ruin (negative reserve) does not mean the end of game
but only the necessity of raising additional money. He argued that “insurance companies get
into difficulties fairly regularly and rescue operations are considered in the insurance world,
if not daily, at least annually” and that it will be a good investment to rescue a company
when the situation is not too serious, and concluded that a company should be rescued if the
benefits exceed the cost of the new financing required, e.g. when the deficit is not too large.
Since then the “absolute ruin model” has been developed, where the company is allowed to
borrow money to settle the claims if the reserve is negative but still above the critical level so
that it can continue its business. The company will need to pay interest (debit interest) on the
loan and pay back debt interest continuously from the received premiums. The critical level
is the value of reserve below which the premiums received are insufficient to cover interest
payments on the debt. Absolute ruin occurs when the reserve reaches or drops below the
critical level for the first time.

The absolute ruin problem has received considerable attention. Gerber (1971) studied the
absolute ruin probability in the compound Poisson model. Embrechts and Schmidli (1994)
considered the absolute ruin probability when the reserve process is a piecewise-deterministic
Markov process. Dickson and Eǵıdio dos Reis (1997) used simulation to study the Cramér-
Lundberg model with absolute ruin. Cai et al. (2006) studied an Ornstein-Uhlenbeck type
model with credit and debit interest. Cai (2007) discussed the Gerber-Shiu function in the
classical risk model with absolute ruin. Gerber and Yang (2007) investigated the absolute
ruin probability based on the classical risk model perturbed by diffusion with investment.
Zhu and Yang (2008) studied the asymptotic behavior of the absolute ruin probability in the
Cramér-Lundberg model with credit and debit interest. Some other related references are
Yuen et al. (2008) and Wang and Yin (2009).

In this paper, we consider the dividend optimization under the the compound Poisson
model with credit interest for positive reserve, and debit interest for negative reserve. The
paper is organized as follows. Section 2 presents the model and formulates the dividend
optimization problem. In section 3, we derive some basic and important properties of the value
function, and characterize the value function as the unique nonnegative and nondecreasing
viscosity super-solution of the associated Hamilton-Jacobi-Bellman equation that satisfies a
linear growth condition and a boundary condition. In section 4, we prove the existence of
the optimal dividend strategy and identify the optimal dividend payout scheme as a band
strategy. It is shown that the optimal strategy is to pay no dividends when the reserve is
negative. A conclusion is provided in section 5.
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2 The model and the optimization problem

Consider a continuous time model for the surplus of an insurance company where claims arrive
according to a Poisson process with intensity rate λ and premiums are collected continuously
at the rate p. The amount of each claim is independent of its arrival time, and is also
independent of any other claims. Let Si denote the arrival epoch of the ith claim and Ui
its size. Let N(t) = ♯{i : Si ≤ t}. Then N(t) is the number of claims up to time t
and follows a Poisson process with rate λ. The sequence {Ui} is assumed to be identically
and independently distributed with distribution function F (·) and independent of {N(t)}.
Moreover, the insurance company earns credit interest under a constant force r (r > 0) when
the surplus is positive, and when the surplus drops below 0, the insurer could borrow money
with the amount equal to the deficit under force of debit interest α > r. In the mean time, the
insurer will repay the debts and the debt interest continuously from the premium incomes.
This leads to the following dynamics for the risk reserve process {Xt}t≥0 in the absence of
dividend payments:

dXt = (p + rXt−I{Xt− ≥ 0}+ αXt−I{Xt− < 0})dt− dYt,

where Xt represents the surplus at time t and Yt =
∑N(t)

i=1 Ui is the aggregate claim up to
time t.

Now suppose the company pays dividends to its shareholders with the accumulative

amount of dividends paid up to time t being denoted by Lt. Let R
L
t denote the controlled

reserve at time t. Then

dR
L
t = (p+ rR

L
t−I{R

L
t− ≥ 0}+ αR

L
t−I{R

L
t− < 0})dt− d





N(t)
∑

i=1

Ui



− dLt. (2.1)

The company controls dynamically the dividend pay-outs: the times and the amounts of
dividends to be paid out. A control strategy is described by a dividend distribution process
L = {Lt}t≥0.

Notice from the above dynamics that the premium incomes will no longer be able to cover
the debts when the surplus is less than or equal to − p

α
. That is, the surplus process will not

be able to return to a positive amount whenever the process hits − p
α
or any level below that.

We call − p
α

the critical value and define the time of ruin as TL = inf{t ≥ 0 : R
L
t ≤ − p

α
}.

The time of ruin defined above is also called the time of absolute ruin in the sense that the
surplus will no longer be able to return to a positive level.

All our random quantities are defined on the complete probability space (Ω,F ,P). Let
N denote the class of null sets in Ω and define Ft = σ(X0, Ys, 0 ≤ s ≤ t)

∨

N . Throughout
the paper, we base our study on the filtered probability space (Ω,F , {Ft}t≥0,P).

A control strategy is admissible if the process {Lt}t≥0 with L0 = 0, is predictable, nonde-
creasing, left continuous with right limits (cáglád) and satisfies the requirement that paying
dividends would not cause ruin immediately. We use Π to denote the set of all admissible
strategies.

Define Ex[ · ] = E[ · |R0 = x]. Let δ be the force of discount with δ > r. Given the initial
reserve x, the performance of a dividend strategy L is measured by the expectation of the
cumulative discounted dividends until ruin, i.e.

VL(x) = Ex

[

∫ TL

0
e−δsdLs

]

. (2.2)

The integral here is interpreted path-wise in a Lebesgue-Stieltjes sense. The function VL(x)
is called the return function. Obviously, VL(x) = 0 for x ≤ − p

α
.
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The objective of the company is to find an optimal dividend payout scheme L in the set
of admissible strategies Π such that the expectation of total discounted dividend pay-outs
until the time of ruin is maximized.

Define the value function (also called the optimal return function) by V (x) = supL∈Π VL(x).
If there exists a control strategy L∗ such that V (x) = VL∗(x), then L∗ is called the optimal
dividend distribution process (the optimal dividend strategy).

It can be seen that TL is a stopping time. In the paper, we will consider the stopped

process RLt = R
L
t I{t < TL} − p

α
I{t ≥ TL}.

To simplify the notation we will omit the superscripts L in TL and RL.
Since the reserve process in the absence of the control variable is a Markov process, the

problem here is the optimization problem for a controlled Markov process. As the cumulative
dividend process L may not be continuous with respect to time, the optimization problem
is a singular control problem. In the context of stochastic control theory, the optimization
problem can be associated with a Hamilton-Jacobi-Bellman (HJB) equation derived by us-
ing the Dynamic Programming Principle. In this case, the HJB equation is a first-order
integro-differential equation. However, the differentiability of the value function is a ques-
tion. Actually, even under a specifically predetermined dividend strategy, the differentiability
of the corresponding return function can not be guaranteed. It was shown in Zhu and Yang
(2009) that the differentiability of the return function under a barrier or threshold dividend
strategy depends on the level of smoothness of the claim size distributions. In this paper, we
show that the value function is absolutely continuous but may not be differentiable. So we
resort to the concept of viscosity solutions.

Based on techniques of probability and Stochastic Control theory, we show that the
value function is a viscosity solution of the associated HJB equation and it is the unique
solution satisfying certain regularity and boundary conditions. We also prove that the optimal
dividend payment strategy exists and is of a band type, an and that it is optimal to pay no
dividends at all when the surplus is negative. Proofs of some lemmas and theorems are
relegated to the appendix.

3 The value function

In this section, we derive some analytical properties of the value function V (x). We show
that V (x) is not necessarily differentiable everywhere, but almost everywhere, and that the
value function is the viscosity solution to the associated HJB equation but not necessarily
the classical solution. It will also be proven that the value function is the unique solution
satisfying certain conditions.

Theorem 3.1 If r < δ, V (x) ≥ x+ p
α
for x ∈ R, and V (x) ≤ δx+p

δ−r + p
α
for x ≥ 0.

Proof. To prove the lower bound, consider a dividend payout scheme such that the part of
initial reserve in excess of the critical value − p

α
is paid out immediately as dividends. Then

ruin occurs immediately. In this case, the return function given the initial reserve x, is x+ p
α
.

So the optimal return function V (x) is always greater than or equal to x+ p
α
.

From (2.1) we can see that given that the initial reserve is nonnegative, the inequality
dRt ≤ (p + rRt−)dt holds. As a result, given R0 = x we have Rt ≤

1
r

(

ert(p+ rx)− p
)

for
x ≥ 0. Hence, by integration by parts, Lt ≤ Rt +

p
α
for any L ∈ Π and the definition (2.2)

we can obtain VL(x) = Ex

[

∫ T

0 e−δsdLs

]

≤ Ex
[∫∞

0 δLse
−δsds

]

= δx+p
δ−r + p

α
for x ≥ 0. �

Define

t0(x, y) =











1
r
log( ry+p

rx+p) y > x ≥ 0
1
r
log( ry+p

p
) + 1

α
log( p

αx+p) y > 0 > x > − p
α

1
α
log(αy+p

αx+p) 0 ≥ y > x > − p
α

. (3.3)
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The quantity t0(x, y) is equivalent to the time it takes for the surplus process with initial
value x to reach y (y > x) for the first time given that there are no claims and no dividends
paid out.

Theorem 3.2 The value function V satisfies the following inequalities

y − x ≤ V (y)− V (x) ≤ V (x)



















(

( ry+p
rx+p)

λ+δ
r − 1

)

y > x ≥ 0
(

( ry+p
p

)
λ+δ
r ( p

αx+p)
λ+δ
α − 1

)

y ≥ 0 > x > − p
α

(

(αy+p
αx+p)

λ+δ
α − 1

)

0 > y > x > − p
α

.

Proof. (i) We first prove the lower bound. For any ǫ > 0, let Lǫ(x) denote an admissible
ǫ-optimal strategy given the initial reserve x, i.e. VLǫ(x)(x) ≥ V (x)− ǫ.

For y > x > − p
α
, given the initial reserve R0 = y we use L(y, x) to denote a strategy that

pays an amount y − x as dividends immediately and then pays dividends according to the
strategy Lǫ(x). Then given the initial reserve R0 = y > x, under the strategy L(y, x) we have
VL(y,x)(y) = y− x+ VLǫ(x)(x). So for any ǫ > 0, V (y) ≥ y− x+ VLǫ(x)(x) ≥ y− x+ V (x)− ǫ.
Consequently, V (y)− V (x) ≥ y − x.

(ii) Now, we proceed to prove the upper bounds. For y > x > − p
α
, for the surplus process

with initial reserve x, let τ(x, y) denote the time it will take for the surplus process to reach
up to y for the first time, and define the strategy L̂(x, y) as follows:

• pay out no dividends until the reserve reaches y,

• then at the moment that the reserve reaches y for the first time (τ(x, y)), treat the
reserve process as a new process that starts at this moment with initial capital y, and
apply the strategy Lǫ(y), i.e. θτ(x,y)L̂(x, y) = Lǫ(y).

Note that starting from the initial value x > − p
α
, ruin will not occur before the arrival of

the first claim (S1), and the reserve will reach y (y > x) at time t0(x, y) if no claims arrive
before time t0(x, y), that is τ(x, y) = t0(x, y) on {S1 > t0(x, y)}. Then for y > x > − p

α
and

for ǫ > 0, by noticing that VLǫ(y)(y) ≥ V (y)− ǫ we have

V (x) ≥ V
L̂(x,y)(x) = Ex[e

−δτ(x,y)VLǫ(y)(y); τ(x, y) ≤ T ]

≥ Ex[e
−δτ(x,y)VLǫ(y)(y);S1 > t0(x, y)] ≥ e−(λ+δ)t0(x,y)(V (y)− ǫ).

Hence, V (y) − V (x) ≤ V (x)(e(λ+δ)t0(x,y) − 1). This combined with (3.3) gives the upper
bounds. �

Theorem 3.3 The value function V (x) is nonnegative, nondecreasing, continuous on [− p
α
,∞)

and locally Lipschitz continuous on (− p
α
,∞). Therefore, V ′(x) exists almost everywhere on

(− p
α
,∞). Furthermore, V ′(x) ≥ 1, if V ′(x) exists.

Proof. All the stated properties of V (x) are direct results of Theorem 3.1 and Theorem
3.2 except for the right continuity of V (x) at x = − p

α
.

To prove the right continuity, it is sufficient to show that lim supx↓− p
α
V (x) = 0. If this is

not true, then we can find a sequence {xn} with xn ↓ − p
α
such that limn→∞ V (xn) > 0, that

is, there exists an ǫ0 > 0 and N such that V (xn) > ǫ0 for all n ≥ N . Let L(x,
ǫ0
2
) denote a ǫ0

2 -
optimal strategy for the reserve process with initial reserve x, that is, V

L(x,
ǫ0
2 )(x) ≥ V (x)− ǫ0

2 .

Then, we have

V
L(xn,

ǫ0
2 )(xn) ≥ V (xn)−

ǫ0
2
>
ǫ0
2

for n ≥ N. (3.4)
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Consider a stochastic process {R′
t} with dynamics dR′

t = (p+ rR′
tI{R

′
t ≥ 0}+αR′

tI{R
′
t <

0})dt. Given R′
0 = x, integration yields

R′
t ≤











1
r

(

ert(p+ rx)− p
)

x ≥ 0
1
α

(

eαt(p + αx)− p
)

x < 0, t ≤ t0(x, 0)
1
r

(

er(t−t0(x,0))p− p
)

x < 0, t > t0(x, 0)

. (3.5)

Note that Rt ≤ R′
t given that R0 = R′

0 > − p
α
. Using the fact that Lt ≤ Rt +

p
α
≤ R′

t +
p
α

and (3.5), by integration by parts it follows from (2.2) that for x ∈ (− p
α
, 0)

VL(x) ≤ Ex[

∫ ∞

0
δLse

−δsds]

≤ δ

∫ t0(x,0)

0

1

α
(eαs(p+ αx)− p) e−δsds

+δ

∫ ∞

t0(x,0)

1

r

(

er(s−t0(x,0))p− p
)

e−δsds+
p

α
. (3.6)

Notice that the expression on the right-hand side of (3.6) has limit 0 as x ↓ − p
α
and does not

depend on L. So we can find an N ′ such that for all n ≥ N ′, VL(xn) <
ǫ0
4 holds for all admis-

sible strategy L. Therefore, setting L to be L(xn,
ǫ0
2
) gives V

L
(xn,

ǫ0
2 )(xn) <

ǫ0
4 for all n ≥ N ′,

which is a contradiction to (3.4). Hence, the value function V (x) is right continuous at − p
α
. �

Applying standard arguments from stochastic control theory (e.g. Fleming and Soner
(1993)) or an approach similar to that in Azcue and Muler (2005), we can show that the
optimal value function fulfils the Dynamic Programming Principle:

V (x) = sup
L∈Π

Ex

[
∫ τ∧T

0
e−δsdLs + e−δ(τ∧T )V (Rτ∧T )

]

for any stopping time τ ,

and the associated Hamilton-Jacobi-Bellman (HJB) equation is

max{1− V ′(x),LV (x)} = 0, (3.7)

where L is a generator defined by

LV (x) = (p+ rxI{x ≥ 0}+ αxI{x < 0}) V ′(x)

−(λ+ δ)V (x) + λ

∫ x+ p
α

0
V (x− u)dF (u). (3.8)

Although from the last section we know that V ′(x) exists almost everywhere, we have
no guarantee that V (x) is differentiable for all x > − p

α
. Therefore, we can not expect

V (x) to be a classical solution to the HJB equation. In the following we will show that the
value function V (x) is a viscosity solution to the HJB equation (3.7), and that V (x) is the
unique nonnegative, nondecreasing and locally Lipschitz continuous viscosity solution of (3.7)
satisfying a linear growth condition and the boundary condition V (− p

α
) = 0.

Definition 3.1 (i) A continuous function u : [− p
α
,∞) → R is said to be a viscosity sub-

solution of (3.7) on (− p
α
,∞) if for any x ∈ (− p

α
,∞) each continuously differentiable function

φ : (− p
α
,∞) → R with φ(x) = u(x) such that u− φ reaches the maximum at x satisfies

max{1− φ′(x),Lφ(x)} ≥ 0.

(ii) A continuous function u : [− p
α
,∞) → R is said to be a viscosity super-solution of (3.7) on

6



(− p
α
,∞) if for any x ∈ (− p

α
,∞) each continuously differentiable function φ : (− p

α
,∞) → R

with φ(x) = u(x) such that u− φ reaches the minimum at x satisfies

max{1− φ′(x),Lφ(x)} ≤ 0.

(iii) A continuous function u : [− p
α
,∞) → R is a viscosity solution of (3.7) on (− p

α
,∞) if it

is both a viscosity sub-solution and a viscosity super-solution on (− p
α
,∞).

For any continuously differentiable function φ and any continuous function v, define an

operator Lv,φ(x) = (p+ rxI{x ≥ 0}+ αxI{x < 0}) φ′(x)−(λ+δ)v(x)+λ
∫ x+ p

α
0 v(x−u)dF (u).

As has been shown in (Sayah (1991) and Benth et al. (2001)), the definition of viscosity sub
and super solutions has the following alternative version.

Definition 3.2 (i) A continuous function u : [− p
α
,∞) → R is said to be a viscosity sub-

solution of (3.7) on (− p
α
,∞) if for any x ∈ (− p

α
,∞) each continuously differentiable function

φ : (− p
α
,∞) → R with φ(x) = u(x) such that u− φ reaches the maximum at x satisfies

max{1− φ′(x),Lu,φ(x)} ≥ 0.

(ii) A continuous function u : [− p
α
,∞) → R is said to be a viscosity super-solution of (3.7)

on (− p
α
,∞) if for any (− p

α
,∞) each continuously differentiable function φ : (− p

α
,∞) → R

with φ(x) = u(x) such that u− φ reaches the minimum at x satisfies

max{1− φ′(x),Lu,φ(x)} ≤ 0.

The following remarks are standard in the context of viscosity theory (eg Capuzzo-Dolcetta and Lions
(1990) and Crandall et al. (1984)), which will be useful in the proof of our main results.

Remark 3.1 (i) For any viscosity sub-solution u on (− p
α
,∞), there exists a continuously

differentiable function φ : (− p
α
,∞) → R such that u− φ reaches a maximum at x > − p

α
with

φ′(x) = q if and only if

lim inf
y↑x

u(y)− u(x)

y − x
≥ q ≥ lim sup

y↓x

u(y)− u(x)

y − x
.

(ii) For any viscosity super-solution u on (− p
α
,∞), there exists a continuously differentiable

function φ : (− p
α
,∞) → R such that u − φ reaches a minimum at x > − p

α
with φ′(x) = q if

and only if

lim inf
y↓x

u(y)− u(x)

y − x
≥ q ≥ lim sup

y↑x

u(y)− u(x)

y − x
.

For any t ≥ 0, define a functional Mt by

Mt(φ) =
∑

s≤t,Rs− 6=Rs

(φ(Rs)− φ(Rs−)) e
−δs

−λ

∫ t

0
e−δsds

∫ ∞

0
(φ(Rs− − y)− φ(Rs−)) dF (y). (3.9)

Then {Mt(φ)} is a local martingale. If φ(·) is bounded by a linear function, then Mt(φ) is
bounded below and therefore a super-martingale by applying Fatou’s Lemma.

Consider any nonnegative and nondecreasing function φ and any stopping time τ such
that φ′(Rt) exists for all t ≤ τ and

φ′(Rt) ≥ 1 for all t ≤ τ . (3.10)

7



Let {Lct} denote the continuous part of {Lt}. It can be seen that

φ(Rτ )e
−δτ − φ(R0) =

∫ τ

0
d
(

φ(Rt)e
−δt
)

=

∫ τ

0
φ′(Rt)e

−δtdRt − δ

∫ τ

0
φ(Rt)e

−δtdt

=

∫ τ

0
φ′(Rt)e

−δt (p+ rRtI{Rt ≥ 0}+ αRtI{Rt < 0}) dt

−

∫ τ

0
φ′(Rt)e

−δtdLct +
∑

t≤τ,Rt− 6=Rt

(φ(Rt)− φ(Rt−))e
−δt

+
∑

t<τ,Rt 6=Rt+

(φ(Rt+)− φ(Rt))e
−δt − δ

∫ τ

0
φ(Rt)e

−δtdt, (3.11)

where the last equality follows from the fact that Lt is left-continuous and nondecreasing.
Since Rt 6= Rt+ only occurs at the jumps of Lt and Lt is left-continuous in t, then Rt+−Rt =
−(Lt+ − Lt) and

∑

t<τ,Rt 6=Rt+

(φ(Rt+)− φ(Rt))e
−δt = −

∑

t<τ,Rt 6=Rt+

e−δt
∫ Lt+−Lt

0
φ′(Rt − u)du. (3.12)

Then by (3.12) and (3.10) we have

−

∫ τ

0
φ′(Rt)e

−δtdLct +
∑

t<τ,Rt 6=Rt+

(φ(Rt+)− φ(Rt))e
−δt

≤ −

∫ τ

0
e−δtdLct −

∑

t<τ,Rt 6=Rt+

e−δt
(∫ Lt+−Lt

0
du

)

= −

∫ τ

0
e−δtdLt. (3.13)

Using (3.8), (3.9), (3.11) and (3.13) and noting that φ(x) ≥ 0 for x ≤ − p
α
, we have

φ(Rτ )e
−δτ − φ(R0)

≤

∫ τ

0
φ′(Rt−)e

−δt (p+ rRt−I{Rt− ≥ 0}+ αRt−I{Rt− < 0}) dt

−

∫ τ

0
e−δtdLt +Mτ (φ) + λ

∫ τ

0
e−δtdt

∫ ∞

0
(φ(Rt− − u)− φ(Rt−)) dF (u)

−δ

∫ τ

0
φ(Rt)e

−δtdt

=

∫ τ

0
Lφ(Rt−)e

−δtdt−

∫ τ

0
e−δtdLt +Mτ (φ). (3.14)

In the next theorem, we show that the value function V is a viscosity solution of the HJB
equation (3.7).

Theorem 3.4 (i) V (x) is a viscosity solution of (3.7) on (− p
α
,+∞).

(ii) Define DV (x, hn) =
V (x+hn)−V (x)

hn
. If for some {hn} with hn > 0 for all n or hn < 0 for

all n and limn→∞ hn = 0, limn→∞DV (x, hn) exists, then

max
{

1− lim
n→∞

DV (x, hn), lim
n→∞

DV (x, hn)(p+ rxI{x ≥ 0}+ αxI{x < 0})

−(λ+ δ)V (x) +

∫ x+ p
α

0
V (x− y)dF (y)

}

≤ 0. (3.15)
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Proof. We employ a standard technique in the controlled Markov process theory, which has
also been used in Benth et al. (2001), Albrecher and Thonhauser (2008) and Azcue and Muler
(2005).

First, we show that V (x) is a viscosity super-solution of the HJB equation (3.7) on
(− p

α
,+∞). For any fixed x ∈ (− p

α
,∞). Let φ be a continuously differentiable function with

φ(x) = V (x) and V − φ attaining a minimum at x. For any h > 0, define

a(x, l, h) =

{

xerh + (p − l)
∫ h

0 e
r(h−s)ds, x > 0 and l ≥ 0 or x = 0 and 0 ≤ l ≤ p,

xeαh + (p− l)
∫ h

0 e
α(h−s)ds, − p

α
< x < 0 and l ≥ 0 or x = 0 and l > p.

For any l ≥ 0, choose an h small enough such that a(x, l, h) ∈ (− p
α
, 0) ∪ (0,∞). Consider

a dividend strategy L′ that the insurer pays out dividends continuously at rate l until time
S1∧h. Then under the strategy L′, ruin will not occur before the earlier of the arrival time of
the first claim S1 and time h. Notice that given the initial reserve R0 = x, under the strategy
L′ we have Rt = a(x, l, t) for t < S1 ∧ h and RS1 = (a(x, l, S1) − U1) ∨ (− p

α
) on {S1 ≤ h}.

By the Dynamic Programme Principle, distinguishing two cases S1 ≥ h and S1 < h and then
conditioning on S1 we have

V (x) = sup
L∈Π

Ex

[∫ S1∧h

0
e−δsdLs + e−δ(S1∧h)V (RS1∧h)

]

≥ e−λh
(
∫ h

0
e−δslds+ e−δhV (a(x, l, h))

)

+

∫ h

0
λe−λtdt

{

∫ t

0
le−δsds+ e−δt

∫ a(x,l,t)+ p
α

0
V (a(x, l, t) − u) dF (u)

}

.(3.16)

By subtracting V (x) from the last inequality and noting that V (x) = φ(x) and V (a(x, l, h)) ≥
φ(a(x, l, h)), we obtain

0 ≥
l

δ
e−λh(1− e−δh) +

∫ h

0
λe−λtdt

∫ t

0
le−δsds

+e−(λ+δ)h [φ (a(x, l, h)) − φ(x)] + (e−(λ+δ)h − 1)V (x)

+

∫ h

0
λe−(λ+δ)tdt

∫ a(x,l,t)+ p
α

0
V (a(x, l, t) − u) dF (u). (3.17)

Dividing by h > 0 and then letting h ↓ 0 yields

0 ≥ l(1− φ′(x))− (λ+ δ)V (x) + λ

∫ x+ p
α

0
V (x− u)dF (u)

+ (rxI{x > 0} ∪ {x = 0, l ≤ p}+ αxI{x < 0} ∪ {x = 0, l > p}+ p)φ′(x).

Letting l = 0 shows (p + rxI{x ≥ 0} + αxI{x < 0})φ′(x) − (λ + δ)V (x) + λ
∫ x+ p

α
0 V (x −

u)dF (u) ≤ 0, and letting l be large enough indicates φ′(x) ≥ 1.
Next, we will show that V (x) is a viscosity sub-solution of (3.7) on (− p

α
,+∞). To this

end, we employ the proof by contradiction. Assume that V is not a viscosity sub-solution of
(3.7) at some point x. Then we can find a constant η > 0 and a continuously differentiable
function ψ0 with ψ0(x) = V (x), ψ0(y) ≥ V (y) for all y and

max{1− ψ′
0(x),

1

λ
Lψ0(x)} < −2η. (3.18)

Define

ψ1(y) = ψ0(y) + η

(

x− y

x+ 2 p
α

)2

. (3.19)
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Then ψ1(y) is continuously differentiable with ψ1(x) = ψ0(x) = V (x) and ψ′
1(x) = ψ′

0(x), and

by (3.8) and (3.19) we have 1
λ
Lψ1(x) =

1
λ
Lψ0(x) +

∫ x+ p
α

0 η
(

u
x+2 p

α

)2
dF (u) < −2η + η = −η,

which along with the fact that ψ1 is nonnegative and continuously differentiable, and Lψ1(x)
is continuous, indicates that there exists an h > 0 such that

max{1− ψ′
1(y),

1

λ
Lψ1(y)} < −

η

2
for y ∈ [x− 2h, x+ 2h]. (3.20)

Let k be an continuously differentiable and nonnegative function with support included
in (−1, 1) such that

∫ 1
−1 k(s)ds = 1. Define a function vn(y) : R → [0,∞) as the convolution

vn(y) =

∫ 1

−1

(

V (y −
s

n
) +

ηh2

2(x+ 2 p
α
)2

)

k(s)ds,

and another function v : R → [0,∞) by v(y) = V (y) + ηh2

2(x+2 p
α
)2
. Since V (y − s

n
) + ηh2

2(x+2 p
α
)2

is continuous with respect to (y, s) on [− p
α
, x + h;−1, 1], then we conclude that vn(y) is

continuous on [− p
α
, x + h]. Moreover, vn(y) is a monotone sequence and by the dominated

convergence theorem, it converges to v(y). Therefore, it follows by Dini’s theorem that
vn(y) → v(y) uniformly on [− p

α
, x + h]. Hence, there exists an n0 such that for all y ∈

[− p
α
, x+ h],

V (y) +
ηh2

(x+ 2 p
α
)2

≥ vn0(y) ≥ V (y) +
ηh2

4(x+ 2 p
α
)2
. (3.21)

Define fn0(y, s) =
(

V (y − s
n0
) + ηh2

2(x+2 p
α
)2

)

k(s). It can be seen that fn0(y, s) is continuous

on [− p
α
, x+h;−1, 1]. Let D = {y : V (y) is differentiable} and n0(y−D) = {n0(y−s) : s ∈ D}.

As V is differentiable almost everywhere, the complement of D is a null set. Noting that
∂
∂y
fn0(y, s) =

∂
∂y
V (y− s

n0
)k(s) on [− p

α
, x+h]×n0(y−D) and that V ′(y), if exists, is greater

than or equal to 1, it follows that for y ∈ [− p
α
, x+ h],

v′n0
(y) =

∫

−1≤s≤1, s∈n0(y−D)

∂

∂y
fn0(y, s)ds ≥

∫ 1

−1
k(s)ds = 1. (3.22)

Construct a continuously differentiable function ω : R → [0, 1] such that ω(y) = 1 for y ∈
[x−h, x+h], ω(y) = 0 for y ∈ (−∞, x−2h)∪(x+2h,∞), and ω′(y) ≥ 0 for y ∈ [x−2h, x−h].
Consider a function ψ defined by

ψ(y) = ω(y)ψ1(y) + (1− ω(y)) vn0(y). (3.23)

Obviously, ψ(x) = ψ1(x) = V (x). Noting that ψ0 ≥ V , it follows by (3.19), (3.20), (3.21),
(3.22) and (3.23) that

ψ′(y) ≥ ω(y)(1 +
η

2
) + ω′(y)(ψ1(y)− vn0(y)) + (1− ω(y))

≥ 1 + ω′(y)
η

(x+ 2 p
α
)2
((x− y)2 − h2) ≥ 1 for y ∈ [− p

α
, x− h]. (3.24)

The last inequality follows by noticing ω′(y) ≥ 0 and (x−y)2−h2 ≥ 0 when − p
α
≤ y ≤ x−h.

By (3.19) and (3.21), using the fact that that V ≤ ψ0 we obtain that for − p
α
≤ y−u ≤ x+h

and h ∈ (0, p
2α ), vn0(y − u)− ψ1(y − u) ≤ η h2

(x+2 p
α)

2 − η
(

x−y+u
x+2 p

α

)2
< η

4 , which along with the

definitions for L in (3.8) and ψ in (3.23), and the fact that ψ = ψ1 on [x− h, x+ h] indicates
that for y ∈ [x− h, x+ h],

Lψ(y) = Lψ1(y) + λ

∫ y+ p
α

y−x+h
(1− ω(y − u)) (vn0(y − u)− ψ1(y − u)) dF (u)

< Lψ1(y) +
λη

4
. (3.25)
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Write A = 1 + δ
λ
. For any positive

ǫ ≤ min{
ηh2

12(x + 2 p
α
)2
,

η

8(A − 1)
}, (3.26)

it follows by (3.20) and (3.25) that

1

λ
Lψ(y) ≤ −

η

4
≤ −2(A− 1)ǫ for y ∈ [x− h, x+ h]. (3.27)

From the definitions (3.23) and (3.19) for ψ and ψ1, respectively, by noting 0 ≤ w(y) ≤ 1
and using (3.21) it follows that for any y satisfying |y − x| ≥ h, we have

ψ(y) ≥ ω(y)

(

ψ0(y) + η

(

x− y

x+ 2 p
α

)2
)

+ (1− ω(y))

(

V (y) +
ηh2

4(x+ 2 p
α
)2

)

≥ V (y) + 3ǫ, (3.28)

where the last inequality follows by the fact ψ0 ≥ V and (3.26).
From the definition (3.23) for the function ψ, and the fact that all the functions ψ, ω and

vn0 are continuously differentiable, we can see that Lψ is continuous. Therefore, there exist
a constant K > 0 such that

1

λ
Lψ(y) ≤ K for y ∈ [− p

α
, x+ h]. (3.29)

For any fixed σ with

0 < σ < min

{

ǫ

2λK
,

1

4λ(A− 1)
,
1

α
log

(

x+ p
α
− h

2

x+ p
α
− h

)}

, (3.30)

define τ = inf{t > 0 : Rt ≥ x + h}, τ = inf{t > 0 : Rt ≤ x − h}, and τ∗ = τ ∧ (τ + σ). By
(3.28) we have

V (Rτ∗) ≤ ψ(Rτ∗)− 3ǫ on {ω : |Rτ∗ − x| ≥ h}. (3.31)

Note that Rτ̄ = x + h, as the surplus process has only downward jumps. Then given the
initial reserve R0 = x, we have on the set {ω : |Rτ∗ − x| < h},

x+ h > Rτ∗ = Rτ+σ > x− h ≥ Rτ = Rτ∧τ . (3.32)

Then it follows by (3.30), (3.32) and noticing that Rt+σ ≤ Rte
ασ + p

α
(eασ − 1) from the

dynamics (2.1), that given R0 = x,

Rτ∗ = Rτ+σ ≤ Rτe
ασ +

p

α
(eασ − 1) ≤ (x− h+

p

α
)eασ −

p

α
< x−

h

2
on {ω : |Rτ∗ − x| < h},

which implies that given R0 = x, Rτ∗−x < −h
2 on {ω : |Rτ∗−x| < h}. Hence, (x−Rτ∗)

2 > h2

4
on the set {ω : |Rτ∗ − x| < h}. Using this and noticing that ψ0 ≥ V and that from (3.26) we
have η

(x+2 p
α
)2

≥ 12ǫ
h2

, by the definitions (3.19) and (3.23), we can show that given the initial

value R0 = x, ψ(Rτ∗) = ψ0(Rτ∗) + η
(

x−Rτ∗

x+2 p
α

)2
≥ V (Rτ∗) + 3ǫ on {ω : |Rτ∗ − x| < h}. This

along with (3.31) shows

V (Rτ∗) ≤ ψ(Rτ∗)− 3ǫ given R0 = x. (3.33)

Note that from (3.24) we have ψ′(Rt) ≥ 1 for Rt ∈ [− p
α
, x− h] and that from (3.20) and

(3.23) we have ψ′(Rt) = ψ′
1(Rt) ≥ 1 for [x−h, x+h]. Then by noticing that Rt ∈ [− p

α
, x+h]
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for t ∈ [0, τ∗], we conclude that ψ′(Rt) ≥ 1 for t ∈ [0, τ∗]. Then by setting φ and τ in (3.14)
to be ψ and τ∗, respectively, we have

ψ(Rτ∗)e
−δτ∗ − ψ(R0) ≤

∫ τ∗

0
Lψ(Rt−)e

−δtdt−

∫ τ∗

0
e−δtdLt +Mτ∗(ψ). (3.34)

Note that given R0 = x, we have Rt− ∈ [x−h, x+h] for t ∈ [0, τ̄ ∧τ ] and Rt− ∈ [− p
α
, x+h]

for t ∈ [τ̄ ∧ τ , τ∗]. From (3.27) and (3.29), it follows that

∫ τ∗

0
Lψ(Rt−)e

−δtdt =

∫ τ∧τ

0
Lψ(Rt−)e

−δtdt+

∫ τ∗

τ∧τ
Lψ(Rt−)e

−δtdt

≤ −(A− 1)2ǫλ

∫ τ∧τ

0
e−δtdt+ λK

∫ τ∗

τ∧τ
e−δtdt

= −(A− 1)2ǫλ

∫ τ∗

0
e−δtdt+ λ((A− 1)2ǫ+K)

∫ τ∗

τ∧τ
e−δtdt

≤ −(A− 1)2ǫλ

∫ τ∗

0
e−δtdt+ λ((A− 1)2ǫ+K)σ

< −(A− 1)2ǫλ

∫ τ∗

0
e−δtdt+ ǫ, (3.35)

where the second last inequality follows by noticing τ∗ − τ̄ ∧ τ ≤ σ and the last inequality
follows by (3.30).

Given the initial reserve R0 = x, it follows from (3.33), (3.34) and (3.35) that

V (Rτ∗)e
−δτ∗ < ψ(Rτ∗)e

−δτ∗ − 2ǫe−δτ
∗

= (ψ(Rτ∗)e
−δτ∗ − ψ(x)) + (ψ(x) − 2ǫe−δτ

∗

)

≤ −(A− 1)2ǫλ

∫ τ∗

0
e−δtdt−

∫ τ∗

0
e−δsdLt +Mτ∗(ψ)

+(ψ(x) − 2ǫe−δτ
∗

) + ǫ. (3.36)

As
∫ τ∗

0 e−δsds = 1−e−δτ∗

δ
and A = 1 + δ

λ
, from (3.36) we obtain

V (Rτ∗)e
−δτ∗ +

∫ τ∗

0
e−δsdLt ≤ Mτ∗(ψ) + ψ(x)− ǫ. (3.37)

Noting that Mt(ψ) is a super-martingale with zero-expectation, we have E[Mτ∗(ψ)] ≤ 0.

As a result, taking conditional expectation on (3.37) yields V (x) = supL∈Π Ex[
∫ τ∗

0 e−δsdLt+
V (Rτ∗)e

−δτ∗ ] ≤ ψ(x)− ǫ, which contradicts the fact V (x) = ψ(x).
(ii) By Theorem 3.2, it follows that for any hn with limn→∞ hn = 0,

lim
n→∞

DV (x, hn) ≥ 1. (3.38)

Consider a sequence h′n with h′n ↓ 0 as n → ∞ such that limn→∞
V (a(x,l,h′n))−V (x)

h′n
exists.

Following the same lines as in the proof for (i), it can be shown that (3.17) also holds when h
and φ(·) there being replaced by h′n and V (·), respectively. Dividing both sides of the newly
obtained inequality by h′n and then letting n→ ∞ yields for l ≥ 0,

0 ≥ l(1− lim
n→∞

DV (x, a(x, l, h
′
n)− x))− (λ+ δ)V (x) + λ

∫ x+ p
α

0
V (x− u)dF (u) +

[

p+

(rI{x > 0} ∪ {x = 0, l ≤ p}+ αI{x < 0} ∪ {x = 0, l > p})x
]

lim
n→∞

DV (x, a(x, l, h
′
n)− x).
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By letting l = 0 we have

(p+ rxI{x ≥ 0}+ αx({x < 0}) lim
n→∞

DV (x, a(x, 0, h
′
n)− x)− (λ+ δ)V (x)

+λ

∫ x+ p
α

0
V (x− u)dF (u) ≤ 0. (3.39)

For any {hn} with hn > 0 such that limn→∞ hn = 0, and limn→∞DV (x, hn) exists, we can find
a subsequence {hnk

} ⊂ {a(x, l, h′n)−x}. Therefore, limn→∞DV (x, hn) = limk→∞DV (x, hnk
) =

limn→∞DV (x, a(x, 0, h
′
n)− x). It follows by (3.38) and (3.39) that

max
{

1− lim
n→∞

DV (x, hn), lim
n→∞

DV (x, hn)(p+ rxI{x ≥ 0}+ αxI{x < 0})

−(λ+ δ)V (x) +

∫ x+ p
α

0
V (x− y)dF (y)

}

≤ 0. (3.40)

For any sequence {hn} with hn < 0 such that limn→∞ hn = 0, and limn→∞DV (x, hn)
exists, by repeating the above argument by replacing all x there by x− c(x, l, h) (i.e., condi-
tioning on the initial reserve R0 = x− c(x, l, h)), where

c(x, l, h) =

{

x(1− e−rh) + (p− l)
∫ h

0 e
−rs)ds x > 0 and l ≥ 0 or x = 0 and 0 ≤ l ≤ p

x(1− e−αh) + (p − l)
∫ h

0 e
−αs)ds − p

α
< x < 0 and l ≥ 0 or x = 0 and l > p,

and noticing that a(x− c(x, l, h), l, h) = x, we can show that (3.40) is also true. �

Next we will show that the value function V (x) is the unique nonnegative, nondecreasing
and locally Lipschitz continuous viscosity solution of (3.7) satisfying a linear growth condition
and the boundary condition V (− p

α
) = 0. We start with the following comparison principle.

Lemma 3.5 Let u(x) and u(x) be a nonnegative viscosity super-solution and sub-solution,
respectively. Assume that for both u = u(x) and u(x), the function u is continuous on [− p

α
,∞)

and locally Lipschitz continuous on (− p
α
,∞), and satisfies u(− p

α
) = 0 and u(x) ≤ c1x + c2

for some constants c1 and c2 . Then u(x) ≤ u(x) for all x ≥ − p
α
.

From Theorem 3.1, Theorem 3.3 and Theorem 3.4, we know that the value function V (x)
is a nondecreasing and nonnegative viscosity solution of the HJB equation (3.7) that is locally
Lipschitz continuous on (− p

α
,∞), satisfies a linear growth condition, and fulfills the boundary

condition V (− p
α
) = 0. Consider any other viscosity solution W (x) of (3.7) that fulfils the

same conditions. Since V (x) is also a super-solution and and W (x) is also a sub-solution,
by Lemma 3.8 we conclude that V (x) ≥ W (x) for all x ≥ − p

α
. This leads to the following

theorem stating the uniqueness of the value function as a viscosity solution of (3.7).

Theorem 3.6 The value function V (x) is the unique nondecreasing and nonnegative vis-
cosity solution of the HJB equation (3.7) that

i) is locally Lipschitz on (− p
α
,∞),

ii) satisfies a linear growth condition, and
iii) fulfills the boundary condition V (− p

α
) = 0.

As an immediate result of Lemma 3.8, we arrive at the Verification Theorem as follows.

Theorem 3.7 For any strategy L ∈ Π, if VL is an locally Lipshcitz continuous viscosity
super-solution of HJB equation (3.7), then VL = V , i.e. L is an optimal dividend strategy.

Proof. Obviously, VL is nonnegative and nondecreasing and VL(−
p
α
) = 0. Since VL ≤ V ,

it is true that VL also satisfies the linear growth condition. Therefore, by Lemma 3.8 we know
that VL ≥ V . Consequently, VL = V . �
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Lemma 3.8 Let u(x) and u(x) be a viscosity super-solution and sub-solution of the HJB
equation (3.7) on [b0,∞), respectively. Assume that for both u = u(x) and u(x), the function
u is continuous on [b0,∞) and satisfies u(x) ≤ c1x + c2 for some constants c1 and c2. If
u(b0) ≤ u(b0), then u(x) ≤ u(x) for all x ≥ b0.

The proof is in Appendix.

Remark 3.2 By Lemma 3.8 it is obvious that for any given constant c, there is at most
one viscosity solution, u, of the equation (3.7) on [b0,∞) that satisfies the initial condition
u(b0) = c and the linear growth condition.

Lemma 3.9 Let Πx be the set of admissible strategies such that the controlled reserve Rt is
less than or equal to x for all t > 0. If for some x̄ > 0, u(x) is a nonnegative, nondecreasing
and locally Lipshcitz continuous super-solution of the HJB equation (3.7) on (− p

α
, x̄), then

u(x) ≥ supL∈Πx
VL(x) for all x ∈ [− p

α
, x).

Proof. i) We can prove this by showing that for any dividend strategy L ∈ Πx, VL(x) ≤
u(x) for x ∈ [− p

α
, x). For any continuous super-solution u of the HJB equation (3.7) on

(− p
α
, x), consider a function v(x) with v(x) = 0 for x < − p

α
, v(x) = u(x) for x ∈ [− p

α
, x)

and v(x) = u(x) for x ≥ x. Consider a sequence of nonnegative functions vn(x) =
∫∞
−∞ v(x−

y)nφ(ny)dy for x ∈ [− p
α
, x], where φ(x) is a nonnegative, even and continuously differentiable

function with its support included in (−1, 1) such that
∫ 1
−1 φ(x)ds = 1. It can be seen that

vn(x) is nonnegative and nondecreasing, and satisfies

vn(x) ≤ u(x), for x ∈ [−
p

α
, x]. (3.41)

Using the standard techniques in real analysis (eg Wheeden and Zygmund (1977)), we can
show that vn is continuously differentiable on [− p

α
, x],

vn(x) converges to u(x) uniformly on [− p
α
, x]; and (3.42)

v′n(x) converges to u
′(x) almost everywhere. (3.43)

Noting from Definition 3.1 (ii), 1 ≤ u′(x) ≤ λ+δ
p+rxI{x≥0}+αxI{x<0}u(x) for x such that u′(x)

exists, we can obtain

1 ≤ v′n(x) for x ∈ [−
p

α
, x]. (3.44)

From now on in the proof of this lemma, we assume x ∈ [− p
α
, x). By setting u and τ in

(3.14) to be vn and t ∧ τ , respectively, and then taking expectation, we obtain

Ex[vn(Rt∧T )e
−δ(t∧T )] ≤ vn(x) + Ex

[∫ t∧T

0
e−δsLvn(Rs−)ds

]

− Ex

[∫ t∧T

0
e−δsdLs

]

. (3.45)

Notice that under any strategy L ∈ Πx the controlled reserve is below or at x. Then by

(3.41) we have
∫ Rs−+ p

α
0 vn(Rs− − y)dF (y) ≤ u(x). Further note that p + rRs−I{Rs− ≥

0}+αRs−I{Rs− < 0} ≥ 0 for x ∈ [0, T ]. Hence, by using (3.8), (3.41), (3.44), the monotone
convergence and the dominated convergence we can obtain

lim
t→∞

Ex[

∫ T∧t

0
e−δsLvn(Rs−)ds] = Ex

[∫ T

0
e−δsLvn(Rs−)ds

]

. (3.46)

Letting t→ ∞ on both sides of (3.45) and then using (3.46), the dominated convergence and
the monotone convergence yields

0 ≤ vn(x) + Ex

[∫ T

0
e−δsLvn(Rs−)ds

]

− VL(x). (3.47)
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Since under any strategy L ∈ Πx, the controlled reserve Rs− ≤ x, by (3.42) and (3.43)
it can be shown that Lvn(Rs−) → Lu(Rs−) a.e. − P. Using this and Fatou’s Lemma,

taking lim supn→∞ on (3.47) yields 0 ≤ u(x) + Ex

[

∫ T

0 e−δsLu(Rs−)ds
]

− VL(x). As u is

a super-solution, so Lu(Rs−) ≤ 0 a.e.− P. Then it follows that VL(x) ≤ u(x). Consequently,
V (x) = supL∈Πx

VL(x) ≤ u(x). �

Define an operator G by

Gu(x) = p+ rxI{x ≥ 0}+ αxI{x < 0} − (λ+ δ)u(x)

+λ

∫ x+ p
α

0
u(x− y)dF (y). (3.48)

Theorem 3.10 If for some x̄ ∈ (− p
α
,∞), GV (x̄) = 0, then V (x) = supL∈Πx̄

VL(x) on
[− p

α
, x̄], where Πx is defined same as in Lemma 3.9.

Theorem 3.11 Let Πx̄ be defined same as in Lemma 3.9. If there exists an x̄ ∈ (− p
α
,∞)

such that V ′(x̄) = 1, then V (x) = supL∈Πx̄
VL(x) for x ∈ [− p

α
, x].

As an immediate consequence of Theorem 3.9, Theorem 3.10 and Theorem 3.11, we obtain
the following theorem.

Theorem 3.12 If for some x̄ > − p
α

with either GV (x̄) = 0 or V ′(x̄) = 1, then for any
nonnegative, nondecreasing and locally Lipschitz continuous super-solution u(x) of the HJB
equation (3.7) on (− p

α
, x̄] which satisfies u(x) ≤ c1 + c2x for some constants c1 and c2, and

the boundary condition u(− p
α
) = 0, we have u(x) ≥ V (x) on (− p

α
, x̄]. Furthermore, if for

some strategy L ∈ Πx̄ the function VL is an absolutely continuous super-solution to the HJB
equation (3.7) on (− p

α
, x̄], then V (x) = VL(x) for all x ∈ (− p

α
, x̄].

For any y ≥ − p
α
, define Gy(x) = V (x) if x ≤ y and Gy(x) = V (y) + x− y if x > y.

Theorem 3.13 i) If Gy is a super-solution to the HJB equation (3.7) on (y,∞), then
Gy = V on [− p

α
,∞).

ii) If for some x̄ > − p
α

with either GV (x̄) = 0 or V ′(x̄) = 1, and for some y < x̄, Gy is a
super-solution of the HJB equation (3.7) on (y, x̄], then Gy(x) = V (x) on [− p

α
, x̄].

Proof. First we show that Gy is a viscosity super-solution to the HJB equation (3.7) on
(− p

α
, y]. For any fixed x ∈ [− p

α
, y], let φ be any continuously differentiable function with

φ(x) = Gy(x) and Gy − φ reaches minimum at x. Then by Remark 3.1 ii) we obtain

lim sup
h↑0

Gy(x)−Gy(x− h)

h
≤ lim

n→∞
DV (x, a(x, h

′
n)− x) ≤ lim inf

h↓0

Gy(x+ h)−Gy(x)

h
.(3.49)

Notice that lim suph↑0
Gy(x)−Gy(x−h)

h
= lim suph↑0

V (x)−V (x−h)
h

and that lim infh↓0
Vy(x+h)−Vy(x)

h

equals lim infh↓0
Gy(x+h)−Gy(x)

h
if x ∈ [− p

α
, y) and equals 1 if x = y. As a result, using (3.49)

and lim infh↓0
Vy(x+h)−Vy(x)

h
≥ 1 yields lim suph↓0

V (x)−V (x−h)
h

≤ φ′(x) ≤ lim infh↓0
V (x+h)−V (x)

h
,

which by Remark 3.1 ii) again implies that V − φ reaches minimum at x. Since V is a vis-
cosity super-solution of (3.7), we have max{1 − φ′(x),LV,φ(x)} ≤ 0. Hence, by noticing
LV,φ(x) = LGy,φ(x) for x ∈ (− p

α
, y], we have max{1 − φ′(x),LGy ,φ(x)} ≤ 0 for x ∈ (− p

α
, y].

Consequently, Gy is a viscosity super-solution on (− p
α
, y].

i) If Gy is a viscosity super-solution on (y,∞), then it is a super-solution on (− p
α
,∞). Also

note that Gy satisfies the linear growth condition. Then by Theorem 3.9 i), we have Gy ≥ V
on (− p

α
,∞). Noticing that Gy ≤ V , therefore, Gy = V on [− p

α
,∞).

ii) If Gy is a viscosity super-solution on (y, x̄], then it is a super-solution on (− p
α
, x̄]. By

Theorem 3.12, we have Gy ≥ V on (− p
α
, x̄]. Noticing by definition that Gy ≤ V , therefore,

Gy = V on (− p
α
, x̄]. �
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4 The optimal dividend strategy

In this section, we show that there exists an optimal dividend strategy and the optimal
strategy is a band strategy, that is, the optimal strategy at any time is to pay no dividends,
pay out at a rate same as the premium incoming rate or a positive lump sum, depending
on the current reserve at that time. We also show that under certain condition, when the
reserve is negative, the optimal strategy is to pay no dividends.

We start with the following definition for three sets.

Definition 4.1 Define A = {x ∈ [− p
α
,∞) : GV (x) = 0}, B = {x ∈ [− p

α
,∞) : V ′(x) =

1 and GV (x) < 0}, and C = (A ∪ β)c.

The sets defined above will play a crucial role in proving the existence of and characterizing
the optimal dividend strategy. we can prove the following useful properties of these sets.

Lemma 4.1 The following properties hold.
(a) A is nonempty and closed.
(b) B is nonempty and left-open. And there exists a y such that (y,∞) ⊂ B.
(c) If (x0, x1] ⊂ B and x0 /∈ B, then x0 ∈ A.
(d) C is right-open.

Based on the above three sets and their characteristics, we define the following dividend
strategy, which will be shown to be the optimal one.

Definition 4.2 Let L∗ be a dividend strategy defined as follows:
(a) If RL

∗

t− ∈ A, the insurer pays out dividends at the same rate as the premium incoming
rate, i.e.

dL∗
t =

(

p+ rRL
∗

t−I{R
L∗

t− ≥ 0}+ αRL
∗

t−I{R
L∗

t− < 0}
)

dt if RL
∗

t− ∈ A.
(b) If RL

∗

t− ∈ B, then by Lemma 4.1 (c) there exists an x0 ∈ A with x0 < RL
∗

t− such that
(x0, R

L∗

t− ] ⊂ B. At time t, the insurer pays out a lump sum RL
∗

t− − x0 as dividends, ie
L∗
t − L∗

t− = RL
∗

t− − x0 if RL
∗

t− ∈ B, where x0 = inf{x : (x,RL
∗

t− ] ⊂ B}.
(c) If RL

∗

t− ∈ C, then the insurer pays out no dividends at the moment.

In the following, we prove that the strategy L∗ constructed above is an optimal dividend
strategy.

Theorem 4.2 The strategy L∗ defined in Definition 4.2 is optimal, i.e. V (x) = VL∗(x) for
all x ≥ − p

α
.

Proof. By Lemma 4.1 it follows that there exists some x = inf{x : (x,∞) ⊂ B}.
Let H be a set of continuous functions f : [− p

α
,∞) → [0,∞) with f(x) = x − x + f(x)

for x > x.
Define the distance ρ(f1, f2) = maxx≥− p

α
|f1(x)− f2(x)| for f1, f2 ∈ H.

Define an operator T as follows:

Tf (x) = Ex

[∫ S1

0
e−δsdL∗

s + e−δS1f(RL
∗

S1
)

]

. (4.50)

Noting that for any x ≥ x, we have (x,∞) ⊂ B and x ∈ A , by using Definition 4.2(b) with
x0 = x and (4.50) we get

Tf (x) = x− x+ Tf (x) for x ≥ x. (4.51)

As a result, Tf ∈ H for any f ∈ H. Note that

|Tf1(x)− Tf2(x)| = |Ex[e
−δS1(f1(R

L∗

S1
)− f2(R

L∗

S1
))]|

≤
λ

λ+ δ
ρ(f1, f2),
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where the last inequality follows by the fact that S1 is an exponential random variable with
mean 1

λ
. Therefore, T is a contraction on H and thus has a unique fixed point in H.

According to the structure of L∗ (Definition 4.2), we can see that the process L∗ is
a Markov process and therefore the controlled reserve process under L∗ is also a Markov
process. By the Markov property and (4.50), it is obvious that VL∗ is a fixed point of T in
H. So to prove V = VL∗ it is sufficient to show that V ∈ H and V is also a fixed point of T .

Obviously, V ∈ [0,∞). Moreover, since (x,∞) ⊂ B, then V ′(x) = 1 for all x > x. As a
result, V (x) = V (x) + x− x for all x ≥ x. Consequently, we can conclude that V ∈ H.

Assume x ∈ A. By the definition of L∗ , we can see that given R0 = x, dL∗
t = (p+rxI{x ≥

0}+αxI{x < 0})dt for all time t before the arrival S1 of the first claim. Therefore, by (4.50)
we obtain that

TV (x) = Ex
[

∫ S1

0
(p+ rxI{x ≥ 0}+ αxI{x < 0})e−δsds+ e−δS1V (x− U1)]

=
(p + rxI{x ≥ 0}+ αxI{x < 0})

λ+ δ
+

∫ ∞

0
λe−λte−δtdt

∫ x+ p
α

0
V (x− y)dF (y)

=
(p + rxI{x ≥ 0}+ αxI{x < 0}) + λ

∫ x+ p
α

0 V (x− y)dF (y)

λ+ δ
for x ∈ A. (4.52)

It follows by (4.52) and the equality GV (x) = 0 for x ∈ A that

TV (x) = V (x) for x ∈ A. (4.53)

For any x ∈ B, we can find an x0 < x such that (x0, x] ⊂ B and x0 ∈ A, which implies
V ′(y) = 1 for y ∈ (x0, x]. Therefore, V (x) = x − x0 + V (x0). By the definition of L∗, we
know that a lump sum of x− x0 will be paid out as dividends immediately. Then it follows
from (4.50) and (4.53) that

TV (x) = x− x0 + TV (x0) = x− x0 + V (x0) = V (x) for x ∈ B. (4.54)

Now we look at the case x ∈ C. Since C is right open, there exists an x1 such that
(x, x1) ⊂ C and x1 /∈ C. As B is left open, so x1 ∈ A. By the definition for L∗ we know
that given the initial reserve R0 = x, the insurance company pays out no dividends until the
reserve reaches x1 or the arrival (S1) of the first claim. Consider a function a(·) which satisfies
da(t) = (p+ ra(t)I{a(t) ≥ 0}+ αa(t)I{a(t) < 0}) dt and a(0) = x. Recall that t0(x, x1) is
the time it will take for this dynamics to reach x1. It can be seen that given R0 = x, Rt = a(t)
for all x < S1 ∧ t0(x, x1), and RS1 = a(S1)− U1 if S1 < t0(x, x1).

By Markov property it follows that for any t ≥ 0,

Tf (x) = Ex

[
∫ S1

0
e−δsdL∗

s + e−δS1f(RL
∗

S1
);S1 ≤ t

]

+Ex

[
∫ t

0
e−δsdL∗

s + e−δtTf (R
L∗

t );S1 > t

]

. (4.55)

By setting t and f in (4.55) by t0(x, x1) and V , respectively, and by noting TV (x1) = V (x1)
because x1 ∈ A, it follows that

TV (x) = Ex

[

e−δS1V (a(S1)− U1)I{S1 ≤ t0(x, x1)}+ e−δt0(x,x1)TV (x1)I{S1 > t0(x, x1)}
]

=

∫ t0(x,x1)

0
λe−λte−δtdt

∫ a(t)+ p
α

0
V (a(t)− y)dF (y) + e−(λ+δ)t0(x,x1)V (x1). (4.56)

Let D = {x > 0 : V ′(x) exists } and t ∈ D := {y : a(y) ∈ D}. As V (x) is differentiable
almost everywhere, the Lebesgue measure of Dc is 0. Noting that V (a(t)) is differentiable for
a(t) ∈ D, the complement of D has a zero Lebesgue measure, too.
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Notice that for any y such that V ′(y) exists we have

(p+ ryI{y ≥ 0}+ αyI{y < 0})V ′(y)− (λ+ δ)V (y) + λ

∫ y+ p
α

0
V (y − z)dF (z) = 0.

(4.57)

It follows from (4.56) and (4.57) that

TV (x) =

∫

D∩(0,t0(x,x1))
e−(λ+δ)t

(

(λ+ δ)V (a(t))

−
(

p+ ra(t)I{a(t) ≥ 0}+ αa(t)I{a(t) < 0}
)

V ′(a(t))

)

dt

+e−(λ+δ)t0(x,x1)V (x1)

=

∫

D∩(0,t0(x,x1))
d
(

e−(λ+δ)tV (a(t)
)

+ e−(λ+δ)t0(x,x1)V (x1)

= V (x)− e−(λ+δ)t0(x,x1)V (x1) + e−(λ+δ)t0(x,x1)V (x1)

= V (x), for x ∈ C. (4.58)

Combining (4.53), (4.54) and (4.58) shows that V (·) is a fixed point of T . This completes
the proof. �

Now we have shown that like the Cramér-Lundberg cases respectively with and without
interest, the optimal strategy is also a band strategy in the absolute ruin case. Intuitively,
we would think that under the optimal strategy, there should be no dividends if the company
is in deficit. In the following we will prove this rigorously.

Lemma 4.3 For any fixed x0 ∈ (− p
α
,∞), there exists a unique in (x0,∞) differentiable,

strictly increasing and positive solution u on [x0,∞) to the equation

0 = (p+ rxI{x ≥ 0}+ αxI{x < 0})u′(x)− (λ+ δ)u(x)

+λ

∫ x−x0

0
u(x− y)dF (y) + λ

∫ x+ p
α

x−x0

V (x− y)dF (y) (4.59)

with boundary condition u(x0) = V (x0).

Proof. First we show that there is a such solution on [x0, x0 + h) for h = p+αx0I{x0<0}
2(2λ+δ) .

LetH[x0, x0+h) denote the set of continuous, increasing and positive functions on [x0, x0+h).
Define an operator T that for any u ∈ H[x0, x0 + h),

Tu(x) =

∫ x

x0

(λ+ δ)u(s) − λ
∫ s−x0
0 u(s− y)dF (y)− λ

∫ s+ p
α

s−x0 V (s − y)dF (y)

p+ rsI{s ≥ 0}+ αsI{s < 0}
ds+ V (x0).(4.60)

We will show that T is a contraction on H[x0, x0 + h).
For any u ∈ H[x0, x0 + h), as both u and V are increasing and u(x0) = V (x0), we get

λ

∫ x−x0

0
u(x− y)dF (y) + λ

∫ x+ p
α

x−x0

V (x− y)dF (y)

≤ λ

∫ x−x0

0
u(x)dF (y) + λ

∫ x+ p
α

x−x0

u(x)dF (y) ≤ λu(x).
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Define ||u|| = supx∈[x0,x0+h) |u(x)|.
It follows by (4.60) that for any x ∈ [x0, x0 + h) and u1, u2 ∈ H[x0, x0 + h),

|Tu1(x)− Tu2(x)| ≤

∫ x

x0

(λ+ δ)||u1 − u2||
x0+h
x0

+ λ||u1 − u2||
x0+h
x0

p+ rsI{s ≥ 0}+ αsI{s < 0}
ds

≤
(2λ+ δ)h||u1 − u2||

x0+h
x0

p+ αx0I{x0 < 0}
≤

1

2
||u1 − u2||

x0+h
x0

.

Therefore, T is a contraction on H[x0, x0 + ε). As a result, there exists a unique u ∈
H[x0, x0 + ε) such that u(x) = Tu(x), i.e.,

u(x) =

∫ x

x0

(λ+ δ)u(s) − λ
∫ s−x0
0 u(s− y)dF (y)− λ

∫ s+ p
α

s−x0 V (s− y)dF (y)

p+ rsI{s ≥ 0}+ αsI{s < 0}
ds+ V (x0),

which implies

u′(x) =
(λ+ δ)u(x) − λ

∫ x−x0
0 u(x− y)dF (y)− λ

∫ x+ p
α

x−x0 V (x− y)dF (y)

p+ rxI{x ≥ 0}+ αxI{x < 0}

for x ∈ [x0, x0 + h).

This completes the proof of the existence and uniqueness of an positive,increasing and differ-
entiable solution to (6) on [x0, x0 + h).

Similarly, we can prove the existence and uniqueness of a solution to (6) on [x0+h, x0+2h)
fulfilling the required properties. Repeating the above process, we can prove the existence of
a unique solution to (6) on [x0,∞), which is differentiable, increasing and positive. �

Theorem 4.4 (i) For any x ∈ A, V (x) is differentiable and V ′(x) = 1.
(ii) For any (x0, x1) ⊂ C, V (x) is differentiable on (x0, x1), and V

′(x) > 1 for x ∈ (x0, x1).

Proof. (i) Consider any x ∈ A. Choose sequences h+n > 0 and h−n < 0 with limn→∞ h±n =

0, such that limn→∞
V (x+h+n )−V (x)

h+n
= lim suph↓0

V (x+h)−V (x)
h

and limn→∞
V (x+h−n )−V (x)

h−n
=

lim suph↑0
V (x+h)−V (x)

h
. As x ∈ A, GV (x) = 0. Then it follows by (3.8) and Theorem 3.4 (ii)

that limn→∞DV (x, h
±
n ) ≤ 1, which implies

lim sup
h↑0

V (x+ h)− V (x)

h
≤ 1 and lim sup

h↓0

V (x+ h)− V (x)

h
≤ 1.

As lim infh→0
V (x+h)−V (x)

h
≥ 1, we conclude that limh→0

V (x+h)−V (x)
h

= 1.
(ii) Use proof by contradiction. Note that for any x ∈ C ∩ (− p

α
, 0), if V (x) is differentiable,

then 0 = (p+ rxI{x ≥ 0}+αxI{x < 0})V ′(x)− (λ+ δ)V (x)+λ
∫ x+ p

α
0 V (x− y)dF (y), which

can be rewritten as

0 = (p+ rxI{x ≥ 0}+ αxI{x < 0})V ′(x)− (λ+ δ)V (x) + λ

∫ x−x0

0
V (x− y)dF (y)

+λ

∫ x+ p
α

x−x0

V (x− y)dF (y). (4.61)

Then by (4.61) and Lemma 4.3, we conclude that V (x) is equal to the unique solution of
(4.59) on (x0, x0 + h) and therefore is differentiable on (x0, x1).

By Theorem 3.2, we know that for any x ∈ C, if V ′(x) exists, then V ′(x) ≥ 1. By the
definition of the set C, we know that V ′(x), if exists, can not be 1. If V ′(x) = 1, then x
belongs to either A or B. Therefore, V ′(x) 6= 1 for all x ∈ (x0, x1). �
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Theorem 4.5 Assume α > λ+ δ. The following statements hold.
(i) A ∩ (− p

α
, 0) consists of isolated points only.

(ii) For any x0 ∈ A ∩ (− p
α
, 0), we can find an h > 0 such that (x0, x0 + h) ⊂ B.

(iii) B ∩ (− p
α
, 0) = ∅.

Proof. Consider any x1 and x2 with − p
α
< x1 < x2 < 0 and [x1, x2) ⊂ A such that V (x)

is differentiable on [x1, x2), V
′(x1) = 1 and

(p + αx)V ′(x) = (λ+ δ)V (x)− λ

∫ x+ p
α

0
V (x− y)dF (y) for x ∈ [x1, x2). (4.62)

By setting x in the above equality to be x1 and x1 + ǫ, respectively, and using the newly
obtained equations, we can obtain that for any ε ∈ (0, x2 − x1),

(p+ αx1)(V
′(x1 + ε)− V ′(x1))

ε

= −αV ′(x1 + ε) + (λ+ δ)
V (x1 + ε)− V (x1)

ε
− λI(x1, ε), (4.63)

where I(x1, ε) =
∫ x1+ε+

p
α

0 V (x1+ε−y)dF (y)−
∫ x1+

p
α

0 V (x1−y)dF (y)
ε

.
By noticing that V ′(x1) = 1, V ′(x1 + ε) ≥ 1, I(x1, ε) ≥ 0 and λ + δ < α, from (4.63) we

obtain (p + αx1)
V ′(x1+ε)−V ′(x1)

ε
≤ −α+ (λ+ δ)(1 + o(ε)

ε
) < 0 for small ε. As a result,

V ′(x1 + ε) < V ′(x1) = 1 for ε (ε > 0) small enough. (4.64)

(i) Use proof by contradiction. Assume that x0 ∈ A ∩ (− p
α
, 0) and it is not isolated. Then,

as A is closed, we can find an h > 0 such that either [x0, x0+h] ⊂ A or [x0, x0+h] ⊂ A. Use
[x1, x2] to denote [x0−h, x0] if [x0−h, x0] ⊂ A, and [x0−h, x0], otherwise. Then [x1, x2] ⊂ A.
It follows by Theorem 4.4 (i) that

V ′(x) = 1 for x ∈ [x1, x2]. (4.65)

Therefore, according to the definition for A, we have LV (x) = GV (x) = 0 for all x ∈ [x1, x2],

which is equivalent to (p+ αx)V ′(x) = (λ+ δ)V (x)− λ
∫ x+ p

α

0 V (x− y)dF (y) for x ∈ [x1, x2].
Then by (4.64) it follows that V ′(x1 + ε) < V ′(x1) = 1 for small positive ε, which is a
contradiction to (4.65).
(ii) Assume that there exists an x0 ∈ A ∩ (− p

α
, 0), such that we can find an h > 0 satisfying

(x0, x0 + h) * B. Then (x0, x0 + h) ⊂ C, because A consists of isolated points only and both
B and C are half open. Hence, it follows by Theorem 4.4 (ii) that V (x) is differentiable on
(x0, x0 + h) and V ′(x) > 1 for x ∈ (x0, x0 + h). Hence, V is a solution to the HJB equation
(3.7) and therefore, (4.62) holds for x ∈ (x0, x0 + h). As x0 ∈ A, we have V ′(x0) = 1, which
along with the definition for A implies that (4.62) also holds for x = x0. Then by setting x1
and x2 in (4.64) as x0 and x0 + h, respectively, it follows that V ′(x0 + ε) < V ′(x0) = 1 for
small positive ε, which is a contradiction to the fact that V ′(x0 + ε) ≥ 1.
(iii) Assume B ∩ (− p

α
, 0) 6= φ. Then there exist x0 and x1, such that − p

α
< x0 < x1 < 0,

[x0, x1) ⊂ B and x0 ∈ A. Therefore, by Theorem 4.4 (i) and the definition for B, we get
V ′(x) = 1 for x ∈ [x0, x1), which implies V (x) = x − x0 + V (x0) for x ∈ [x0, x1). Note that
GV (x0) = 0. Then for x ∈ (x0, x1),

GV (x) = GV (x)− GV (x0)

= α(x− x0)− (λ+ δ)(x − x0) + λ

∫ x+ p
α

0
V (x− y)dF (y)− λ

∫ x0+
p
α

0
V (x0 − y)dF (y)

> 0, (4.66)

where the last inequality follows by α > λ+δ and the fact that V is nonnegative and increas-
ing. Since x ∈ (x0, x1) ⊂ B, we have GV (x) < 0, which contradicts the inequality (4.66). �

20



Theorem 4.6 If α > λ+ δ, (− p
α
, 0) ⊂ C.

Proof. By Theorem 4.5 (iii), it follows that

(−
p

α
, 0) ∩ B = ∅. (4.67)

So it is sufficient to show that (− p
α
, 0) ∩ A = ∅. If this is not true, then we can find

an x0 ∈ A ∩ (− p
α
, 0). By Theorem 4.5, it follows that there exist an h > 0 such that

(x0, x0 + h) ⊂ B, which contradicts (4.67) by noting x0 + h ∈ (− p
α
, 0) for small h > 0. �

Remark 4.1 Theorem 4.2 and Theorem 4.6 together imply that if α > λ + δ, under the
optimal strategy L∗ the company will pay no dividends when the reserve is negative. In other
words, if α > λ+ δ it is optimal to pay no dividends when the reserve is negative.

5 Conclusion

We studied the dividend optimization problem of an insurance corporation, of which the sur-
plus is modeled by a compound Poisson model with credit and debit interest. The company
earns interest when the reserve is positive, and can refinance to settle its claims when the
reserve is negative but above the critical level. The company controls the dividend pay-out
dynamically and seeks to maximize the expected total discounted dividends until ruin. We
proved that the value function is the unique viscosity solution satisfying certain conditions of
the associated Hamilton-Jacob-Bellman equation, that the optimal strategy is a band strat-
egy, and that it is optimal to pay no dividends when the reserve is negative. This result
provides theoretical justification to the regulation of no dividend payments when the surplus
is in deficit.
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APPENDIX

In this appendix, we present the proofs to Lemma 3.8, Theorem 3.10, Theorem 3.11 and
Lemma 4.1

Proof of Lemma 3.8 We employ a proof by contradiction.
Assume that there exists a x0 ∈ (− p

α
,∞) such that u(x0) > u(x0).

For any constant γ > 0, define functions for x ≥ − p
α
,

uγ(x) = e−γxu(x) and uγ(x) = e−γxu(x).

By the fact that both the functions u and u are locally Lipschitz continuous and bounded by
a linear function, it can be easily shown that uγ(x) and uγ(x) are both bounded and Lipschitz
continuous on (− p

α
,∞), too, which implies that there exists some constant m > 0 such that

uγ(y)− uγ(x)

y − x
≤ m and

uγ(y)− uγ(x)

y − x
≤ m for x, y ∈ (−

p

α
,∞). (A-1)
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For ρ > 0, consider a function φρ : [−
p
α
,∞)× [− p

α
,∞) → R given by

φρ(x, y) = uγ(x)− uγ(y)−
ρ

2
(x− y)2 −

2m

ρ2(y − x)2 + ρ
. (A-2)

Note that we can find a γ1 > 0 such that uγ(x0)− uγ(x0) > 0 for all γ ∈ (0, γ1], and that
u(− p

α
) = u(− p

α
) = 0 and limx→∞ uγ(x) = limx→∞ uγ(x) = 0. Then we can define

M = max
x≥− p

α

(uγ(x)− uγ(x)) and Mρ = max
x,y≥− p

α

φρ(x, y). (A-3)

Then 0 < M < ∞ and M has a maximizer denoted by x∗, and Mρ also has a maximizer,
denoted by (xρ, yρ) here.
Noting that

Mρ ≥ φρ(x
∗, x∗) =M −

2m

ρ
, (A-4)

then it follows that

lim inf
ρ→∞

Mρ ≥M > 0. (A-5)

Let (ρn)n∈N be a sequence tending to ∞ as n → ∞ such that (xρn , yρn) converges as
n→ ∞. Use (x̄, ȳ) to denote the limit of (xρn , yρn) as n→ ∞. We will show in the following
that

x̄ = ȳ. (A-6)

If this is not true, then |x̄− ȳ| > 0. By noticing

Mρn = uγ(xρn)− uγ(yρn)−
ρn
2
(xρn − yρn)

2 −
2m

ρ2n(yρn − xρn)
2 + ρn

, (A-7)

limn→∞ uγ(xρn) = uγ(x̄) and limn→∞ uγ(yρn) = uγ(ȳ), we obtain

lim
n→∞

Mρn = uγ(x̄)− uγ(ȳ)−
limn→∞ ρn

2
(x̄− ȳ)2 = −∞,

which is a contradiction to (A-5).
Next, we show that for any constant x̂ ≥ − p

α
with uγ(x̂) ≤ uγ(x̂),

x̄ = ȳ 6= x̂. (A-8)

We use proof by contradiction again. Suppose x̄ = ȳ = x̂. Then for any ǫ′ > 0 we can
find an δ′ > 0 such that uγ(x) − uγ(x) < ǫ for all x satisfying |x − x̂| < δ′. Note that
limn→∞ xρn = limn→∞ yρn = x̄ = x̂. Hence, there exists an N ′ > 0 such that for all n ≥ N ′,
|xρn − x̂| < δ′ and |yρn − x̂| < δ′. Therefore, Mρn = φρn(xρn , yρn) ≤ uγ(xρn) − uγ(yρn) ≤ ǫ′.
Consequently, lim supn→∞Mρn ≤ 0, which contradicts (A-5).

Noting that u(− p
α
) = u(− p

α
) = 0. By (A-8), we can conclude immediately that

x̄ = ȳ 6= x̂. (A-9)

By observing that

lim
y→∞

φρ(x, y) = lim
y→∞

(

uγ(x)− uγ(y)−
ρ

2
(x− y)2 −

2m

ρ2(y − x)2 + ρ

)

= −∞,

we conclude that

ȳ <∞. (A-10)
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Combining (A-6), (A-9) and (A-10) yields x̄ = ȳ ∈ (− p
α
,∞).

As xρn and yρn converge to x̄ and ȳ, respectively, we can find an N1 such that for all
n ≥ N1,

xρn , yρn ∈ (−
p

α
,∞). (A-11)

Now we introduce two more functions

ζρ(x) = uγ(xρ) +
ρ

2
(x− yρ)

2 +
2m

ρ2(yρ − x)2 + ρ
+ φρ(xρ, yρ),

and

ϕρ(y) = uγ(yρ)−
ρ

2
(xρ − y)2 −

2m

ρ2(xρ − y)2 + ρ
− φρ(xρ, yρ).

It can be easily shown that for all n ≥ N1, ζρn and ϕρn are both continuously differentiable.
Furthermore, uγ(x)− ζρn(x) = φρn(x, yρn)−φρn(xρn , yρn) attains its maximum 0 at xρn , and
uγ(y) − ϕρn(y) = −φρn(xρn , y) + φρn(xρn , yρn) reaches its minimum 0 at yρn . Since u and
u are respectively viscosity sub and super-solutions of (3.7), by the definition for viscosity
solutions we can see that uγ and uγ are respectively viscosity sub and super-solutions of the
following equation

max
{

1− eγx(γu(x) + u′(x)), (p+ rxI{x ≥ 0}+ αxI{x < 0})×

(γu(x) + u′(x)) − (λ+ δ)u(x) + λ

∫ x+ p
α

0
u(x− y)e−γydF (y)

}

= 0.

Therefore, by Definition 3.2 we can obtain that for n ≥ N1,

max
{

1− eγxρn (γuγ(xρn) + ζ ′ρn(xρn)), (p+ rxρnI{xρn ≥ 0}+ αxρnI{xρn < 0})×

(γuγ(xρn) + ζ ′ρn(xρn))− (λ+ δ)uγ(xρn) + λ

∫ xρn+
p
α

0
uγ(xρn − y)e−γydF (y)

}

≥ 0,

(A-12)

and

max
{

1− eγyρn (γuγ(yρn) + ϕ′
ρn
(yρn)), (p+ ryρnI{yρn ≥ 0} + αyρnI{yρn < 0}) ×

(γuγ(yρn) + ϕ′
ρn
(yρn))− (λ+ δ)uγ(yρn) + λ

∫ yρn+
p
α

0
uγ(yρn − y)e−γydF (y)

}

≤ 0.

(A-13)

Use B1, B2 to represent the first and second terms in the curly brackets on the left-hand side
of (A-12), respectively, and D1, D2 to represent the first and second terms on the left-hand
side of (A-13), respectively. Then max{B1, B2} ≥ 0 ≥ max{D1,D2}. So at least one of the
inequalities B1 ≥ D1 and B2 ≥ D2 holds.

(i) First, assume that B2 ≥ D2 is true. Noticing that

ζ ′ρn(xρn) = ϕ′
ρn(yρn) = ρn(xρn − yρn) +

4m(yρn − xρn)

(ρn(yρn − xρn)
2 + 1)2

, (A-14)
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by substitutions for ζ ′ρn(xρn) and ϕ
′
ρn(yρn) by (A-14), it follows immediately that

(p+ ryρnI{yρn ≥ 0}+ αyρnI{yρn < 0})×
(

γuγ(yρn) + ρn(xρn − yρn) +
4m(yρn − xρn)

(ρn(yρn − xρn)
2 + 1)2

)

− (p+ rxρnI{xρn ≥ 0} + αxρnI{xρn < 0}) ×
(

γuγ(xρn) + ρn(xρn − yρn) +
4m(yρn − xρn)

(ρn(yρn − xρn)
2 + 1)2

)

+(λ+ δ)
(

uγ(xρn)− uγ(yρn)
)

≤ λ

(

∫ xρn+
p
α

0
uγ(xρn − y)e−γydF (y)−

∫ yρn+
p
α

0
uγ(yρn − y)e−γydF (y)

)

. (A-15)

Notice that φρn(xρn , xρn) + φρn(yρn , yρn) ≤ 2φρn(xρn , yρn), i.e.

uγ(xρn)− uγ(xρn) + uγ(yρn)− uγ(yρn)−
4m

ρn

≤ 2

(

uγ(xρn)− uγ(yρn)−
ρn
2
(xρn − yρn)

2 −
2m

ρn2(yρn − xρn)
2 + ρn

)

.

Rearranging terms gives

ρn(xρn − yρn)
2 ≤ uγ(xρn)− uγ(yρn) + uγ(xρn)− uγ(yρn) +

4m(yρn − xρn)
2

ρn(yρn − xρn)
2 + 1

≤ 2m|yρn − xρn |+ 4m(yρn − xρn)
2,

where the last inequality follows by (A-1). As a result,

|yρn − xρn | ≤
2m

ρn − 4m
for ρn > 4m.

As uγ and uγ are both bounded, taking limits limn→∞ on (A-15) yields

γ (p+ rx̄I{x̄ ≥ 0}+ αx̄I{x̄ < 0})
(

uγ(x̄)− uγ(x̄)
)

+(λ+ δ)(uγ(x̄)− uγ(x̄))

≤ λ

(

∫ x̄+ p
α

0

(

uγ(x̄− y)− uγ(x̄− y)
)

e−γydF (y)

)

for γ > 0 (A-16)

≤ λM for γ ∈ (0, γ1), (A-17)

where the last inequality follows from (A-3).

By choosing γ < min
{

δ
2(p+rx̄I{x̄≥0}) , γ1

}

, it follows immediately from (A-17) that

uγ(x̄)− uγ(x̄) <
λ

λ+ δ
2

M < M. (A-18)

On the other hand, from (A-5) we get M ≤ lim infρ→∞Mρ ≤ limn→∞Mρn = uγ(x̄)− uγ(x̄),
which contradicts (A-18). Consequently, B2 ≥ D2 does not hold.

(ii) Now, we look at the case B1 ≥ D1. Then we have

eγxρn (γuγ(xρn) + ζ ′ρn(xρn)) ≤ eγyρn (γuγ(yρn) + ϕ′
ρn(yρn)). (A-19)
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In the rest of the proof we consider xρn ≥ b0 and yρn ≥ b0 only. It follows immediately
from (A-14) and (A-19) that

eγxρnuγ(xρn)− eγyρnuγ(yρn) ≤

4m
(ρn(yρn−xρn)

2+1)2
− ρn

γ
(yρn − xρn)(e

γyρn − eγxρn ).(A-20)

Let N2(ǫ) be a positive integer such that for all n ≥ N2(ǫ), ρn ≥ 4m. Since (yρn−xρn)(e
ryρn −

erxρn ) is always nonnegative, then from (A-20) we can see that for all n ≥ N2(ǫ),

eγxρnuγ(xρn)− eγyρnuγ(yρn) ≤ 0. (A-21)

Recall that xρn → x, yρn → y and x = y. There exists an integer N3(ǫ) such that for all
n ≥ N3(ǫ),

|eγxρn − eγx| < ǫ, |eγyρn − eγx| < ǫ and |uγ(xρn)− uγ(yρn)| < ǫ.

Then for n ≥ N3(ǫ), we have

uγ(xρn)(1 − eγxρn )− uγ(yρn)(1 − eγyρn )

= uγ(xρn)(1 − eγxρn )− uγ(xρn)(1− eγyρn ) + (uγ(xρn)− uγ(yρn))(1 − eγyρn )

< uγ(xρn)(1 − eγx + ǫ)− uγ(xρn)(1 − eγx − ǫ) + ǫ

≤ M(1− eγx) + (uγ(xρn) + uγ(xρn) + 1)ǫ, (A-22)

where the lat inequality follows by (A-3).
Since the functions uγ and uγ are bounded, it can be easily shown that

Meγx

supx |uγ(x) + uγ(x) + 1|
> 0. (A-23)

From (A-4), (A-7), (A-21), (A-22) and (A-23), it follows that for any ǫ < Meγx

supx |uγ(x)+uγ(x)+1|

and n ≥ max{N2(ǫ), N3(ǫ)},

M ≤Mρn +
2m

ρn
= uγ(xρn)− uγ(yρn)

= eγxρnuγ(xρn)− eγyρnuγ(yρn)

+uγ(xρn)(1 − eγxρn )− uγ(yρn)(1 − eγyρn )

< M(1− eγx) + (uγ(xρn) + uγ(xρn) + 1)ǫ < M,

which is an contradiction. So B1 ≥ D1 does not hold.

Combining (i) and (ii) shows that B1 < D1 and B2 < D2. This is a contraction to the
fact that at least of the inequalities B1 ≥ D1 and B2 ≥ D2 holds. As a result, u(x) ≤ u(x)
for all x ≥ − p

α
. This completes the proof. �

Proof of Theorem 3.10 Assume that x ∈ (− p
α
, x].

i) Let Π(n) denote the set of admissible strategies such that if the initial reserve x < x̄,
the controlled reserve will always stay below or at x̄ until the arrival of the nth claim.

We will show that for any n ∈ N and x ∈ (− p
α
, x], V (x) = supL∈Π(n) VL(x) by induction.

Noting that Π(0) = Π, we get V (x) = supL∈Π(0) VL(x).
Assume that V (x) = supL∈Π(n−1) VL(x) for some n ≥ 1.

Let L(n−1,x) ∈ Π(n − 1) be an ǫ
2 -optimal strategy for the reserve process with the initial

value x, that is

0 ≤ V (x)− VL(n−1,x)(x) ≤
ǫ

2
. (A-24)
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Let τL denote the first time that the reserve process under strategy L reaches x̄, and τ̂L

the arrival time of the next claim occurring after time τL.
Then given the initial reserve x (x ≤ x̄), we can construct an ǫ

2 -optimal strategy L(n,x) ∈

Π(n) as follows. Apply the strategy L(n−1,x) until the first time the controlled reserve reaches
x̄, then pays out dividends at a rate equal to the premium incoming rate to keep the reserve at
the level x̄ until the arrival of the next claim. After that, we apply the strategy L(n−1,R

τ̂L(n,x))

to the shifted process θ
τ̂L

(n,x)R.
Recall that S1 and U1 are respectively the arrival time and the amount of the first claim.

Note that for the case with initial reserve R0 = x̄, under strategy L(n,x) we have

τ̂L
(n,x)

= S1, RS1 = (x− U1) ∨ (−
p

α
) and

Rt = x̄, dL
(n,x)
t = (p+ rx̄I{x̄ ≥ 0}+ αx̄I{x̄ < 0})dt for t < S1.

Hence, by noticing the fact that ruin will not occur before the arrival of the first claim, i.e.
T ≥ S1, and that V (− p

α
) = 0, we obtain that given the initial reserve x̄,

VL(n,x̄)(x̄) = Ex̄

[

∫ S1

0
e−δs (p+ rx̄I{x̄ ≥ 0}+ αx̄I{x̄ < 0}) ds

+e−δS1V
L(n−1,(x̄−U1)∨(−

p
α ))

(

(x̄− U1) ∨ (−
p

α
)
) ]

=
1

λ+ δ
(p+ rx̄I{x̄ ≥ 0}+ αx̄I{x̄ < 0})

+
λ

λ+ δ

∫ x̄+ p
α

0
VL(n−1,x̄−y)(x̄− y)dF (y) (A-25)

It follows by (3.48), (A-24), (A-25) and assumption that GV (x) = 0 that

VL(n,x̄)(x̄) ≥
1

λ+ δ
(p+ rx̄I{x̄ ≥ 0}+ αx̄I{x̄ < 0})

+
λ

λ+ δ

∫ x̄+ p
α

0
(V (x̄− y)−

ǫ

2
)dF (y)

≥ V (x̄)−
ǫ

2
. (A-26)

Note that for any fixed x ∈ [− p
α
, x̄] and for k = n− 1 and n, we have

VL(k,x)(x) = Ex





∫ τL
(k,x)

0
e−δsdL(k,x)

s ; τL
(k,x)

< T





+Ex[e
−δτL

(k,x)

; τL
(k,x)

< T ]VL(k,x̄)(x̄) + Ex[e
−δτL

(k,x)

; τL
(k,x)

≥ T ].(A-27)

From the construction of the strategies, we can see that given the initial reserve x,

τL
(n,x)

= τL
(n−1,x)

and L(n,x)
s = L(n−1,x)

s for s ≤ τL
(n,x)

. (A-28)

By using (A-27) for k = n− 1 and n, and (A-28), we obtain

VL(n−1,x)(x)− VL(n−1,x)(x) = Ex

[

e−δτ
L(n,x)

; τL
(n,x)

< T

]

(VL(n,x̄)(x̄)− VL(n−1,x̄)(x̄)) .

(A-29)

Note that by the definition of L(n−1,x) and (A-26) we have

V (x̄) ≥ VL(n−1,x̄)(x̄) ≥ V (x̄)−
ǫ

2
and V (x̄) ≥ VL(n,x̄)(x̄) ≥ V (x̄)−

ǫ

2
, (A-30)
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which implies

VL(n,x̄)(x̄)− VL(n−1,x̄)(x̄) ≥ −
ǫ

2
. (A-31)

Combining (A-24), (A-29) and (A-31) gives VL(n,x)(x) ≥ V (x)− ǫ. Therefore,

V (x) ≥ sup
L∈Π(n)

VL(x) ≥ VL(n,x)(x) ≥ V (x)− ǫ.

Consequently, letting ǫ→ 0 gives us V (x) = supL∈Π(n) VL(x) for x ∈ [− p
α
, x].

ii) Now we try to find a strategy L̂ ∈ Πx such that it is ǫ-optimal.
Noting that V (x) > 0, we can find a t1 large enough such that

e−δt1 <
ǫ

4V (x̄)
. (A-32)

Then for this fixed t1, choose an n large enough such that

P(N(t1) ≥ n) =
∑

k≥n

e−λt1(λt1)
k

k!
≤

ǫ

4V (x̄)
. (A-33)

Define σL to be the first time that the controlled reserve process under strategy L reaches
x after the arrival of the nth claim (Sn).

Let L(n,x) be any ǫ
2 -optimal strategy in Π(n) given the initial reserve x. Given the initial

reserve x, construct an dividend payout strategy L̂(x) such that the strategy L(n,x) is applied

before time σL
(n,x)

, then at time t = σL
(n,x)

, a lump sum of x̄ + p
α
is paid out immediately,

and thereafter no dividends will be paid out.
Then, we have

V
L̂(x)(x) = Ex





∫ σL
(n,x)

0
e−δsdL(n,x)

s ;σL
(n,x)

< T



+ Ex[e
−δσL

(n,x)

;σL
(n,x)

< T ](x̄+
p

α
)

+Ex

[∫ T

0
e−δsdL(n,x)

s ;σL
(n,x)

≥ T

]

. (A-34)

Note that for any initial reserve x ≤ x̄, the strategy L̂(x) is same as L(n,x) until both the
controlled reserve under the former strategy reaches x̄ for the first time, which implies

σL̂(x) = σL
(n,x)

and L̂t(x) = L
(n,x)
t for t ≤ σL

(n,x)
.

Noting that (A-27) also holds for the strategy L(n,x) here, by (A-34) we get, for x ≤ x̄,

V
L̂(x)(x)− VL(n,x)(x) = Ex[e

−δσL
(n,x)

;σL
(n,x)

< T ](x̄+
p

α
− VL(n,x)(x̄))

≥ −Ex[e
−δσL

(n,x)

]V (x̄). (A-35)

As Sn ≤ σL
(n,x)

, we have {σL
(n,x)

< t1} j {Sn < t1} ⊂ {N(t1) ≥ n} for x ≤ x̄. Therefore,
for any x ≤ x̄,

{σL
(n,x)

<∞} ⊂ {σL
(n,x)

≥ t1} ∪ {N(t1) ≥ n}. (A-36)

Then by (A-32) and (A-33) we have

Ex[e
−δσL

(n,x)

] ≤ Ex[e
−δσL

(n,x)

;σL
(n,x)

≥ t1] + Ex[e
−δσL

(n,x)

;N(t1) ≥ n]

≤ e−δt1 + P(N(t1) ≥ n) ≤
ǫ

2V (x̄)
. (A-37)
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It follows from (A-35) and (A-37) that for x ∈ [− p
α
, x]

V
L̂(x)(x) ≥ VL(n,x)(x)−

ǫ

2
≥ V (x)− ǫ, (A-38)

where the last inequality is due to the fact that L(n,x) is an ǫ
2 -optimal strategy.

Noting that L̂(x) ∈ Πx, the above inequality implies

sup
L∈Πx̄

VL(x) ≥ V (x), x ∈ [−
p

α
, x].

This concludes the proof. �

Proof of Theorem 3.11 It is sufficient to show that for any ǫ > 0, there exists a strategy

L
(x)

∈ Πx̄ such that

V
L
(x)(x) ≥ V (x)− ǫ for all x ∈ (− p

α
, x̄]. (A-39)

For a positive ǫ < 4V (x̄), define

∆(ǫ) =
p+ rxI{x ≥ 0}+ αxI{x < 0}

δ
ln

4V (x̄)

ǫ
, (A-40)

xn = x−
∆(ǫ)

n
, and hn =

V (xn)− V (x̄)

xn − x̄
− 1. (A-41)

It can be shown that xn ≤ x and xn → x. Since V ′(x̄) = 1, we have limn→∞ hn = 0.
Moreover, notice

lim
n→∞

(

rxn + p

rx+ p

) δn
r

I{x ≥ 0}+

(

αxn + p

αx+ p

) δn
α

I{x < 0}

= exp

{

−δ∆(ǫ)

p+ rxI{x ≥ 0}+ αxI{x < 0}

}

.

Hence we can choose a n0 such that

(

rxn0 + p

rx+ p

)

δn0
r

I{x ≥ 0}+

(

αxn0 + p

αx+ p

)

δn0
α

I{x < 0}

≤ exp

{

−δ∆(ǫ)

p+ rxI{x ≥ 0}+ αxI{x < 0}

}

+
ǫ

4V (x)
, (A-42)

and

hn0 <
ǫ

8∆(ǫ)
. (A-43)

For any x ≥ − p
α
, let L(0,x) be a ǫ

8n0
-optimal strategy given the initial reserve x, that is

VL(0,x)(x) ≥ V (x)−
ǫ

8n0
. (A-44)

Let τL denote the first time that the controlled reserve process under strategy L reaches
x̄ starting from an initial reserve below x̄.

For x ≤ x, define a sequence of strategies {L(n,x)}n≥1 recursively as follows: L(n,x) is
a strategy given the initial reserve x that the insurer pays dividends according to strategy
L(n−1,x) until the reserve reaches x for the first time (τL

(n−1,x)
), pays out a lump sum of
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x−xn0 at time τL
(n−1,x)

, and thereafter employs the strategy L(n−1,xn0 ) to the shifted process
θ
τL

(n−1,x)R.

It can be shown that for all n, τL
(n,x)

= τL
(0,x)

, and L
(n,x)
s = L

(0,x)
s for s ≤ τL

(0,x)
. Then

we have for x ∈ (− p
α
, x] and n = 1, 2, · · · ,

VL(n,x)(x) = Ex





∫ τL
(0,x)

0
e−δsdL(0,x)

s ; τL
(0,x)

< T





+Ex[e
−δτL

(0,x)

; τL
(0,x)

< T ]
(

V
L
(n−1,xn0 )(xn0) + x− xn0

)

+Ex

[∫ T

0
e−δsdL(n−1,x)

s ; τL
(0,x)

> T

]

. (A-45)

Using (A-44) for x = xn0 and x̄, (A-45) for n = 1 and the second equality in (A-41), we get

|VL(1,x)(x)− VL(0,x)(x)|

= |Ex[e
−δτL

(0,x)

; τL
(0,x)

< T ]
(

x− xn0 + V
L
(0,xn0 )(xn0)− VL(0,x)(x)

)

|

≤ |x− xn0 − V (x) + V (xn0)|+ V (xn0)− V
L
(0,xn0 )(xn0) + V (x)− VL(0,x)(x)

≤ hn0(x− xn0) +
ǫ

4n0
≤

3ǫ

8n0
, (A-46)

where the last inequality follows by the first equality in (A-41) and (A-43).
Therefore, from (A-45) we have for x ∈ (− p

α
, x] and n ≥ 2,

|VL(n,x)(x)− VL(n−1,x)(x)| ≤ Ex[e
−δτL

(0,x)

]|V
L(n−1,xn0 )(xn0)− V

L(n−2,xn0 )(xn0)|

≤ |V
L(1,xn0 )(xn0)− V

L(0,xn0 )(xn0)| ≤
3ǫ

8n0
. (A-47)

Consequently, by (A-44) and (A-47)

|V (x)− VL(n0,x)(x)| = |V (x)− VL(0,x)(x) +

n0
∑

n=1

(VL(n−1,x)(x)− VL(n,x)(x)) |

<
ǫ

8n0
+

3ǫ

8n0
≤
ǫ

2
.

Define τ̄ = inf{t > 0 : RL
(n0,x)

t > x̄}, where RL
(n0,x)

t represent the controlled reserve
process under strategy L(n0,x).

Under strategy L(n0,x), in order to exceed x̄, the controlled reserve process with initial
reserve xn0 should go from xn0 up to x̄ for at least n0 times. Note from the dynamics (2.1)
that it will take at least t0(xn0 , x̄) (defined in (3.3)) for this reserve process to reach x̄ starting
from xn0 . Therefore, τ̄ ≥ n0t0(xn0 , x̄). Consequently, it follows by (3.3) (A-40), (A-41) and
(A-42) that

Exn0
[e−δτ̄ ] ≤ E[e−δn0t0(xn0 ,x̄)] ≤

ǫ

2V (x̄)
. (A-48)

Next, we construct a strategy L̄(x) through L(n0,x): pays dividends according to the
strategy L(n0,x) before time τ̄ (the time that the reserve process reaches x for the first time),
pays out a lump sum of x̄+ p

α
at time τ̄ , and thereafter pays no dividends.

Then we have

VL̄(x)(x) = Ex[

∫ τ̄

0
e−δsdL̄s(x); τ̄ < T ] + Ex[e

−δτ̄ ; τ̄ < T ](x̄+
p

α
)

+Ex[

∫ T

0
e−δsdL̄s(x); τ̄ > T ]. (A-49)
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Notice that

VL(n0,x)(x) = Ex[

∫ τ̄

0
e−δsdL(n0,x)

s ; τ̄ < T ] + Ex[

∫ T

τ̄

e−δsdL(n0,x)
s ; τ̄ < T ]

+Ex[

∫ T

0
e−δsdL(n0,x); τ̄ > T ], (A-50)

and

Ex[

∫ T

τ̄

e−δsdL(n0,x)
s ; τ̄ < T ] ≤ E[e−δτ̄ ]V (x̄). (A-51)

Since L̄s(x) = L
(n0,x)
s for s ≤ τ̄ , it follows from (A-49), (A-50) and (A-51) that for x ∈ (− p

α
, x],

VL̄(x)(x)− VL(n0,x)(x) ≥ Ex[e
−δτ̄ ]

(

x̄+
p

α
− V (x̄)

)

≥ −Ex[e
−δτ̄ ]V (x̄) ≥ −

ǫ

2
,

where the last inequality is due to (A-48).
So L̄(x) is the desired strategy. �

Proof of Lemma 4.1
(a) Since ΛV (x) is continuous in x, A is closed.

(b) (i) To prove that B is left-open, it is sufficient to show that for any x ∈ B we can find
an h > 0 such that for any y ∈ (x− h, x), V ′(y) < 1.

Note that V ′(x) = 1 for x ∈ B and G′
x−h(y) = 1, and that p+ ryI{y ≥ 0}+ αyI{y < 0}

is increasing in y. Therefore, it follows from (3.8) that for any y ∈ (x− h, x),

LGx−h
(y) ≤ LV (x)− (λ+ δ)(V (x)−Gx−h(y)) +

λ

(

∫ y+ p
α

0
Gx−h(y − u)dF (u)−

∫ x+ p
α

0
V (x− u)dF (u)

)

. (A-52)

Noticing LV (x) < 0, Gx−h(y) = V (y) for y ≤ x − h, and limh→0Gx−h(y) → V (x) for
y ∈ (x− h, x), it follows from (A-52) that

LGx−h
(y) < 0 for small h > 0. (A-53)

This along with the fact that G′
x−h(y) ≡ 1 for y > x − h implies that Gx−h is a viscosity

super-solution to (3.7) on (x − h, x]. Then by Theorem 3.13 (ii), we have V (y) = Gx−h(y)
for all y ∈ [− p

α
, x]. As a result,

V ′(y) = G′
x−h(y) = 1, for y ∈ (x− h, x]. (A-54)

Combining (A-53) and (A-54) implies (x− h, x] ⊂ B. Therefore, B is left-open.
(ii) To prove that there exist a y such that (y,∞) ⊂ B, it is sufficient to show that we

can find a large enough y > 0 such that LGy(x) < 0 for all x > y, because if Gy(x) of this
kind is a super-solution on (y,∞) and therefore V ′(x) = G′

y(x) ≡ 1 for x > y.
Noticing that Gy(x) is nondecreasing in x, and that Gy(x) = x−y+V (y) and V (y)−y > p

α

for x > y, we obtain that for x > y > 0,

LGy(x) = p+ rx− (λ+ δ)(Gy(x) + λ

∫ x+ p
α

0
Gy(x− y)dF (y)

< p− (δ − r)x− δy − δ
p

α
< 0 for large y,
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where the last inequality follow by noticing δ > r.
The existence of y also indicates that B is not empty.

(c) Noticing that V (− p
α
) = 0, by the definition of G (3.48), we obtain GV (−

p
α
) = 0, which

implies − p
α
∈ A.

Assume that x1 > x0 > − p
α
, (x0, x1] ⊂ B and x0 /∈ B. We will show in the following that

x0 ∈ A.
If V ′(x0) = 1, then from the fact that x0 /∈ B and LV ≤ 0, we know GV (x0) = 0.

Therefore, x0 ∈ A
Now assume, on the other hand, V ′(x0) 6= 1. It follows from the fact (x0, x1] ⊂ B that

V ′(x) = 1 for all x ∈ (x0, x1], which implies

lim
x↓x0

V (x)− V (x0)

x− x0
= 1. (A-55)

Define

a = lim inf
x↑x0

V (x)− V (x0)

x− x0
.

By Lemma 3.2 we know a ≥ 1. We distinguish two cases: 1. a > 1 and 2. a = 1.
Case 1: Assume a > 1. Then for any b with 1 < b ≤ a, we have

lim sup
x↓x0

V (x)− V (x0)

x− x0
= 1 < b < lim inf

x↑x0

V (x)− V (x0)

x− x0
.

Since V is a viscosity sub-solution, by Remark 3.1 (i), it follows that there exists a contin-
uously differentiable function φ : (− p

α
,∞) → R such that V − φ reaches a maximum at x0

with φ′(x0) = b. Therefore, by Definition 3.2 (i) it follows that

max {1− b, (p + rx0I{x0 ≥ 0}+ αx0I{x0 < 0})b− (λ+ δ)V (x0)

+ λ

∫ x0+
p
α

0
V (x0 − y)dF (y)

}

≥ 0,

which implies

(p+ rx0I{x0 ≥ 0}+ αx0I{x0 < 0})b − (λ+ δ)V (x0) + λ

∫ x0+
p
α

0
V (x0 − y)dF (y) ≥ 0.

Taking limits b → 1 gives GV (x0) ≥ 0. Since GV (x) is continuous in x and GV (x) < 0 for
x ∈ (x0, x1], it can be seen that GV (x0) = 0, which implies x0 ∈ A.

Case 2: Assume a = 1. then we can find a sequence {hn} with hn ↓ 0 such that

lim
n→∞

V (x0)− V (x0 − hn)

hn
= 1. (A-56)

Define

an =
V (x0)− V (x0 − hn)

hn
− 1, and An = {x ∈ [0, hn] : V

′(x) exists and V ′(x) ≥ 1 + 2an}.

By Theorem 3.2 we know that an ≥ 0.
i) If there exists some n such that an = 0, then we have

V (x0)− V (x) = x0 − x for x ∈ [x0 − hn, x0]. (A-57)
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Otherwise, if for some x ∈ [x0 − hn, x0], V (x0)− V (x) > x0 − x, then

V (x0)− V (x0 − hn) = V (x0)− V (x) + V (x)− V (x0 − hn)

> x0 − x+ x− (x0 − hn) = hn,

which contradicts the assumption an = 0.
As a result of (A-55) and (A-57), we have V ′(x0) = 1. Therefore, GV (x0) ≥ 0 follows by

noticing x0 ∈ B. Notice that GV (x0) ≤ 0 due to the continuity of GV . Therefore, GV (x0) = 0,
implying x0 ∈ A.

ii) Suppose an > 0 for all n. Since V (x) is differentiable almost everywhere, and V ′(x), if
exists, is greater than 1, we have

an + 1 =

∫ hn
0 V ′(x)dx

hn
=

∫

An
V ′(x)dx+

∫

[0,hn]\An
V ′(x)dx

hn

≥
|An|(1 + 2an) + (hn − |An|)

hn
,

where |An| denotes the Lebesgue measure of the set An. It follows from (A-58) that |An| ≤
hn
2 → 0. Therefore we can find a sequence xn ↑ x0 such that V ′(xn) exist and 1 ≤ V ′(xn) <
1 + 2an. Consequently, limn→∞ V ′(xn) = 1.

If there exists a subsequence {xnj} with xnj ↑ x0 such that V ′(xnj) > 1, then by (3.7) we
have GV (xnj) = 0. This implies xnj ∈ A. Since A is a closed set, we conclude that x0 ∈ A.

Suppose that there is an integer n0 > 0, such that for all n ≥ n0, V
′(xn) = 1. We will

show by Proof by Contradiction that GV (x0) = 0. Assume GV (x0) < 0. Let n be large enough
such that

V (x0)− V (xn) < −GV (x0)/(λ + δ). (A-58)

Note that V (y) ≥ V (xn) + y − xn = Gxn(x) for all y ≥ xn. Then for all x ∈ [xn, x0],

GGxn
(x) = p+ rxI{x ≥ 0}+ αxI{x < 0} − (λ+ δ)Gxn(x) + λ

∫ x+ p
α

0
Gxn(x− y)dF (y)

≤ GV (x0) + (λ+ δ)(V (x0)− (V (xn) + x0 − xn))

≤ GV (x0) + (λ+ δ)(V (x0)− V (xn)) < 0, (A-59)

where the last inequality follows from (A-58).
Noting that G′

xn(x) = 1 for x > xn and Gxn(x) = Vxn(x) for x ∈ [0, xn], so by (A-59) it
follows LGxn

(x) = GGxn
(x) < 0 for all x ∈ [xn, x0]. Therefore Gxn is a viscosity super-solution

on [xn, x0].
Recalling that GV (x0) = 0, then by Theorem 3.13 (ii), we have V (x) = Gxn(x) for x ∈ [0, x0].
As a result, V (x) is differentiable at x0 and

V ′(x0) = G′
xn(x0) = 1. (A-60)

Combining (A-59) and (A-60) implies x0 ∈ B, which contradicts the fact that x0 /∈ B. There-
fore GV (x0) ≥ 0.
Since V is a viscosity super-solution and V ′(x0) = 1, from the definition of viscosity super-
solution we can see that GV (x0) = LV (x0) ≤ 0.
Consequently, GV (x0) = 0, which implies x0 ∈ A.

(d) For any x ∈ C, we have GV (x) < 0. Since GV (x) is continuous, we can find a ǫ small
enough such that

GV (y) < 0 for all y ∈ [x, x+ ǫ). (A-61)
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If for all y ∈ (x, x+ ǫ), y /∈ B, then [x, x+ ǫ) ⊂ C.
If, on the other hand, there exist an x1 ∈ (x, x + ǫ) such that x1 ∈ B, then we can find

an x0 and x1 with x0 < x1 such that x0 ∈ A and (x0, x1] ⊂ B. As x < x1 and x /∈ B, we
conclude that x0 ∈ (x, x1) ⊂ (x, x + ǫ), which along with GV (x0) = 0 is a contradiction to
(A-61). This completes the proof. �
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