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Abstract

In this paper we continue the study of the truncated conformal space approach
to perturbed boundary conformal field theories. This approach to perturbation
theory suffers from a renormalisation of the coupling constant and a multiplica-
tive renormalisation of the Hamiltonian. We show how these two effects can be
predicted by both physical and mathematical arguments and prove that they are
correct to leading order for all states in the TCSA system. We check these results
using the TCSA applied to the tri-critical Ising model and the Yang-Lee model.
We also study the TCSA of an irrelevant (non-renormalisable) perturbation and
find that, while the convergence of the coupling constant and energy scales are
problematic, the renormalised and rescaled spectrum remain a very good fit to the
exact result, and we find a numerical relationship between the IR and UV cou-
plings describing a particular flow. Finally we study the large coupling behaviour
of TCSA and show that it accurately encompasses several different fixed points.
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1 Introduction

The Truncated Conformal Space approach (TCSA) of Yurov and Zamolodchikov [1] is a
widely-used method to study the finite-size dependence of perturbed two-dimensional con-
formal field theories. It is based on truncating the infinite dimensional Hilbert space to
a finite-dimensional system on which the Hamiltonian is studied numerically.1It has been
known for a long time that the method has various convergence problems which can reduce
its effectiveness [4]. The principal problems are a renormalisation of the coupling constant,
a renormalisation of the energy scale and differences between ground state contributions in
different sectors, all of which depend on the size of the truncated system (we shall always cut
off the size of system by taking all states whose unperturbed energy above the ground state is
less than or equal to a given number, which we shall call the truncation level). In a previous
paper we showed how the renormalisation of the coupling constant in perturbed boundary
conformal field theories could be studied using a variant of standard perturbed-conformal field
theory methods [12]. In this paper we extend this study to the second effect, and show how
the leading energy scale renormalisation is an overall multiplicative renormalisation which
can be considered equivalent to a renormalisation of the size of the system. We find ‘physical’
arguments based on the operator product expansions and also more rigorous arguments based
on an analysis of the eigenvalues of the perturbed Hamiltonian and show that these give iden-
tical results. We test our results using two integrable conformal field theories, the tri-critical
Ising model and the Yang-Lee model, as in both cases the finite-size spectrum has been found
using TBA methods and this provides an accurate quantitative check of the proposed results.

In the next section we briefly review the case of the tri-critical model to illustrate the
renormalisation issues to be solved and to find numerical estimates for the coupling renormal-
isation and energy rescaling. We then show that these have scaling forms and find numerical
estimates for the associated exponents.

In the third section we show how these can be derived, to one loop order, from considera-
tions of the renormalisation of the perturbed action and in the fourth section show how these
can be proven, to leading order, for all energy levels, from analysis of the eigenvalues of the
perturbed Hamiltonian. In the subsequent two sections we check these predictions against
the numerical data in the tri-critical Ising model and the Yang-Lee model

In section 8 we consider the case of an irrelevant (non-renormalisable) perturbation and
in section 9 we consider the flows beyond the fixed points and speculate on the exponents
that have been found numerically. Finally in section 10 we present our conclusions.

2 The TCSA approach and its errors

2.1 The TCSA approach

We start with a CFT defined on a strip 0 ≤ y ≤ L of width L in the upper half plane with
coordinate z = x+ iy. We take the strip to have conformally invariant boundary conditions
so that the system is conformally invariant, the Hilbert space carries an action of the Virasoro
algebra and decomposes into a direct sum of representations of the Virasoro algebra. The
representations occurring depend on the boundary conditions on the strip.

1In this paper we study the original form due to Yurov and Zamolodchikov, not the revised version of [2, 3].
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The unperturbed CFT Hamiltonian generating translations along the strip is

H =

∫ L

0
Txx

dy

2π
. (2.1)

We will map the strip to the upper half plane with coordinate w = exp(πz/L) in terms of
which the CFT Hamiltonian is

H =
π

L

(

L0 −
c

24

)

, (2.2)

where L0 is the zero mode of the Virasoro algebra.
We are interested in perturbations by one or more boundary fields φi(x) living on the

bottom edge of the strip, y = 0. We take these to be quasi-primary fields of conformal
dimension hi. If the coupling to these fields are µi then the perturbation is given by an
addition to the action

δS =

∫
∑

i

µiφi(x) dx . (2.3)

When mapped to the upper half plane this gives the perturbed Hamiltonian as

H =
π

L

[
(

L0 −
c

24

)

+
∑

i

µi

(
L

π

)yi

φi(1)

]

, (2.4)

where yi = 1−hi. Note that (2.4) is only correct if the fields φi are primary; there are correc-
tions if they are quasi-primary but not primary. We will normally consider the dimensionless
operator

H =

(
L

π

)

H =
(

L0 −
c

24

)

+
∑

i

λi
πyi

φi(1) , (2.5)

where λi = µiL
y are dimensionless coupling constants.

The TCSA approach is to restrict this Hamiltonian to a finite dimensional space of ex-
citation level n or lower. If we take the projector onto this space to be Pn then the TCSA
Hamiltonians are

Hn =
(

L0 −
c

24

)

+
∑

i

λi
πyi

Pnφi(1)Pn . (2.6)

These Hamiltonians can be diagonalised numerically and their eigenvalues and eigenstates
form the TCSA approximations to the perturbed system. Any quantity that can be considered
in the perturbed system can also be considered in the TCSA system; the only question is how
good the approximation is, and whether the dependence on the truncation level is either small
or can be estimated efficiently. In the next section we present the two leading truncation effects
— the renormalisation of the coupling constant and the rescaling of the energy levels — in
the case of the tri-critical Ising model.

2.2 The tri-critical Ising model numerical results

We take as our example model example the boundary tri-critical Ising model on a strip.
We shall review the boundary conditions and their flows in section 5; for the moment it is
sufficient to know that, amongst others, there are conformal boundary conditions labelled
(11), (21) and (12), and the (12) boundary condition can be perturbed by a field of weight
3/5 with the following flows:

(11)←− (12) −→ (12) . (2.7)
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The spectrum of the Hamiltonian on a strip with an unperturbed (11) and a perturbed
(12) boundary condition has also been analysed from the TBA approach by Feverati and
collaborators in [7]. Using the results in [21] and [22, 23], we can relate the TBA and conformal
perturbation theory parameters and so we can compare the TCSA spectrum to the exact
perturbed conformal field theory spectrum for this system.

The most immediate difference is that there is an overall shift in the energy levels. For
finite perturbations for which there are no divergences in the perturbation expansion this
corresponds to a measurable free energy per unit length. In this case the perturbation theory
is divergent and the overall shift in the energies is not meaningful: in TCSA it depends on
the truncation level and does not converge to a finite value. As a consequence, in figure 1 we
just show the difference between the ground state and the excited states - the energy gaps:
in figure 1(a) we give the gaps as calculated using the TBA method, and in figure 1(b) the
TCSA gaps.

-2 -1 0 1 2

2

4

6

8

(a) TBA data

-2 -1 0 1 2

2

4

6

8

(b) TCSA data from truncation level 14

Figure 1: The energy gaps for the strip with boundary conditions (11) and (12) + λφ(13) as
given by the TBA and TCSA methods plotted against λ.

On inspection of figure 1, one can also discern the two other effects. In the TCSA plot,
there is an apparent convergence of many levels at or near λ = 2. This corresponds to a fixed
point of the flow where the (12) boundary condition has reached its (21) fixed point. This
is only reached at λ = ∞ in the TBA flow. The two couplings are related by a non-trivial
renormalisation. Less obvious but still measurable is the overall rescaling of the energy levels.
At λ = −2 the TCSA spectrum has almost regrouped into equally-spaced levels but the
spacing is approximately 15% larger than the (correct) spacing in the TBA spectrum. This
effect grows markedly with increasing |λ|.

We can find numerical estimates for the renormalisation (of the coupling constant) and
rescaling (of the energy scale) by comparing the TCSA and TBA data. Firstly we consider
only the energy gaps to remove the unphysical ground state energy contributions in the TCSA
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scheme. Next, since both the overall scale and the value of the coupling are different, we
consider the ratio of two gaps to find a quantity which is independent of the energy rescaling
and use this to determine the effective coupling constant. We can then use this in turn to
find the energy rescaling.

If we denote the coupling constant in TCSA by λn and that in the TBA by λ∞, and the
nth energy gaps by ∆n

n and ∆n
∞

respectively, then we can calculate

f∞(λ∞) =
∆2

∞

∆1
∞

, fn(λn) =
∆2

n

∆1
n

, (2.8)

We can then find the effective (TBA) coupling corresponding to a given TCSA coupling from
the function gn defined by

λ∞ = f−1
∞

(fn(λn)) = λngn(λn) , (2.9)

and the energy rescaling rn(λn) can then be found from

rn(λn) =
∆1

n(λn)

∆1
∞
(λ∞)

. (2.10)

In figure 2 we plot these functions for the flows starting from the (12) boundary condition for
three different truncation levels. It is the aim of this paper to show how these two effects can
predicted from physical and mathematical arguments.

-2 -1 1 2

-1.0

-0.5

0.5

1.0

1.5

2.0

2.5

(a) The renormalised coupling constant λngn(λn)
plotted against λn

-2 -1 1 2

1.1

1.2

1.3

1.4

(b) The energy rescaling function rn(λn) plotted
against λn

Figure 2: The numerical coupling constant renormalisation and energy rescaling found for
the tri-critical Ising model at truncation levels 6 (red, solid), 14 (green, dotted) and 22 (blue,
dashed).
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3 Physical Arguments

3.1 The TCSA renormalisation group

In [12], we presented an argument deriving the leading term in the coupling constant renormal-
isation based on standard considerations of the partition function and the operator product
expansion of the perturbing field. We repeat this argument here in a little more generality,
both as a derivation of the coupling constant renormalisation which we shall check in the
next section, but also to show that this does not in fact give the leading term to the energy
rescaling, as might have been thought was the case.

We consider a strip geometry of width L with complex coordinate z = x + iy with 0 ≤
y ≤ L. We take a general boundary perturbation of the form

∑

i

µiφi(x) , (3.1)

where µi are the couplings to the boundary fields φi which have conformal weights hi. We
define yi = 1− hi.

We consider a truncation to level n which we can treat using a projection operator Pn

onto states of excitation level n or below. We can use the projection operator to restrict
the perturbation to the truncated Hilbert space so that the TCSA approximation to the
perturbation 3.1 is then given by

∑

i

µi(PnφiPn) . (3.2)

The effect of the perturbation is to introduce the following operator

P exp

(

−
∫

∞

x=−∞

∑

i

µi(Pnφi(x)Pn) dx

)

, (3.3)

into all expectation values, where P is path ordering. Mapping the strip to the upper half
plane by w = exp(πz/L), this operator becomes

P exp

(

−
∫

∞

x=0

∑

i

λi(Pnφi(x)Pn)
dx

(xπ)yi

)

, (3.4)

where λi = µiL
yi is the dimensionless coupling constant.

Expanding this exponential out to second order we get

1 −
∑

i

λi

∫
∞

x=0
Pnφi(x)Pn

dx

(xπ)yi

+
∑

jk

λjλk

∫
∞

x=0

∫ x

x′=0
Pnφj(x)Pnφk(x

′)Pn
dx

(xπ)yj
dx′

(x′π)yk
+ O(λ3) . (3.5)

We define the TCSA renormalisation group by the requirement that the partition function
is unchanged when the truncation level is increased. This introduces a level dependence into
the coupling constants, which we now denote by λi(n).
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Due to translation invariance, we do not need to compare the whole expression in equation
3.5, instead we can just compare the integrand with respect to x, at x = 1, which is

∑

i

λi(n)

πyi
Pnφi(1)Pn −

∑

jk

λj(n)

πyj
λk(n)

πyk

∫ 1

x′=0
Pnφj(1)Pnφk(x

′)Pn
dx′

(x′)yk
+O(λ3) . (3.6)

We can further simplify matters by assuming that the Hilbert space contains a vacuum state
|0〉 and a state |φi〉 corresponding to the field which satisfy

〈φi|φj(1)|0〉 = δij , 〈φi|φj(1)φk(x)|0〉 = (1− x)xi−xj−xkCijk . (3.7)

Sandwiching equation 3.6 between the states 〈φi| and |0〉, we get

λi(n)−
∑

jk

λj(n)λk(n)

∫ 1

x=0
〈φi|φj(1)Pn φk(x)|0〉(πx)yi−yj−yldx+O(λ3) . (3.8)

This must be invariant under changes in n so that two second order in λ. Using the fact that
〈φk|φi(1)(Pn+1−Pn)φj(x)|0〉 is the coefficient of xn+1 in the expansion of (1−x)hi−hj−hk and
is equal to

Γ(hj + hk − hi + n+ 1)

Γ(hj + hk − hi)Γ(n+ 2)
=

nyi−yj−yk

Γ(hj + hk − hi)
(1 +O(1/n)) , (3.9)

we find the TCSA renormalisation group equations

n
dλi
dn
≃ n(λi(n + 1)− λi(n)) =

∑

jk

λjλk(nπ)
yi−yj−yk

Cijk

Γ(hj + hk − hi)
+O(λ3) . (3.10)

3.2 The coupling constant renormalisation

In the case of the perturbation by a single field with self-coupling C, the TCSA renormalisation
group equation (3.10) becomes

n
dλ

dn
=

C

Γ(h)(nπ)y
λ2 +O(λ3) , (3.11)

with solution

λ(∞) =
λ(n)

1 − C

yΓ(h)(nπ)y
λ(n)

. (3.12)

There are two predictions from this calculation - firstly the general prediction that the coupling
renormalisation has a particular scaling form, namely that the function gn in equation 2.9
has the form

gn(x) = g(xn−y) , (3.13)

and secondly a particular prediction for the 1-loop behaviour,

g(x) =

(

1− Cx

yΓ(h)π−y

)
−1

+O(x2, n−2y) (3.14)

We test these predictions for the tri-critical Ising model in section 5.1. We will find that
the functions log(gn(−xny)) are indeed almost identical for various values of n and in good
agreement with the prediction, confirming both the prediction of the scaling form and the
approximate numerical expression for this scaling function.
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3.3 The energy rescaling

We can try to apply the same arguments to derive the energy rescaling, assuming that this
too comes from the operator product of the perturbing fields giving a contribution to the
bare action (corresponding to the kinetic term in a standard Lagrangian theory). The Bare
Hamiltonian is (π/L)(L0 − c/24). The important part is the term L0 which is a mode of the
energy-momentum tensor T (z). This field appears in the operator product of the boundary
perturbing field as

φ(z) φ(w) ∼ 1

(z − w)2h +
C

(z − w)hφ(w) +
h/c

(z − w)2h−2
T (w) + . . . , (3.15)

T (z) φ(w) ∼ 2h

(z − w)2φ(w) +
1

z −wφ
′(w) + . . . , (3.16)

where we have also included the OPE of T with the perturbing field.
If we denote the coupling to the perturbing field by λ and to the energy momentum tensor

on the boundary by λT we then have hT = 2, yT = −1 and we find the TCSA renormalisation
group equations become

n
dλ

dn
=

C

(nπ)yΓ(h)
λ2 + (4hnπ)λλT + . . . , (3.17)

n
dλT
dn

=
2h/c

(nπ)1+2yΓ(−2y)λ
2 + . . . . (3.18)

To find the leading dependence on the induced coupling λT we can take λ to be constant and
using λT (∞) = 0, find

λT (n) = −
∫

∞

n

dλT
dn

dn

= − 2h/c

Γ(−2y)(1 + 2y)

λ2

(nπ)2y+1
+O(λ3) . (3.19)

The addition of the term ∫

µTT (x)dx , (3.20)

to the action will give the following term to the Hamiltonian (after mapping from the strip
to the upper half plane)

δH = µTT (1) =
π

L

(

− 2h/c

Γ(−2y)(1 + 2y)

λ2

(nπ)2y
1

n

(

L0 − c/24
)

+ other modes

)

, (3.21)

so that the Hamiltonian becomes

H + δH =
π

L

(

1− 2h/c

Γ(−2y)(1 + 2y)

λ2

(nπ)2y
1

n

)(

L0 − c/24
)

+ . . . , (3.22)

This gives the rescaling function as

rn(λ) = 1− 2h/c

Γ(−2y)(1 + 2y)

λ2

(nπ)2y
1

n
+ . . . . (3.23)
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Unfortunately, this has the wrong n-dependence - it is one order of n too small. If we plot
log(rn(λ)−1) against log(n) for fixed λ for the functions shown in figure 1(b), in the tri-critical
Ising model, we find that the prediction for the leading exponent

log(rn(λ)− 1) = α log(n) + . . . , (3.24)

is approximately α = −0.85, which is close to −2y = −0.8 and far from −1− 2y = −1.8. As
a consequence, we deduce that the coupling of the perturbing fields to the energy-momentum
tensor is not the leading source of the correction to the energy rescaling function.

Instead we look to the constant ground-state energy contribution coming from the coupling
to the identity operator. As we show in the next section, this is actually not a constant because
of the presence of the projector Pn and this can also give a correction proportional to the
bare Hamiltonian.

3.4 Corrections from the identity operator

In perturbation theory where the perturbing field has a weight greater than 1/2 one normally
ignores the ground state energy as it is a divergent unphysical quantity. In this case the
TCSA cutoff makes the contribution finite, and further more, the presence of the projector
Pn means it is not constant.

We are interested in the correction to the coupling to the identity operator which arises
when the expression 3.6 acts on a state of excitation level E. If we denote this state by |E〉
and the coupling to the identity by λ1(E,n), then we are interested in the expression

λ1(E,n)

π
− λ(n)2

π2y

∫ 1

x′=0
〈E|φ(1)Pnφ(x

′)|E〉 dx
′

(x′)y
(3.25)

Requiring that this be invariant as we change the truncation level n, we get

dλ1(E,n)

dn
≃ (λ1(E,n + 1)− λ1(E,n))

=
λ(n)2

π2y

∫ 1

x=0
〈E|φ(1)(Pn+1 − Pn)φ(x)|E〉

dx

(x)y
, (3.26)

where we only take the contribution to the OPE on the right hand side that comes from the
identity channel. The projector (Pn+1 − Pn) picks out the state at level n + 1 in the action
of the field φ(x) on the state |E〉. The action of the field φ(x) on the state |E〉 has a mode
expansion

φ(x)|E〉 =
∑

φmx
m−h|E〉 , (3.27)

so that the term at excitation level n is just the coefficient of xn+1−E . From the operator
product expansion (3.15), the coefficient of xn+1−E in 〈E|φ(1)φ(x)|E〉 is

Γ(n+ 1− E + 2h)

Γ(n+ 2− E)Γ(2h)
, (3.28)

This means that the leading contribution to the RG equation (3.26 for the coupling λ1 is

dλ1(E,n)

dn
≃ λ(n)2

π2y

∫ 1

x=0

Γ(n+ 1− E + 2h)

Γ(n+ 2− E)Γ(2h)
xn+1−E dx

(x)y

9



≃ λ2

π2y
(n− E)2h−2

Γ(2h)
+ . . .

≃ λ2

(nπ)2y
1

Γ(2h)

(

1 + 2y
E

n
+ . . .

)

(3.29)

The first term is the constant contribution which we shall now ignore; the second is the
excitation-level dependant term which we are interested in. We can integrate equation (3.29)
using the boundary condition λ1(E,∞) = 0, to find

λ1(E,n)|E = −
∫

∞

n

λ2

π2y
1

Γ(2h)
2yEn−2y−1dn

=
λ2

(nπ)2y
1

Γ(2h)
E . (3.30)

We can now replace the excitation level E by the operator (L0− c/24), as E is approximately
the eigenvalue of (L0 − c/24), and we finally find we have generated a term proportional to
the bare Hamiltonian. We have two equivalent ways of understanding this term which lead
to the same expression for the energy rescaling rn(λ)

Firstly, we can see that this coupling will lead directly to a change in the Hamiltonian;
the new Hamiltonian is

π

L

[

(1 +
λ2

(nπ)2y
1

Γ(2h)
)(L0 − c/24) +

λ

πy
φ(1)

]

, (3.31)

giving the energy rescaling function as

rn(λ) = 1 +
λ2

(nπ)2y
1

Γ(2h)
+ . . . , r(x) = 1 +

x2

π2y
1

Γ(2h)
+ . . . . (3.32)

This has the correct n dependence (in agreement with the numerical data) and is also a very
good fit to the actual rescaling function as we see in section 5.2.

An alternative viewpoint of the energy rescaling function is that it represent an effective
change in the geometry of the system. Coordinate transformations are implemented in CFT
by changes to the action (see e.g. [13]). The coordinate change xµ → αµ +αµ corresponds to
the change in the action

δS = − 1

2π

∫

Tµν∂
µαν d2x . (3.33)

The energy-dependant correction to the identity operator we have just calculated can also
be put in this form. On the upper-half-plane, with complex coordinate w = r exp(iθ), the
correction is

δS = − 1

π

∫

λ1(E,n)
dr

r
= − λ2

(nπ)2yΓ(2h)

∫

L0
dr

r
. (3.34)

Firstly, we note that on the upper half plane

L0 =
π

L

∫ π

θ=0
(w2T (w) + w̄2T̄ (w̄))

dθ

2π
. (3.35)

Combining equations (3.34) and (3.35) and transforming to the strip with coordinate z =
x+ iy, the correction to the action becomes

δS = − λ2

(nπ)2yΓ(2h)

∫

Txx
dxdy

2π
, (3.36)
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which in turn corresponds to the change in coordinates

(
x
y

)

→
(

x
(

1 + λ2

(nπ)2yΓ(2h)

)

y

)

=

(
rn(λ)x
y

)

. (3.37)

If we consider the theory on a strip of length R then this change in coordinates is an effective
increase in the length by a factor rn(λ). To the order in λ to which we are working, this is
equivalent to a reduction in the strip width by the same factor and consequently a rescaling
of the eigenvalues of the Hamiltonian by the same factor, rn(λ), exactly in accordance with
equation (3.32).

4 Mathematical Arguments

It is also possible to derive the coupling constant renormalisation and energy rescaling by
examining the lowest three eigenvalues of the perturbed, truncated Hamiltonian directly.
This gives exact expressions in terms of integrated four-point functions of the conformal
field theory. We can then find the large-n behaviour of these eigenvalues by a saddle-point
approximation. It turns out that these are given in terms of the crossed four-point functions
and the leading large-n behaviour is given by the leading terms in the crossed four-point
functions, which are in turn given by the operator product expansion coefficients. In this way
we see that the “physical” arguments of the previous section are indeed correct. Furthermore,
we can show that the corrections we have found are the leading order corrections for all the
eigenvalues of the perturbed Hamiltonian, not just the lowest three.

We start from the expression (2.6) for the dimensionless TCSA Hamiltonian:

Hn = (L0 −
c

24
) + λ̃Pnφ(1)Pn . (4.1)

We have introduced λ̃ = λπ−y for notational convenience.
For simplicity we consider a case where the Hilbert space is a single highest weight rep-

resentation of the Virasoro algebra with conformal weight H, and that the two lowest level
states are

|ψ〉 , L−1|ψ〉 . (4.2)

We will assume that the the energy-rescaling and coupling constant renormalisation take the
forms (3.13) and

g(x) = 1 + bπ−yx+O(x2, n−2y) , r(x) = 1 + aπ−2yx2 +O(x3, n−3y) . (4.3)

We also assume that the first energy gap takes the exact form

∆1(λ) = E1(λ)− E0(λ) = 1 + αλ̃+ βλ̃2 +O(λ3) , (4.4)

so that the TCSA approximation at truncation level n is given by

∆n
1 (λ) = r(λn−y)∆1(λg(λn

−y))

= 1 + αλ̃+ λ̃2(β + an−2y + bαn−y) +O(λ3, n−3y) . (4.5)
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This means that we can find the coefficients a and b appearing in the rescaling and renor-
malisation functions (4.3) from the n dependence in the second order term in the first energy
gap. From the physical arguments of the previous section, we expect

a =
1

Γ(2h)
, b =

C

yΓ(h)
. (4.6)

By standard perturbation theory, we find the following expressions for the ground state
and first excited state energies, to second order:

E0 = H + λ̃C ′ − (λ̃C ′)2
∫ 1

0
(F 0 − 1

zh
)
dz

zy
,

E1 = (H + 1) + λ̃C ′

(

1 +
(h− 1)h

2H

)

+(λ̃C ′)2
[
h2

2H
−
∫ 1

0

dz

zy

(

F 1 − h2/(2H)

z2−y
− (2H + h(h− 1))2

(2H)2z1−y

)]

. (4.7)

Here C ′ is the boundary coupling constant in the operator product expansion

φ(x)|ψ〉 = C ′

xh
|ψ〉+ . . . , (4.8)

and the function F 0 is the four point chiral block

F 0(z) = ψ

φ

1

ψ

φ

z ψ = z−h(1 + . . .) , (4.9)

that appears in the boundary two-point function on the strip. Since we have chosen boundary
conditions for which the Hilbert space of the model on the strip has only a single representation
with highest weight |ψ〉, the boundary two point function is given as the product of the
structure constants and the single chiral block with the representation ψ in the intermediate
channel:

〈φ(1)φ(z)〉strip = 〈ψ|φ(1)φ(z)|ψ〉 = (C ′)2F 0(z) . (4.10)

F 1 is the function that appears in the two point function of the field φ(z) in the first excited
state,

〈ψ|L1φ(1)φ(z)L−1|ψ〉
〈ψ|L1L−1|ψ〉

= (C ′)2F 1(z) ,

F 1(z) =
1

2H

{[

z(z − 1)
d

dz
+ 2zh− 1

] [

(z − 1)
d

dz
+ 2h

]

+ 2H

}

F 0 . (4.11)

If h, the conformal dimension of the perturbing field, is greater than or equal to 1/2 then the
integrals in the expressions (4.7) diverge, but their difference, the energy gap ∆1, is finite.
We can read off the coefficients α and β that appear in (4.4) as

α =
h(h − 1)

2H
C ′ , (4.12)

β = (C ′)2
{
h2

2H
−
∫ 1

0

dz

zy

[(

F 1 − h2/(2H)

z2−y
− (2H + h(h− 1))2

(2H)2z1−y

)

−
(

F 0 − 1

zh

)]}

(4.13)
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These are the exact coefficients in the perturbative expansions of the energy gap; we are
interested in the n-dependence in the TCSA approximation (4.5). The n-dependence comes
from replacing the functions F 0 and F 1 in (4.13) by the TCSA truncations. We see that α
is independent of n but β does depend on n; we shall denote the TCSA truncation by β(n)
and we expect from (4.5) that

β(n) = β + an−2y + bαn−y +O(n−3y) . (4.14)

As before, in section 3.4, the TCSA truncations of the functions F 0 and F 1 come from
restricting their Taylor expansions to include only modes up to power zn−h. It is easier
to analyse the change in the functions as the TCSA level is increased than to find the n-
dependence directly, so we consider the change in β given by the taking just the coefficient of
zn+y in the integrand of (4.13)

dβ

dn
≃ β(n + 1)− β(n) = (C ′)2

n

∮
dz

2πizn+1

[

zh(F 0 − F 1)
]

. (4.15)

The contour in (4.15) is a small circle around the origin. The function zh(F 1 − F 0) is single
valued around the origin but has a cut from z = 1 to z = ∞, and can be expanded in
increasing powers of (1− z)−1. We use the result that

∮
dz

2πizn+1
(1− z)−α =

Γ(n+ α)

Γ(α)Γ(n + 1)
=
nα−1

Γ(α)
(1 + O(1/n) ) , (4.16)

to see that the dependence of the function (4.15) on n is determined by the expansion of the
integrand in powers of (1 − z). The expansion of F 0 in (1 − z) is determined by taking the
alternative conformal block expansion of the boundary two point function:

(C ′)2F 0(z) =
ψ

φ φ

ψ
id + CC ′

ψ

φ φ

ψ
φ + . . .

= (1− z)−2h
{
1 +O(1− z)2

}
+ CC ′(1− z)−h {1 +O(1− z)} + . . .

(4.17)

The further terms in (4.17) correspond to further fields in the operator product expansion of
φ(x) with itself. We assume that these are less singular than the two shown, as is the case for
perturbations by the unitary minimal model field φ13. Calculating the integral (4.15) we get

dβ

dn
=

2(h− 1)

Γ(2h)
n−2y−1 + CC ′

h(h − 1)

2HΓ(h)
n−y−1 + . . . , (4.18)

where it is worth noting that the leading term which one would expect to have dependence
n2h−2 = n−2y has zero coefficient and the term in n−2y−1 is the sub-leading term. We can
now integrate (4.18) to find

β(n) = β(∞)−
∫

∞

n

dβ

dn
dn

= β(∞) +
1

Γ(2h)
n−2y + CC ′

h

2HyΓ(h)
n−y + . . . . (4.19)
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This exactly agrees with the expected form (4.5), so that the rigorous mathematical derivation
of the leading n-dependence of the TCSA approximation to the first energy gap agrees with
the heuristic derivation of the coupling constant renormalisation and energy rescaling from
physical arguments.

It is important to note that these effects are independent of the representation ψ chosen,
and so, in particular, they should apply to all of the flows considered by Feverati et al.

It is in fact possible, by considering the effect of replacing the state L−1|ψ〉 by suitable
states at arbitrary levels, to extend this calculation to cover all energy gaps, not just the first
energy gap. This means that if ∆n

i (λ) is the TCSA approximation to the i-th energy gap,
then one can prove that

∆n
i (λ) = r(λn−y)∆i(λg(λn

−y)) +O(λ3) , (4.20)

where the functions r and g are those given in (4.3) with coefficients (4.6).

5 Checks in the tri-critical Ising model

As mentioned before, we shall perform most of our checks in the tri-critical Ising model
because the excited state spectra of the strip with a perturbed boundary condition has been
studied in detail using the TBA approach by Feverati et al. [7, 8, 9] allowing us to compare
the TCSA results with the ‘exact’ TBA spectrum. The tri-critical Ising model is a unitary
conformal field theory with central charge 7/10 and the Virasoro algebra has six unitary
highest weight representations listed in table 1. The model has six fundamental, or “Cardy”,
conformally invariant boundary conditions [10, 11] listed in table 1. These can be labelled
either by representation of the Virasoro algebra or by the allowed values of the boundary
spins in its realisation as a spin-1 Ising model. The boundary flows were first given by Affleck
in [5] and are shown in figure 3.

Virasoro label (11) (21) (31) (12) (13) (22)

Conformal weight 0 7
16

3
2

1
10

3
5

3
80

Boundary spins (−) (0) (+) (−0) (0+) (−0+) = (d)

Boundary fields (11) (11), (31) (11) (11), (13) (11), (13) (11), (13), (12), (31)

Table 1: The representations of the Virasoro algebra in the tricritical Ising model and prop-
erties of the corresponding conformal boundary conditions

From these boundary conditions and their flows one can easily construct superpositions of
boundary conditions and further flows using the action of topological defects [6]. In the case
in hand, the topological defects and the boundary conditions are labelled by representations
of the Virasoro algebra, and both the action of the defects on the boundary conditions and
the representation content of the strip Hilbert space are given in terms of the fusion of
representations. If we denote the representations of the Virasoro algebra by a, b etc, the
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Figure 3: The space of boundary flows in the tricritical Ising model

defects by Da and the boundary conditions by Ba then the defects act as

Da ·Bb = Ba∗b =
∑

c

Nab
cBc , (5.1)

where Nab
c are the Verlinde fusion numbers. Likewise, the representation content of a strip

with conformal boundary conditions a and b, which we denote H(a,b) is

H(a,b) = ⊕cNab
cLc , (5.2)

where La is the highest weight representation with label a. The commutativity of the fusion
algebra means that the strip with boundary conditions (a, b∗c) has the same Hilbert space as
the strip with boundary conditions (b∗a, c), which we can interpret as the statement that the
action of a defect of type b on either of the two boundary conditions a or c leaves the Hilbert
space unchanged. This means that the six separate flows considered by Feverati et al. can
now be group into three pairs which can be found as the spectrum of the strip with the basic
set of flows (2.7) on one edge and one of the three ‘fixed’ conformal boundary conditions (r1)
on the other. By considering the second boundary conditions as the action of the defect D(r1)

on the (11) boundary condition, they have alternative interpretations as the spectra of strips
with perturbed boundary conditions of type (12), (13) and (22) coupled with an undeformed
(11) boundary condition on the second edge as we show in table 2.

5.1 The coupling constant renormalisation

In the tri-critical Ising model we first consider the renormalisation of the coupling λ of the
perturbing field φ3/5 which generates the flows

(11)
−λφ←− (12)

+λφ−→ (21) . (5.3)

We recall that there are two predictions from this calculation - firstly the general prediction
that the coupling renormalisation has a particular scaling form, namely that the function gn
in equation 2.9 has the form

gn(x) = g(xn−y) (5.4)
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Spectral flow Strip configuration 1 Strip configuration 2

(11)← (12)→ (21) (11; 11) ← (12; 11) → (21; 11) (11; 11) ← (12; 11) → (21; 11)
(31)← (13)→ (21) (31; 11) ← (13; 11) → (21; 11) (11; 31) ← (12; 31) → (21; 31)
(21)← (22)→ (11)+(31) (21; 11) ← (22; 11) → (11+31; 11) (11; 21) ← (12; 21) → (21; 21)

Table 2: The possible interpretations of the flows considered by Feverati et al. Configuration
one has the boundary condition (11) on one side of the strip; configuration two has a fixed
boundary condition of type (r1) on one side and the basic flow (11) ← (12) → (21) on the
other.

and secondly a particular prediction for the 1-loop behaviour,

g(x) =

(

1− Cx

yΓ(h)π−y

)
−1

+O(x2, n−2y) (5.5)

The values for the tri-critical Ising model are

C = −Γ(−3
5)Γ(

2
5 )

1/2

Γ(15)Γ(−6
5 )

1/2
= 0.544542... , h = 3/5 , y = 2/5 . (5.6)

For the TCSA approach, we need to specify two boundary conditions. On one we of course
take the perturbed boundary conditions (5.3); on the other we can take any of the “fixed”
boundary conditions (r1) and we will obtain one of the cases investigated by Feverati et al.
For simplicity, we start with the boundary condition (11) on the other. For the flow with
negative λ, that is for (11) ← (12), we plot the functions log(gn(−xny)) against log(−x)
for several values of n together with the 1-loop prediction for log(g(−x)) in equation (5.5).
These are shown in figure 4(a) We see that the functions log(gn(−xny)) are indeed almost
identical for various values of n and in good agreement with the prediction, confirming both
the prediction of the scaling form and the approximate numerical expression for this scaling
function. For positive values of λ, we plot log(gn(xn

y)) against log(x) for the same values of
n, again together with the 1-loop prediction for log(g(x)) in equation (5.5) in figure 4(b) with
the same results for small values of λ.

The scaling form does clearly break down for larger values of λ positive, where the func-
tions gn(xn

y) have n-dependent maxima at n-dependent values of x. This corresponds phys-
ically to the boundary condition approaching close to the (21) fixed point but then moving
away in the direction of the (13) fixed point. Presumably the flow in this region is governed
by the critical exponents around the (21) fixed point and different arguments are required to
analyse this behaviour, but we can make some suggestions about the energy-level-dependence
of the position of the fixed point, which we do later in this section.

Finally we can check whether the coupling constant renormalisation and energy re-scalings
depend on the second boundary condition on the strip. In figure 5(a) we present the coupling
constant renormalisation as calculated from the three different choices of second boundary
condition, (11), (21) and (31). We see that, modulo numerical inaccuracies, the three different
TCSA strip configurations give the same coupling constant renormalisation, as would be
expected on physical grounds, and that this is in agreement wit the 1-loop calculation.
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(a) The scaling functions log gn(−xn
y) and the pre-

diction for log(g(−x)) plotted vs. log(−x) i.e. for
negative coupling constant
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tion for log(g(x)) plotted vs. log(x) for positive cou-
pling constant

Figure 4: The numerical coupling constant renormalisation found for the tri-critical Ising
model with (11) boundary condition on the other edge, for truncation levels 8 (◦) 15 (•) and
22 (�) together with the 1-loop predictions (3.14) shown as a solid line.

5.2 The energy rescaling

We can also check the prediction 3.32 for the form of the energy rescaling in the tri-critical
Ising model. This is shown in figure 5(b) where log(r(−x)) is plotted together with the
numerical estimates for log(rn(−xny)) for various different truncation levels and for different
choices of the non-perturbed boundary condition. This confirms both the scaling form of rn
and also the numerical coefficient calculated in this section.

6 Checks in the Yang-Lee model

The Lee-Yang model two conformal boundary conditions which are connected by an integrable
boundary flow which has been studied in great detail [14]. The model is nonunitary and the
boundary field generating the boundary flow has conformal weight −1/5, which means that
the perturbation is UV finite but IR divergent. Since h = −1/5, y = 1 − h = 6/5 and
consequently the leading corrections from truncation errors, which are power series in n−y,
decay very rapidly and the TCSA quickly becomes very accurate. The truncation does still
have an effect, of course, and the accuracy of the numerical method allows us to check the
predictions for the coefficients of λ2 in the first and second energy gaps. The results are shown
in 6, where we show the coefficients extracted from the TCSA method and also the prediction
based on the two leading terms in n−y. We see very good agreement so that the leading terms
do indeed give the correct behaviour. We have also checked this in the tri-critical Ising model
where we also get good agreement, but the corrections from the terms in n−3y are larger.
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(a) The TCSA coupling constant renormalisation
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critical Ising model and choices of second boundary
condition (11) = (−), (◦, level 22), (21) = (0) (•,
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the 1-loop prediction (3.14) shown as a solid line.
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(b) The energy rescaling function log rn(−xn
y) and

the prediction for log(r(−x)) plotted vs. log(−x) for
negative coupling for the flow (11; 11) ← (12; 11) for
truncation levels 8 (◦) 15 (•) and 22 (�).

Figure 5: The coupling constant and energy rescaling functions

We have used the following expression for the second energy level in the Lee-Yang model,
which is valid for any system where the representation ψ of conformal weight H is degenerate
at level 2 and has only a single state at that level which we have chosen to be L−2|ψ〉:

E2 = (H + 2) + λ̃C ′

(

1 +
4h(h−1)
N

)

+ (λ̃C ′)2
[
2h2

N +
h2(2h−1)2

2HN −
∫ 1

0

dz

zy

(

F 2− 4h2

N z3−y
−h

2(2h − 1)2

(2HN )z2−y
−(4h(h−1)+N )2

(N )2z1−y

)]

,

F 2 =
1

N

([

z(z2 − 1)
d

dz
+ (3z2 + 1)h− 2

] [

(z − 1/z)
d

dz
+ h(3 + 1/z2)

]

+N
)

F 0 ,

F 0 = ψ

φ

1

ψ

φ

z ψ , N =
c

2
+ 4H , (6.1)

where for the lee-Yang model h = H = −1/5 and

F 0 = z1/5(1− z)2/52F1(
2
5 ,

3
5 ;

4
5 ; z) , C ′ =

(
Γ(1/5)Γ(2/5)

Γ(−1/5)Γ(4/5)

)1/2

. (6.2)
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Figure 6: The coefficients of λ2 in the first and second gap for the Yang-Lee model. The dots
are from TCSA data, the solid curve the prediction using the two leading terms in 1/n. The
straight line is the exact value.

7 Fixed points and the coupling constant renormalisation.

One of the principal effects of the coupling constant renormalisation in the TCSA approach is
the possibility to move the IR fixed point of the finite-size scaling flow from infinite coupling
constant to finite coupling constant. From equations (2.9) and (3.14), we see that for C
positive, the IR fixed point at λ∞ =∞ is brought to the finite value

λ∗n =
yΓ(h)

C
(πn)y , (7.1)

However, just as the coupling to the identity operator depends on the level of the state, so
the coupling constant renormalisation depends on the level of the state, so that the one-loop
effective coupling constant renormalisation of a state at level E is not given by (3.13), but
rather by

λ∗n(E) = A(n)(n −E)y , (7.2)

where the one-loop prediction for A(n) is A(n) = yΓ(h)πy/C. The exact position of the fixed
point is not determined very accurately by the 1–loop calculation, (indeed we shall see in
section 8.2 that the position of the fixed point in the tri-critical Ising model is approximately
λ∗n = B

√
n) but we might conjecture is that the dependence on energy level still has this

form. In figure 7(a) we show the full TCSA spectrum for the tri-critical Ising strip with
boundary conditions (12) and (11). The level crossings seen for positive λ occur at the IR
fixed point, and their position depends on the excitation level. We have also shown a fit to
these positions of the form λFP(n,E) = A(n)(n − E)y. This at least appears to capture the
qualitative behaviour quite well.

A second prediction is that the position of this fixed point is independent of the unper-
turbed boundary condition. In figure 7(b) we show the TCSA spectra of the three strips
with one boundary being the perturbation (12) → (21) and the other being one of the three
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fixed boundary conditions (r1). As can be seen, the three spectra agree very well indeed
on both the location of the fixed points, indicated by the multiple line degeneracies, on the
energy-dependence of these fixed points and on the rescaling of the Hamiltonian, confirming
the prediction of our analysis that these effects are independent of the unperturbed boundary
condition (to leading order).

0.5 1.0 1.5 2.0

2

4

6

8

10

12

(a) The full TCSA spectrum showing the variation
of the fixed point with energy level; also shown is
the best fit to these positions in the scaling form
λcrit = A(n− E)y, in the case n = 14.
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(b) A simultaneous plot of the TCSA spectrum of
the basic flow (12) → (21) on one edge and the fixed
boundary condition (11) (red), (21) (blue) and (31)
green on the other edge for truncation level 14.

Figure 7: Energy-dependence and boundary-condition independence of the position of the
fixed point in the flow (12)→ (21).

8 Flows generated by irrelevant fields

When we consider a flow with a UV and an IR fixed point, we can attempt to describe it in
terms of perturbations of either fixed point. A perturbation of an IR fixed point will be by an
irrelevant field which is a non-renormalisable perturbation. This means that the perturbation
theory will have divergences that require regulation and that a possibly infinite number of
counterterms will be required to allow one to remove the regulator. For this reason, they
have only infrequently been studied in the literature [18, 19, 20]. In TCSA, however, there is
no need to introduce counterterms, one can simply compute the spectrum of the truncated
Hamiltonian.

We have investigated this in the case of the tri-critical Ising model. There are three IR
fixed points in the basic sequence (9.1). In the case of the (11) and (31) boundary conditions,
the fields on the boundary comprise the vacuum representation of the Virasoro algebra so
it is expected that the flow will be generated by the field T (x), the boundary stress-energy
tensor, as in [20]; for the (21) boundary condition, the boundary fields form the (11) and (31)
representations and it is to be expected that the flow is generated by the field φ(31) of weight

20



3/2, mirroring the case in the bulk flows considered in [19]. We shall present some results for
this last case, and for the flow (21)→ (13), in particular.

8.1 Comparison with exact results

Firstly, we find that the TCSA spectrum is in very good agreement with the “exact” TBA
spectrum; we show the results for the spectrum in figure 11. Secondly, we can compare the

TCSA couplings λ
(21)
n at truncation level n with the effective coupling λ

(13)
∞ for the description

of the system as a perturbation of the (13) by the field φ(13). On dimensional grounds, we
expect a relation of the form

λ(13)
∞

= (λ(21)n )−4/5g(λ(21)n n1/2) , (8.1)

and this indeed what we find. In figure 8(a) we plot the effective couplings against the
TCSA coupling for various truncation levels, and in figure 8(b) we plot the scaling function

λ
(13)
∞ (λ

(21)
n )4/5.
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(a) A plot of the effective coupling log(λ
(13)
∞ ) against

log(λ
(21)
n ).
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(b) A plot of the scaling form λ
(13)
∞ (λ

(21)
n )4/5 against

log(λ
(21)
n n1/2) together with the limiting value of

−2.8.

Figure 8: Truncation level dependence and scaling functions for the irrelevant coupling λ(21)

at truncation levels 8 (red, dotted), 13 (green, dashed) and 18 (blue, solid).

The scaling form (8.1) does, however, have the major consequence that the TCSA coupling
constant does not converge to a fixed value as the truncation level is increased. For an
irrelevant perturbation, h > 1 and so y < 0. If the function g(x) in (3.13) is approximately
equal to one for a range |x| < A, then the TCSA scaling function gn(λ) is approximately equal
to one for |λ| < An−y. For y positive, this range grows with increasing n; for an irrelevant
perturbation it shrinks. In this case, we see that

λ(13)
∞

(λ(21)n )4/5 ≃ 0.06 for λ(21)n <
e−3

√
n
. (8.2)

8.2 Comparison with TCSA parameters

While (8.1) and (8.2) relate the TCSA parameter λ
(21)
n to the “exact” parameter λ

(13)
∞ , it is also

interesting to compare the two TCSA parameters. In this case we find the problem that the
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ranges in which the TCSA parameters are good approximations to the “exact” parameters do
not overlap. The IR parameter is good for λ(21) < 0.05n−1/2, which equates to λ(13) > .7n2/5,
while we can see from figure 4(a) that the UV parameter is good for λ(13) < .5n2/5 (where we
have used the Z2 symmetry to relate λ(13) to −λ(12).) As a consequence, there are no values
of the TCSA coupling constants for which (8.2) holds. Instead we find the interesting plot
9(a); as n increases, the relation between the two TCSA couplings changes. For either of the
couplings small, there is an approximate linear relationship. We can elucidate this by noting
that the TCSA coupling relation itself takes a scaling form as we show in figure 9(b), where
we see that, to a good approximation,

λ(13)n

√
n ≃ F (λ(21)n /

√
n) , (8.3)

where
F (x) ≃ 0.5− 6.x for x small, F (x) ≃ 0.3− 1.3x for F (x) small . (8.4)

The linear relation is to be expected, as the perturbing fields at one end (UV or IR) will flow
into the perturbing field at the other (IR or UV, respectively) and so the coupling at one end
will end up being linearly related to the coupling at the other. Quite why this relation takes
the form (8.3) is unclear at the moment.
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(a) A plot of λ
(13)
n against λ

(21)
n

0.05 0.10 0.15 0.20

0.1

0.2

0.3

0.4

0.5

(b) A plot of λ
(13)
n /
√
n against λ

(21)
n
√
n)

Figure 9: The relation between λ
(13)
n and λ

(21)
n for truncation levels 8 (blue, short dashes), 10

(dotted), 12 (dot-dashed), 14 (long dashes) and 22 (solid).

9 TCSA flows beyond the fixed point

As has been remarked on before [12, 20], the TCSA spectra have the remarkable property
that they extend beyond the IR fixed points and can encompass several different perturbative
flows. These appear to follow the sequence of flows found first by Lesage et al in [15] and

22



-0.15 -0.10 -0.05 0.05 0.10 0.15

1

2

3

4

5

6

Figure 10: The scaled gaps for the perturbation of the (21) boundary condition on a strip
with boundary conditions (21; 11) by λ(21)φ(31), plotted against λ(21) at truncation level 14.
The four dashed lines are the approximate positions of the fixed points (in order) (11), (12),
(13) and (31).

which also appear in Fredenhagen et al [16] and Dorey et al [17] and which in the simplest
form applicable to the tri-critical Ising model is

(12) 99K (11)← (12)→ (21)← (13)→ (31) L99 (13) (9.1)

where the dashed arrows reflect what is seen in TCSA and are a natural extension of the
sequence in the papers cited. The same sequence is seen no matter which boundary condition
we take as the starting point from which we perturb. This applies also to the case of irrelevant,
non-renormalisable perturbations starting from the ‘fixed’ (r1) boundary conditions. This
enables us to put coordinates on the sequence, in the sense that every pair of flows is covered as
the standard perturbation of a boundary condition, and we can relate the coupling constants
on successive overlapping pairs:

(12) + µ(12)φ13 (13) + µ(13)φ13
︷ ︸︸ ︷ ︷ ︸︸ ︷

(12) 99K (11) ← (12) → (21) ← (13) → (31) L99 (13)
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

(11) + µ(11)T + .. (21) + µ(21)φ31 + .. (31) + µ(31)T + ..

(9.2)

where the ellipsis in the perturbations of the fixed boundary conditions shows that further
counterterms may be needed as these perturbations are non-renormalisable. As an example
of the way the TCSA flows can encompass several fixed points, in figure 9 we show the scaled
gaps for the perturbation of the (21) boundary conditions by the irrelevant field φ(31) of
conformal weight 3/2. As can be seen, all five fixed points of (9.1) appear.

To give support to this picture, we present the TCSA spectra for the flow (13) → (21)
obtained from the three separate routes: the relevant perturbation of the (13) boundary

23



-6 -4 -2 2 4 6

1

2

3

4

Figure 11: The scaled gaps for the flow from the (13) boundary to the (21) boundary condition,
as found from the relevant perturbation of the (13) boundary condition (•), from the irrelevant
perturbation of the (21) boundary condition (◦), and from the extension of the flow generated
by the relevant perturbation of the (12) boundary condition (�) at truncation level 22. They
are plotted against ξ, the boundary parameter in Pearce et al.

condition, the irrelevant perturbation of the (21) boundary condition, and the continuation
of the flow (12) → (21) given by the relevant perturbation of the (12) boundary condition.
These are all shown in figure 11.

The TBA spectra are given as functions of the boundary reflection parameter θB in [21]2or
ξ of Feverati et al. [8] (note ξ = θB). Using the results in [22, 23], we can find the exact
expression for θB in terms of the perturbative coupling constant λ(13) of the relevant pertur-
bation of the (13) boundary condition. We can also find the approximate numerical result for
the boundary parameter in terms of the TCSA coupling λ(21), which is only valid for small
coupling. These are summarised below

Boundary θB

(13)
(
5
4 log a− logC1

)
+ 5

2 log λ
(13)

= 1.96102... + 5
2 log λ

(13)

(21) −5.− 2. log λ(21) + . . .

(9.3)

The constants in the first relation are

C1 =
3
2π
[
Γ(15)

]
−5

, a =
3
5π sin(

8
5π)

Γ(15)
3Γ(75) sin(

12
5 π) sin(

4
5π)

. (9.4)

2The equations in [15, 21] for the g-function are known not to be correct, but they do describe the changes
under a purely boundary perturbation. See [17] for the correct equations when there is a simultaneous bulk
perturbation.
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Finally, we have also found an approximate numerical relation between the couplings λ(21)

and λ(12) for this region, which is

λ
(12)
n√
n
− 8.
√
nλ(21)n ≃ 0.5 , (9.5)

which is in agreement with (8.4) to the accuracy that is obtainable for the flow from the (12)
boundary condition beyond the (21) fixed point.

10 Conclusions

We have made further progress in understanding the errors in the truncated conformal space
approach to perturbed boundary conformal field theory on a strip. The principal quantity
calculated with TCSA is the spectrum as a function of the coupling constant. The errors are
of two principal sorts - a renormalisation of the coupling constant and a change in the energy
scale. We have found perturbative expressions for these from physical arguments and showed
they are correct using an analysis of the perturbative spectrum.

One important aspect of these predictions is that they are independent of the second
boundary condition on the strip and we have verified this by considering different choices for
the unperturbed boundary condition and finding the same results for each choice.

Furthermore we have investigated the behaviour of the TCSA spectrum for large coupling
constant. We have reported before that this appears to show a sequence of RG flows in the
same pattern as found by Lesage et al [15], and we know show that this is quantitatively
correct as well, in the case of the tri-critical Ising model.

It would be good to find some way to describe the full RG flows such as in figure 9 in
terms of some beta-function which has the sequence of fixed points as its zeroes, but at the
moment we are unsure how to do that. In the lattice model, the perturbation parameter is a
boundary magnetic field and the sequence of fixed points (9.1) (excluding the points joined
by the dashed lines) can be found simply by varying this field [24]; of course in the quantum
model this is not simply the case - the natural sequence of flows splits up into overlapping
pairs of flows in both the TBA and the TCSA descriptions. It may be helpful to use the
coordinates on the full moduli space given by the values of the g-function and the excited
g-function which corresponds to the overlap with the bulk spin field. This is something we
hope to return to shortly,

Finally the ideas on the perturbative treatment of the corrections to the TCSA presented
here can be easily adapted to the case of bulk flows which we plan to address in [25].
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