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1. Introduction

Supersymmetric gauge theories in three dimensions may have multiple effective descriptions

of their IR dynamics. One example of such an IR duality is mirror symmetry of N = 4

quiver gauge theories [5]. Other examples include the dualities for N ≥ 3 Chern Simons

gauge theories proposed in [15] and [6]. The large extended supersymmetry and non-

Abelian R-symmetry present in these theories implies a vanishing anomalous dimension

for the chiral matter multiplets. There exist N = 2 versions of both mirror symmetry

[10][9][7] and Seiberg-like dualities [8][15]. Theories with N = 2 supersymmetry in three

dimensions, which corresponds to N = 1 in four dimensions, are much richer, allowing for

an arbitrary superpotential and anomalous dimensions for chiral fields. Such theories still

have holomorphy properties that enable us to do some calculations exactly. N = 2 theories

may possess a U(1) R-symmetry, the automorphism group of the N = 2 supersymmetry

algebra. The Noether current for this R-symmetry generically mixes with the currents

for other U(1) global symmetries as we flow to the IR. These additional symmetries may

include flavor symmetries manifest in the Lagrangian, the topological U(1)J symmetry, with

current ⋆F , as well as possible hidden symmetries. At the IR fixed point, a distinguished

combination of such conserved currents, the IR R-charge, sits in the same supermultiplet
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as the energy momentum tensor. This restricts the conformal dimension of all operators

to be no less than their R-charge. The inequality is saturated for chiral operators.

Using localization techniques, the path integral calculation for a supersymmetric ob-

servable can sometimes be reduced to a finite dimensional integral [1]. In previous work,

such a reduction was performed for three dimensional superconformal gauge theories [2].

The resulting matrix model can be used to compute the partition function of a wide class

of theories, such as the recently introduced superconformal Chern Simons matter theories,

and the IR fixed points of gauge theories with Yang Mills terms. The calculation involves

a conformal transformation to S3, and depends, crucially, on knowing the IR conformal

dimensions of all the fields. In previous checks of IR duality, it was implicitly assumed that

the fields have canonical scaling dimension [3]. Recently, this assumption was relaxed and

a matrix model was derived for theories with matter of arbitrary dimension [4]. In this

paper we use this generalized matrix model to test some dualities that were beyond the

reach of the original matrix model.

We will compare the partition functions for N = 2 gauge theories discussed in [8]

and [15]. One can deform these theories, in a supersymmetric manner, by weakly gauging

any of the global U(1) symmetries and giving an expectation value to the scalar in the

background vector or linear multiplet. This has the effect of giving each of the fields a

real mass proportional to its charge under the symmetry, or, in the case of the topological

U(1)J symmetry, an FI term. If one performs this operation on two theories related by a

duality, and if the relevant symmetries are mapped to each other under the duality, the

partition functions should agree as a function of the deformations. This provides a more

robust check of the duality than the matching of the partition functions alone.

The supersymmetric deformations are closely related to the ambiguity of the IR R-

symmetry, as follows. The possible R-symmetries of a theory can be shown to differ by an

Abelian global symmetry. In [4], it was shown how to compute the partition function Z for

a given trial R-symmetry. It was also argued that the correct R-symmetry is the one that

extremizes |Z|. For a given Abelian symmetry, it was shown that the partition function is

holomorphic in the combination m+ iq, where m is the expectation value of the scalar in

the background vector or linear multiplet used to weakly gauge the symmetry, as above,

and q is the contribution of the associated current to the IR R-symmetry. It follows that

if the partition functions agree as holomorphic functions of the mass deformations, they

also agree as one varies the trial R-symmetry in the appropriate way on both sides. This

means that one does not need to know the correct IR R-symmetry to test these dualities1.

One simply needs to understand how the global symmetries map. Knowing the correct IR

R symmetry would be equivalent to knowing the origin of this space of deformations. On

the other hand, this also means one cannot use the duality to determine the correct IR

R-symmetry. One needs other methods to do this, such as extremizing the value of |Z| [4],
which we briefly discuss in the last section.

1We would like to thank David Kutasov for explaining this point to us.

– 2 –



Acknowledgments

We would like to thank Anton Kapustin, David Kutasov, and Fokko van de Bult for useful

discussions while completing this paper.

2. Localization

In this section we describe the localization procedure used in calculating the partition func-

tions of gauge theories in three dimensions. A more detailed explanation of the deformation

used to localize the action, and the derivation of the resulting matrix model, can be found

in [2] and [3]. The generalization to chiral multiplets of arbitrary conformal dimension is

found in [4].

We consider the superconformal field theory which is the IR fixed point of a supersym-

metric gauge theory. We will consider both theories with and without Chern Simons terms.

After a conformal transformation to S3 the action is deformed by a Q exact term, where

Q is a particular fermionic generator in the supersymmetry algebra. In the limit where

the deformation is very large, the path integral localizes to a finite dimensional subspace

parameterized by a single matrix in the adjoint of the gauge group. The remaining integral

is over this matrix or, equivalently, over its eigenvalues. The ingredients of the resulting

matrix model were given in [2]. We describe only the relevant components.

A gauge field coupled to charged chiral multiplets must have conformal dimension 1 in

the IR. This can be deduced by considering the topological current ⋆F which is conserved

and is therefore of conformal dimension 2. If the gauge field is free, it may be dualized

to a free scalar and would have conformal dimension 3/2. In this case, the current ⋆F is

not a conformal primary. We assume that this does not happen for any of the theories in

questions, so that the contribution of the gauge sector does not change from [2], and is

given by:

Zgauge
1−loop(σ) = det

Ad

2 sinh(πσ)

πσ

We may pass to the Cartan of the gauge group G, parameterized by the eigenvalues λj ,

j = 1, ...,Rank(G). Then the Vandermonde determinant cancels against the denominator

of the above expression, and the resulting determinant can be written as a product over

the roots of the Lie algebra. In this paper we will consider the groups U(N) and Sp(2N),

both of rank N , and the corresponding 1-loop determinants are given by, for U(N):

∏

1≤i<j≤N

(2 sinh π(λi − λj))
2 (2.1)

and, for Sp(2N):

∏

1≤i<j≤N

(

(2 sinh π(λi − λj))
2(2 sinh π(λi + λj))

2

) N
∏

j=1

(2 sinh(2πλi))
2 (2.2)
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All gauge multiplets will have the conventional Yang-Mills kinetic term in the UV. In

addition, there may be a Chern-Simons term at level k, whose contribution is:

N
∏

j=1

e−kπiλj
2

2.1 Matter

Next we consider the contribution of chiral multiplets. The results reviewed in this section

can be found in [4].

In general, a chiral multiplet comes in a certain representation of both the gauge

group and the global flavor symmetry group of the theory. These can be treated somewhat

symmetrically by weakly gauging the flavor symmetries, which can be seen as follows. As

described above, for each gauge field there is a scalar partner σ, and the matrix model is

an integral over its zero modes. If we have a background gauge field, one can also consider

giving an expectation value to the corresponding scalar, σBG, and it will enter the matrix

model in the basically same way as a dynamical σ. The only difference is that we do

not integrate over the background σBG, rather it is a parameter that we can tune. After

reducing the integral to one over the Cartan, parameterized by the eigenvalues λj of σ, the

eigenvalues for the background vector multiplets correspond to real masses for the fields.

Now consider a chiral multiplet whose fields have canonical dimension, ie, the scalar

has dimension 1
2 . After we reduce the gauge and global symmetry groups to their maximal

torii, we can list the charges qa of this multiplet under each U(1) factor. Then, if λa denotes

the corresponding eigenvalue, the 1-loop determinant is given by [4]:

eℓ(
1
2
+i

∑
a qaλa)

where:2

ℓ(z) = −z log(1− e2πiz) +
i

2
(πz2 +

1

π
Li2(e

2πiz))− iπ

12

For theories with at least N = 3 supersymmetry, the chiral multiplets are grouped into

hypermultiplets, pairs of chiral multiplets in conjugate representations. In addition, the

non-abelian R-symmetry protects the fields from corrections to the dimension as we flow

to the IR. Thus the contribution of a hypermultiplet is:

eℓ(
1
2
+i

∑
a qaλa)+ℓ( 1

2
−i

∑
a qaλa) =

1

2 cosh π(
∑

a qaλa)

For theories with only N = 2 supersymmetry, things are more complicated. Now the

R-symmetry is abelian, and we do not get the same non-renormalization theorem we had

before. As argued in [4], the contribution of a chiral multiplet of dimension3 ∆ is given by:

2See the appendix for more discussion on this function.
3We will define the dimension of a chiral multiplet to be the dimension of its dynamical scalar. In

particular, canonical dimension corresponds to dimension 1
2
.
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eℓ(1−∆+i
∑

a qaλa)

Let us elaborate on this. In the UV, the theory is not conformal, so there is no privi-

leged R-symmetry. Any abelian symmetry that does not commute with the supersymmetry

generators will do, and any two of these will differ by an abelian flavor symmetry. It will

be convenient to use this freedom to set the UV R-charge of many of the fields to be 1
2 ,

and we will make this choice when possible, calling the result “the” UV R-charge.

At the IR fixed point, there is a unique choice of R-symmetry whose current lies in

the same multiplet as the stress-energy tensor. We can write it as:

RIR = RUV +
∑

a

caQa

where Qa runs over the abelian global symmetries of the theory. In a superconformal

field theory, the R charge and scaling dimension of a chiral primary are the same, as a

consequence of the superconformal algebra. This means we can write the dimension of the

chiral as:4

∆ =
1

2
+

∑

a

caqa

and the 1-loop determinant becomes:5

eℓ(
1
2
+i

∑
a qa(λa+ica))

In other words, shifting the R-symmetry by a flavor symmetry is equivalent to weakly

gauging that symmetry and giving the background scalar a complex value.

As an example, for a hypermultiplet of canonical dimension in a fundamental repre-

sentation of U(N), the 1-loop partition function is given by:

N
∏

j=1

eℓ(
1
2
+iλj)+ℓ( 1

2
−iλj)

We can now consider giving different masses m and m̃ to the two chirals:

N
∏

j=1

eℓ(
1
2
+iλj+im)+ℓ( 1

2
−iλj−im̃)

When the masses are the same for the two chirals, we call this a vector mass for the

hypermultiplet, while if they differ by a sign, we call it an axial mass. Giving these

masses complex values corresponds to mixing the R-symmetry with the U(1) symmetries

rotating the phases of these chiral multiplets. Typically there is a symmetry exchanging

4Here we have assumed the UV R-charge is 1
2
. We will encounter a few exceptions later on, and the

appropriate modification will be made.
5For simplicity we let the index a run over all symmetries of the theory, although for gauge symmetries

there is no contribution to the R-symmetry, and so the corresponding ca are zero.
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the two chiral multiplets which forbids the vector mass from contributing, but the axial

mass parameter will in general be complex.

We close the section by mentioning that, in addition to flavor symmetries manifest in

the lagrangian, the R-symmetry can mix with other, more subtle global symmetries. This

includes any topological U(1)J symmetries, whose current ⋆F is conserved by virtue of the

Bianchi identity, as well as hidden symmetries that appear at the IR fixed point, but are

not visible in the UV description of the theory. For the former, we can still gauge the

symmetry, and the corresponding deformation corresponds not to another real mass term,

but instead to an FI term η, which enters the matrix model by an insertion of:

e2πiη
∑

j λj

In analogy to what we did with the flavor symmetries, one can allow for the possibility

that the R-symmetry mixes with this symmetry by letting η become complex. We will not

have much to say about hidden symmetries at this point, although we will find that they

probably do arise and play an important role in many of the theories we will consider.

3. Aharony-Seiberg Duality

In the next two sections we will test a few proposals for dualities between N = 2 gauge

theories. These theories all have conventional Yang-Mills terms for the gauge field in

the UV, in addition to Chern-Simons terms in the examples of the next section. In three

dimensions, the gauge coupling is dimensionful, and so none of these theories are conformal.

Thus the duality is between their IR fixed points, which are generically strongly interacting

theories. One is able to provide evidence for these dualities by using the matrix model to

compute the partition function of these strongly coupled superconformal theories. This

was done in earlier papers for theories with at least N = 3 supersymmetry [3] [13].

As described above, in addition to testing the mapping of the partition functions,

one can deform them by weakly gauging the flavor symmetries to add real masses or FI

terms, and showing the partition functions agree as a function of these deformations. This

provides evidence not only for the duality, but also for the proposed mapping of global

symmetries between the two theories.

For theories with N = 2 supersymmetry, the dimensions of the fields in the IR are

unknown, as the R symmetry may mix arbitrarily with abelian flavor symmetries. As de-

scribed in the previous section, one can account for this by allowing the mass deformations

to become complex. Varying the R-symmetry corresponds to varying the imaginary parts

of these mass parameters, and in principle there is one choice which is correct. One might

be concerned that it is impossible to check the duality without knowing the correct IR

R-symmetry. However, it will turn out that the partition functions agree as analytic func-

tions of the mass deformations, so it is unnecessary to know the correct IR R-symmetry:

the duality works for any possible R-symmetry. We will describe this in more detail in the

examples below.

In the present section, we consider two classes of dualities studied by Aharony in [8].

These are reminiscent of Seiberg duality in four dimensions, so we will call this Aharony-
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Seiberg duality. In that paper, the main evidence presented for the dualities were the

matching of the moduli spaces. In order to achieve this matching, certain singlet chiral

fields need to be added to the dual theory, parameterizing the Coulomb branch of the

original theory, and a superpotential coupling this field to a monopole operator must be

included. We will find that it is necessary to include the 1-loop partition functions for

these extra fields in order to achieve precise matching of the partition functions, although

this test is not sensitive to the form of the superpotential.

3.1 Unitary Group

The first duality involves two N = 2 gauge theories with a unitary gauge group. The dual

theories are [8]:

• N = 2 U(Nc) gauge theory with Nf fundamental chiral multiplets Qa and Nf anti-

fundamental chiral multiplets Q̃a. We will call a single pair (Qa, Q̃
a) a flavor. There

is no superpotential.

• N = 2 U(Nf −Nc) gauge theory with Nf fundamental flavors. In addition, there are

Nf
2 uncharged chiral multiplets Ma

b and two uncharged chiral multiplets V±, which

couple via the following superpotential:

q̃aM
a
bq

b + V+Ṽ− + V−Ṽ+

where Ṽ± are monopole operators, parameterizing the Coulomb branch of this theory.

Note that V± are fundamental (ie, non-composite) fields, while Ṽ± are monopole oper-

ators, so can in principle be expressed in terms of the other fields. In fact, V± are mapped

under the duality to the monopole operators of the first theory, while Ma
b is mapped to

QaQ̃b.

Now let us discuss the flavor symmetries of these two theories, and how they are

mapped under the duality. For both theories, there is in principle a U(Nf )×U(Nf ) flavor

symmetry rotating the two sets of chiral fields. However, the diagonal U(1) is gauged, so

this is reduced to SU(Nf ) × SU(Nf ) × U(1)A. In addition, there is a U(1)J topological

symmetry, whose current is ⋆TrF . The V± fields are charged under both U(1)A and U(1)J .

Note that the symmetry group is the same for both theories. This means one can

summarize how the duality acts on these symmetries by thinking of a single symmetry

group which acts on both theories, and listing the charges of the fields of both theories

under this group. We summarize this in the following table:
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Field SU(Nf )× SU(Nf ) U(1)A U(1)J U(1)R−UV

Qa (Nf , 1) 1 0 1
2

Q̃a (1, N̄f ) 1 0 1
2

qa (N̄f , 1) −1 0 1
2

q̃a (1, Nf ) −1 0 1
2

Ma
b (Nf , N̄f ) 2 0 1

V± (1, 1) −Nf ±1
Nf

2 −Nc + 1

Corresponding to the two SU(Nf ) factors, we add masses for the two chiral multiplets

in each flavor, ma and m̃a, which are each constrained to sum to zero. In addition, for

U(1)A there is an total axial mass µ, and for U(1)J there is the FI term η. Including all of

these deformations, the partition function for the first theory can be written as:

Z
(U)
Nf ,Nc

(η;ma; m̃a;µ) =
1

Nc!

∫ Nc
∏

j=1

(

dλj

Nf
∏

a=1

eℓ(
1
2
+iλj+ima+iµ)+ℓ( 1

2
−iλj−im̃a+iµ)

)

∏

i<j

(2 sinh π(λi−λj))
2

For the second theory, we see that the representation of SU(Nf ) × SU(Nf ) × U(1)A
in which the quarks lie is replaced by its conjugate, so all mass terms should come in with

the opposite sign. Inspecting the table above, we see that the 1-loop partition function for

Ma
b is:

eℓ(i(ma−m̃b+2µ)

while that of V± is:

eℓ(Nc−
Nf

2
−iNfµ±iη)

Thus the dual partition function is given by:

Z
(U)
Nf ,Nf−Nc

(η;−ma;−m̃a;−µ)eℓ(Nc−
Nf

2
−iNfµ+iη)+ℓ(Nc−

Nf

2
−iNfµ−iη)

∏

a,b

eℓ(2iµ+ima−im̃b)

Note the extra factors, due to V± and Ma
b, do not couple to the gauge field and so can be

factored out of the integral.

We wish to show that these two expression are equal for all complex values of the

deformations. One may worry that the partition function does not converge for all values

of the deformation parameters. Indeed, the 1-loop partition function only decays exponen-

tially, so there is only a finite range of Im(η) for which the partition function converges,

and similarly for the other parameters. However, as discussed in [16], there is a natural

notion of analytic continuation of a function like this which extends it to a meromorphic

function on the space of complex deformations ma, m̃a, η. We wish to show the equality of

these analytically continued partition functions.
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In fact, identities like this one have recently been studied in the mathematical literature

[16] [17]. More precisely, the integrals considered in these papers involved the hyperbolic

gamma function Γh(z;ω1, ω2), a generalization of the ordinary gamma function which is

symmetric in the parameters ω1, ω2, which are fixed and will be suppressed, and which

satisfies the following functional equations:

Γh(z + ω1) = 2 sin(
πz

ω2
)Γh(z)

Γh(z + ω2) = 2 sin(
πz

ω1
)Γh(z) (3.1)

Γh(z)Γh(ω1 + ω2 − z) = 1

From the first two equations, we see it has an elliptic property that is crucial in proving

many of the relevant identities. As shown in the appendix, this function is related to the

1-loop partition function by:

Γh(z; i, i) = eℓ(1+iz)

Actually, taking ω1 = ω2 is a somewhat sick case, as the corresponding elliptic curve

degenerates, and many of the results need to be checked more carefully in this situation.

However, it was shown in [18] that if one works on the squashed three sphere, the 1-loop

partition function becomes a double sine function with b 6= 1, which corresponds to taking

ω1 6= ω2. It appears that the formulas above carry over with little modification to this

setting, where this problem should not arise, and then the case of an ordinary S3 can be

treated as a limiting case.

To see how the identity above follows from the results of these papers, we consider the

following integral, defined in [17]:

Imn,(2,2)(µ; ν;λ) =
1√−ω1ω2

n
n!

∫

Cn

∏

1≤j<k≤n

1

Γh(±(xj − xk))

n
∏

j=1

(

e
πiλxj

ω1ω2

n+m
∏

a=1

Γh(µa−xj)Γh(νa+xj)dxj

)

where we define Γh(x±) = Γh(x+)Γh(x−). Here C is a certain contour in the complex plane

which we will not define in detail here, except to note that, in the cases relevant for us, it

can be taken as the real line. Using (3.1) , one can show that, if we take ω1 = ω2 = i, we

have:

Γh(±z) = (2 sinh(πz))−2

If we also set:

n = Nc, m = Nf −Nc, µa =
i

2
− m̃a + µ, νa =

i

2
+ma + µ λ = −2η

then one can see that Imn,(2,2) is precisely the partition function we are studying.
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But now all we need is theorem 5.5.11 of [17], which states:

Imn,(2,2)(µa; νa;λ) = Inm,(2,2)(ω − µa;ω − νa;−λ)

n+m
∏

a,b=1

Γh(µa + νb)×

×Γh((m+ 1)ω − 1

2

n+m
∑

a=1

(µa + νa)± λ)c(λ

n+m
∑

a=1

(µa − νa))

where ω = 1
2 (ω1 + ω2). If we identify the parameters as above, it’s easy to check that the

RHS is precisely the partition function of the dual theory. This demonstrates the partition

functions of the two theories are indeed equal.

It may have been unclear in the above calculation what the role of the IR R-symmetry

was, so let us comment on that now. The above calculation goes through for complex values

of the various mass and FI parameters. Thus we have actually shown that the partition

function for the theories agree even after shifting the R symmetries on both sides by flavor

symmetries, provided these symmetries are identified under the duality. In particular, they

must agree for the correct R-symmetry, even though, at this point, we do not know what

this is.

Unfortunately, this means the duality cannot be used to find the correct R-symmetry.

However, using the discrete symmetries of the two theories, we can constrain the dimensions

to have the form:

∆Qa = ∆Q̃a
=

1

2
+ δ, ∆qa = ∆q̃a =

1

2
− δ, ∆Ma

b
= 1+2δ, ∆V±

=
Nf

2
−Nc+1−Nfδ

(3.2)

for some real number δ, which can be identified with the imaginary part of the total axial

mass µ. This means all other deformations may be taken to be real. We cannot determine

δ at this point, but we will describe an alternative method to determine it later on.

3.2 Symplectic Group

Another, similar duality was also studied in [8]. The main difference here is that the gauge

group is now symplectic. The theories are:

• N = 2 Sp(2Nc) gauge theory with 2Nf chiral multiplets Qa in the fundamental

(2Nc-dimensional) representation.

• N = 2 Sp(2(Nf − Nc − 1)) gauge theory with 2Nf fundamental chiral multiplets

qa. In addition there are Nf (2Nf − 1) uncharged chiral multiplets Mab and a chiral

multiplet Y , which couple through the superpotential:

Mabqaqb + Y Ỹ

where, as before, Y and Ỹ parametrize the Coulomb branches of the first and second

theories respectively.

– 10 –



As in the previous duality, the two theories share the same global symmetries, and

they are mapped to each other straightforwardly under the duality, so we may summarize

the charges as follows:

Field SU(2Nf ) U(1)A U(1)R−UV

Qa 2Nf 1 1
2

qa ¯2Nf −1 1
2

Mab Nf (2Nf − 1) 2 1

Y 1 −2Nf Nf − 2Nc

The contribution of the gauge multiplet is given by (2.2), and the contribution of a

chiral multiplet in the fundamental representation, deformed by a mass m, is given by:

Nc
∏

j=1

eℓ(
1
2
+iλj+im)+ℓ( 1

2
−iλj+im)

Thus the partition function for the first theory, deformed by mass parameters ma,

which sum to zero, and axial mass µ, is given by:

Z
(Sp)
Nf ,Nc

(ma) =
1

Nc!

∫ Nc
∏

j=1

2Nf
∏

a=1

eℓ(
1
2
+iλj+ima+iµ)+ℓ( 1

2
−iλj+ima+iµ)×

×
∏

1≤i<j≤Nc

(

(2 sinh π(λi − λj))
2(2 sinh π(λi + λj))

2

) Nc
∏

j=1

(2 sinh(2πλi))
2

For the second theory, the partition function is given by:

Z
(Sp)
Nf ,Nf−Nc−1(−ma)e

ℓ(2Nc−Nf+1−2Nf iµ)
∏

1≤a<b≤2Nf

eℓ(i(ma+mb+2µ)

In [17], integrals of this type were also considered. Namely, the following definition

was made:

Imn,2(µa) =
1√−ω1ω2

n
n!

∫

∏

1≤j<k≤n

1

Γh(±xj ± xk)

n
∏

j=1

∏2n+2m+2
a=1 Γh(µa ± xj)

Γh(±2xj)
dxj

Recalling the relations between the 1-loop partition function and the hyperbolic gamma

function discussed above, one can see that this is precisely the partition function of the

original theory if we identity:

n = Nc, m = Nf −Nc − 1, µa =
i

2
+ma + µ

Then theorem 5.5.9 of [17] says:
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Imn,2(µa) = Inm,2(ω − µa)Γh(2(m+ 1)ω −
2n+2m+2

∑

a=1

µa)
∏

1≤a<b≤2n+2m+2

Γh(µa + µb)

which is precisely the conjectured duality.

4. Giveon-Kutasov Duality

Related to the first duality of the previous section is the duality of Giveon and Kutasov.

The main difference is that now there is a Chern-Simons term, and the duality is between

groups U(Nc) and U(|k| +Nf −Nc), where k is the Chern-Simons level. Specifically, the

theories are:

• N = 2 U(Nc) gauge theory with Nf flavors and a Chern-Simons term at level k.

• N = 2 U(|k| +Nf −Nc) gauge theory with Nf flavors and a Chern-Simons term at

level −k. In addition, there are Nf
2 uncharged chiral multiplets Ma

b, which couple

through a superpotential q̃aMa
bqb. There is no V± field.

In [13], an N = 3 version of this duality was considered, which differs from the one here

by the addition of an adjoint chiral multiplet and a superpotential coupling the flavors to

the vector multiplet. One nice feature of this version of the duality is that, in flowing to the

IR, the only effect is to remove the Yang-Mills term. Thus we obtain a duality between two

superconformal theories for which we can explicitly write down the Lagrangian on both

sides.

Returning to the N = 2 case, it turns out one can derive this duality from the duality

of the previous section as follows. It is well known that integrating out a massive charged

fermion generates a Chern-Simons term at level ±1
2 , whose sign is the same as the sign

of the mass of the fermion. Now take a U(Nc) theory with some flavors, and consider

adding a large positive mass to one of the flavors. The flavor can be integrated out, and

Chern-Simons terms are generated by each of the two chiral multiplets. If this is a vector

mass, the contributions have opposite signs and cancel, but for an axial mass, they have

the same sign, they add up to generate a level one Chern-Simons term.

Let us now consider a general k > 0. If we start with a theory with Nf + k flavors

and give large positive axial masses to k of the flavors, we generate a level k Chern-Simons

term. This maps to the same operation in the dual theory, albeit with negative axial

masses, and so a Chern-Simons term at level −k is generated. This dual theory has gauge

group U(Nf + k−Nc), and this procedure gives a large mass to V± and to some of the M

fields, which can then be integrated out. One can see that we obtain precisely the duality

described above.

The considerations above can actually be applied at the level of the matrix model to

derive the expected mapping of the partition functions of Giveon-Kutasov duals. Specifi-

cally, we need to look at the asymptotic behavior of the 1-loop partition function for large
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mass. In addition to generating a Chern-Simons term, one finds a constant phase, which

one can interpret as being due to the fact that we are computing a Chern-Simons partition

function using a non-standard framing of S3, as discussed in [13]. In fact, a general formula

for the mapping of the partition function, including the relative phase, was conjectured in

that paper, and we will see that the results here reduce that conjecture to the identity of

the partition functions in section 3.1.

As shown in the appendix, if we take the 1-loop partition function for a flavor with

axial mass M , then for M → ±∞:

eℓ(
1
2
+iλ+iM)+ℓ( 1

2
−iλ+iM) ≈ exp

(

±
(

− iπλ2 − iπM2 − πM +
iπ

12

))

where we have ignored terms exponentially small in M . Note that, up to a λ-independent

factor, this is precisely the contribution to the matrix model of a level-1 Chern-Simons

term, as expected.

Now consider the partition function Z
(U)
Nf+1,Nc

(η;ma; m̃a;µ), and let the last flavor have

a large axial mass M , ie, mNf+1 = −m̃Nf+1 = M . We find, for µ → ∞:6

Z
(U)
Nf+1,Nc

(η;m1, ...,mNf
,M ; m̃1, ..., m̃Nf

,M ;µ) ≈

≈ 1

Nc!
e±Nc(−iπM2−πM+ iπ

12
)

∫ Nc
∏

j=1

dλje
∓iπλj

2+2πiηλj

Nf
∏

a=1

eℓ(
1
2
+iλj+ima+iµ)+ℓ( 1

2
−iλj−im̃a+iµ)

∏

i<j

(2 sinh π(λi−λj))
2

= (−1)Nc(Nc−1)/2e±Nc(−iπM2−πM+ iπ
12

)Z
(U)
Nf ,Nc,k=±1(η;ma; m̃a;µ)

where we have recognized the integral as the partition function for the level ±1 Chern-

Simons matter theory, whose partition function is given, in the general case, by:

Z
(U)
Nf ,Nc,k

(η;ma; m̃a;µ) =

=
1

Nc!

∫ Nc
∏

j=1

dλje
−kπiλj

2+2πiηλj

Nf
∏

a=1

eℓ(
1
2
+iλj+ima+iµ)+ℓ( 1

2
−iλj+im̃a+iµ)

∏

i 6=j

2 sinh π(λi − λj)

Note the difference in sign convention used for theories with a Chern-Simons term, which

is due to how we take the product in the 1-loop determinant for the gauge sector. Namely,

before we made the choice which ensured the 1-loop determinant was positive, while here

we use a convention which is more natural from the group theory perspective (ie, it is

simply what one gets by taking a product over all the roots). It turns out these two choices

give the simplest forms of the two types of dualities.

More generally, we find, for k a positive integer and M → ±∞:

6Here we impose
∑Nf

a=1 ma =
∑Nf

a=1 ma = 0, ie, we do not include mNf+1 in the sum. In addition, we

ignore µ relative to M in the last flavor (alternatively, we can absorb it into the definition of M).
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Z
(U)
Nf+k,Nc

(η;m1, ...,mNf
,M, ...,M ; m̃1, ..., m̃Nf

,M, ...,M ;µ) ≈

≈ (−1)Nc(Nc−1)/2e±kNc(−iπM2−πM+ iπ
12

)ZNf ,Nc,±k(η;ma; m̃a;µ)

Now we apply the known mapping of partition function from section 3.1:7

log(Z
(U)
Nf+k,Nc

(η;ma,M, ...,M ; m̃a,M, ...,M ;µ)) =

= log(Z
(U)
Nf+k,Nf+k−Nc

(η;−ma,−M, ...,−M ;−m̃a,−M, ...,−M ;µ))+

+ℓ(Nc −
Nf + k

2
− iNfµ− ikM + iη) + ℓ(Nc −

Nf + k

2
− iNfµ− ikM − iη)+

+

Nf
∑

a,b=1

ℓ(i(ma − m̃b + 2µ)) + k

Nf
∑

a=1

(ℓ(i(ma + µ+M)) + ℓ(i(M − m̃a + µ))) + k2ℓ(2iM)

If we use the formula above and the asymptotic expansion for ℓ(z) described in the ap-

pendix, we get, after taking the strict M → ∞ limit and simplifying:

log(Z
(U)
Nf ,Nc,k

(η;ma; m̃a;µ)) = log(Z
(U)
Nf ,k+Nf−Nc,−k(η;−ma;−m̃a;µ))+

+
∑

a,b

ℓ(i(ma − m̃b + 2µ)) +
πi

12
(k2 + 3(k +Nf )(Nf − 2) + 2)+

+πiη2 − kπi

2

∑

a

(ma
2 + m̃2

a) + πiNf (Nf − k)µ2 + πNf (k +Nf − 2Nc)µ

When we consider the N = 3 version of this duality, the only difference is addition

of a superpotential and an adjoint chiral of dimension 1. These do not affect the matrix

model, but the extended supersymmetry means one cannot allow axial masses, so we must

set ma = m̃a as well as µ = 0. In this case, the above formula reduces to:

log(Z
(U)
Nf ,Nc,k

(η;ma)) = log(Z
(U)
Nf ,k+Nf−Nc,−k(η;−ma))+

+
πi

12
(k2 + 3(k +Nf )(Nf − 2) + 2) + πiη2 − kπi

∑

a

ma
2

This agrees with the the results of [13], where it was proved in the cases Nf = 0, 1, but

only conjectured for larger Nf . Although we have only considered the case where k > 0 in

the original theory, since the dual theory has k < 0, it is straightforward to invert these

formulas to obtain the duality in the case where the original theory has k < 0.

7There is a slight subtlety related to the fact that ma and m̃a no longer sum to zero. It is straightforward

to work out how the 1-loop determinants for Ma
b and V± are modified in this case.
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4.1 Symplectic Case

Although Giveon and Kutasov only considered unitary gauge groups, the argument above

is easily adapted to the symplectic case. Consider an Sp(2Nc) gauge theory with 2(Nf +k)

chiral multiplets. Now we let the masses for 2k of the chiral multiplets be M , which we

send to ±∞. Then we find:

Z
(Sp)
Nf+k,Nc

(η;m1, ...,m2Nf
,M, ...,M ;µ) ≈

≈ e±2kNc(−iπM2−πM+ iπ
12

)

Nc!

∫ Nc
∏

j=1

e∓2kπiλj
2

2Nf
∏

a=1

eℓ(
1
2
+iλj+ima+iµ)+ℓ( 1

2
−iλj+ima+iµ)×

×
∏

1≤i<j≤Nc

(

(2 sinh π(λi − λj))
2(2 sinh π(λi + λj))

2

) Nc
∏

j=1

(2 sinh(2πλi))
2

= (−1)Nce±2kNc(−iπM2−πM+ iπ
12

)Z
(Sp)
Nf+k,Nc,±k(η;m1, ...,m2Nf

;µ)

where we have defined the partition function for a Chern-Simons matter theory with sym-

plectic gauge group by:

Z
(Sp)
Nf ,Nc,k

(η;m1, ...,m2Nf
;µ) = (−1)Nc

∫ Nc
∏

j=1

e−2kπiλj
2

2Nf
∏

a=1

eℓ(
1
2
+iλj+ima+iµ)+ℓ( 1

2
−iλj+ima+iµ)×

×
∏

i<j

(

(2 sinh π(λi − λj))
2(2 sinh π(λi + λj))

2

) Nc
∏

j=1

(2 sinh(2πλi))

As before, we use the natural sign convention in the 1-loop gauge determinant when dealing

with Chern-Simons theories. Also, there is an extra factor of 2 in the Chern-Simons

contribution relative to the unitary case, which is due to the normalization of the generators

for the Lie algebra. One can check this by making sure SU(2) and Sp(2) give the same

contribution.

Applying the duality to this theory, we find:

logZ
(Sp)
Nf+k,Nc

(η;ma,M, ...,M ;µ) = logZ
(Sp)
Nf+k,Nf+k−Nc−1(−ma,−M, ...,−M ;−µ)+

+ℓ(2Nc−Nf−k+1−2Nf iµ−2ikM)+
∑

1≤a<b≤2Nf

ℓ(i(ma+mb+2µ))+2k

2Nf
∑

a=1

ℓ(i(ma+µ+M))+k(2k−1)ℓ(2iM)

Taking the limit M → ∞ as before, we obtain:
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logZ
(Sp)
Nf+k,Nc,k

(η;ma;µ) = logZ
(Sp)
Nf+k,Nf+k−Nc−1,−k(−ma;−µ)+

+
∑

a<b

ℓ(i(ma +mb + 2µ))− kπi
∑

a

ma
2 + 2Nf (k +Nf )µ

2 + 2Nf (2Nc −Nf − k + 1)iµ

+
πi

12
(2k2 + 6Nf (k +Nf + 2) + 15k + 7)

In fact, all the formulas above make sense even if Nf and k are half-integral, provided

that their sum is an integer so that 2(Nf + k) is even. Thus there are dualities involving

theories with an odd number of chiral multiplets (recall that there are 2Nf such multiplets)

as long as we include a half-integral Chern-Simons term. Thus we are led to propose a

duality between the following theories:

• N = 2 Sp(2Nc) gauge theory with 2Nf chiral multiplets Qa and a Chern-Simons term

at level k. Here k and Nf may be half-integral, but must sum to an integer.

• N = 2 Sp(2(|k| + Nf − Nc − 1)) gauge theory with 2Nf chiral multiplets qa and a

Chern-Simons term at level −k. In addition, there are Nf (2Nf − 1) uncharged chiral

multiplets Mab, which couple through a superpotential Mabq
aqb.

5. Dimension by |Z| Extremization

So far we have been able to provide evidence for the equivalence of the IR fixed points of

several N = 2 theories. In these theories, the fields generically have anomalous conformal

dimension, and we were able to provide this evidence despite the fact that we did not know

what the correct IR dimension was. As described earlier, this was made possible by the fact

that different R-symmetries differ by flavor symmetries, and since we know how these map

between the dual theories, we can match the partition functions for any possible choice of

R-symmetry. Nevertheless, it would be interesting to know which of these is the correct

choice. As argued in [4], this choice should be picked out by extremizing |Z|.
Let us briefly comment on that problem now. Consider the theories of section 3.1,

namely, N = 2 U(Nc) gauge theories with Nf flavors. As argued above, the R-symmetry

may only mix with the U(1)A current, and so, in terms of the partition function, we only

need to consider giving an imaginary part to the total axial mass µ. Let us assume there

are no mass or FI deformations, so that the real part of all the mass terms are zero. Then

the partition function can be written as a function of the imaginary part of µ, which we’ll

call δ:

Z
(U)
Nf ,Nc

(δ) =
1

Nc!

∫

∏

j

dλje
Nf ℓ(

1
2
−δ+iλj)+Nf ℓ(

1
2
−δ−iλj)

∏

i<j

(2 sinh π(λi − λj))
2 (5.1)
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According to [4], the physical value of ∆Q is determined by extremizing |Z(U)
Nf ,Nc

(δ)|
with respect to δ. This expression is equal to the corresponding expression for the dual

theory:

e2ℓ(Nc−
Nf
2

+Nf δ)−Nf
2ℓ(2δ)Z

(U)
Nf ,Nf−Nc

(−δ)

One can determine the extremal value of δ using either expression. The dimensions of

the various fields are then given in terms of δ by:

∆Q =
1

2
+ δ, ∆q =

1

2
− δ, ∆M = 1 + 2δ, ∆V =

Nf

2
−Nc + 1−Nf δ

Let us see how this works in a few examples. First we consider theories with Nf =

Nc = N , for which the dual theories have no gauge group. As shown in [7], there is

an alternative description with the same matter content as the dual theory, but with the

superpotential replaced by:

W = −V+V− detM

For N = 1, we have a theory of three chiral fields interacting via a cubic superpotential,

namely the XY Z theory, and as shown in [4], the partition function function is extremized

by setting all fields to have dimension 2
3 . For N = 2, the superpotential is marginal, but as

we will see in a moment, the extremization argument suggests that the theory is free in the

IR, so that the superpotential must be marginally irrelevant. For N > 2, the superpotential

is irrelevant, and so we expect the theory to be free in the IR.

To see if this follows from the extremization method, note that, in the case Nf = Nc =

N there is no integral in the dual partition function, so the duality provides an evaluation

formula for the integral:

Z
(U)
N,N (δ) = e2ℓ(N( 1

2
+δ))−N2ℓ(2δ)

This expression is real and positive, so we may extremize it by extremizing its logarithm

(using dℓ
dz = −πz cot(πz)):

0 =
d

dδ
Z

(U)
N,N (δ) =

d

dδ
(2ℓ(N(

1

2
+ δ)) −N2ℓ(2δ))

= −2N2π

(

(
1

2
+ δ) cot πN(

1

2
+ δ)− 2δ cot(2πδ)

)

(5.2)

In general, this is a transcendental equation with irrational solutions. There are a few

exceptions. For example, N = 1 has δ = −1
6 as a solution, corresponding to the known

result ∆M = ∆V = 2
3 , and N = 2 has δ = −1

4 , corresponding to ∆M = ∆V = 1
2 , ie, the

dual theory is free.

For N > 2, we can see it is impossible to make the dual theory free, since δ must be

−1
4 for M to be free, which then fixes ∆V = 1 − N

4 6= 1
2 . In these theories, there must

be hidden symmetries coming from the free fields which appear only in the IR, and these
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k = 0 Nf = 1 Nf = 2 Nf = 3 Nf = 4

Nc = 1 1/3 0.4085 0.4369 0.4519

Nc = 2 - 1/4 0.3417 0.3852

Nc = 3 - - 0.2181 0.3058

k = 1 Nf = 1 Nf = 2 Nf = 3 Nf = 4

Nc = 1 0.4084 0.4198 0.4407 0.4535

Nc = 2 1/4 0.3107 0.3591 0.3914

Nc = 3 - 1/4 0.2878 0.3278

k = 2 Nf = 1 Nf = 2 Nf = 3 Nf = 4

Nc = 1 0.4256 0.4368 0.4482 0.4572

Nc = 2 0.3559 0.3618 0.3838 0.4037

Nc = 3 1/4 0.3016 0.3284 0.3528

Table 1: Values of ∆Q which extremize (specifically, minimize) |Z| for some small values of

Nc, Nf , k, obtained numerically. Besides Nc = Nf = 1, 2 and Nc = k + Nf , none of these val-

ues appear to be rational.

provide the extra freedom which allows us set the dimensions of both M and V to 1
2 . It is

not clear what these extra symmetries map to under the duality. Curiously, δ = −1
4 is still

a (non-unique) solution to (5.2) whenever N = 2 (mod 4), although it is not clear what, if

any, signficance this has.

One can apply a similar argument to the theories of section 4 with |k|+Nf = Nc, for

which the second theory again has no gauge group. Now there are no V± fields, and it is

straightforward to show that taking ∆M = 1
2 is always possible, and gives an extremum.

In cases with Nf > Nc, there does not appear to be an evaluation formula for the

integral defining the partition function, and we are forced to try find the extrema numeri-

cally. In table 1 we collect a few results for small Nf and Nc, and we also allow a non-zero

Chern-Simons term k. They appear to approach 1/2 from below as Nc/(k+Nf ) decreases.

Note that the unitarity bound is 1/4, since otherwise the gauge invariant chiral primary

QaQ̃b has dimension less than 1/2, and there is at least one theory here, U(3), Nf = 3,

which violates this bound.

We close this section with a point about convergence of the partition functions. As

shown in the appendix, the 1-loop partition function has exponential behavior for large λj .

For theories with a Chern-Simons term, one can add a small imaginary part to k, and the

gaussian term will dominate this exponential behavior, so the partition function always

converges. However, if there is no Chern-Simons term, a straightforward calculation shows

that convergence of the partition function requires:
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∆Q <
Nf −Nc + 1

Nf

Although one can define the partition function outside of this range by analytic continu-

ation, one might hope that for physical values of the dimension (ie, those determined by

extremization of |Z|), this is not necessary.
However, this cannot be the case. If one takes Nc/Nf → 0, it can be shown using the

large Nf approximation that ∆Q → 1
2 . But in the dual theory, where Nc/Nf → 1, this

implies ∆q = 1 −∆Q → 1
2 , which is outside the range of convergence. Thus one is forced

to define the partition function by analytic continuation in at least some cases. In fact,

inspecting the table above, we can see that already for Nc = 1, Nf = 4, the dimension

we obtained by numerical extremization is outside the range of convergence for the dual

Nc = 3, Nf = 4 theory.

6. Conclusion

In this paper we studied dualities between N = 2 theories in three dimensions reminiscent

of Seiberg duality. We showed that the equality of the partition functions of these theories

was equivalent to certain recently discovered integral identities involving the hyperbolic

gamma function. We also discussed how to obtain dualities involving Chern-Simons terms

from these dualities by integrating out flavors, and demonstrated the matching of their

partition functions.

One might wonder if we can obtain a deeper understanding of these dualities by study-

ing how these mathematical identities are proven. In many cases, these identities are proven

in a similar way to the method used in the current paper to derive Giveon-Kutasov du-

alities. Namely, one starts with a known duality and takes certain parameters to infinity,

recovering the duality you are interested in. It is likely this kind of argument can be re-

peated directly in the field theory description, much like it was for the Giveon-Kutasov

theories. In this way one can reduce the entire class of dualities to some much smaller

class. Going the other way, it is also likely one can obtain new dualities by performing

these kinds of manipulations.

In addition, we looked at some implications of the proposal of that the correct IR

R-symmetry is determined by extremization of the partition function. We found that

it is likely that the partition function must be defined by analytic continuation in some

cases, and in others there may be hidden symmetries which restrict the applicability of this

method. Nevertheless, we were able to recover the fact that a certain class of theories were

free in the IR using this method.

A. Appendix

A.1 Properties of 1-loop Partition Function

In [4] the following function was considered:
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ℓ(z) = −z log(1− e2πiz) +
i

2
(πz2 +

1

π
Li2(e

2πiz))− iπ

12

It’s defining property is:

dℓ

dz
= −πz cot(πz)

along with ℓ(0) = 0, which means it is odd in z. We will be interested in the function:

f(x) = eℓ(
1
2
+ix)

which is basically the 1-loop partition function of a chiral multiplet. It is straightforward

to show that it satisfies:

f(x)f(i− x) = 1 (A.1)

f(x)f(−x) =
1

2 cosh(πx)

Recall the functional equation satisfied by the hyperbolic gamma function Γh(z;ω1, ω2):

Γh(z + ω1) = 2 sin(
πz

ω2
)Γh(z)

Γh(z + ω2) = 2 sin(
πz

ω1
)Γh(z) (A.2)

Γh(z)Γh(ω1 + ω2 − z) = 1

One can check that Γh(
i
2 + x; i, i) satisfies the same functional equations as f(x). In fact,

by relating both functions to the double sine function, as was done for the former in [17]

and the latter in [19], one can rigorously show they are equal.

Next we consider the asymptotic properties of this function. For Im(z) large and

positive, one can see that:

ℓ(z) ≈ iπ

2
z2 − iπ

12

up to terms exponentially small in Im(z). Since ℓ is odd in z, we have, for Im(z) large and

negative:

ℓ(z) ≈ − iπ

2
z2 +

iπ

12

Now consider the 1-loop determinant of a hypermultiplet, whose chiral multiplets have

the same mass µ (called an axial mass):

Z(λ;µ) = f(λ+ µ)f(−λ+ µ)

Then, using the limits of ℓ(z) above, one finds that, for |λ| >> |µ|:
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Z(λ;µ) ≈ e−2π|λ|( 1
2
+iµ)

This shows that the asymptotic behavior of the integrands of the partition functions of

section 3 is exponential, and they only converge for a finite range of Im(µ).

Another limit of interest µ → ±∞, in which case we find:

Z(λ;µ) ≈ e±(−iπλ2−iπµ2−πµ+ iπ
12

)

This confirms that a Chern-Simons term is generated when we integrate out a fermion by

giving it a large axial mass.
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