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Abstract

We study the critical phenomena of Kerr-AdS black hole. Phase structures are observed at

different temperatures, TL, Tc1 and Tc2 with various features. We discuss the thermal stability

considering the isothermal compressibility and how phase transitions related to each other. The

asymptotic value of the angular momentum also has an implication on separating stable and

unstable part. Near critical temperature Tc1, the order parameter is determined to calculate the

critical exponents. All the critical exponents (α,β,γ,δ)=(0,1
2 ,1,3) are identical to that of mean field

systems. We plot the phase diagram near this critical point, and discuss the scaling symmetry of

the free energy.
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I. INTRODUCTION

During the last few decades, black hole thermodynamics has been playing the role of a

“thinking experiment” to understand quantum gravity. The discovery of Hawking radiation

shows that the analogy between black hole mechanical laws and the laws of thermodynamics

is physically meaningful. Based on this analogy, Davis pioneered to consider the phase

transition of RN black holes [13]. Hawking and Page later investigated the phase transition

of Schwarzschild-AdS black holes in [18]. Following their path-breaking research, many

works have been done along this direction and rich phase structures have been discovered

[1, 4–6, 8, 10, 19]. The later established AdS/CFT duality [20, 29] further inspired people

to focus on the asymptotically anti-de Sitter (AdS) black holes. Critical phenomena were

discovered in asymptotically AdS black holes (see [2, 3, 7, 9, 12, 21, 25, 30]).

In [12], Chamblin et al. studied the phase structures of RN-AdS black hole. They iden-

tified a critical point in RN-AdS black hole by considering the divergence of heat capacity.

Near this critical point, the behavior of isotherms are similar to that of van der Waals liq-

uid/gas system. However, the critical exponents of RN-AdS black hole are different from

that of the van der Waals case as it has been shown in [30]. A detailed investigation of the

phase structure of Kerr-AdS black hole is needed to be compared to the previous results.

We hope the report of critical phenomena can help us to achieve the ultimate goal of finding

a microscopic description of the black hole phase structure.

Another motivation of this work came from the ideas of holographic superconductors (see

[16, 17]) and their rotating extension (see [26]). In [26], Sonner studied the superconducting

phase transition on the boundary of Kerr-Newman-AdS black hole. The phase structure of

the background field may affect some properties of the rotating holographic superconductor.

And the knowledge of phase transitions of Kerr-AdS and RN-AdS black holes could be

essential to fully understand the holographic superconductors.

In this paper, we study the phase structure of Kerr-AdS black hole. Rich phase structure

were discovered at three diverse critical temperatures, and this multi-critical phenomenon

in Kerr-AdS black hole has not been carefully discussed in the previous literatures.

To begin with, we briefly discuss the phase structure by plotting the isotherm and discribe

the three critical temperatures. We then detailedly discuss the critical behavior of each

isotherm near the three critical temperature TL, Tc1 and Tc2, respectively. We determind
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the asymptotic value of the angular momentum, which is important to understand the

thermal stability of the Kerr-AdS black hole.

At a certain temperature Tc1, we discovered van der Waals-like phase transition. Unlike

the previous case in [25, 30], the critical exponents of Kerr-AdS black hole are found identical

to the van der Waals liquid/gas system and the Weiss ferromagnet. It provides a strong

evidence that Kerr-AdS black hole system belongs to the universality class which contains

these two systems. We also discuss the scaling symmetry of the free energy near this critical

point.

The paper is organized in the following manner. In section II, we introduce the necessary

basics of Kerr-AdS black hole and define its thermodynamics quantities. The asymptotic

behavior of angular velocity is briefly discussed. The critical isotherms are plotted in section

III, in which we briefly discuss the phase structure of Kerr-AdS black hole at TL, Tc1 and Tc2,

respectively. The asymptotic angular velocity has an implication on the thermal stability of

Kerr-AdS black hole through the phase transition happens at Tc2 In section IV, we calculate

the critical exponents of the newly discovered critical point at Tc1 can compare it to the

well-known phase transition systems, such as Weiss ferromagnet system and van der Waals

liquid/gas system. We make analogy of the free energy and discuss its scaling symmetry.

The paper is concluded in section V with discussions and future outlooks.

II. THERMODYNAMICS OF KERR-ADS BLACK HOLE

Kerr-AdS black hole is a rotating black hole in AdS space-time. The exact Kerr-AdS black

hole solution of the Einstein equations is given by [11] in the Boyer-Lindquist coordinates

as

ds2 = −∆r

Σ

(
dt− a sin2 θ

Ξ
dφ

)2

+
Σ

∆r

dr2 +
Σ

∆θ

dθ2 +
∆θ sin2 θ

Σ

(
adt− r2 + a2

Ξ
dφ

)2

, (1)

where

∆r = (r2 + a2)
(

1 + r2

l2

)
− 2Mr, Ξ = 1− a2

l2
,

∆θ = 1− a2

l2
cos2 θ, Σ = r2 + a2 cos2 θ. (2)
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Here M is the mass of Kerr-AdS black hole and a is the rotational parameter related to the

angular momentum of the black hole. If we take a = 0, the above metric reduces to the

Schwarzschild metric.

The curvature radius l is related to the negative cosmological constant Λ by Λ = −3l−2.

And the radius of horizon r+ is defined by taking ∆r = 0, i.e.

(r2
+ + a2)

(
1 +

r2
+

l2

)
− 2Mr+ = 0. (3)

So the area of event horizon A is

A =
4π(r2

+ + a2)

Ξ
. (4)

A. Thermodynamic Quantities of Kerr-AdS Black Hole

The thermodynamic quantities of the Kerr-AdS black hole [14] can be expressed in terms

of the radius of horizon r+, the rotational parameter a and the cosmological constant Λ

(Λ = −3/l2). The Hawking temperature of Kerr-AdS black hole is now

T =
3r4

+ + (a2 + l2)r2
+ − l2a2

4πl2r+(r2
+ + a2)

, (5)

While the Bekenstein-Hawking entropy is S = A/4.

Consider the first law of Kerr-AdS black hole [14]

dE = TdS + ΩdJ, (6)

One have to choose the angular velocity Ω measured relative to a frame which is non-rotating

at infinity. This quantity is defined as

Ω =
a(1 + r2

+l
−2)

r2
+ + a2

. (7)

Now for Eq.(6), one has the ”physical” mass (or energy) E and angular momentum J defined

as

E =
M

Ξ2
, J =

Ma

Ξ2
. (8)
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By solving Eq.(3) to determine M , we have

J =
a(1 +

r2
+

l2
)(a2 + r2

+)

2r+(1− a2

l2
)2

. (9)

B. Equation of State and Asymptotic Behavior of Ω in Large J

Because Λ is a constant, we can rescale each quantity to simplify the expressions and

calculations,

lT → T, lΩ→ Ω,

J

l
→ J ,

M

l
→M,

a

l
→ a,

r+

l
→ r+. (10)

Thus J , Ω, and T become

J =
a(1 + r2

+)(a2 + r2
+)

2r+(1− a2)2
, (11)

Ω =
a(1 + r2

+)

r2
+ + a2

, (12)

T =
3r4

+ + a2r2
+ + r2

+ − a2

4πr+(r2
+ + a2)

. (13)

Here we have three equations which govern the phase structure of the Kerr-Ads black hole,

which can be regarded as ”equations of state”. The functions Ω, J and T are complicatedly

dependent on r+ and a, so that it is difficult to solve r+(J,Ω) and a(J,Ω) analytically to

get the equation of state T = T (Ω, J) directly.

To begin with, we solve a as a function of T and r+ to get

a =

√
r2

+ + 3r4
+ − 4πr3

+T

1− r2
+ + 4πr+T

. (14)

By putting a back into (11) and (12), we obtain the following parametrized expressions for

J and Ω,

J =
r2
+

√
(1−r2

++4πr+T )(1+3r2
+−4πr+T )

(1−3r2
++4πr+T )2 , (15)

Ω =

√
(1−r2

++4πr+T )(1+3r2
+−4πr+T )

2r+
. (16)
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These two parametrized equations allow us to discuss the asymptotic behavior of Ω on an

isotherm when J goes to infinity. For a fixed T , angular momentum J goes to infinity as

r+ → 1
3

(
2πT +

√
3 + 4π2T 2

)
. Taking r+ to this value, we get

Ω→ 1. (17)

Thus we have the asymptotic value of Ω as one when J goes to infinity.

We name this asymptotic value Ω = 1 as Ωc2 because it relates to the critical temperature

Tc2. This critical behavior at Tc2 will be further discussed in section III B. In the next section,

we will plot the isotherms to study the phase structure of Kerr-AdS black hole.

III. CARVING THE PHASE STRUCTURE

Tc2

Tc1

TL

0.0 0.5 1.0 1.5 2.0 2.5 3.0
W0.00

0.01

0.02

0.03

0.04

0.05

0.06
J

FIG. 1: The isotherms on the (J,Ω) space. Three isotherms has been labeled by their temperatures,

TL, Tc1 and Tc2. TL > Tc1 > Tc2.

We present the isotherms at various temperatures in FIG. 1. Fos each fixed temperature

T , we vary r+ to get an isotherm of (J , Ω) by using Eq.(15) and Eq.(16).

The first apparent feature we observed of these isotherms is that above a certain tempera-

ture TL = 0.2757, the isotherms become L-shaped with their cusp located on (J,Ω) = (0, 0),

as one can see in Fig. 1. The Kerr-AdS black hole reduces to Schwarzchild-AdS black hole

at this point. The isotherm has positive slope near the (0, 0) point, which makes this part

thermally unstable as far as the isothermal compressibility κT being considered. This L-

shaping critical phenomena also destroy the phase structure of Tc1 at Tc1′ (Tc1 < Tc1′ < TL),

as we will discuss in section IV.
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There are two other isotherms being specifically labeled in FIG. 1 with their temperatures

Tc1 and Tc2. Two different critical phenomena occur at lower temperatures. To see the phase

structure at Tc1 and Tc2 clearly, we plot the isotherms around the critical temperatures in

different scales in FIG.2 and 3.

A. Phase Structure Near Critical Point at Tc1

T < Tc1

T= Tc1

T > Tc1

0.3 0.4 0.5 0.6 0.7 0.8
W

0.0230

0.0235

0.0240

0.0245

0.0250

0.0255
J

FIG. 2: The critical isotherms near the critical temperature Tc1.

First we discuss the phase transition taking place at Tc1 = 0.270. This temperature is

determined by solving the standard critical point equations (see [23]),(
∂J

∂Ω

)
Tc1

= 0,

(
∂2J

∂Ω2

)
Tc1

= 0. (18)

By using the above equations of state Eq.(15) and Eq.(16), we determine (Ωc1, Jc1) =

(0.459, 0.024). The isotherms around this critical point are plotted in FIG. 2. At this

critical point, the isothermal compressibility κT =
(
∂Ω
∂J

)
T

and the specific heat CJ both

diverge. And above Tc1, a single J corresponds to multiple Ωs for each fixed temperture.

FIG.2 is similar to the liquid/gas PVT diagram [23]. This van der Waals-like phase

transition can be clearly visualized as we choose the J → P , Ω → V correspondence. We

will make a detailed study of this critical point in section IV.
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B. Phase Structure Near Critical Point at Tc2

The other critical temperature, Tc2 = 0.159, is determined when an isotherm has its

slope goes to infinity (κT → 0) when J → ∞. Below the temperature Tc2, the isothermal

compressibility κT is always negative along each isotherm, which means that the black hole

is stable under this consideration. But as one raise the temperature to above Tc2, positive

isothermal compressibility emerge on the upper part of the curves, making the black hole

thermally unstable. We highlights the unstable region as the shadowed region in FIG.3 as

well as the critical isotherm at Tc2. The J value is plotted on the log coordinate, while Ω is

on the original coordinate, to better visualize the critical behavior of isotherms near TL, Tc1

and Tc2.

Unstable Region

TL

Tc1

Tc2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
W

0.01

1

100

J

FIG. 3: The diagram contains all three critical phenomena with their features. Here J is plot on

the log coordinate.

One can understand the critical behavior at Tc2 in another manner. The asymptotic

angular velocity, Ωc2, also marks the critical angular momentum where the points on the

isotherms could become thermally unstable in the upper part, as we can see in FIG. 3. On

the right side of Ω = Ωc2 line, all the isotherms are stable on the upper part. But on the left

side of Ω = Ωc2, the unstable parts start to emerge on the upper part of isotherms. It is an

important feature: Kerr-AdS black hole not only has an asymptotic angular velocity, but
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this asymptotic angular velocity also determine the thermal stability as far as isothermal

compressibility is considered.

In the end of this section, we summarize the phase structure of Kerr-AdS black hole with

the aid of FIG.3. The isotherm at TL has its cusp located on (0, 0). The critical isotherm

at Tc1 has zero slope at its critical point (the black point in the figure) and then slowly

bending downward as Ω increases. The isotherm at Tc2 has infinite slope when J is very

large. One can also see the asymptotic/critical value Ωc2 = 1 which separates the stable and

the unstable regions in FIG.3.

IV. THE PHASE STRUCTURE NEAR Tc1

In this chapter, we consider the phase transition which happens above critical tempera-

ture Tc1. In FIG. 2, this van der Waals-like phase structure can be clearly visualized. This

critical point happens when we choose grand canonical (fixed horizon angular velocity Ω)

ensemble. The critical phenomena has not been discussed carefully in the previous liter-

atures.As pointed out by [24], the phase structure of black holes strongly depends on the

choice of the ensembles. We study the quantitative properties of this newly found second-

order phase transition, and compare it to well known systems.

A. Determination of the Critical Point

The first critical point can be determined by of the following conditions,(
∂J

∂Ω

)
T

= 0,

(
∂2J

∂Ω2

)
T

= 0, (19)

which can be expressed as functions of r+ and T by Eq.(15) and Eq.(16),

(
∂J

∂Ω

)
T

=

(
∂J
∂r+

)
T(

∂Ω
∂r+

)
T

= JΩ(r+, T ), (20)

(
∂2J

∂2Ω

)
T

=

(
( ∂J
∂Ω)

T
∂r+

)
T(

∂Ω
∂r+

)
T

= JΩ2(r+, T ). (21)
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Solving the above two equations, we find that at the critical point T = Tc1 ≡ 0.270 and

r+ = rc1 ≡ 0.459. Then we obtain (Ωc1, Jc1) = (0.459, 0.024).

B. Order Parameter and Law of Equal Area

We will define the order parameter to describe the critical behavior near the critical point.

Above the critical temperature Tc1, there are three points on an isotherm having the same

J but with the different Ωs. Like van der Waals system, one can define an order parameter

by Maxwell’s equal-area law. As in FIG. 4, we choose a isotherm with T > Tc1 and draw

a horizontal line which intersect the isotherm at three points a,m and b. When the area A

is equal to the area B, the value η = (Ωb − Ωa)/2 is defined as the order parameter. This

method also allow us to plot the coexistence curve as we present in FIG. 5. At Tc1′ = 0.2735

(determined numerically), the area A of the left part becomes too small to achieve Maxwell’s

equal-area law, therefore the phase transition ends at the temperature Tc1′.

For the mean field systems, spontaneous magnetism is the order parameter in Weiss

ferromagnetic system, while the half width of the coexistence curve is the order parameter

in the van der Walls system [23].

a A
m B

b

0.2 0.3 0.4 0.5 0.6 0.7 0.8
W

0.0220

0.0225

0.0230

0.0235

0.0240
J

FIG. 4: Applying the equal-area law on an isotherm at a temperature T > Tc1.

C. Critical Exponents

With the order parameter η = (Ωa − Ωb)/2 which we defined in the previous section, we

will calculate the following well known critical exponents in this section.
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Degree of critical isotherm:

J − Jc1 = Aδ|Ω− Ωc1|δsign(Ω− Ωc1), T = Tc1. (22)

Degree of coexistence curve:

η = −Aβ(T − Tc1)β, T > Tc1. (23)

Degree of heat capacity (Ω = Ωc1):

CΩ =

 Aα′{−(T − Tc1)}−α′
, T < Tc1

Aα{+(T − Tc1)}−α, T > Tc1
. (24)

Degree of isothermal compressibility:

κT =

 Aγ′{−(T − Tc2)}−γ′ , T < Tc1

Aγ{+(T − Tc2)}−γ, T > Tc1
. (25)

Following the discussion in [23], the definitions of the degree of isothermal compressibility

κT for T < Tc1 and T < Tc1 are different. For T < Tc1, γ′ is defined along the iso-angular

momentum line, i.e., Ω = Ωc1; when T > Tc1, γ is defined along the coexistence curve, which

is illustrated in FIG. 5.

Next, we will calculate these critical exponents of the phase transitions in Kerr-AdS black

hole system one by one.

1. Degree of Critical Isotherm

At this critical point T = Tc1, the first and second derivatives of J over Ω satisfy(
∂J

∂Ω

)
T

∣∣∣∣
c1

=

(
∂2J

∂Ω2

)
T

∣∣∣∣
c1

= 0. (26)

The third order derivative can be calculated as(
∂3J

∂3Ω

)
T

∣∣∣∣
c1

= −0.539 6= 0, (27)
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which is not vanishing, therefore we get δ = 3.

2. Degree of Coexistence Curve

Jc1'

T=Tc1

0.2 0.4 0.6 0.8 1.0 1.2
W

0.020

0.021

0.022

0.023

0.024

0.025
J

FIG. 5: The dashed curve is the coexistence curve of phase transition above Tc1. The coexis-

tence curve ends at Jc1′, because the stable area is too small to apply the equal area law at the

corresponding temperature Tc1′

In FIG. 5 we plot the curve of the coexisting states by Maxwell’s equal-area law. This

curve indicates the temperature dependence of the order parameter right after the order

parameter emerges.

We expand J in terms of Ω and T to the third order as

J − Jc1 ≈ (∂TJ)Ω|c (T − Tc1)

+ (∂T (∂ΩJ)T )Ω|c1 (Ω− Ωc1)(T − Tc1)

+1
2

(∂T (∂2
ΩJ)T )Ω|c1 (Ω− Ωc)

2(T − Tc1)

+1
2

(∂2
T (∂ΩJ)T )Ω|c1 (Ω− Ωc1)(T − Tc1)2

+ 1
3!

(∂3
ΩJ)T |c1 (Ω− Ωc1)3. (28)

To simplify the calculation, we define

j = J − Jc1, t = T − Tc1, ω = Ω− Ωc1, (29)

so that

j = c10t+ c11ωt+ c21ωt
2 + c12ω

2t+ c03ω
3. (30)
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All coefficients cij in Eq.(30) can be calculated by the standard partial differentiation. The

results are

c10 = −1.027, c11 = 3.684, c12 = −15.792, c21 = −458.833, c03 = −0.090. (31)

As we will see in the following discussions, the critical exponents are not sensitive to the

exact values of these constants.

By applying the conditions of equal angular momentum and equal area,

j(ωa, t) = j(ωb, t),

∫ ωa

ωb

ω dj = 0, (32)

we found that

− (ωa − ωb)[c11t+ c21t
2 + c12t(ωa + ωb) + c03(ω2

a + ωaωb + ω2
b )] = 0, (33)

−(ωa − ωb)[6c11t(ωa + ωb) + 6c21t
2(ωa + ωb)

+8c12t(ω
2
a + ωaωb + ω2

b ) + 9c03(ω3
a + ω2

aωb + ωaω
2
b + ω3

b )] = 0. (34)

Changing the variables as

ω− ≡ ωb − ωa = Ωb − Ωa, ω+ ≡ ωb + ωa, (35)

one can solve ω+ and ω− as

ω+ = −2c12t
3c03

, (36)

ω− =

√
−4c11t+

(
4c212
3c03
−4c21

)
t2

c03
. (37)

Now we can expand t in term of ω− as

t = −c11c03

4c2
11

ω2
− +O(ω4

−), (38)

to get the order parameter
Ωb − Ωa

2
≈ Aβ(T − Tc1)

1
2 . (39)
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Thus we read β = 1
2
.

3. Critical Exponent of Heat Capacity

We now consider the critical exponent of the heat capacity along the constant angular

velocity line Ω = Ωc. By the black hole thermal dynamical laws, the role of the internal

energy Q is played by the black hole mass E of the Kerr-AdS black hole. E is given by

Eq.(8) and is rescaled by Eq(10) as

E =
r3

+ − r5
+ + 4πr4

+T

(1− 3r2
+ + 4πr+T )2

. (40)

The heat capacity CΩ can be calculated as

CΩ =

(
∂E

∂T

)
Ω

∣∣∣∣
c1

= −2.880 6= 0. (41)

Therefore, α and α′ are both zero because the heat capacity neither diverges nor vanishes,

i.e. α = α′ = 0.

4. Degree of Isothermal Compressibility

The isothermal compressibility κT is defined as

κT =

(
∂Ω

∂J

)
T

, (42)

which is divergent at the critical point. To do the Taylor expansion, we consider the inverse

of the isothermal compressibility

κ−1
T =

 A′{−(T − Tc1)}γ′ , (T < Tc1)

A{+(T − Tc1)}γ, (T > Tc1)
. (43)

Using Eq. (30), we have

κ−1
T ∝

(
∂j

∂ω

)
t

≈ c11t. (44)
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TABLE I: The comparison of critical exponents

Exponent Weiss/van der Waals Kerr-AdS Tc1 Ising(d=2) Ising(d=3)
α 0 0 0 0.110(5)
β 1/2 1/2 1/8 0.325+0.0015
γ 1 1 7/4 1.2405+0.0015
δ 3 3 15 4.82(4)

The first order dependence is correct for both T > Tc1 (along the iso-angular velocity line,

on which ω = ωc) and T < Tc1 (along coexistence curve, on which ω ∝ t
1
2 ). Therefore we

get γ = γ′ = 1.

D. Free Energy and Comparison with Mean Field Models

In Table.I, we compared the critical exponents for various systems. It is interesting to

take the point of view of the mean field theory to look at the results we got in the previous

sections.

In Eq.(30), we expanded the equation of state of Kerr-AdS black hole in the vicinity

of the critical point. With the definition of ε = (T − Tc1)/Tc1 and the order parameter

η = (Ω− Ωc1)/Ωc1, the equation of state becomes

j = c̃10ε+ c̃11εη + c̃21ε
2η + c̃12εη

2 + c̃03η
3, (45)

where c̃10, c̃11, c̃21, c̃12, c̃03 are constant coeeficients.

The equation of state can be derived from the free energy,

g(j, ε, η) = g0(j, ε)− (j − c10ε)η + (c11ε+ c21ε
2)

1

2
η2 + c12ε

1

3
η3 + c03

1

4
η4. (46)

Now we compare our result with some mean field systems.

The first system is Weiss ferromagnet system, see [15]. The equation of state is

H

kBT
= M(1− τ) +M3(τ − τ 2 + τ 3/3 + · · · ) , (47)

where M is the average magnetic moment, H is the external field, and τ−1 is defined as
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T/Tc.

In terms of ε = (T − Tc)/Tc as well as order parameter η = M , this equation of state can

be written as
H

kBT
= ηε+ η3 +O(εη3) , (48)

which can be derived from the free energy Γ as,

Γ(η, T,H) = Γ0(T,H)− ηH

kBT
+
εη2

2
+

1

4
η4. (49)

Another mean field system we will consider is van der Waals gas/liquid system, see also [15].

The equation of state is

π =
P − Pc
Pc

= 4ε+ 6εη +
3

2
η3 +O(η4, η2ε), (50)

where ε = (T − Tc)/Tc and the order parameter η = −(V − Vc)/Vc.

The above equations of state can be derived from the Gibbs free energy G,

G(p, T, η) = G0(p, T ) +
N

ρ2
0

[−(π − 4ε)η + 3εη2 +
3

8
η4]. (51)

The similarity of Eq.(46), Eq.(49), and Eq.(51) explains the identical critical exponents in

different systems. All systems we considered above can be incorporated into the classical

Landau theory [15].

E. Widom Scaling

Now we consider the scaling symmetry of the free energy around the critical point. We

first separate the free energy into two parts,

g(ε, j) = gr(ε, j) + gs(ε, j) . (52)

Function gr(ε, j) is the regular part which does not change when approaching the critical

point, while gs(ε, j) is the singular part which possesses the singular behavior of the system

in the vicinity of the critical point. Assuming that the singular part is a generalized homo-

geneous function of its parameters, through Eq.(38), (45), and (46), we can write down the
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free energy near the critical point as

gs(ε, j) = cεε
2 + cjj

4/3 , (53)

which has the scaling symmetry,

gs(Λ
pε,Λqj) = Λgs(ε, j), p =

1

2
, q =

3

4
. (54)

Following the discussion of [23], we can write the critical exponents in terms of p and q as

α = 2p−1
p

, (55)

β = 1−q
p
, (56)

γ = 2q−1
p

, (57)

δ = q
1−q . (58)

From the above equations, we find that the critical exponents satisfy the following expected

relations,

α + 2β + γ = 2 ,

α + β(δ + 1) = 2 ,

γ(δ + 1) = (2− α)(δ − 1) ,

γ = β(δ − 1). (59)

The above scaling relations stand as the consistency check for the critical exponents we

obtained in the previous section.

F. Phase Diagram

In FIG 6, we present the phase diagram near critical point (Tc1, Jc1) on the T − J plane.

One can see the phase transition line and the critical point. Liquid/gas-like phase tran-

sition occurs when crossing the phase transition line. This phase structure occurs at the

temperature above Tc1, and ends when the temperature reaches Tc1′, at which the Maxwell’s
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   Critical Point
ITc1, Jc1L

Tc1'
0.269 0.270 0.271 0.272 0.273 0.274

T0.019

0.020

0.021

0.022

0.023

0.024

J

FIG. 6: Phase diagram near critical point Tc1. Similar to the phase diagram of liquid/gas phase

transition[23, 27].

equal-area law fails to apply on the isotherm due to the stable part is too small.

Although this phase diagram is similar to that of liquid/gas phase transition, this critical

phenomenon happens when raising the temperature above Tc1, rather than lowering the

temperature below the critical temperature. The phase transition line thus point to different

direction as that of liquid/gas system [23, 27]. This is an intriguing feature of van der Waals-

like critical point for both RN-AdS black hole [25, 30] and Kerr-AdS black hole.

V. DISCUSSION

In this paper, we studied the phase structure of Kerr-AdS black hole. Rich critical

phenomena have been found at the different temperatures TL, Tc1 and Tc2. Based on the

isotherms, we discussed the physical meaning of each critical point. The asymptotic angular

momentum Ωc2 was also discussed and found to be assoiated to the critical behavior at Tc2.

We have studied the critical behavior at the critical temperature T = Tc1 in a great detail

and found the analogy between the critical behavior at Tc1 and the van der Waals system.

We also calculated the critical exponents. The critical exponents (0, 1
2
, 1, 3) are the same as

that of mean field systems, which means that they are in the same universality class. The

corresponding scaling symmetry of free energy has also been discussed. We finally plot the

phase diagram of Kerr-AdS black hole.

The multi-critical phenomena we described in this paper could be a guide which provides

a restriction for a complete theory of underlying mechanism. We think that the similar

van der Waals-like structure, but the difference critical exponents of RN-AdS and Kerr-AdS
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black holes deserves further study. The natural extension, KN-AdS black hole, would be the

next target to be understood.

Our results are interesting under the context of AdS/CFT duality. One can study a strong

correlation system dual to Kerr-AdS black hole. In [26], Sonner found that superconducting-

like condensation also exists on the boundary of KN-AdS black hole. He found that there is a

critical value of rotation which could destroy the superconductivity in analogy to the critical

magnetic field. It is nature to guess that KN-AdS black hole has the similar phase structure

as Kerr-AdS and RN-AdS black holes, which will in some way affect the thermal stability

of the condensation. It would be interesting to have further study along this direction.

In recent years, people managed to rewrite the field equations of gravity into thermody-

namics identities (for a review see [22]). In [28], Verlinde suggested that the gravity could

be understood as the entropy force induced by the inner freedom of the holographic screen.

These observations hope to regard gravity theory as a result of more fundamental thermo-

dynamic principles. It could be possible to use the ideas to explain the thermal stability

and phase structure of Kerr-AdS black hole.
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