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Abstract

Three-point correlation functions in the strong-coupling regime of the AdS/CFT corre-

spondence can be analyzed within a semiclassical approximation when two of the vertex

operators correspond to heavy string states having large quantum numbers while the third

vertex corresponds to a light state with fixed charges. We consider the case where the

heavy string states are chosen to be giant magnon solitons with either a single or two

different angular momenta, for various different choices of light string states.
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1 Introduction

A conformal field theory is entirely determined once the complete spectrum of two and

three-point correlation functions is solved for any value of the coupling constant. Higher

order correlators can then be obtained from these two lower ones. The appearance of

integrable structures in the AdS/CFT correspondence provided an impressive analysis

of two-point correlation functions and the spectrum of anomalous dimensions in four-

dimensional planar Yang-Mills with N = 4 supersymmetry both in the weak and strong-

coupling regimes (see for instance [1] for a comprehensive review) . There is however

no equivalent understanding on the general structure of three-point correlation functions.

In the weak-coupling limit three-point correlators have been evaluated perturbatively [2]

or using integrability-inspired techniques [3, 4]. In the strong-coupling limit three-point

functions for chiral operators have been computed within the supergravity regime of the

correspondence [5]. But it has been only recently that a general analysis has started for

primary operators dual to massive string states. In the AdS/CFT correspondence, the

strong-coupling limit of correlation functions for single-trace gauge invariant operators

can be found by inserting closed string vertex operators in the path integral for the string

partition function. These vertex operators scale exponentially with both the energy and the

quantum conserved charges for the corresponding string states. Therefore, when charges

are of the order of the string tension a saddle point approximation can be used in order

to evaluate the string path integral, which will be dominated by a semiclassical string

trajectory. We can thus employ a semiclassical approximation in order to analyze the case

of correlation functions for non-protected operators with large quantum charges.

The semiclassical approach to the evaluation of two-point correlation functions was

explored in references [6]-[10]. The analysis of three-point correlators where two of the

vertex operators are complex conjugate heavy string states with large conserved charges

while the third one is a light state with fixed charges has been developed in a recent series of

papers [11]-[22]. 1 In the case where the light vertex is a massless mode corresponding to a

protected chiral state it was shown in [11, 12] that indeed the leading order contribution to

the correlator in the large string tension limit is coming from the semiclassical trajectory,

which amounts to evaluating the light vertex operator on the classical string configuration

1A semiclassical treatment of four-point correlation functions with two heavy and two light vertex

operators has also been considered in [23, 22].
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of the two heavy vertices. The extension to the case where the light vertex operator is a

massive string mode, dual to general non-protected states, was later on considered in [13].

The leading contribution in the saddle point approximation to the correlation function

of two complex conjugate heavy vertex operators and one light vertex is thus coming from

the classical string configuration of the operators with large quantum charges. Therefore

the contribution from the light vertex can be neglected and the three-point correlator is

governed by the classical solution saturating the two-point function of the heavy vertices.

In order to find the three-point function 〈VH1(x1)VH2(x2)VL(x3)〉 it suffices then to evaluate

the light vertex operator on the classical configuration,

〈VH1(x1)VH2(x2)VL(x3)〉 = VL(x3)classical . (1.1)

In a conformal field theory the dependence on the location of the vertex operators in a

three-point function is completely determined up to some overall coefficients C123, which

are the structure constants in the operator product expansion. In order to find the value of

these coefficients the positions of the vertex operators can be conveniently chosen [10, 13].

Taking |x1| = |x2| = 1 and x3 = 0, the correlator reduces to

〈VH1(x1)VH2(x2)VL(0)〉 =
C123

|x1 − x2|2∆H1
, (1.2)

because the conformal weights for the heavy operators are much larger than that of the

light operator. The normalized structure constant C3 ≡ C123/C12 can then obtained from

C3 = c∆VL(0)classical , (1.3)

where c∆ is the normalization constant of the corresponding light vertex operator. In this

note we will employ this proposal to explore the case where the classical states associated

with the the heavy vertices in the three-point correlator are giant magnon solitons with

a single or two different angular momenta in S5. The correlation function of two single-

charge giant magnons and the lagrangian operator has been considered before in [12]. The

purpose of this article is to extend the analysis to more general three-point functions.

The remaining part of this note is organized as follows. In section 2 we briefly review

some general features of the giant magnon solutions. Then in section 3 we will compute the

normalized coefficients in the three-point functions for either the single or the two-charge

giant magnon solitons, and various different choices of light vertex operators. In section 4

we conclude with some general remarks and a discussion on several open problems.
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2 Giant magnons

In this section we will briefly present the giant magnon solitons for the string sigma model

with either a single or two different angular momenta in S5. To describe the solutions,

it will be convenient to parameterize the embedding coordinates YM and XK for the ten-

dimensional AdS5 × S5 background in terms of the corresponding global angles,

Y1 + iY2 = sinh ρ sin γeiφ1 , Y3 + iY4 = sinh ρ cos γeiφ2 , Y5 + iY0 = cosh ρ eit , (2.1)

X1 + iX2 = cos θ cosψeiϕ̃ , X3 + iX4 = cos θ sinψeiϕ̄ , X5 + iX6 = sin θeiϕ . (2.2)

The embedding coordinates of AdS5 are related to the Poincaré coordinates through

Ym =
xm
z

, Y4 =
1

2z

(

− 1 + z2 + xmxm
)

, Y5 =
1

2z

(

1 + z2 + xmxm
)

, (2.3)

where xmxm = −x20 + xixi, with m = 0, 1, 2, 3 and i = 1, 2, 3. Euclidean continuation of

the time-like directions to

te = it , Y0e = iY0 , x0e = ix0 , (2.4)

will allow the classical trajectories to approach the boundary z = 0 when τe = ±∞. The

giant magnon with a single angular momentum is a localized classical soliton propagating

on an infinite string moving in R× S2 [24]. After euclidean rotation it is described by

z = sech(κτe) , x0e = tanh(κτe) , xi = 0 , (2.5)

cos θ = sin
p

2
sech(ue) , tan(ϕ+ iτe) = tan

p

2
tanh(ue) , (2.6)

with p the momentum of the magnon and

ue =
(

σ + iτe cos
p

2

)

csc
p

2
. (2.7)

The Virasoro constraint requires κ2 = 1, which also follows from the marginality condition

for conformal invariance on the semiclassical two-point correlation function of the corre-

sponding physical vertex operators. Both the energy E and the angular momentum J for

the giant magnon are infinite, but the difference is kept finite,

E − J =

√
λ

π

∣

∣

∣
sin

p

2

∣

∣

∣
, (2.8)

which is the strong-coupling limit of the dispersion relation for elementary magnon exci-

tations in four-dimensional planar N = 4 Yang-Mills [25].
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The case of a giant magnon soliton with two different angular momenta corresponds to

a classical string solution rotating in R×S3 [26]-[31]. We will present the solution following

closely notation and conventions in reference [30]. After euclidean continuation the giant

magnon with two charges is described by the point-like AdS5 geodesic (2.5), together with

cos θ = sin
p

2
sech(ve) , tan(ϕ+ iτe) = tan

p

2
tanh(ve) ,

ϕ̄ = −(σ sinhα+ iτe coshα) sin β , (2.9)

where p is again the momentum of the magnon, and now

ve =
(

σ coshα+ iτe sinhα
)

cos β , (2.10)

with the parameters α and β given by

tanhα =
2r

1 + r2
cos

p

2
, cotβ =

2r

1− r2
sin

p

2
. (2.11)

The conserved finite charges carried by the two-charge giant magnon soliton are

E − J =

√
λ

π

1 + r2

2r

∣

∣

∣
sin

p

2

∣

∣

∣
, (2.12)

J̄ =

√
λ

π

1− r2

2r

∣

∣

∣
sin

p

2

∣

∣

∣
. (2.13)

Eliminating the parameter r in these expressions we get

E − J =

√

J̄2 +
λ

π2
sin2 p

2
, (2.14)

which is the dispersion relation for a bound state of J̄ giant magnons [26]. In the limit

where the parameter r → 1 the second angular momentum J̄ vanishes, and the two-charge

soliton reduces to the elementary giant magnon with a single angular momentum.

3 Three-point correlation functions

In this section we will find the leading contribution in the large string tension limit to

three-point correlation functions where the complex conjugate heavy vertices correspond

to the giant magnon solitons described in the previous section, and the light vertex is an

operator carrying quantum conserved charges of the order of unity. In order to find the

normalized structure constants we will follow closely the general proposal in reference [13]

for various different choices of light string states.
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3.1 Dilaton operator

We will first analyze the case where the light vertex is taken to be the massless dilaton

operator. In the large string tension expansion the leading contribution to the massless

dilaton vertex is just bosonic,

V (dilaton) = (Y+)
−∆d (Xx)

j
[

z−2(∂xm∂̄x
m + ∂z∂̄z) + ∂XK ∂̄XK

]

, (3.1)

where here and along this note we have defined Y+ ≡ Y4 + Y5 and Xx ≡ X1 + iX2, and

the derivatives are ∂ ≡ ∂+ and ∂̄ ≡ ∂
−
. To leading order the scaling dimension in the

strong-coupling regime is ∆d = 4+ j, where j denotes the Kaluza-Klein momentum of the

dilaton. The corresponding dual gauge invariant operator is Tr(F 2
µνZ

j + · · · ).

We will first consider the correlator where the heavy vertex operators are giant magnons

solitons with a single angular momentum. As explained above, the three-point correlation

function is dominated by the light vertex operator evaluated on the classical trajectory

provided by the giant magnon solutions. Therefore in order to find the contribution from

the magnon to the dilaton vertex operator we use relations (2.5) and (2.6) to compute

z−2(∂xm∂̄x
m + ∂z∂̄z) = κ2 , ∂XK ∂̄XK = 2 sech2(ue)− 1 . (3.2)

The normalized coefficient in the three-point correlator is then obtained from

C(dilaton)

3 = c(dilaton)∆

∫

∞

−∞

dτe

∫

∞

−∞

dσ (cos θ)j(sech(κτe))
∆d
(

κ2 + 2 sech2(ue)− 1
)

, (3.3)

where c(dilaton)∆ is the normalization constant of the dilaton vertex operator [32, 11],

c(dilaton)∆ =
2−j

√
λ

128πN

√

(j + 1)(j + 2)(j + 3) . (3.4)

The integrations over σ and τ in expression (3.3) factorize, and both integrals turn to be

essentially the same. If we define

I(∆, j) =

∫

∞

−∞

dτe (sech(κτe))
∆

∫

∞

−∞

dσ (sech(ue))
j , (3.5)

the coefficient in the correlator can be written as

C(dilaton)

3 = c(dilaton)∆

(

(κ2 − 1)I(∆d, j) + 2I(∆d, j + 2)
)

(

sin
p

2

)j

. (3.6)

The integrals can be easily computed using that
∫

dx (sech(ax))b =
1

a
tanh(ax) 2F1

(

1

2
, 1− b

2
,
3

2
; tanh2(ax)

)

. (3.7)

5



Therefore the integration over σ becomes

∫

∞

−∞

dσ (sech(ue))
j =

√
π

Γ(j/2)

Γ(1/2 + j/2)
sin

p

2
, (3.8)

while the integral over τe is

∫

∞

−∞

dτe (sech(κτe))
∆d =

√
π

κ

Γ(∆d/2)

Γ(1/2 + ∆d/2)
. (3.9)

The coefficient in the three-point correlation function with two single-charge giant magnon

vertices and a light dilaton vertex is then

C(dilaton)

3 = 2πc(dilaton)∆

Γ (1 + j/2) Γ (2 + j/2)

Γ (3/2 + j/2) Γ (5/2 + j/2)

(

sin
p

2

)j+1

, (3.10)

where we have made use of the marginality condition of the semiclassical vertex operators.

When j = 0 the coupling is just to the lagrangian, which is the correlator analyzed in [12].

Expression (3.10) reduces then to

C(dilaton)

3,j=0 =

√
6

24π

√
λ

N
sin

p

2
. (3.11)

Recalling now the dispersion relation (2.8) we recover the observation in reference [12]

that the coefficient in the three-point correlation function when the light vertex is the

lagrangian operator is proportional to the derivative with respect to λ of the anomalous

dimension for the giant magnon. This relation seems to be quite a general result, as argued

from a thermodynamical point of view in [33], and noticed for several different choices of

heavy string states in [13]-[15].

Let us extend now the above analysis to the case where the heavy vertex operators are

giant magnon solitons with two different angular momenta. Using solution (2.9) we get

∂XK ∂̄XK = 2 cos2 β sech2
(

ve)− 1 , (3.12)

with β as given in (2.11). Using now the integral I(∆, j) defined before the coefficient in

the three-point correlator in the case of general ∆d can be written as

C(dilaton)

3 = c(dilaton)∆

(

(κ2 − 1)I(∆d, j) + 2 cos2 β I(∆d, j + 2)
)

(

sin
p

2

)j

. (3.13)

Evaluating the integral and taking into account the conformal constraint we get

C(dilaton)

3 = 2πc(dilaton)∆

2r

1 + r2
Γ (1 + j/2) Γ (2 + j/2)

Γ (3/2 + j/2) Γ (5/2 + j/2)

(

sin
p

2

)j+1

. (3.14)
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Recalling now relations (2.13) and (2.14), in the case when j = 0 the coefficient (3.14) can

be written as

C(dilaton)

3,j=0 =

√
6

24π2

λ

N

sin2 p
2

√

J̄2 + λ
π2 sin

2 p
2

, (3.15)

which extends to the case of giant magnon solitons with two different angular momenta

the above observation that the structure constant of the three-point correlation function

for two single-charge giant magnon heavy states coupled to the lagrangian is proportional

to the λ-derivative of the corresponding dispersion relation.

3.2 Primary scalar operator

We will now choose the light vertex to be the superconformal primary scalar operator.

The bosonic part of the primary scalar vertex is [32, 11, 13]

V (primary) = (Y+)
−∆p(Xx)

j
[

z−2(∂xm∂̄x
m − ∂z∂̄z)− ∂XK ∂̄XK

]

, (3.16)

where the scaling dimension is now ∆p = j. The corresponding operator in the dual

gauge theory is the BMN operator TrZj . When the classical trajectories from the heavy

vertex operators approach BMN geodesics the correlation function should reproduce the

correlator of three chiral primary operators. However it was noticed in reference [11] that

an additional anomalous term arises after the BMN-limit of the heavy spinning string

states. In [18] it was shown that the ambiguity implied by the anomalous rescaling of

the correlation function in the large spin limit is a generic feature of string states with a

point-like BMN limit, and can be removed through a convenient choice of normalization

constant of the light chiral primary operator. In our analysis below we will show that in

the case of giant magnon solitons there seems to be no room for ambiguities and a different

choice of normalization for the light vertex.

We will first consider the case where the heavy vertices are giant magnons solitons with

a single angular momentum. Using (2.5) we get

z−2(∂xm∂̄x
m − ∂z∂̄z) = κ2(2 sech2(κτe)− 1) , (3.17)

and thus the light vertex operator becomes

V (primary) = (cos θ)j(sech(κτe))
∆p
[

κ2(2 sech2(κτe)− 1)− (2 sech2(ue)− 1)
]

. (3.18)
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The normalized coefficient in the three-point correlator can then be written as

C(primary)

3 = c(primary)

∆ (κ2 − 1)
(

2I(∆p, j + 2)− I(∆p, j)
)

(

sin
p

2

)j

, (3.19)

where we have used that the integrals, as defined in (3.5) with ∆p the scaling dimension

for the chiral primary operator, now satisfy I(∆p + 2, j) = I(∆p, j + 2). Performing the

integrations we end up with

C(primary)

3 = πc(primary)

∆

(κ2 − 1)

κ

(j − 1)Γ(j/2)2

(j + 1)Γ(1/2 + j/2)2

(

sin
p

2

)j+1

. (3.20)

When we take into account the conformal condition we find that the three-point function

vanishes identically, so that there is no coupling between one primary scalar light operator

and two single-charge giant magnon solitons. Note that as the conformal constraint comes

as a global factor there is no room for the ambiguities found in [18] depending on whether

the conformal condition is imposed before or after worldsheet integration.

Let us now take the heavy string states to be magnon solitons with two angular mo-

menta. In this case the structure constant in the three-point function becomes

C(primary)

3 = c(primary)

∆

(

(κ2 − cos2 β)2I(∆p, j + 2)− (κ2 − 1)I(∆p, j)
)

(

sin
p

2

)j

. (3.21)

The conformal condition is not a global factor now and thus evaluating the integrals and

imposing afterwards the conformal constraint we find a non-vanishing result,

C(primary)

3 = 2πc(primary)

∆ sech α sin2 β sec β
Γ(j/2)Γ(1 + j/2)2

Γ(1/2 + j/2)Γ(3/2 + j/2)

(

sin
p

2

)j

. (3.22)

We note however that the structure of the integrals does not favor any ambiguity in the

evaluation of the chiral primary correlator when the heavy states are giant magnon solitons.

3.3 Leading Regge trajectory operator

Let us now analyze the case of a three-point correlation function where the light vertex

corresponds to the insertion of an operator on the leading Regge trajectory. In principle we

could consider vertex operators representing either string states with spin in AdS5 or with

angular momentum in S5. However in the background of the giant magnon solitons that

we are analyzing in this note a non-trivial contribution is obtained only from operators

representing string states on the leading Regge trajectory with angular momentum j in S5.

The corresponding vertex is [7, 10]

V (Regge)

j = (Y+)
−∆j (∂Xx∂̄Xx)

j/2 , (3.23)
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where the scaling dimension is now ∆j =
√

2(j − 2)λ1/4. In general the above operator can

mix with additional bosonic terms arising from diagonalization of the anomalous dimension

operator for the string sigma model, 2

(Xx)
2p+2q(∂Xx)

j/2−2p(∂̄Xx)
j/2−2q(∂XK∂XK)

p(∂̄XL∂̄XL)
q , (3.24)

where p, q = 0, . . . , j/4. However, in this section we will only intend to get a qualitative

picture of the correlators, and thus for simplicity we will ignore the contribution from

these additional terms. We will thus proceed first to evaluate the vertex (3.23) in the

background of the single-charge giant magnon. From solution (2.6) we get

(∂Xx∂̄Xx)
j/2 =

(

sech(ue) tanh(ue) sin
p

2

)j

, (3.25)

and the coefficient of the three-point correlation function is then

C(Regge)

3 = c(Regge)

∆j

(

sin
p

2

)j
∫

∞

−∞

dτe

∫

∞

−∞

dσ (sech(κτe))
∆j(sech(ue) tanh(ue))

j . (3.26)

As in the previous correlators the integrations over σ and τ factorize. The integral over τe

is again given by (3.9), while the integral over σ can be computed using that
∫

dx sinhb(ax) sech2b(ax) =
ib (tanh(ax))2b−1

a(1− 2b)
2F1

(

1

2
− b, 1− b

2
,
3

2
− b; coth2(ax)

)

.

(3.27)

Evaluating the integrals the normalized structure constant (3.26) becomes

C(Regge)

3 = c(Regge)

∆j
κj−2CR(j)

(

sin
p

2

)j+1

, (3.28)

where we have taken into account the conformal constraint, and we have defined

CR(j) = −i
j2−j(2j + 1)Γ(−1/2− j)Γ(j)Γ(∆j/2)

Γ(1/2 + ∆j/2)
cos

(

jπ

2

)

. (3.29)

In the case of the two-charge giant magnon soliton an identical computation shows that

C(Regge)

3 = c(Regge)

∆j
κj−2CR(j) sechα sec β

(

sin
p

2

)j

. (3.30)

We thus find that the coefficients in the three-point correlator when the light vertex is

an operator in the leading Regge trajectory scale as κj−2. The scaling is preserved when

mixing with linear combinations of the operators (3.24) is included, because each partial

derivative in the vertex provides a factor of κ, while a factor κ−2 is always obtained upon

integration. A similar scaling was also noticed in reference [13], where the heavy vertices

were taken to correspond to folded semiclassical strings with spin in AdS5.

2See reference [7] for a more detailed discussion on the structure of the general vertex operator on

the leading Regge trajectory and the mixing under one-loop renormalization of bosonic operators on the

string sigma model on S5.

9



4 Concluding remarks

In this note we have studied three-point correlation functions within the strong-coupling

regime of the AdS/CFT correspondence. The analysis has been performed in the semi-

classical approximation where two of the vertex operators in the correlation function are

heavy string states carrying conserved charges as large as the string tension, while the third

vertex is a light operator with fixed conserved charges. We have chosen the heavy vertex

operators to correspond to giant magnon solitons, with either a single or two different an-

gular momenta in S5. The light vertex has been chosen as the dilaton, the superconformal

chiral primary, or an operator on the leading Regge trajectory.

An interesting continuation of our analysis could be the obtention of the weak-coupling

limit of the coefficients of the three-point functions that we have considered. A possible

path in this direction could be the general method suggested in [12] based on renormal-

ization group arguments after deformation in a conformal field theory. An alternative

derivation of structure constants in the gauge theory regime is the proposal in [4] based on

cutting and gluing integrable spin chains. This approach can also be probably employed to

find the extension to weak-coupling of the three-point coefficients that we have analyzed.

In reference [18] the large spin expansion of some semiclassical three-point correlators ex-

hibited the same structure as expected on the dual gauge theory side, which allowed to

conjecture that the corresponding structure constants are protected, and thus remain the

same both at strong and weak-coupling. It would also be interesting to find out whether

a similar phenomenon holds for the giant magnon correlators studied in this note.

We have excluded from the discussion in the main part of the text the case where

the light vertex is taken to be a singlet massive scalar operator. Singlet massive scalar

operators are built from derivatives of the S5 directions and at leading order a possible

choice is [34, 13]

V (singlet) = (Y+)
−∆r

(

(∂XK∂XK)(∂̄XL∂̄XL)
)r/2

, (4.1)

where r = 2, 4, . . ., and with ∆r = 2
√

(r − 1)λ1/4 the corresponding scaling dimension. But

the derivative factor is nothing but the classical stress tensor for the S5 string sigma model,

which is conserved. Therefore a divergent contribution to the coefficient in the three-point

function is expected as a consequence of the soliton nature of the giant magnon. It would

also be of help to uncover and understand this behavior from the gauge theory side.
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An additional extension of the work in this note is the study of three-point correlation

functions for other choices of giant magnon heavy vertices. More general giant magnon

solitons with additional angular momenta in S5 or spin in AdS5 where considered in

references [35]-[38]. The analysis of the corresponding correlators could be of help to

exhibit general features of the giant magnon three-point structure constants.
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