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Abstract

We study a noninteracting supersymmetric model in an expanding FRW spacetime.

A soft supersymmetry breaking induces a nonzero contribution to the vacuum energy

density. A short distance cutoff of the order of Planck length provides a scale for the

vacuum energy density comparable with the observed cosmological constant. Assuming

the presence of a dark energy substance in addition to the vacuum fluctuations of the

field an effective equation of state is derived in a selfconsistent approach. The effective

equation of state is sensitive to the choice of the cut-off but no fine tuning is needed.

1 Introduction

It is generally accepted that the cosmological constant term which was introduced ad-hoc in
the Einstein-Hilbert action is actually related to the vacuum energy density of matter fields.
Observational evidence for an accelerating expansion [1, 2, 3], implies that the vacuum energy
density dominates the total energy density today. The vacuum energy density estimated in
a simple quantum field theory is by about 120 orders of magnitude larger than the value
required by astrophysical and cosmological observations [4] so that extreme fine tuning is
needed in order to make a cancellation up to 120 decimal places. Theoretically, it is possible
that the cosmological constant is precisely zero and the acceleration of the universe expansion
is attributed to the so called dark energy (DE), a fluid with sufficiently negative pressure, such
that its magnitude exceeds 1/3 of the energy density. Nevertheless, even if such a substance
exists, it is extremely difficult to tune the vacuum energy to be exactly zero. Hence, the
fine tuning problem perisits unless there exists a symmetry principle that forbids a nonzero
vacuum energy. Such principle is indeed provided by supersymmetry [5]. In field theory with
exact supersymmetry the contributions of fermions and bosons to vacuum energy precisely
cancel [6]. However, the supersymmetry in real world is not exact.

A nonzero cosmological constant implies the de Sitter symmetry group of spacetime rather
than the Poincaré group which is the spacetime symmetry group of an exact supersymme-
try. Hence, the structure of de Sitter spacetime automatically breaks the supersymmetry.
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Conversely, a low energy supersymmetry breaking could in principle generate a nonzero cos-
mological constant of an acceptable magnitude. Unfortunately, the scale of supersymmetry
breaking required by the particle physics phenomenology must be of the order of 1 TeV or
larger implying a cosmological constant too large by about 60 orders of magnitude. Some
non-supersymmetric models with equal number of boson and fermion degrees of freedom
have been constructed [7] so that all the divergent contributions to the vacuum energy den-
sity cancel and a small finite contribution can be made comparable with the observed value
of the cosmological constant.

In this paper we investigate the fate of vacuum energy when an unbroken supersymmetric
model is embedded in spatially flat, homogeneous and isotropic spacetime. In addition,
we assume the presence of a dark energy type of substance obeying the equation of state
pDE = wρDE, with w < 0. Unlike in flat spacetime, the vacuum energy density turns out to
be nonzero depending on background metric. Hence, the expansion is caused by a combined
effect of both DE and vacuum fluctuations of the supersymmetric field. Solving the Friedman
equations selfconsistently we find the effective equation of state of DE. In particular, we find
the conditions for which the effective expansion becomes of de Sitter type. The contribution
of the supersymmetric field fluctuations is found to be of the same order of magnitude as
DE and no fine tuning is needed.

We do not claim that our model describes a realistic scenario but it is tempting to spec-
ulate along the lines described in an earlier paper [8] where a naive model of supersymmetry
in de Sitter spacetime has been considered. Our working assumption is that the universe
today contains DE and no matter apart from fluctuations of a supersymmetric vacuum as
a relict of symmetry breaking in the early universe. Since the global geometry is non flat,
the lack of Poincare symmetry will lift the Fermi-Bose degeneracy and the energy density of
vacuum fluctuations will be nonzero. This type of “soft” supersymmetry breaking is similar
to the supersymmetry breaking at finite temperature where the Fermi-Bose degeneracy is
lifted by quantum statistics ([9] and references therin).

The remainder of the paper is organized as follows. In section 2 we introduce a super-
symmetric model in an expanding FRW universe. The calculations and results are presented
in section 3. In section 4 we discuss the effective DE equation of state. Concluding remarks
are given in section 5. In appendix A we review the covariant regularization schemes of the
vacuum expectation value of the energy momentum tensor in flat spacetime.

2 The model

Here we consider a noninteracting Wess-Zumino supersymmetric model with N species and
calculate the energy density of vacuum fluctuations in de Sitter spacetime. In general, the
supersymmetric Lagrangian L for N chiral superfields has the form [10]

L =
∑

i

Φ†
iΦi|D +W (Φ)|F + h.c. , (1)
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where the index i distinguishes the various left chiral superfields Φi and W (Φ) denotes the
superpotential for which we take

W (Φ) =
1

2

∑

i

miΦiΦi . (2)

Eliminating auxiliary fields by equations of motion the Lagrangian (1) may be recast in the
form

L =
∑

i

(

∂µφ
†
i∂

µφi −m2
i |φi|2 +

i

2
Ψ̄iγ

µ∂µΨi −
1

2
miΨ̄iΨi

)

, (3)

where φi are the complex scalar and Ψi the Majorana spinor fields. For simplicity, from now
on we suppress the dependence on the species index i.

Next we assume a curved background spacetime geometry with metric gµν . Spinors in
curved spacetime are conveniently treated using the so called vierbein formalism. The metric
is decomposed as

gµν(x) = ηabe
a
µe

b
ν ; gµν(x) = ηabea

µeb
ν , (4)

where the set of coefficients eaµ is called the vierbein and

ea
µ = ηabg

µνebν (5)

is the inverse of the vierbein. Obviously,

g ≡ det gµν = −(det eaµ)
2. (6)

The action may be written as

S =

∫

d4x
√−g(LB + LF ), (7)

where LB and LF are the boson and fermion Lagrangians, respectively. The Lagrangian for
a complex scalar field may be expressed as the sum of the Lagrangians for two real fields

LB =
1

2

2
∑

i=1

(

gµνϕi
,µϕ

i
,ν −m2ϕi 2

)

. (8)

The fermion part is given by [12]

LF =
i

4

(

Ψ̄γ̃µΨ;µ − Ψ̄;µγ̃
µΨ

)

− 1

2
mΨ̄Ψ, (9)

where γ̃µ are the curved spacetime gamma matrices

γ̃µ = ea
µγa, (10)

with ordinary Dirac gamma matrices denoted by γa. Variation of (7) with respect to Ψ̄
yields the Dirac equation in curved spacetime

iγ̃µΨ;µ −mΨ = 0. (11)
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The covariant derivatives of the spinor are defined as

Ψ;µ = Ψ,µ − ΓµΨ, (12)

Ψ̄;µ = Ψ̄,µ + Ψ̄Γµ , (13)

where

Γµ =
1

8
ωµ

ab[γa, γb] , (14)

with the spin connection [11]

ωµ
ab = −ηbcecν(eaν,µ − Γλ

µνe
a
λ). (15)

In FRW metric the vierbein is diagonal and in spatially flat FRW spacetime takes a simple
form

eaµ = diag(1, a, a, a). (16)

where a = a(t) is the cosmological expansion scale.

3 Calculation of the vacuum energy density and pres-

sure

A spatially flat FRW metric is given by

ds2 = dt2 − a(t)2d~x 2. (17)

It is convenient to work in the conformal frame with metric

ds2 = a(η)2(dη2 − d~x 2), (18)

where the proper time t of the isotropic observers, or cosmic time, is related to the conformal
time η as

dt = a(η)dη. (19)

In order to calculate the energy density and pressure of the vacuum fluctuations we need
the vacuum expectation value of the energy-momentum tensor. The energy-momentum
tensor is derived from S as [12]

Tµν =
ηabe

b
µ√−g
δS

δeaν
= T F

µν + TB
µν , (20)

where the boson and fermion parts are derived from the respective scalar and spinor La-
grangians

TB
µν =

2
∑

i=1

∂µϕ
i∂νϕ

i − gµνLB , (21)

T F
µν =

i

4

(

ψ̄γ̃(µψ;ν) − ψ̄(;µγ̃ν)ψ
)

. (22)
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Owing to the assumed homogeneity and isotropy of spacetime the calculation of the density
and pressure requires the T 0

0 component and the trace T µ
µ . Specifically for the metric (18)

we obtain

TB0

0 = HB =
2

∑

i=1

(

1

2a2
(∂ηϕ

i)2 +
1

2a2
(∇ϕi)2 +

1

2
m2ϕi 2

)

, (23)

TBµ

µ =

2
∑

i=1

(

− 1

a2
(∂ηϕ

i)2 +
1

a2
(∇ϕi)2 + 2m2ϕi 2

)

, (24)

T F 0

0 = HF = − i

4a4
(

ψ̄γj∂jψ − (∂jψ̄)γ
jψ

)

+
1

2a3
mψ̄ψ, (25)

T F µ

µ =
1

2a3
mψ̄ψ. (26)

Assuming a general perfect fluid form of the vacuum expectation value of Tµν

< Tµν >= (ρ+ p)uµuν − pgµν , (27)

the energy density and pressure of the vacuum fluctuations are given by

ρ = uµuν < Tµν >, (28)

p =
1

3
(ρ− < T µ

µ >), (29)

where uµ is the velocity of the fluid and < A > denotes the vacuum expectation value of an
operator A. In particular, for vacuum energy we expect

< T µν
Λ >= ρΛg

µν , (30)

in accord with Lorentz invariance. In this case we have

pΛ = −ρΛ. (31)

With this equation of state we reproduce empty-space Einsteins equations with a cosmolog-
ical constant equal to

Λ = 8πGρΛ. (32)

In the following sections we make the calculations in comoving coordinates. In comoving
coordinates equations (28) and (29) simplify to

ρvac =< T 0
0 >, (33)

pvac =
1

3
< T 0

0 − T µ
µ >, (34)
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3.1 Scalar fields

Next we consider quantum scalar fields in a spatially flat FRW spacetime with metric (18).
Each real scalar field operator is decomposed as

ϕ(η, ~x) =
∑

~k

a−1
(

χk(η)e
i~k~xak + χk(η)

∗e−i~k~xa†k

)

, (35)

in full analogy with the standard flat-spacetime expression (88) considered in appendix A.
The function χk satisfies the field equation

χ′′
k + (m2a2 + k2 − a′′/a)χk = 0, (36)

where the prime ′ denotes a derivative with respect to the conformal time η. In massless
case the exact solutions to this equation may easily be found [12]. In particular, in de Sitter
spacetime a′′/a = 1/η2, and one finds positive frequency solutions

χk =
1√
2V k

e−ikη

(

1− i

kη

)

. (37)

The operators ak associated with these solutions annihilate the adiabatic vacuum in the
asymptotic past (Bunch-Davies vacuum) [12, 15].

If m 6= 0 solutions to (36) may be constructed by making use of the WKB ansatz

χk(η) =
1

√

2V aWk(η)
e−i

∫ η aWk(τ)dτ , (38)

where the functionWk is found by solving (36) iteratively up to an arbitrary order in adiabatic
expansion [11]. For our purpose we need the solution up to the 2nd order only which reads

Wk = ωk + ω(2), (39)

where
ωk =

√

m2 + k2/a2. (40)

The general expression for the second order term is [11]

ω(2) = −3

8

1

ωk

ȧ2

a2
− 3

4

1

ωk

ä

a
− 3

4

k2

a2ω3
k

ȧ2

a2
+

1

4

k2

a2ω3
k

ä

a
+

5

8

k4

a4ω5
k

ȧ2

a2
, (41)

where the overdot denotes a derivative with respect to the cosmic time t. Then, equation
(39) may be written as

Wk = ωk −
1

2ωk

(

ȧ2

a2
+
ä

a

)

[

1 +O(m2/ω2
k)
]

, (42)

or, using (19), as

Wk = ωk −
1

ωk

a′′

a3
[

1 +O(m2/ω2
k)
]

. (43)
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We can calculate now the vacuum expectation value of the 0-0 component and the trace of
the boson energy-momentum tensor. Using (91) and the commutation properties of ak and
a†k, from (23) and (24) with (35) we find

< TB0

0 >=
V

a4

∫

d3k

(2π)3
(

|χ ′
k|2 + a2ω2

k|χk|2
)

, (44)

< TBµ

µ >= −2
V

a4

∫

d3k

(2π)3
(

|χ ′
k|2 − a2ω2

k|χk|2 − a2m2|χk|2
)

. (45)

Using(33) and (38) with (43) we obtain

ρB =
1

a3

∫

d3k

(2π)3ωk

[

ω2
k +

1

2

a′ 2

a4
+

1

2

a′ 2

a4
m2

ω2
k

+
1

4

(

2
a′ 2a′′

a7
− a′a′′′

a6

)

1

ω2
k

+O(ω−4
k )

]

. (46)

The first term in square brackets is identical to the flat spacetime result. The second term
is a quadratically divergent contribution due to a non flat geometry, the next two terms are
logarithmically divergent, and the rest is finite. Similarly, with the help of (34) we find the
boson contribution to the pressure

pB =
1

a3

∫

d3k

(2π)3ωk

[

k2

3a2
+

1

6

(

3
a′ 2

a4
− 2

a′′

a3

)

+
1

6

(

3
a′ 2

a4
− a′′

a3

)

m2

ω2
k

+
1

4

(

2
a′ 2a′′

a7
− a′a′′′

a6

)

1

ω2
k

+O(ω−4
k )

]

. (47)

3.2 Spinor fields

Next we proceed to quantize the fermions. The Dirac equation in curved spacetime may be
derived from (9). Specifically for a spatially flat FRW metric we obtain

iγ0
(

∂0 +
3

2

ȧ

a

)

Ψ+ i
1

a
γj∂jΨ−mΨ = 0. (48)

Rescaling the Majorana fermion field Ψ as

Ψ = a−3/2ψ, (49)

and introducing the conformal time we obtain for ψ the usual flat spacetime Dirac equation

iγ0∂ηψ + iγj∂jψ − amψ = 0, (50)

with time dependent effective mass am. The quantization of ψ is now straightforward [16, 17].
The Majorana field ψ may be decomposed as usual

ψ(η, ~x) =
∑

~k,s

(

uks(η)e
i~k~xbks + vks(η)e

−i~k~xb†ks

)

, (51)

where the spinor uks may be expressed as

uks =
1√
V

(

(iζ ′
k + amζk)φs

~σ~k ζkφs

)

. (52)
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Here, the two-spinors φs are the helicity eigenstates which may be chosen as

φ+ =

(

1
0

)

; φ− =

(

0
1

)

. (53)

The spinor vks is related to uks by charge conjugation

vks = iγ0γ2(ūks)
T . (54)

The norm of the spinors may be easily calculated

ūksuks = −v̄ksvks =
1

V
(amζ∗k − iζ∗′k )(amζk + iζ ′k)−

1

V
k2|ζk|2. (55)

The mode functions ζk satisfy the equation

ζ ′′k + (m2a2 + k2 − ima′)ζk = 0. (56)

In addition, the functions ζk satisfy the condition [17]

k2|ζk|2 + (amζ∗k − iζ∗ ′k )(amζk + iζ ′
k) = C1. (57)

It may be easily verified that the left-hand side of this equation is a constant of motion of
equation (56). The constant C1 is fixed by the normalization of the spinors and by the initial
conditions. A natural assumption is that at t = 0 (η = −1/H , a = 1) the solution behaves as
a plane wave ζk = C2e

−iEkt, where Ek =
√
k2 +m2. This gives ζk(0) = C2, ζ

′
k(0) = −iC2Ek,

and hence C1 = 2C2
2Ek(m+ Ek). From (55) and (57) we obtain

ūksuks = −v̄ksvks =
1

V
(C1 − 2k2|ζk|2), (58)

which at t = 0 reads
ūksuks = −v̄ksvks = C1

m

V Ek
. (59)

For C1 = 1 this coincides with the standard flat spacetime normalization [12].
In massless case the solutions to (56) are plane waves. For m 6= 0 two methods have

been used to solve (56) for a general spatially flat FRW spacetime: a) expanding in negative
powers of Ek and solving a recursive set of differential equations [16] b) using a WKB ansatz
similar to (38) and the adiabatic expansion [17].

By making use of the decomposition (51) and the standard anti-commuting properties of
the creation and annihilation operators, the vacuum expectation value of the 0-0 component
(25) and of the trace (26) of the fermion energy-momentum tensor may be written as

< T F 0

0 >=
1

2a4

∑

~k,s

v̄ks(am− ~k ~γ)vks , (60)

< T F µ

µ >=
1

2a4

∑

~k,s

amv̄ksvks . (61)
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Evaluating the expression under the sum and replacing the sum with an integral as in (91)
we obtain

< T F 0

0 >=
1

a4

∫

d3k

(2π)3
[

ik2(ζkζ
∗′
k − ζ∗kζ

′
k)− am

]

, (62)

< T F µ

µ >= − 1

a4

∫

d3k

(2π)3
am

(

1− 2k2|ζk|2
)

. (63)

The expressions under the integral sign in (62) and (63) were calculated by Baacke and
Patzold [16]. We quote their results for the divergent contributions:

< T F 0

0 >div=
1

a4

∫

d3k

(2π)3

[

−Ek −
(a2 − 1)m2

2Ek
+

(a2 − 1)2m4

8E3
k

+
a′ 2m2

8E3
k

]

, (64)

< T F µ

µ >div= − 1

a4

∫

d3k

(2π)3

[

a2m2

Ek
− aa′′m2

4E3
k

− a4m4

2E3
k

+
a2m4

2E3
k

]

. (65)

Note that the first three terms in square brackets in (64) are identical to the first three terms
in the expansion of aωk =

√

E2
k + a2m2 −m2 in powers of E−2

k . Hence we can write

ρF =< T F 0

0 >=
1

a3

∫

d3k

(2π)3ωk

[

−ω2
k +

1

8

a′ 2

a4
m2

ω2
k

+O(ω−4
k )

]

. (66)

The first term in square brackets is precisely the flat spacetime vacuum energy of the fermion
field. The second term is a logarithmically divergent contribution due to the FRW geometry
and the last term is finite and vanishes in the flat-spacetime limit a′ → 0. Note that, as
opposed to bosons, there is no quadratic divergence of the type a′ 2/ωk.

Similarly, from (65) we obtain

< T F µ

µ >=
1

a3

∫

d3k

(2π)3ωk

[

−m2 +
1

4

a′′

a3
m2

ω2
k

+O(ω−4
k )

]

, (67)

and using (34) we find the fermion contribution to the pressure

pF =
1

a3

∫

d3k

(2π)3ωk

[

−1

3

k2

a2
+

1

24

a′2

a4
m2

ω2
k

− 1

12

a′′

a3
m2

ω2
k

+O(ω−4
k )

]

. (68)

3.3 Putting it all together

Assembling the boson and fermion contributions, the final expressions for the vacuum energy
density and pressure of each chiral supermultiplet are

ρ = ρB + ρF =
1

a3

∫

d3k

(2π)3ωk

[

1

2

a′ 2

a4
+

5

8

a′ 2

a4
m2

ω2
k

+
1

4

(

2
a′ 2a′′

a7
− a′a′′′

a6

)

1

ω2
k

+O(ω−4
k )

]

, (69)
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p = pB + pF =
1

a3

∫

d3k

(2π)3ωk

[

1

6

(

3
a′ 2

a4
− 2

a′′

a3

)

+
1

24

(

13
a′ 2

a4
− 6

a′′

a3

)

m2

ω2
k

+
1

4

(

2
a′ 2a′′

a7
− a′a′′′

a6

)

1

ω2
k

+O(ω−4
k )

]

. (70)

The dominant contributions in (69) and (70) come from the leading terms in square brackets
which diverge quadratically. Note that these quadratically divergent terms are due to bosons;
fermions only provide a cancellation of all divergent and finite terms in the respective flat
spacetime contributions of bosons or fermions.

To make the results finite we need to regularize the integrals. We will use a simple 3-dim
momentum cutoff regularization (recently dubbed “brute force” cut-oof regularization [18])
which, as shown in appendix A, may be regarded as a covariant regularization in a preferred
Lorentz frame defined by the DE fluid.

The advantage of this approach is a clear physical meaning of the regularization scheme:
one discards the part of the momentum integral over those momenta where a different, yet
unknown physics should occur. In this scheme a preferred Lorentz frame is invoked which is
natural in a cosmological context where a preferred reference frame exists: the frame fixed by
the CMB background or large scale matter distribution. A similar standpoint was advocated
by Maggiore [13] and Mangano [14]. Furthermore, as we have already demonstrated, a
supersymmetry provides a cancellation of all flat spacetime contributions irrespective of the
regularization method one uses.

We change the integration variable to the physical momentum p = k/a and introduce a
cutoff of the order of the Planck mass Λcut ∼ mPl. The leading terms yield

ρ =
N

4π2

a′ 2

a4

∫ Λcut

0

p dp
(

1 +O(p−2)
) ∼= NΛ2

cut

8π2

a′ 2

a4
(

1 +O(Λ−2
cut lnΛcut)

)

, (71)

p ∼= NΛ2
cut

24π2

(

3
a′ 2

a4
− 2

a′′

a3

)

(

1 +O(Λ−2
cut ln Λcut)

)

, (72)

where N is the number of chiral species. Clearly, we do not obtain the vacuum equation of
state (31) as may have been expected as a consequence of a regularization that assumes the
existence of a preferred Lorentz frame.

In order to estimate the cutoff we first neglect background DE and assume that the total
energy density ρ is given by (71). If we compare the first Friedman equation with (71)
keeping the leading term on the righthand side we find that our cutoff should satisfy

Λcut
∼=

√

3π

N
mPl . (73)

It is worthwhile to note that several approaches [13, 19, 20, 21] with substantially different
underlying philosophy have led to results similar to (71). In particular, Cohen, Kaplan, and
Nelson [19] have employed a cosmological horizon radius RH = 1/H as a long distance cutoff
and derived an upper bound

ρ ∼= Λ4
UV ≤ 3

8π

m2
Pl

L2
(74)
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from a holographic principle. Here, ΛUV and L denote the ultraviolet and long distance
cutoffs, respectively. Our result would saturate the holographic bound (74) if we identify
a′/a2 = 1/L.

The closest approach to ours is that of Maggiore [13] and Sloth [21] who present a similar
calculation of zero-point energy using massless boson fields only. The main difference in
[13] with respect to ours is that the cancellation of the quartic contributions was done by
hand on the basis of the procedure used previously in the literature with the so-called ADM
mass. In our model, the cancellation of all (not only quartically divergent) flat spacetime
contributions is naturally provided by supersymmetry. Another difference is that our results
(71) and (72) are sufficiently general to allow a self consistent approach.

The above consideration gives only an estimate for the cutoff. In the next section we
give a self consistent treatment of the supersymmetric vacuum fluctuations in the presence
of DE.

4 Effective equation of state

Since there is no way to precisely determine the cutoff, it is convenient to introduce a free
dimensionless cutoff parameter λ of order λ . 1 such that

Λcut = λ

√

3π

N
mPl . (75)

The factor 1/
√
N is introduced to make the result independent of the number of species. If

we reinstate the cosmic time t, equations (71) and (72) become

ρ = λ
3

8πG

ȧ2

a2
, (76)

p = λ
1

8πG

(

ȧ2

a2
− 2

ä

a

)

. (77)

Obviously, the pressure is negative if ȧ2 < 2aä. E.g., for a de Sitter expansion we find
ȧ2 = aä and p = −ρ/3. This case was considered by Maggiore [13] who concluded that
the vacuum fluctuations cannot (at least in his approach) be interpreted as a part of the
cosmological constant because in the second Friedman equation the accelerating effects of
pressure are canceled by those from the density. We shall see shortly that this conclusion is
slightly altered in a selfconsistent approach to the effective equation of state.

In addition to vacuum fluctuations of matter fields, we assume existence of DE char-
acterized by the equation of state pDE = wρDE. The Friedman equations then take the
form

ȧ2

a2
=

8π

3
GρDE + λ

ȧ2

a2
, (78)

ä

a
= −4π

3
G(ρDE + 3pDE)− λ

(

ȧ2

a2
− ä

a

)

. (79)

Introducing the effective equation of state

peff = weffρeff , (80)
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where
ρeff =

ρDE

1− λ
, (81)

weff = w +
2

3

λ

1− λ
, (82)

equations (78) and (79) may be recast in the standard FRW form

ȧ2

a2
=

8π

3
Gρeff , (83)

ä

a
= −4π

3
G(1 + 3weff)ρeff . (84)

Three remarks are in order. First, it is clear from (81) why we have chosen the cutoff
parameter λ less than 1. Second, it follows from (82) that the contribution of the vacuum
fluctuations to the effective equation of state is always positive and hence it goes against
acceleration! The third remark concerns the Bianchi identity which would not be respected
if the vacuum fluctuations were the only source of gravity in Einstein’s equations. However,
because of the additional contribution to the energy-momentum tensor coming from DE,
it is not necessary to have both contributions separately conserved. Since the effective
pressure and energy density satisfy Einstein’s field equations (83) and (84), the combined
energy-momentum is conserved and therfore the Bianchi identity is respected. In this way
an interaction between the vacuum fluctuations and DE is implicitly assumed in the spirit
of the two component model of Grande, Sola and Štefančić. [22].

It is worthwhile to analyze interesting cosmological solutions to equations (83) and (84)
depending on the nature of DE given by the equation of state pDE = wρDE.

1. Consider first the case when there is no DE, i.e., when pDE = ρDE = 0. In this case
equations (78) and (79) admit only a trivial solution a =const. Clearly, if λ = 1,
equation (78) becomes a trivial identity and equation (79) implies ȧ = 0. If λ 6= 1,
equations (78) and (79) are satisfied if and only if ȧ = 0. Therefore, a =const is the
only solution to (78) and (79) for any choice of λ. In other words, FRW spacetime
cannot be generated by vacuum fluctuations alone in an empty background.

2. Another interesting special case is DE represented by a cosmological constant, i.e., for
the equation of state pDE = −ρDE. It follows from (82) that an accelerated expansion
(weff < −1/3) is achieved for any value of the cutoff parameter in the range 0 < λ <
1/2. This case has also been discussed in [13, 14].

3. A more general case is obtained if we only require accelerating expansion, i.e., if the
effective equation of state satisfies weff < −1/3. Then equation (82) implies that the
range −1 < w < −1/3 is compatible with 0 < λ < 1/2, whereas w < −1 would imply
λ > 1/2. In the latter case the DE equation of state violates the dominant energy
condition. The fluid of which the equation of state violates the dominant energy
condition was dubbed phantom energy [23, 24] and has recently become a popular
alternative to quintessence and cosmological constant [25].
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4. In the last example, we require that the background be de Sitter , i.e., weff = −1. In
other words the effective equation of state describes an effective cosmological constant.
From (82) we find

w = −2

3

λ

1− λ
− 1. (85)

Hence, this case may be realized only for a fluid with w < −1, i.e., for the phantom
energy. We see that in a selfconsistent approach, unlike in the example discussed in
[13], a de Sitter expansion can be achieved as a result of a combined effect of DE and
vacuum fluctuations.

5 Conclusion

We have calculated the contribution of supersymmetric fields to vacuum energy in spatially
flat, homogeneous and isotropic spacetime. In addition to supersymmetric fields we have
assumed existence of a substance obeying the equation of state pDE = wρDE, with w < 0.
Unlike in flat spacetime, the vacuum fluctuations turn out to be nonzero depending on
background metric. Combining effects of both dark energy and vacuum fluctuations of the
supersymmetric field in a selfconsistent way we have found the effective equation of state.
In particular, we have found the conditions for which the effective expansion becomes of de
Sitter type. The contribution of the supersymmetric field fluctuations is of the same order
of magnitude as DE and no fine tuning is needed.

We have found that if we impose a UV cutoff of the order mPl the leading term in
the energy density of vacuum fluctuations is of the order H2m2

Pl, where H = ȧ/a. In this
way, if we identify the expansion parameter H with the Hubble parameter today, the model
provides a phenomenologically acceptable value of the vacuum energy density. We have also
found that a consistency with the Friedman equations implies that a natural cutoff must be
inversely proportional to

√
N . A similar natural cutoff has been recently proposed in order

to resolve the so called species problem of black-hole entropy [26].

A Covariant regularization of Tµν in flat spacetime

To illustrate problems related to the field theoretical calculation of vacuum energy we review
the well known results for the scalar field in flat spacetime [27, 28, 29]. Consider a single
noninteracting real scalar field described by the Lagrangian

L =
1

2
ηµνϕ,µϕ,ν −

1

2
m2ϕ2, (86)

with the corresponding energy-momentum tensor

Tµν = ∂µϕ∂νϕ− ηµνL. (87)

The field operator is decomposed as

ϕ(t, ~x) =
∑

~k

1√
2V Ek

(

e−iEkt+i~k~xak + eiEkt−i~k~xa†k

)

, (88)
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where
Ek =

√
m2 + k2. (89)

and ak and a†k are the annihilation and creation operators, respectively, associated with the
plane wave solutions with the standard commutation properties.

[ak, a
†
k] = δ~k~k′ . (90)

From (86)-(88) with (90) and replacing the sum over momenta by an integral in the usual
way

∑

~k

= V

∫

d3k

(2π)3
, (91)

we find the vacuum expectation value of Tµν

< Tµν >=
1

2

∫

d3k

(2π)3Ek
kµkν , (92)

where kµ = (Ek, ~k). The righthand side of (92) may be expressed in a manifestly covariant
way [27]

< Tµν >=

∫

d4k

(2π)3
kµkνδ(k

ρkρ −m2)θ(k0) . (93)

The delta function under the integral restricts the integration to the hypersurface defined by

kµkµ −m2 = 0 ; k0 > 0, (94)

with the invariant measure d3k/Ek on the hypersurface. Performing the integral over k0 in
(93) one recovers (92). However, if one assumes the vacuum expectation value of Tµν to be
of the form

< Tµν >= ρvacgµν , (95)

as dictated by Lorentz invariance of the vacuum, one encounters inconsistency since different
results for ρvac are obtained depending on which component of Tµν one calculates. For
example, using T00 one finds

ρvac =< T00 >=
1

2

∫

d3k

(2π)3
Ek . (96)

On the other hand, using the trace one finds

ρvac =
1

4
T µ

µ =
m2

8

∫

d3k

(2π)3Ek
, (97)

which does not agree with (96). One must conclude that the assumption (95) is not com-
patible with (93). The reason for this inconsistency is that the integrals in expressions (92)
and (93) are divergent and make sense only if they are regularized.

One way to covariantly regularize (92) or (93) is to cut the hypersurface (94) by a spacelike
hyperplane defined by

f(kµ) ≡ uµkµ −
√
K2 +m2 = 0, (98)
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where K is an arbitrary constant of dimension of mass and uµ is a general future directed
timelike unit vector, which may be parameterized as

uµ = (coshα, sinhα sin θ cosφ, sinhα sin θ sin φ , sinhα cos θ) . (99)

Clearly, the vector uµ is normal to the hypersurface f = const because ∂f/∂kµ = uµ. In
this way one effectively introduces a preferred Lorentz frame defined by the vector uµ as if
the vacuum fluctuations are embedded in a homogeneous fluid moving with the velocity uµ.
The special form of the constant in (98) is chosen for convenience.

The hyperplane cuts the hypersurface (94) at a 2-dimensional intersection defined by
(98) together with (94). This gives a quadratic equation the solutions of which define a
2-dimensional closed surface as a boundary of the integration domain Σ defined by

√
K2 +m2 − uµkµ > 0 (100)

together with (94). Hence, the regularized expression for < Tµν > is given by

< Tµν >=
1

2

∫

Σ

d3k

(2π)3Ek
kµkν , (101)

or in a manifestly covariant form

< Tµν >=

∫

d4k

(2π)3
kµkνδ(k

ρkρ −m2)θ(uρkρ)θ(
√
K2 +m2 − uρkρ) . (102)

Using a general perfect fluid form (27), ρ and p are given by the invariant expressions

ρ =
1

2

∫

Σ

d3k

(2π)3Ek

(uµkµ)
2 , (103)

p =
1

6

∫

Σ

d3k

(2π)3Ek
[(uµkµ)

2 −m2] . (104)

In comoving frame (α = 0) the integration domain Σ becomes a ball of radius K and we
obtain

ρ =< T00 >=
1

2

∫

k<K

d3k

(2π)3
Ek , (105)

p =< Tii >=
1

6

∫

k<K

d3k

(2π)3Ek

k2 . (106)

Hence, the described covariant regularization is equivalent to a simple 3-dim momentum
cut-oof procedure. The integration yields

ρ =
K4

16π2
+
m2K2

16π2
− 1

64π2
ln
K2

m2
+ ... , (107)

p =
1

3

K4

16π2
− 1

3

m2K2

16π2
+

1

64π2
ln
K2

m2
+ ... , (108)

where the ellipses denote the finite terms.
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This result reveals two problems. The first one concerns the fine tuning. Assuming that
the ordinary field theory is valid up to the scale of quantum gravity, i.e. the Planck scale,
the leading term in (107) yields

ρ ≈ m4
Pl

16π2
≈ 1073GeV4 , (109)

compared with the observed value

ρcr ≈ 10−47GeV4 . (110)

This huge discrepancy may be easily rectified in flat spacetime simply by subtracting all di-
vergent contributions and redefining the vacuum to have its energy exactly zero. However, as
soon as we demand that vacuum energy or cosmological constant is nonzero the calculations
should be repeated in curved spacetime (e.g. de Sitter spacetime) and a simple subtraction
of vacuum energy by fiat cannot be done.

If, in addition to the vacuum fluctuations of the field, one assumes that there exists an
independent cosmological constant term Λ, as a result one would find an effective vacuum
energy

ρeff = ρ+ ρΛ . (111)

In order to reproduce the observed value one needs a cancellation of the two terms on the
right hand side up to 120 decimal places! The problem is actually much more severe as there
are many contributions to vacuum energy from different fields with different interactions and
all these contribution must somehow cancel to give the observed vacuum energy density.

The second problem is related to the equation of state. Obviously, equations (107) and
(108) do not reproduce the expected vacuum energy equation of state (31), as required by
Lorentz invariance. Instead we find p = ρ/3 for the quartic term, p = −ρ/3 for the quadratic
term, and only the logarithmic term satisfies (31). This violation of Lorentz invariance is
not surprising since the adopted covariant regularization procedure assumes existence of a
preferred Lorentz frame.

In principle, it is possible to regularize the energy momentum tensor by imposing (30) and
ignoring the mentioned inconsistency of the derived covariant expression (92). Then, using
the manifestly covariant form (93) of the energy momentum tensor one can calculate the
components using covariant regularization schemes which do not invoke a preferred Lorentz
frame. For example, the dimensional regularization with the MS prescription gives [28]

ρdim = −pdim = − m4

64π2

(

ln
K2

m2
+

3

2

)

, (112)

and one would conclude that a covariant regularization removes the Lorentz violating quartic
and quadratic divergences and retains only the logarithmically divergent term which agrees
with the logarithmic term of the 3-dim cutoff procedure in (107) and (108). However, in the
Pauli Villars regularization one finds [27]

ρPV = −pPV =
1

64π2

[

−1

2
K4 + 2m2K2 −m4

(

ln
K2

m2
+

3

2

)]

, (113)
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so in this covariant procedure the quartic and quadratic divergences are present with coeffi-
cients different from those of the 3-dim cutoff procedure. Again, the logarithmic term agrees
with that of (107) and (108). Both dimensional and Pauli Villars regularizations have an
unpleasant property that the leading term contribution yields ρ < 0. This property is un-
physical since ρ ≡< T 0

0 > should be positive for the scalar field as follows from (23). Ossola
and Sirlin have argued [27] that the quartic term in (113) may be removed by demanding
strict scale invariance in the limit m→ 0 or by invoking the Feynman regulator.

Two other Lorentz invariant regularization schemes were considered by Andrianov et al
[29]: ζ-function regularization and the UV cutoff regularization of the large wave-number
field modes. It was concluded that the former method is not adequate in treating the
cosmological constant problem as it redirects the problem from UV to IR region. The latter
method with a suitable choice of the large wave-number cutoff reproduces the Pauli Villars
regularization result (113). With the choice advocated in [29] one can get rid off the quartic
term but then the coefficient of the quadratic term changes.

We see from the above analysis that a covariant regularization is ambiguous although in
all mentioned covariant methods the logarithmic term comes with the same coefficient as in
the 3-dim cutoff procedure. With the exception of the dimensional regularization where the
power low divergences are absent by definition, the quadratic term is allways present with a
coefficient that depends on the regularization method.
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