
ar
X

iv
:1

10
5.

07
50

v1
  [

ph
ys

ic
s.

pl
as

m
-p

h]
  4

 M
ay

 2
01

1

On the Feynman-alpha formula for fast neutrons
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Abstract

In this contribution, a stochastic theory for a branching process in a
neutron population with two energy levels is investigated. In particu-
lar, a variance to mean or Feynman-alpha formula is derived in this
generalized scenario using the Kolmogorov forward or master equa-
tion theory for the probabilities in a system with a compound Poisson
source.

1 Introduction

There exist several relatively new applications where the energy distri-
bution of the neutrons plays a significant role. One particular case is a
method used in nuclear safeguards, namely the stochastic generalization
of the so-called differential die-away analysis (DDAA) [1, 2, 3, 4]. Tradition-
ally, the DDAA method was used as a deterministic method of detecting fis-
sile material embedded in moderating surroundings using a pulsed source.
The newly explored method, called differential die-away self-interrogation
(DDSI) utilizes the inherent spontaneous neutron emission of the sample
[5]. In the DDSI method the temporal decay of the correlations as a func-
tion of the time delay between two detections of fast neutrons is used.
This corresponds to a Rossi-alpha measurement with two energy groups.
Furthermore, in recent pulsed experiments measuring the reactivity in fast
cores of accelerator driven sub-critical systems it is found that two expo-
nentials appear, indicating that the temporal behavior of the fast and ther-
mal neutrons is separated in fast reflected cores. This leads to the fact
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that a two group versions of the Feynman and Rossi-alpha formulas are
needed [6]-[7].

In this contribution, a stochastic theory for a branching process in a
neutron population with two energy levels is investigated based on the pre-
vious results in Refs [6]- [7]. In particular a variance to mean or Feynman-
alpha formula is derived in this generalized scenario using the master
equation or Kolmogorov forward approach. The model includes absorb-
tions, down scattering from fast to thermal neutrons, thermal fissions, de-
tections and an external source of fast neutrons. Higher moments will also
be discussed as well as specific applications to areas within safeguards
research as well as specific applications to areas within safeguards re-
search.

2 The variance to mean via the forward Kol-
mogorov approach

In this section we will describe the two particle type system by using
the Kolmogorov forward approach. We will include a compound Poisson
source of fast neutrons described by the source strength S1 which releases
n particles with probability pq(n) at an emission event (i.e. spontaneous fis-
sion). The source is assumed to be switched on at time t = t0, although
dependence on t0 will not be denoted. The effects of detecting particles
will also be included, denoted by the intensity λd. We will start by giving the
differential equation for the probability P (N1, N2, Z1, t) for N1 fast, N2 ther-
mal neutrons at time t and Z1 detected fast particles in the interval (0, t).
We have summed all mutually exclusive events during an infinitesimally
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small time interval dt and find for probabilities,

∂P (N1, N2, Z1, t)

∂t
= −(λ1N1 + λ2N2 + S1)P (N1, N2, Z1, t)

+ λ1a(N1 + 1)P (N1 + 1, N2, Z1, t)

+ λ2a(N2 + 1)P (N1, N2 + 1, Z1, t)

+ λR(N1 + 1)P (N1 + 1, N2 − 1, Z1, t)

+ λ2f (N2 + 1)

N1
∑

k

f(k)P (N1 − k,N2 + 1, Z1, t)

+ λd(N1 + 1)P (N1 + 1, N2, Z1 − 1, t)

+ S1

N1
∑

n

pq(n)P (N1 − n,N2, Z1, t). (1)

Here, λ1 and λ2 are the decay constants (total reaction intensities) for fast
and thermal neutrons whereas λ1a, λ2a are the absorbtion intensities of
fast and thermal particles, respectively. The removal of fast particles into
the thermal group is described by λR while fission resulting from the ther-
mal particles happens with the intensity of λ2f . The intensities are related
through

λ1 = λ1a + λR + λd, (2)

and

λ2 = λ2a + λ2f . (3)

We will now solve this differential equation by using the generating function
of the form

G(X, Y, Z, t) =
∑

N1

∑

N2

∑

Z1

XN1Y N2ZZ1P (N1, N2, Z1, t), (4)

and describe the process in the time evolution of the generating function
as,

∂G

∂t
= (λ1a + λRY + λdZ − λ1X)

∂G

∂X
+ (λ2a + λ2fν(X)− λ2Y )

∂G

∂Y
+ S1(r(X)− 1)G, (5)
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where

ν(X) =
∑

k

fkX
k, and (6)

r(X) =
∑

n

pq(n)X
n. (7)

Here, fk is the probability of having exactly k neutrons produced in a fission
event. Differentiation of equation (5) with respect to (X, Y, Z) and then
letting (X = Y = Z = 1) yields differential equations for the expectations
as,

∂

∂t
〈N1〉 = −λ1〈N1〉+ λ2fν1〈N2〉+ S1r1, (8)

∂

∂t
〈N2〉 = −λ2〈N2〉+ λR〈N1〉, (9)

∂

∂t
〈Z1〉 = λd〈N1〉. (10)

Here we have used the definition of the derivatives on the equations (6)
and (7) as ν1 = dq/dX|X=1 and r1 = dh/dX|X=1. We note that due to the
source term with intensity S1 the dynamical system consisting of equations
(8) - (9) will reach a steady state ( ∂

∂t
→ 0) and we find the stationary

solution,

〈N1〉 = N̄1 =
λ2S1r1

λ1λ2 − ν1λRλ2f

=
λ2S1r1
ω1ω2

, (11)

〈N2〉 = N̄2 =
λRS1r1
ω1ω2

, (12)

〈Z1〉 = ǫλ2f N̄1t, (13)

where ǫ = λd/λ2f and we have used the additional definitions ω1 and ω2,

− ω1 = −
1

2
(λ1 + λ2) +

1

2

√

(λ1 − λ2)2 + 4λ1λ2νeff , (14)

−ω2 = −
1

2
(λ1 + λ2)−

1

2

√

(λ1 − λ2)2 + 4λ1λ2νeff , (15)

νeff = ν1
λRλ2f

λ1λ2

. (16)

The expectation of the detections is found by integrating equation (10) and
we note that the number of detections increases linearly with time. In order
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to find the variance of the detector counts we need to determine the sec-
ond factorial moment by yet another differentiation with respect to (X, Y, Z)
and then letting (X = Y = Z = 1). The variance of the detector counts
can be determined through the relation σ2

Z = 〈Z1〉 + µZZ where the mod-
ified variance µZZ is defined as µZZ = 〈Z(Z − 1)〉 − 〈Z〉2 = σ2

ZZ − 〈Z〉
while in general we have µXY = 〈XY 〉 − 〈X〉〈Y 〉. The differentiation pro-
cedure gives a system of six dynamical equations of the modified second
moments as

∂

∂t
µXX = −2λ1µXX + 2ν1λ2fµXY + ν2λ2f N̄2 + S1r2, (17)

∂

∂t
µXY = −(λ1 + λ2)µXY + λRµXX + ν1λ2fµY Y , (18)

∂

∂t
µY Y = −2λ2µY Y + 2λRµXY , (19)

∂

∂t
µZX = −λ1µZX + ν1λ2fµZY + λdµXX , (20)

∂

∂t
µZY = −λ2µZY + λRµZX + λdµXY , (21)

∂

∂t
µZZ = 2ǫλ2fµXZ , (22)

where we have used the additional notations ν2 = d2q/dX2|X=1 and r2 =
d2h/dX2|X=1. Although, the system of equations (17) - (22) is rather com-
plicated and an analytical solution would be hard to find, we note that in
stationary state the system breaks down into two systems independent of
each other where the moments µXX = µ̄XX , µXY = µ̄XY and µY Y = µ̄Y Y

are constants. However, the equations describing detected particles need
to be solved by e.g. Laplace transforms of (20) and (21) whereas it is pos-
sible to find the sought moment µZZ by integration by using equation (22).
We find the constant 2nd modified moments as,

µ̄XX =
(λ2

2
+ ω1ω2)(ν2λ2f N̄2 + S1r2)

2(λ1 + λ2)ω1ω2

, (23)

µ̄XY =
λ2λR(ν2λ2f N̄2 + S1r2)

2(λ1 + λ2)ω1ω2

, (24)

µ̄Y Y =
λ2

R(ν2λ2f N̄2 + S1r2)

2(λ1 + λ2)ω1ω2

. (25)
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The objective now is to solve (20) and (21) by Laplace transform methods
and we find the transformed identity as,

µ̃XZ =
ν1λdλ2f µ̄XY

sH(s)
+

(s+ λ2)λdµ̄XX

sH(s)
(26)

with

H(s) = s2 + (ω2 + ω1)s+ ω1ω2. (27)

Note that we have assumed that the initial values of the moments µXZ and
µY Z were equal to zero at t = 0 (at the start of the measurement), hence
the roots of H(s) determine the temporal behavior of the Feynman-alpha
formula. Moreover, the solution has many similarities to that found in Ref.
[8]. The variance σZZ = 〈Z〉+ µZZ is now found by integration of (22) and
after some algebra the Feynman-alpha formula can now be written in the
form

σZZ(T )

Z1

= 1 + Y1(1−
1− e−ω1T

ω1T
) + Y2(1−

1− e−ω2T

ω2T
). (28)

Here, the complete expressions for Y1 and Y2 are quite lengthy. However,
it turns out that the sum Y0 = Y1 + Y2 takes a rather simple form that also
determines the value of the Feynman-alpha for large measurement times
T → ∞ as,

Y0 = Y1 + Y2 = q2
λdλ2λRλ2f

ω2

1
ω2

2

. (29)

We will now turn our attention to some quantitative examples of the Feynman-
alpha formula in the form of Equation (28).

3 Results and discussion

The Feynman-alpha formula for a two particle type system found by using
the Kolmogorov forward approach including a Poisson source and effects
of detecting particles is shown in Figure 1 (A and B). We have used the
parameters ν1 = 3.0, ν2 = 5.0, S1 = 1.0, r1 = 1.0, r2 = 0.0, λ2f = 3/5 and
λd = 0.1. In Figure 1A λR = 2/3 whereas in Figure 1B λ1 = 1.0 and λ2 =
2.0. As expected, the curves grow according to Equation (28) exponentially
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to a maximum value determined by the constant Y0. However, this value
can signifcantly vary depending on the intensities (λ1, λ2, etc) involved the
process. The increase of the curves is determined by two exponentials.
Furthermore, unlike the case of the DDSI method, the presence of the
two exponentials is not visible to the bare eye. In Figure 1A, it is seen
that the ratio of the decay intensities for fast and thermal particles has a
nontrivial effect on the maximum value by changing the ratio in the range
(0.25−4.0). In Figure 1B, the effect of the thermalization process described
by the intensity λR on the results is illustrated. Increasing thermalization
increases the asymptotic value of the Feynman-alpha.
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Figure 1: (A and B) The Feynman-alpha expression is shown for the pa-
rameters ν1 = 3.0, ν2 = 5.0, S1 = 1.0, r1 = 1.0, r2 = 0.0, λ2f = 3/5 and
λd = 0.1. In Figure A, λR = 2/3 whereas in Figure B λ1 = 1.0 and λ2 = 2.0.

4 Conclusions

We have developed a forward Kolmogorov approach for the two group the-
ory of the Feynman-alpha method, including a compound Poisson source
and the detection process. The results agree with those calculated by the
backward approach as reported in [6]. It is seen that, unlike in the DDSI
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method (i.e. the two-group version of the Rossi-alpha method), the pres-
ence of two exponents in the solution is not clearly visible. This means
that detection of the presence of fissile material may not be as obvious
as with the Rossi-alpha method. On the other hand, the determination of
the exponents ω1 and ω2 by curve fitting could be more accurate in certain
cases than with the DDSI method. However, the diagnostic value of the
exponents in terms of determination of the sample parameters is not clear
yet, and it requires further investigations, which will be reported in further
work.
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