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1. Introduction

Exact solutions of the Einstein equations play a very important role in cosmology, because

they permit to study in a convenient way the qualitative and quantitative features of the

behavior of the universe as a whole. During the last decade the cosmological models with

scalar fields have acquired a great popularity. It is worth mentioning various scenarios of

the inflationary expansion of the early universe [1] or the the quintessence models of the

dark energy [2] responsible for the phenomenon of cosmic acceleration [3]. Nevertheless the

number of known exact solutions for cosmological models based on scalar fields is rather

limited. One of such models is the flat Friedmann universe filled with a minimally coupled

scalar field with exponential potential. A particular solution for this model was known

since the eighties and was studied in detail [4, 5, 6, 7, 8, 9]. This solution describes a

power-law expansion of the universe. More recently, the general solution of the Einstein

equations for this model was constructed [10]–[18]. This general solution was used for the

description of such effects as transient acceleration, and for the analysis of some models

related to strings and branes.

Notwithstanding this activity, a good description of the general solution, emphasizing

its difference from the “old” particular solutions [4, 5, 6, 7, 8, 9], is not available to our
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knowledge. In addition, all the considerations of the general solution for the scalar field

with an exponential potential involved a real scalar fields with real potentials. However,

there are attempts to consider cosmological models with complex scalar fields and complex

potentials. Such models do not contradict to common sense, if the observable (first of

all, geometrical) characteristics are real. In our preceding papers [19], inspired by the

development of the PT-symmetric quantum theory [20, 21], we have developed models with

complex potentials and have shown that they are rather convenient for the description of the

so called phantom cosmology [23] , including such an enigmatic phenomenon as phantom

divide line crossing [24].

In the present paper we provide a comprehensible description of the general cosmo-

logical solution with an exponential potential; then we explore the general solution for the

phantom field. Finally, we describe the general exact cosmological solution for the case of

a piecewise exponential potential.

The paper is organized as follows: in Sec. 2 we describe the general cosmological

solution with an exponential potential in contrast to the “old” particular solution; in Sec. 3

we present the phantom version of this solution; in Sec. 4 we construct the general solution

for a piecewise exponential potential with cusps; the last section is devoted to Conclusions.

2. The general solution with an exponential potential versus the “old”

particular solution

We shall study the flat Friedmann cosmological model described by the metric

ds2 = dt2 − a2(t)dl2,

where a(t) is the cosmological radius of the universe. The dynamics of the cosmological

evolution is characterized by the Hubble variable

h ≡ ȧ

a
,

which satisfies the Friedmann equation

h2 = ε, (2.1)

where ε is the energy density of the matter populating the universe and “dot” means the

derivative with respect to the cosmic time parameter t.

We now basically follow the approach presented in Ref. [16], adapting it to our pur-

poses. We shall consider the flat Friedmann universe (2) filled with the minimally coupled

scalar field with the potential

V (φ) = V0e
λφ. (2.2)

Now the Friedmann equation (2.1) has the form

ȧ2

a2
=

φ̇2

2
+ V0e

λφ, (2.3)

while the Klein-Gordon equation is

φ̈+ 3
ȧ

a
φ̇+ λV0e

λφ = 0. (2.4)
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2.1 The particular exact solution

A particular exact solution [4, 5, 6, 7, 8, 9], describing the power-law expansion of the

universe can be found as follows: Suppose that the scalar field has a time dependence

φ(t) = φ0 ln t+ φ1, (2.5)

while the cosmological radius behaves as

a = a0t
k. (2.6)

In this case the Klein-Gordon (2.4) equation acquires the form

−φ0

t2
+

3kφ0

t2
+

λV0e
λφ1

t−λφ0
= 0. (2.7)

It follows immediately that

φ0 = − 2

λ
. (2.8)

Then

2(3k − 1) = λ2V0e
λφ1 . (2.9)

The Friedmann equation (2.3) gives now

k2 =
2

λ2
+ V0e

λφ1 . (2.10)

Combining Eqs. (2.9) and (2.10) we obtain

k =
6

λ2
. (2.11)

Substituting (2.11) into the relation (2.10) and requiring positivity of the coefficient V0, we

obtain the following restriction on λ:

|λ| < 3
√
2. (2.12)

(Note that the limiting case |λ| = 3
√
2, would imply k = 1/3, i.e. the law of expansion

of the universe filled with stiff matter or massless scalar field, which in turn, means that

V0 = 0). We can find also the value of the constant φ1:

φ1 =
1

λ
ln

(

2(18 − λ2)

λ4V0

)

. (2.13)

Here, let us note that for the case of an imaginary λ the particular solution still exists

and is purely imaginary [19]. Here, both the potential and kinetic energy are real, but the

latter is negative and, hence, we encounter the phantom kind of matter.

It is convenient to write down again the explicit form of the exact particular solution:

φ(t) = − 2

λ
ln t+

1

λ
ln

(

2(18 − λ2)

λ4V0

)

, (2.14)
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h(t) =
6

λ2t
. (2.15)

The important feature of this solution is the rigid relation between the φ(t) and its time

derivative φ̇(t):

φ = − 2

λ
ln

(

− 2

λφ̇

)

+
1

λ
ln

(

2(18 − λ2)

λ4V0

)

. (2.16)

Thus, the particular exact solution corresponds to a particular choice of the initial condi-

tions: at any moment of time fixing the value of φ, we automatically fix the value of φ̇.

It means that on the phase space of the problem under consideration the particular exact

solution is described by a unique trajectory. It is convenient to introduce a new variable:

Φ ≡
√

V0eλφ. (2.17)

Choosing the phase space variables as Φ and φ̇ we can calculate their relation:

φ̇

Φ
= − 2λ√

36− 2λ2
= const. (2.18)

Thus, the trajectory on our phase space is a ray, beginning at the infinity and ending at

the coordinate origin. Correspondingly, the universe begins its evolution from a Big Bang

singularity and then undergoes an infinite expansion (see Eq. (2.15).

2.2 The general solution

Now, let us turn to the construction of the general exact solution. It is convenient to

introduce new variables, u and v such that

a3 = ev+u, (2.19)

φ = A(v − u), (2.20)

where A is a coefficient to be defined. Now the Friedmann equation (2.3) is

1

9
(u̇2 + v̇2 + 2u̇v̇) =

A2

2
(u̇2 + v̇2 − 2u̇v̇) + V0e

λA(v−u). (2.21)

The Klein-Gordon equation (2.4) has now the form

A(v̈ − ü) +A(v̇2 − u̇2) + λV0e
λA(v−u) = 0. (2.22)

Choosing the coefficient A as

A =

√
2

3
, (2.23)

we give a “light-cone form” to Eq. (2.21):

v̇u̇ =
9

4
V0e

√

2
3
λ(v−u). (2.24)

Now we want to simplify further this equation, choosing a new time parameter τ . Rewriting

Eq. (2.24) as

v′u′τ̇2 =
9

4
V0e

√

2
3
λ(v−u) (2.25)
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where prime denotes the derivative with respect to τ . It is convenient to choose this new

time parameter such that

τ̇ =
3

2

√

V0e
λφ

2 =
3

2

√

V0e
λ(v−u)

√

6 , (2.26)

we come to

v′u′ = 1. (2.27)

Correspondingly, the Klein-Gordon equation (2.22) is now

v′′ − u′′ +

√
2λ

6
(v′ − u′)2 + (v′2 − u′2) +

2
√
2

3
λ = 0. (2.28)

Substituting u′ = 1/v′ from Eq. (2.27) into Eq. (2.28) one arrives to

v′′ +

(

1 +

√
2λ

6

)

v′2 +

(√
2λ

6
− 1

)

= 0. (2.29)

Introducing a new variable

x ≡ v′ (2.30)

we rewrite the Klein-Gordon equation (2.29) in the Riccati form:

x′ +

(

1 +

√
2λ

6

)

x2 +

(√
2λ

6
− 1

)

= 0. (2.31)

Making the substitution

x =
1

(

1 +
√
2λ
6

)

y′

y
, (2.32)

we obtain the second-order linear differential equation

y′′ +

(

λ2

18
− 1

)

y = 0. (2.33)

We should consider separately two cases : the “hyperbolic” one, when the constant λ

satisfies the condition (2.12) and “trigonometric” one, when the condition (2.12) is not

satisfied.

2.2.1 The hyperbolic case

The solution of Eq. (2.33) in this case is

y(τ) = Beκτ + Ce−κτ , (2.34)

where

κ ≡
√

1− λ2

18
. (2.35)

Then, substituting (2.34) into Eqs. (2.30) and (2.32) after an elementary integration we

find

v =
1

(

1 +
√
2λ
6

) ln(Beκτ + Ce−κτ ) + v0. (2.36)
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Using the relation (2.27) we can analogously find

u =
1

(

1−
√
2λ
6

) ln(Beκτ − Ce−κτ ) + u0. (2.37)

Now, remembering the formulae (2.20) and (2.23), we can write

φ =

√
2

3



(v0 − u0) +
1

(

1 +
√
2λ
6

) ln(Beκτ + Ce−κτ )

− 1
(

1−
√
2λ
6

) ln(Beκτ − Ce−κτ )



 . (2.38)

We have to consider separately two cases: C = 0 and C 6= 0. If C = 0 the solution

(2.38) can be rewritten as

φ = φ2 −
2λτ

9κ
, (2.39)

where φ2 is an arbitrary constant. Substituting Eq.(2.39) into Eq. (2.26), connecting the

time parameter τ with the cosmic time t we obtain the following equation

dτ

dt
=

3

2

√

V0 exp

(

λφ2

2
− λ2τ

9κ

)

. (2.40)

Integrating the equation (2.40) we find the parameter τ as a function of t and substituting

it into Eq. (2.39) we come to the particular exact solution (2.14). The dependence on the

constant φ2 disappears. Thus, the case C = 0 coincides with the particular exact solution

described in the subsection 2.1. One can easily show that the case B = 0 corresponds to

the particular solution, described in the preceding subsection, but it refers to a universe

contracting from a state with an infinite radius to the Big Crunch singularity.

In the case when C 6= 0, B 6= 0 the solution (2.38) can be rewritten as

φ = φ3 −
2λτ

9κ
+

√
2

3
(

1 +
√
2λ
6

) ln

(

1 +
C

B
e−2κτ

)

−
√
2

3
(

1−
√
2λ
6

) ln

(

1− C

B
e−2κτ

)

, (2.41)

where φ3 is a constant. As a matter of fact, here there are two families of solutions. We

can rescale the factor C
B , that is equivalent to a shift of the variable τ . Let us consider first

the case C/B = 1. Then we come to a more simple expression:

φ = φ3 −
2λτ

9κ
+

√
2

3
(

1 +
√
2λ
6

) ln(1 + e−2κτ )−
√
2

3
(

1−
√
2λ
6

) ln(1− e−2κτ ). (2.42)

While the particular solution (2.14) describes the unique trajectory in the two-dimensional

phase space of variables (Φ, φ̇) which can be represented by Eq. (2.16) or by Eq. (2.18) the
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general solution (2.42) describes a family of solutions, parameterized by the constant φ3.

Indeed, in this case a rigid relation between φ and φ̇ is absent. If one fixes the value of φ

then the corresponding value of φ̇ is given by φ̇ = φ′ · τ̇ . As it follows from Eq. (2.26) fixing

the value of φ determines the value of τ̇ . However, changing the value of the constant φ3

while preserving the value of φ is equivalent to shifting the value of τ , and, hence, changing

the value of φ′ and φ̇. One can represent it in a different manner. Let us note that the

value of τ in Eq. (2.42) is changed in the interval 0 ≤ τ < ∞. We can now calculate the

relation between φ̇ and the phase space variable Φ analogous to (2.18). One obtains

φ̇

Φ
= − λ

3κ
−

√
2e−2κτ

κ(1 − e−4κτ )

(

2 +

√
2λ

3
e−2κτ

)

. (2.43)

Note, that the value of both φ′ and φ̇ is negative during the cosmological evolution.

In contrast to the formula (2.18) the formula (2.43) does not describe a ray. The

corresponding curve begins at the point Φ(τ = 0) = +∞, φ̇(τ = 0) = −∞ and ends at

τ = +∞ at the origin of the coordinates. It is easy to see from Eq. (2.43) that the

value of φ̇
Φ at the moment τ = 0 tends to −∞. That means that at the beginning of the

cosmological evolution the kinetic term dominates the potential term. It is well-known

that in this case (the case of the massless scalar field or, equivalently, the stiff matter) the

Hubble parameter behaves as

h(t) → 1

3t
, t → 0. (2.44)

The direct evaluation obtained by the substitution of the exact solution (2.42) into the

Friedmann equation (2.3) and using the relation (2.26) in the limiting case t → 0 confirms

the behaviour (2.44). At the end of the evolution τ = +∞, the relation (2.43) coincide

with that of the ray (2.18). Thus, the curves, corresponding to the general solution (2.42)

(excluding the particular solution (2.14)) begins at the Big Bang singularity, where the

kinetic term dominates the potential one, which in the phase plane (Φ, φ̇) corresponds to

the asymptote coinciding with the negative semi-axis Φ = 0. Then, the curves (2.43) are

located under the ray (2.18) and conclude their evolution at the coordinate origin, which

corresponds to an eternal expansion.

Now we can consider the second family of solutions, which can be obtained by putting

C/B = −1. The time parameter again runs between 0 and +∞. However, the expression

for the scalar field is now

φ = φ3 −
2λτ

9κ
+

√
2

3
(

1 +
√
2λ
6

) ln(1− e−2κτ )−
√
2

3
(

1−
√
2λ
6

) ln(1 + e−2κτ ). (2.45)

This solution also describes an evolution from the Big Bang to an infinite expansion,

however, now at the beginning of the evolution the scalar field φ → −∞ and the potential

energy is equal to zero. During the evolution, the scalar field is growing, then at some

moment its time derivative changes the sign and it becomes decreasing. At the end of the

evolution (an infinite expansion) when τ → ∞ the scalar field again tends to −∞ and both

the kinetic and potential energy vanish.
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The particular exact solution plays a role of the separatrix between these two families

of solutions. One can ask how to understand to which exactly family belong a certain

trajectory being given the values of the scalar field φ and its time derivative (with respect

to the cosmic time t) at some moment of time. The answer is simple. It is enough to

calculate the derivative of the scalar field with respect to the parametric time τ , which is

φ′ = 2φ̇

3
√

V (φ)
. If its value is less than −2λ

9κ . then the trajectory belongs to the first family.

In the opposite case it belongs to the second one. In Figure 1, we sketch the trajectory

describing the particular exact solution and two trajectories, representing two families of

the general solution for the hyperbolic case (for definiteness, we have chosen for all figures

the subcase λ > 0).

Φ

π

Figure 1: The phase space diagram Φ, π, where π stays for the velocity π = φ̇. The straight line

represents the exact particular solution for the hyperbolic case, while two curved lines represents

solutions, belonging to two families of general hyperbolic solutions described in this subsection.

2.2.2 The trigonometric case

Now we consider the case when λ2 > 18. In this case the solution of Eq. (2.33) can be

chosen as sinωτ or cosωτ . However, in contrast with the hyperbolic case, these two choices

do not imply the real difference between cosmological evolutions, because the transition

from one to another corresponds to the shift of the parametric time interval. Thus, we

shall choose

y(τ) = D sinωτ, (2.46)

where

ω ≡
√

λ2

18
− 1, (2.47)

and D and α0 are real constants. Then using the definitions of (2.32) and (2.30) we get

v =
1

1 +
√
2λ
6

ln sinωτ + v0, (2.48)

and similarly

u = − 1
√
2λ
6 − 1

ln cosωτ + u0. (2.49)
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Finally, the general solution for this trigonometric case looks like

φ = φ4 +

√
2

3

(

1

1 +
√
2λ
6

ln sinωτ +
1

√
2λ
6 − 1

ln cosωτ

)

, (2.50)

where φ4 is a constant. We note that the expression describes an expanding universe if the

parametric time τ is changing inside the interval

0 ≤ ωτ ≤ π

2
. (2.51)

The relation between the parametric time τ and the cosmic time t is

τ̇ =
3

2

√

V0e
λφ4/2(sinωτ)

√

2λ
6

1+

√

2λ
6 (cos ωτ)

√

2λ
6

√

2λ
6 −1 . (2.52)

We shall present also

φ′ =
2
√
2
(√

2λ
6 cos 2ωτ − 1

)

3ω sin 2ωτ
. (2.53)

Using the formulae (2.50), (2.52) and (2.53) one can find that when τ runs from 0 to π/2ω,

the cosmic time runs from 0 to ∞. At the beginning of the evolution the velocity φ̇ is

infinite, while the potential energy is zero. The direct calculation shows that the Hubble

parameter behaves at the beginning of the evolution as h = 1
3t as it should be for universe,

filled with a massless scalar field arising from the Big Bang singularity. At the end of

the evolution the potential energy again tends to zero, while the velocity φ̇ being negative

also tends to zero. (Note that the time derivative with respect to the parametric time τ

diverges when ωτ → π/2 and one can think that here we again encounter the singularity as

was mentioned in [16]. However, it is not the case, because the expression τ̇ tends to zero

more rapidly and thus, the kinetic energy of the scalar field tends to zero). This situaiton

corresponds to an eternal expansion. From Eq. (2.53) it follows that the velocity changes

sign at the moment

τ1 =
1

2ω
arccos

3
√
2

λ
. (2.54)

In Figure 2 we represent a typical trajectory for the trigonometric case.

2.2.3 The case λ =
√
18

In this case the equation for the variable v is the following :

v′′ + 2v′2 = 0, (2.55)

whose solution is

v =
1

2
ln τ + v0. (2.56)

Correspondingly

u = τ2 + u0 (2.57)
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Φ

π

Figure 2: The phase space diagram Φ, π, where π stays for the velocity π = φ̇. The curved

line represents one of trajectories, belonging to the family, given by the general solution for the

trigonometric case.

and

φ = φ5 +

√
2

3

(

1

2
ln τ − τ2

)

. (2.58)

The relation between τ and t is now

τ̇ =
3

2

√

V0e
3
√
2φ5/2

√
τe−τ2 . (2.59)

It is easy to see that τ runs from 0 to ∞ and the cosmic time t has the same range. Then

φ′ =

√
2

6τ
− 2

√
2τ

3
. (2.60)

It is easy to see that at the beginning and at the end of the evolution the field φ tends to

−∞ and hence the potential energy vanishes. Then, at the beginning of the evolution the

φ̇ is infinite and that means that the universe is born from the Big Bang singularity, while

at the end of the evolution the negative time derivative of the scalar field φ̇ vanishes and

the universe is expanding infinitely.

It is curious to note that the particular solution described in the subsection 2.1 exists

in the case λ2 = 18. In this case, as it follows from Eqs. (2.9)–(2.11),

V0 = 0 (2.61)

and this is simply the case of the massless scalar field. This particular case cannot be

extracted from the general solution (2.58) because the very existence of this general solution

is based on the introduction of the parametric time τ which is defined by means of Eq.

(2.26) which is senseless when V0 = 0. Thus, the particular solution for the hyperbolic

case is contained in the general formula (2.38). In the case λ2 = 18 the particular solution

exists, but it should be treated separately, while the trigonometric case does not have a

particular solution.
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3. The exact solution for a phantom scalar field with an exponential po-

tential

Considering the phantom scalar field with a negative kinetic term, we shall have the fol-

lowing Friedmann

ȧ2

a2
= − φ̇2

2
+ V0e

λφ, (3.1)

and Klein-Gordon

φ̈+ 3
ȧ

a
φ̇− λV0e

λφ = 0 (3.2)

equations. We shall first present the particular solution for this case.

3.1 The particular exact solution for the phantom case

As in the subsection 2.1, we shall look for the solution for the phantom scalar field, which

depends logarithmically on the cosmic time t, while the scale factor undergoes a power-law

expansion (or contraction). If we would like to consider an expanding universe, then the

solution will be

φ(t) = − 2

λ
ln(−t) +

1

λ
ln

(

2(18 + λ2)

λ4V0

)

, (3.3)

where t is running from −∞ to 0. The Hubble parameter is now

h(t) = − 6

λ2t
. (3.4)

Thus, the formulae (3.3) and (3.4) describe a cosmological evolution which begins at t =

−∞ with infinitely small cosmological radius and ends at t = 0, encountering a Big Rip

singularity. However, another particular solution for the phantom case does exist. Here

the formula for the Hubble factor is the same (3.4), but in the formula for the scalar field

(3.3) ln t instead of ln(−t) enters. This solution describes the contraction of the universe,

which begins at the moment t = 0 in the “anti-Big Rip” singularity characterized by an

infinite radius and infinite negative Hubble parameter, and ends at t = +∞ with an endless

contraction.

3.2 The general exact solution for the phantom case

As in the subsection 2.2 we shall introduce the variables v and u (see Eqs. (2.19),(2.20),

(2.23)). However, because of the negative sign of the kinetic term in the right-hand side of

Eq. (3.1) we shall obtain instead of (2.24)

v̇2 + u̇2 =
9

2
V0e

λφ. (3.5)

It is convenient now to introduce a complex variable

z ≡ 1√
2
(v + iu). (3.6)

Now, Eq. (3.5) looks like

ż ˙̄z =
9

4
V0e

λφ, (3.7)
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where “bar” stands for the complex conjugation. Introducing now the time parameter τ

like in Eq. (2.26) we obtain

z′z̄′ = 1. (3.8)

Rewriting the Klein-Gordon equation (3.2) and taking into account the relation (3.8) we

come to

z′′ +

√
2(1− i)

2

[

z′2
(

1 +

√
2λi

6

)

− i−
√
2λ

6

]

= 0. (3.9)

Introducing the function f such that

z′ ≡ 1

α

f ′

f
, (3.10)

where

α ≡
√
2(1− i)

2

(

1 +

√
2λi

6

)

. (3.11)

The auxiliary function f satisfies the following equation

f ′′ − κ̃2f = 0, (3.12)

where

κ̃ ≡
√

1 +
λ2

18
. (3.13)

The general solution of Eq. (3.12) is

f(τ) = Feκ̃τ +Ge−κ̃τ . (3.14)

Hence,

z =
1

α
ln f. (3.15)

Now, we can find the expression for the scalar field

φ(τ) =
2λ

9κ̃2
ln |f | − 2

√
2

3κ̃2
arg f + const. (3.16)

Now, substituting the expression for f (3.14) into the expression for z (3.15) and substi-

tuting the latter into the condition (3.8) we come to the consistency equation

FḠ+GF̄ = 0. (3.17)

These equation can be satisfied if one of the coefficients is equal to zero or if the difference

of their phases is equal to π/2.

First, we consider the case G = 0. Then

φ(τ) =
2λτ

9κ̃
+ φ8. (3.18)

Substituting this expression into Eq. (2.26) we can find τ as a function of the cosmic time

t.

τ = −9κ̃

λ2

(

ln(−t) +
λφ9

2
+ ln

(√
V0λ

2

6κ̃

))

. (3.19)
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Substitung this expression into the solution (3.18) we come to the particular exact solution

(3.3) as it should be and in complete analogy with the hyperbolic case. It is easy to see

from Eq. (3.19) that when the cosmic time runs from −∞ to 0, the parameter τ runs

from −∞ to +∞, while the cosmic time t runs from t = −∞ to t = 0. In contrast to the

hyperbolic case considered in subsubsection 2.2.1 (cf. Eq. (2.38)) we can here put also

F = 0, while G 6= 0. In this case we reproduce the second particular solution, describing

an infinite contraction of the universe, which begins at the anti-Big Rip singularity.

Now, we consider the case when both the constants F and G are different from zero.

We can choose one of these constants, say F equal to 1 while G = i.

φ(τ) = φ10 +
2λ

9κ̃2
ln cosh 2κ̃τ − 2

√
2

3κ̃2
arctan(e−2κ̃τ ). (3.20)

Here, the time parameter τ runs from −∞ to +∞. When τ → −∞ the field φ → +∞,

while when τ → +∞ the field φ → +∞ again. Thus, the beginning and the end of the

cosmological evolution are characterized by a positive infinite value of the scalar field, and,

hence by the positive infinite value of the potential V . It is useful to write down also the

explicit expression for the Hubble parameter:

h(τ) =
2τ̇

3k̃

(

sinh 2κ̃τ −
√
2λ
6

cosh 2κ̃τ

)

. (3.21)

It is easy to see that at τ → −∞ the Hubble parameter h → −∞ at τ → +∞ the Hubble

parameter h → +∞ and at τ = 1
2κ̃arcsinh

√
2λ
6 the Hubble parameter changes the sign

and, hence, the universe passes through the point of minimal contraction. The complete

cosmological evolution involves a finite period of the cosmic time t. One can say that these

finite time evolutions represent the phantom counterpart of the well-known cosmological

evolutions, which begin in the Big Bang singularity, reach the point of maximal expansion

and then have a stage of contraction culminating in the Big Crunch singularity. These

evolutions can be observed not only in the closed Friedmann models, but also in the flat

Friedmann models with the standard scalar field with a negative potential. (As far as we

could understand this solution beginning from “anti-Big-Rip” singularity and ending in the

Big Rip singularity, passing through the point of minimal contraction was not considered

in paper [17] devoted to the study of phantom solutions with exponential potentials).

In Figure 3 we represent two particular exact solution and a typical example of general

solution for the phantom case.

3.3 The complexification of the scalar field and of its potential

In principle, the phantom solutions can be obtained from the hyperbolic non-phantom so-

lutions by some kind of analytic continuation. Let us consider the case when the parameter

λ = iΛ (where Λ is real) is imaginary. One can see that this case is a ramification of the

hyperbolic case, because the parameter κ =
√
18 + Λ2 (2.35) is well defined. However, now

also the solution of Klein-Gordon equation should be purely imaginary. Thus, taking Eq.

(2.33) with κ =
√
18 + Λ2 we obtain the general equation of the hyperbolic type, which can

be written as was don in Eq. (2.38) with arbitrary coefficients B and C. Now, choosing
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Φ

π

Figure 3: The phase space diagram Φ, π, where π stays for the velocity π = φ̇. Two straight

line trajectories describe two particular solutions, corresponding to the expanding and contracting

universes. The curved line represents a trajectory, belonging to the family of those evolving from the

anti-Big Rip singularity to the Big Rip singularity, passing through the point of minimal contraction

of the universe.

these coefficients as B = 1 and C = i, we come to purely imaginary solution, which behaves

just like our phantom solution (3.20). multiplied by i. Substituting this solution into the

Friedmann equation we obtain an equation of the evolution of the universe, filled with a

phantom scalar field. Naturally, all the observables appear to be real, and when necessary

also positive (cf. [19]).

4. General exact solutions for piecewise exponential potentials

In this section we analyze the generalization of the previous results for the case of the

potentials, represented by piecewise functions, where all the pieces are exponential. We

limit ourselves by continuous (but not smooth) potentials. Such potentials can be written

down as

V (N)(φ) = θ(φ1 − φ)V0e
λ0φ

+θ(φ− φ1)θ(φ2 − φ)V1e
λ1φ + · · ·

+θ(φ− φN−1)θ(φN − φ)VN−1e
λN−1φ

+θ(φ− φN )VNeλNφ. (4.1)

where θ is the Heaviside function and where

−∞ < φ1 < φ2 < · · · < φN < ∞, (4.2)

and

Vke
λkφk+1 = Vk+1e

λk+1φk+1 , 0 ≤ k ≤ N − 1, (4.3)

The general exact solutions exist also in this case and can be realized by means of the

matching across the values of scalar field, where the exponent λ changes its value. This

matching involves not only the value of the scalar field, but also the continuity of φ̇ and,
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hence, φ′. In the opposite case, one would encounter a jump in the value of the Hubble

parameter, following from the Friedmann equation, which seems unphysical. The simplest

potential with cusp of this type is V (φ) = V0e
λ|φ|, which can be obtained from our general

potential (4.1) by choosing N = 1, φ1 = 0, V1 = V0 and λ0 = −λ1 = −λ.

To get an idea of new possibilities let us consider, for example, the matching across the

value φ = φ1 and focus on an expanding universe. If λ0 satisfies the relation λ2
0 > 18 (the

trigonometric case) two situations are possible: the derivative φ′ can be positive (an initial

part of the evolution) and it can be negative (the final part of the evolution) as follows

from Eq. (2.53). If the derivative is negative, that means that we cross the value φ = φ1

from the right ( from the side of larger values of φ) and then the value of φ is decreasing

indefinitely.

If this derivative is positive the field crosses the point φ = φ1 and enters the range of

values between φ1 and φ2, where the exponent λ is equal to λ1. If λ1 is also trigonometric,

then the universe continues its expanding evolution, with the scalar field given by Eq.

(2.50) with λ = λ1 and the corresponding initial conditions. Then, again two situations

are possible - the field φ continues growing arriving to the value φ = φ2, where another

change of regime occurs, or it can arrive at some moment to the value φ = φ∗ < φ2 while

φ′ = 0. After that the field begins decreasing arriving at the value φ = φ1 with a negative

derivative φ′ and enters into the range of values with φ < φ1, decreasing indefinitely until

−∞, which corresponds to an eternal expansion with the vanishing value of the Hubble

parameter.

If the value of λ2
1 < 18 (hyperbolic case) and if the value of φ′ is less than −2λ1

9κ1
then

the solution in the range φ1 ≤ φ ≤ φ2 is the hyperbolic solution of the first kind (described

in the subsubsection 2.2.1) and the field enters into the region φ < φ1 from the right,

continuing to decrease indefinitely. If the value of φ′ at the point, where φ = φ1 is negative

but larger than −2λ1
9κ1

, then the solution in the region φ1 ≤ φ ≤ φ2 is the hyperbolic solution

of the second kind and again the scalar field after the crossing the value φ = φ1 decreases

indefinitely. If instead the value of φ′ at the point of transition is positive the fields enters

into the region φ1 ≤ φ ≤ φ2 increasing and following the hyperbolic solution of the second

kind. Then, again, two situations are possible: the field φ growing can achieve the value φ2

with the subsequent change of the regime or it can begin decreasing after achieving some

maximal value φmax < φ2, entering back into the region φ < φ1.

It is important to pay a special attention to the situation when the field φ arrives at

the value φ = φ1 with φ′ = 0. As follows from Eq. (2.53) that means that the field φ has

reached its maximal value and begin decreasing. Thus, in this case the change of regime

does not occur. In our preceding papers [25, 26] (see also [27]), in was shown that the

phantom divide line crossing effect, provoked by self-conversion of a non-phantom scalar

field into a phantom scalar field (or vice versa) can take place in the models with a unique

minimally coupled scalar field. To realize this effect it is necessary to consider the cusped

potentials and some particular initial conditions. In other words, it is necessary to approach

the cusp with a vanishing time derivative of the scalar field [25, 26]. We see that in the

case of piecewise exponential potentials such an effect is impossible, in spite of the presence

of cusps. As a matter of fact the cusps, permitting such an exotic phenomenon should be
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non-analytic [25, 26], while the cusps, which we treat now are still too smooth.

Concluding this section, we remark that choosing some simultaneous values of φ and

φ̇, or, equivalently φ and φ′ and having the piecewise potential (4.1) one is able to recon-

struct the whole past and future evolution of the universe, using the general exact solutions,

described in section 2. One can describe also the evolution of the phantom field in the piece-

wise potential using the results of section 3. However, the effects of (de)-phantomization

do not occur. As was mentioned above, the effect of (de)-phantomization requires the

presence of strong non-analyticity of potential. Besides, the field should approach the cusp

with zero velocity and cross it. In the case considered in this section instead of crossing we

have a reverse motion.

5. Conclusions

As far as we know the only general exact cosmological solution in the presence of a scalar

field, constructed explicitly, is the solution for a flat Friedmann universe filled with a

minimally coupled complex field with exponential potential. While a particular exact

solution for this case was known from 1985 [4], the general solution was constructed only

in 1998 [10]. In the present paper, we have studied accurately this solution, correcting some

imprecisions, encountered in the literature. In addition, we have generalized this solution

for a piecewise exponential potential, which is continuous, but not smooth (with cusps).

In spite of presence of cusps, in such a model the effect of (de)-phantomization does not

exist [25, 26] which requires non-analyticity of the potential.
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