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For certain systems, the N-particle ground-state wavefunctions of the bulk happen to be exactly
equal to the N-point space-time correlation functions at the edge, in the infrared limit. We show
why this had to be so for a class of topological superconductors, beginning with the p+ip state in
D=2+1. Varying the chemical potential as a function of Euclidean time between weak and strong
pairing states is shown to extract the wavefunction. Then a Euclidean rotation that exchanges
time and space and approximate Lorentz invariance lead to the edge connection. We illustrate
straightforward extension to other dimensions (eg. 3He- B phase in D=3+1) and to correlated
states like fractionalized topological superconductors.

PACS numbers:

The boundaries or edges of condensed matter sys-
tems received scant attention until recent developments
showed them to be fertile areas of research both in the
Fractional Quantum Hall Effect (FQHE)1,2. and in topo-
logical insulators and superconductors3–9.

In two spatial dimensions, the edge dynamics is de-
scribed by conformal field theory2 which was also used
to produce wave functions in the bulk11,12. Moore and
Read11 showed that one may view the FQHE wavefunc-
tions and the quasi-hole excitations as conformal blocks
in which both electrons and the quasiparticle coordinates
are treated on the same footing and their charges and
braiding properties are severely constrained. For an ex-
haustive review of many related topics see Nayak et al13.

What are the minimal ingredients necessary to estab-
lish equality of edge correlations and bulk wavefunctions?
Are analytic functions or d=2 conformal invariance re-
quired? We show that our edge-bulk equality follows for
a class of topological superconductors in various dimen-
sions invoking only approximate Lorentz symmetry. The
connections obtained here using an effective low energy
hamiltonian differ from CS theory10 in which the hamil-
tonian vanishes and only non-dynamical particles enter
via Wilson loops, as reviewed in Ref.13.

We shall first write down an operator expression for
Z(J), the generating function of N -body wavefunctions
of the bulk. This is shown to be accomplished by intro-
ducing a time dependent chemical potential that changes
abruptly at some Euclidean time. We then drop some
high derivative terms which do not matter in the infrared,
and express Z(J) as a Grassmann integral over a Lorentz
invariant action. Rotating by 90 degrees to exchange
time and a spatial direction we obtain the same topo-
logical superconductor but with a spatial edge induced
by the jump in chemical potential. We find that the
same Z(J) has now morphed into the generating func-
tion for the correlation functions of the edge excitations.
Three examples are given: the p + ip superconductor in
D = 2 + 1, 3 He B phase in D = 3 + 1 and a p-wave
superconductor (the Ising model) in D = 1 + 1.

Extracting Wavefunctions: Recall that given a
second-quantized N -body state |Φ〉 with wavefunction

φ(x1, x2, ..xN ) we extract φ using

φ(x1, x2, ..xN ) = 〈∅|Ψ(x1)...Ψ(xN )|Φ〉. (1)

where 〈∅| is the Fock vacuum and Ψ is the canonical elec-
tron destruction operator. For problems with variable
number of particles, let us define the generating function

Z(J) = 〈∅|e
∫
dxJ(x)Ψ(x)|Φ〉 (2)

which yields N -body wavefunctions upon differentiating
N - times with respect to the Grassmann source J(x).

We want to express Z(J) as a path integral when |Φ〉 is
the ground state of a Hamiltonian H without conserved
particle number. Since Euclidean time evolution for long
times projects to the ground state, we can obtain |Φ〉 as

|Φ〉 = U(0−,−∞)|i〉 (3)

where |i〉 is a generic initial state and U(0−,−∞) is the
imaginary time propagator from −∞ to 0−. Then we in-
sert the operator exp

[∫
J(x)Ψ(x)dx

]
at time 0. Finally,

we obtain the Fock vacuum by evolving a generic state
〈f | from time +∞ to 0+ using a hamiltonian H ′ with
a huge negative µ that empties out fermions so that we
may write 〈∅| = 〈f |U(∞, 0+). Thus

Z(J) = 〈f |U(∞, 0+)e
∫
J(x)Ψ(x)dxU(0−,−∞)|i〉 (4)

which has a path integral representation.
Example 1: p+ip : The mean-field hamiltonian is15,16:

H =
∑
k

(c†k, c−k)

(
αk2 − µ ∆ · (k1 − ik2)

∆∗ · (k1 + ik2) −(αk2 − µ)

)(
ck
c†−k

)
(5)

here 1, 2 are spatial indices and x3 will be time. We em-
ploy the minimum k dependence in the pairing function,
and set the coefficient ∆ = 1 for convenience so the gap
function is: ∆(k1, k2) = k1 − ik2

The αk2 term is needed to ensure the nontrivial topol-
ogy of the weak-coupling phase15 and to populate it with
electrons for µ > 0. We shall remember this association
but drop the ‘k2’ term in the computations since it does
not affect infrared correlations.
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FIG. 1: (a) Wavefunction: The original superconductor with
µ = µ− > 0 lies in the x1−x2 plane and evolves in Euclidean
time x3 from −∞ to 0−, projecting out the ground state |Φ〉.
At x3 = 0+ the chemical potential drops abruptly to a large
negative value µ−, leading to the Fock vacuum. (b) Corre-
lation functions: A Lorentz rotation makes x1 the new time
and x3 a the spatial coordinate along which the system has
an edge at x3 = 0. The world-sheet of the edge lies in the
x1 − x2 plane at x3 = 0.

Now the mean field Hamiltonian in real space:

H =

∫
d2x

[
Ψ†(−µ)Ψ +

1

2
(Ψ†(−i∂1 − ∂2)Ψ† + h.c)

]
.

(6)
leads to corresponding Grassmann action for U(0,−∞):

S =

∫ ∞
−∞

d2x

∫ 0

−∞
dx3

[
ψ̄Dψ + ψ̄i∂ψ̄ + ψi∂̄ψ

]
(7)

D = (−∂3 + µ) ∂ =
∂

∂z
∂̄ =

∂

∂z̄
(8)

For the 0+ < x3 < ∞, we choose µ = µ+, a very large
negative number, associated with the Fock vacuum and
obtain, for all x3, the action including the source J :

S(J) =

∫ ∞
−∞
d3x
[
ψ̄Dψ + ψ̄i∂ψ̄ + ψi∂̄ψ + Jψδ(x3)

]
(9)

where D now contains a time-dependent µ(x3) that
jumps at x3 = 0 from µ− > 0 to µ+ → −∞.

The generating function of the BCS wavefunctions is

Z(J) =

∫ [
dψ̄dψ

]
eS(J)∫ [

dψ̄dψ
]
eS(0)

(10)

The story is depicted in the left half of Figure 1: the
fermions travel unsuspectingly along in Euclidean time
x3 and slam like bugs onto the windshield at x3 = 0−

when δ(x3)Jψ kills them.
Since ψ and ψ̄ in Eq. 9 are independent Grassmann

variables, we integrate out ψ̄ to obtain the effective action
for just ψ to which alone J couples:

Seff (ψ, J) =

∫
d3x

(
ψi∂̄ψ + Jψ + ψ

1

4i∂
DTDψ

)
≡ S0(J) + Sind. (11)

For the infrared limit we keep just the Jackiw-Rebbi
zero mode17 of the hermitian operator

DTD(x3) = (∂3 + µ(x3))(−∂3 + µ(x3)), (12)

that obeys Df0 = 0

f0(x3) = f0(0)e
∫ x3
0 µ(x′)dx′ (13)

in the mode expansion of the Grassmann field:

ψ(x1, x2, x3) = f0(x3)ψ(x1, x2). (14)

This kills Sind, and upon integrating f2
0 over x3,

Seff (J) =

∫
dx1dx2 ψ(i∂̄ + Jf0(0))ψ (15)

While this is indeed the action of a chiral majorana
fermion living in the 1 − 2 plane we are not done: we
need to show that this fermion and this action also arise
at the edge of the same p + ip system. But so far we
have no edge! It will be introduced shortly, but first a
summary of results on the wavefunction.

Pfaffian Wavefunction: Integrating over ψ in Eq. 15,
and suppressing the constant f2

0 (0)) we find

Z(J) = exp

[∫
d2rJ(r)

[
1

4i∂̄

]
rr′
J(r′)

]
(16)

The two-particle wavefunction φ(r1− r2) can be writ-
ten in terms of many related quantities:

φ =
∂2Z(J)

∂J1∂J2
=

[
1

2i∂̄

]
r1r2

=∆∗−1
r1r2 =

1

z1 − z2
(17)

and the N -particle wavefunction is Pf( 1
zi−zj ). In the

Supplementary Material we relate Z(J) and the conven-
tional BCS wavefunction:

|BCS〉 = exp

(
1

2

∫
Ψ†(x)g(x− y)Ψ†(y)dxdy

)
|∅〉 (18)

and see that φ = −g(r1 − r2).
The Edge: To relate Z(J) in Eqn. 9 to a problem with

the edge we rewrite S(J) in Lorentz invariant form:

S(J) =

∫
d3x

[
Ψ̄ (∂/− µ) Ψ + JTΨ

]
where (19)

Ψ =

(
ψ
ψ̄

)
Ψ̄ = ΨT ε; ε = iσ2 ∂/ = γµ∂µ(20)

γ1 = σ2 γ2 = −σ1 γ3 = σ3 (21)

JT = Jδ(x3)(1 0). (22)

Look at the left half of Figure 1. We see our current
description of the superconductor: translationally invari-
ant in the x1 − x2 plane, regarded as the space in which
the p1+ip2 superconductor lives, and with a jump in µ at
”time” x3 = 0. In this description, the functional integral
is saturated by one mode f0(x3), glued to the interface,
exactly like the electron gas at a heterojunction.
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ExtractingH(x1, x2) from the Lorentz invariant action
is like taking the row-to row transfer matrix. To derive
the hamiltonian that governs the column-to -column dy-
namics, we rotate the three dimensional spacetime by
−π2 around the x2 axis to obtain the view shown in the
right half of Figure 1. The points carry the same labels
as before but the spinor undergoes a rotation:

Ψ =

(
ψ
ψ̄

)
= ei

π
4 iγ3γ1

(
ψ′

ψ̄′

)
= ei

π
4 σ1Ψ′ (23)

Upon performing this transformation we end up with

S(Ψ′, J) =

∫
d3x

[
Ψ̄′ [σ3∂1− σ1∂2− σ2∂3− µ] Ψ′

+ Jδ(x3)(
ψ′ + iψ̄′√

2
)

]
(24)

which describes exactly the same p + ip superconductor
but in the 2−3 plane (with 1→ 3, 3→ −1) with an edge
at x3 = 0. An α(k2

2+k2
3) term may now be added without

affecting infrared edge correlations. This is required to
complete our identification of regions with (and without)
fermions with µ positive (negative).

To see that the field ψ′+iψ̄′√
2

that J couples to is pre-

cisely the Majorana field that arises at the edge, consider
solving the equation for the zero mode which follows from
Eq. 24 on dropping all x1, x2 dependence:

(σ2∂3 + µ(x3))χ′0 = 0 ⇒ χ′0(x3) =
1√
2

(
1
−i

)
f0(x3).

(25)
the normalizable spinor solution indeed corresponds to
the operator 1√

2
(ψ′ + iψ′†).

We are done, for we have shown that Z(J) is at once
the generators of electronic wavefunction in the bulk and
of correlation functions of the Majorana field at the edge.

For completeness, the edge Majorana field action fol-
lows from saturating the x3 dependence of Ψ′ as follows:

Ψ′(x1, x2, x3) =
1√
2

(
1
−i

)
f0(x3)ψ′(x1, x2) (26)

Plugging this into the action S(Ψ′, J) one finds, upon

integrating the normalized function f
′

0(x3) over x3

S(Ψ′, J)→
∫
dx1dx2

[
ψ′i∂̄ψ′ + Jf0(0)ψ′

]
(27)

exactly as in Eqn.15, for the wavefunction.
Example 2: 3He − B in D=3+1: In a simplified

model of superfluid 3He − B, Cooper pairs have spin
1, whose projection lies perpendicular to the momenta
±k19,20. The winding of this axis around the Fermi
surface in the weak pairing phase leads to its topolog-
ical properties20,21. The mean-field Hamiltonian for this
time-reversal invariant class DIII system is19,20 is:

H =
∑
pσσ′

Ψ†pσ(
k2

2m
− µ)Ψkσ (28)

+ {∆kσσ′ψkσψ−kσ′ + h.c.}
∆kσσ′ = [εk · σ]σσ′

The d = 3 problem is just the d = 2 problem on
steroids: ∆ goes from being a complex number to a
quaternion, and the spinless fermion is replaced by a two-
component spinor. Hence the weak-pairing wavefunction

is gσiσj (rij) ∼
[rij ·σε]σiσj

r3ij
and the many-body wavefunc-

tion is the corresponding Pf(g) as noted in Ref. 8 .
The Lorentz invariant action for the wavefunction is

S =

∫
d4x

1

2
Ψ̄ [∂/− µ] Ψ where (29)

γ0 =

(
I 0
0 −I

)
γ =

(
0 iσε
iεσ 0

)
(30)

Ψ̄ = ΨT

(
0 I
−I 0

)
(31)

Now the 0 and 1 directions are exchanged by R =

exp
[
iπ
2
iγ0γ1

2

]
, so that J now couples to ψ′+iσ3ψ

′†
√

2
which

is readily verified, as before, to be the gapless edge mode
of the rotated theory. The action for the edge theory
obtained by saturating with the zero mode is

Sedge =

∫
d3x

1

2
ψ̄∂/ψ ∂/ = σj∂j ψ̄ = ψT (−σ2) (32)

Example 3: We could equally well go down a dimen-
sion, to a spinless p-wave superconductor in d = 1 + 114

where ∆ = kx, which is also related to the quantum Ising
model, via the Jordan-Wigner mapping. The edge the-
ory is 0 + 1 dimensional, corresponding to a Majorana
zero mode, with Lagrangian L = 1

2ψ∂xψ.
Fractionalized Topological Superconductors: We con-

struct a fractionalized superconducting phase in D=2+1
that bears the same relation to the p + ip superconduc-
tor as the Laughlin m = 3 quantum Hall state bears
to the integer Hall effect. Consider splitting the elec-
tron operator at each site into three fermions (’partons’)

cr = if1rf2rf3r and c†r = if†1rf
†
2rf
†
3r

18,23 with the follow-
ing p+ ip mean field action for the partons:

S(J) =

∫
d3x [L0 + iJf1f2f3] (33)

L0 =
1

2

3∑
a=1

(
f̄a fa

)( −∂3 + µ i∂1 + ∂2

i∂1 − ∂2 −∂3 − µ

)(
fa
f̄a

)
When the gauge theory is in a deconfined phase, the
partons accurately describe the low energy dynamics.
The SO(3) symmetry of the action, a remnant of the
SU(3) gauge redundancy implied by cr = if1rf2rf3r

22,
is the gauge symmetry here. When the gapped bulk is
integrated out, it generates an SO(3)1 (or equivalently
SU(2)2)24 Chern-Simons term which renders the gauge
field massive thereby liberating the partons with the ac-
tion in Eq. 33.

Emptying out the electrons requires removing the f
fermions, hence the strong pairing phase of the fs, where
their chemical potential is taken to be large and negative,
corresponds to the Fock vacuum. The electron correla-
tors involve products of three parton correlators each in
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a p+ip state, so the electronic wavefunction is:

Ψ(z1, z2, . . . , z2N ) =

{
Pf

[
1

zi − zj

]}3

(34)

Equivalently we can start from the edge where the
three Majorana modes are massless by gauge symmetry
and have no relevant short range interactions in three
spacetime dimensions. Long range gauge interactions do
not exist due to the Chern-Simons term. Consequently
the bulk effective action must also be described by three
noninteracting fermions.

Summary: We have explained why the electronic
wavefunctions in the bulk coincided with the massless
Majorana correlation functions at the edge in certain
problems. We first wrote Z(J) = 〈∅|eJΨ|BCS〉 as a
path integral in which the chemical potential abruptly
jumped at in Euclidean time. Dropping the ‘k2’ terms
which determined boundary conditions on µ, we obtained
a Lorentz invariant action. Upon rotation by π/2 the
same action described a system that had an edge and
Z(J) had meanwhile morphed into the generating func-
tion for edge correlations. In general, rotating axes will
relate bulk wavefunctions to the edge correlations of a
different (possibly unnatural) problem. The examples
considered here are self-dual in this respect.

Our analysis holds in many dimensions and applies

to fractionalized cases as well, as long as varying µ can
change the topology. This is possible in the Altland-
Zirnbauer classification8 for models in class D in d=1 and
d=2 (like p+ip), in class C in d=2 (like d+id) and class
DIII in d=2,3 (He-3 B phase) but not for classes like CI
in d=3,27 which additionally rely on band topology of the
weak pairing Fermi surface. We are currently modifying
our derivation for Laughlin quantum Hall states, where
µ couples to a conserved charge.

The entanglement spectrum of the bulk seems to de-
termine the edge theory25,26, which we now relate back
to the bulk wavefunction. Since the entanglement of a
gapped phase appears from near the cut, the entire bulk
wavefunction must be coded holographically in every d−1
dimensional sliver probed in the entanglement analysis.

Previously, the connection between edge states and
bulk wavefunctions has played an important role identi-
fying new FQH states11,28. Our work suggests a similar
approach could be fruitful in identifying interacting topo-
logical phases in D=3+1.

We thank the NSF for grants DMR- 0645691 (AV),
and DMR- 0103639 (RS) and Tarun Grover, Greg Moore
and Shoucheng Zhang for detailed suggestions. RS
thanks the Department of Physics at UC Berkeley for
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I. SUPPLEMENTARY MATERIAL

Suppose we are given a Majorana hamiltonian

H =
1

2

∑
ij

ΨihijΨj (35)

wherein

{Ψj ,Ψj} = δij , (36)

where i, j subsume all labels, spatial and internal. If the
labels are continuous, the Dirac δ should be used and
derivatives ∂ viewed as antisymmetric matrices.

By definition the Grassmann integrals are∫
ψdψ = 1

∫
1 · d ψ = 0 (37)

The Euclidean path integral corresponding to h is

Z =

∫
[dψ]e

1
2

∫
dt

∑
ij ψi(t)(−∂tδij−hij)ψj(t) (38)

Since coherent states do not exist for Majorana oper-
ators (which square to 1

2 and not 0), one way to derive
this result is to first form Dirac operators from pairs of
Majorana operators, use fermion coherent states for the
former to obtain a path integral and then undo the trans-
formation back to Majorana fields.

The Gaussian integral that is repeatedly used is

Z(J) =

∫
e

1
2χAχ+Jχ[dχ] = Pf(A)e

1
2JA

−1J (39)

where J and χ are 2N -component Grassmann vectors.
The two-point correlator is

〈ψaψb〉 =
∂2Z(J)

∂Ja∂Jb

∣∣∣∣
J=0

= A−1
ba = −A−1

ab (40)

The minus sign in the last term can be avoided if the
exponent is written as e−

1
2χAχ.

Higher correlators are given by Pfaffians.

A. Pfaffian wavefunctions

Let us put these ideas to work in deriving the many-
body wave functions from the second quantized BCS
state.

Consider the generating function of wavefunctions for
any number of particles from which the wavefunctions
can be obtained by differentiating with respect to the
Grassmann source J(x)

Z(J) =

〈∅|e
∫
dxJ(x)Ψ(x)|BCS〉

= 〈∅|e
∫
dxJ(x)Ψ(x) · I · e 1

2

∫
Ψ†(x)g(x−y)Ψ†(y)dxdy|∅〉

≡
∫ [

dψ̄dψ
]
e−ψ̄ψ〈∅|eJ(x)Ψ|ψ〉〈ψ̄|e 1

2 Ψ†gΨ† |∅〉 (41)

where, in the last step we have resorted to a compact no-
tation and inserted the following resolution of the identity
in terms of Grassmann coherent states:

I =

∫
|ψ〉〈ψ̄|e−ψ̄ψ

[
dψ̄dψ

]
(42)

and where it is understood for example that

|ψ〉 =
∏
x

|ψ(x)〉
[
dψ̄dψ

]
=
∏
x

[
dψ̄(x)dψ(x)

]
(43)

It is important to remember that ψ̄ and ψ are indepen-
dent and dummy variables. Using the defining property
of coherent states

Ψ|ψ〉 = ψ|ψ〉 〈ψ̄|Ψ† = 〈ψ̄|ψ̄ (44)

in Eq. 41 we find

Z(J) =

∫ [
dψ̄dψ

]
e−ψ̄ψeJψe

1
2 ψ̄gψ̄ (45)

where we have used the fact that

〈∅|ψ〉〈ψ̄|∅〉 = 1 (46)

since at each site

|ψ〉 = |0〉 − ψ|1〉 〈ψ̄| = 〈0| − 〈1|ψ̄ (47)

and |∅〉 = |0〉 ⊗ |0〉 ⊗ ....|0〉. Doing the integrals over ψ
and ψ̄, we find

Z(J) = e
1
2JgJ . (48)

The pair wavefunction is

φ(x1, x2) =
∂2Z

∂J(x1)∂J(x2)

∣∣∣∣
J=0

= −g(x1 − x2) (49)

Higher correlations follow from Wick’s theorem. For
example

φ(x1, x2, x3, x4) = g(x1 − x2)g(x3 − x4)

− g(x1 − x3)g(x2 − x4)

+ g(x1 − x4)g(x2 − x3). (50)
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