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Abstract. - We discuss non-equilibrium extensions of the Casimir force (due to electromagnetic
fluctuations), where the objects as well as the environment are held at different temperatures.
While the formalism we develop is quite general, we focus on a sphere in front of a plate, as
well as two spheres, when the radius is small compared to separation and thermal wavelengths.
In this limit the forces can be expressed analytically in terms of the lowest order multipoles,
and corroborated with results obtained by diluting parallel plates of vanishing thickness. Non-
equilibrium forces are generally stronger than their equilibrium counterpart, and may oscillate
with separation (at a scale set by material resonances). For both geometries we obtain stable
points of zero net force, while two spheres may have equal forces in magnitude and direction
resulting in a self-propelling state.

The original quantum Casimir effect [1] is due to zero
point fluctuations of the electromagnetic (EM) field in
the vacuum between perfectly reflecting objects. Subse-
quently Lifshitz [2] treated the more realistic case of di-
electric media at finite temperature by considering fluc-
tuating currents inside the objects, including both zero
point and thermal fluctuations. In general, the former
dominate the force at small separations, while at separa-
tions large compared to the thermal wavelength λT , ther-
mal effects prevail [2, 3]. In situations out of equilibrium,
the current fluctuations in each body have to be treated
separately at the corresponding temperature, e.g., using
fluctuational electrodynamics introduced by Rytov over
60 years ago [4]. Recently, out of equilibrium Casimir
forces have been computed in a number of cases including
parallel plates [5], modulated plates [6], as well as a plate
and an atom in different setups [7–9]. There also exists
a large literature on forces between atoms or molecules in
non-equilibrium [10–13]. Formalisms for treating multi-
ple objects at different temperatures have been recently
presented [14, 15]. In particular, for compact objects, ra-
diation from the environment contributes to the force and
has to be incorporated.

Here, we treat (analytically as well as numerically) the

cases of two spheres and a sphere in front of a plate.
Keeping the description as simple and concise as possi-
ble, we focus on the regime where the spheres are small
compared to the separation (non-equilibrium effects are in
most cases negligible at small separations), as well as ther-
mal wavelengths. These restrictions allow the use of a one
reflection approximation, as well as limiting to the spheres’
(frequency-dependent) dipole response, respectively. We
find a variety of interesting effects: The forces can be re-
pulsive, oscillate or admit stable (zero force) points. At
large separations, non-equilibrium forces decay as 1/d2 for
two spheres and become independent of distance for sphere
and plate. We also find points in which a pair of spheres
experiences forces of equal magnitude in the same direc-
tion. In the absence of other forces, this leads to a coop-
erative motion of two identical spheres at constant sepa-
ration, i.e. a self-propelled state. There are similarities to
studies of atoms in non-equilibrium situations which we
shall briefly comment upon.

As presented in Ref. [15], our formalism treats N ob-
jects (labeled as j = 1 . . .N) in vacuum, held at constant
temperatures {Tj}, and embedded in an environment at
temperature Tenv. The conceptual starting point is the
EM field radiated by isolated objects, each at its respective
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temperature, which is then scattered by all objects while
the environment is treated as an additional embedding
“object.” Physical quantities are then computed from the
correlation function Cneq of the electric field E at fre-
quency ω and points r and r

′ (both outside all objects)
[15],

Cneq(Tenv, {Tj}) ≡ 〈E(ω; r)⊗E
∗(ω; r′)〉

= Ceq(Tenv) +
∑

j

[

Csc
j (Tj)− Csc

j (Tenv)
]

. (1)

Equation (1) highlights the contribution of the dif-
ferent temperatures to the non-equilibrium correlation:
Ceq(Tenv) is the equilibrium correlation, i.e., with all tem-
peratures held at Tenv (and including zero point fluctua-
tions). It leads to the equilibrium Casimir force at tem-
perature Tenv and is regarded as known. The difference of
Cneq(Tenv, {Tj}) from Ceq(Tenv) is due to the deviations

of the object temperatures Tj from Tenv. Although deal-
ing with N +1 sources, we have thus only to evaluate the
N terms {Csc

j (T )}, the field correlations sourced by object
j and scattered by all objects. In Ref. [15], we showed that
Csc

j (T ) can be derived by first considering the radiation
of the object in isolation,

Cj(Tj) ≡ aTj
(ω)Gj Im εjG

∗
j , (2)

where aT (ω) ≡ ω4
~(4π)2

c4 (exp[~ω/kBT ] − 1)−1, and Gj is
the Green’s function of the object. The QED origin of the
force is manifested by the speed of light c and Planck’s
constant ~. Cj(Tj) is found by integration over the envi-
ronment sources [15, 16], subsequent scatterings lead to

Csc
j (Tj) = Oj Cj(Tj)O

†
j , with (3)

Oj = (1 −G0Tj̄)
1

1−G0TjG0Tj̄

.

The multiple scattering operator Oj is expressed in terms
of the composite T -operator Tj̄ describing scattering by
the other objects (not j), as well as the free Green’s func-
tion G0. For two objects, T1̄ = T2 is the operator of the
second object. The force F acting on one of the objects
(say object k) in this non-equilibrium situation is given
by the integration of the Maxwell stress tensor σ over a
surface Sk enclosing only this object, projected onto the
surface outward normal nk,

F
k = Re

∮

Sk

σ · nk dA . (4)

The stress tensor is related to the field correlations, since

σab(r) =

∫

dω

16π3

〈

EaE
∗
b +BaB

∗
b − 1

2

(

|E|2 + |B|2
)

δab

〉

,

where a, b = 1, 2, 3. Note that the sum of forces on all
objects does not necessarily vanish, (i.e., there can be a
net force on the system), and we must consider the force

acting on each object separately. From Eq. (1), Fk has
the following contributions

F
k(Tenv, {Tj}) = F

k,eq(Tenv) +
∑

j

[

F
k
j (Tj)− F

k
j (Tenv)

]

.

(5)

Here, Fk,eq(Tenv) is the force in equilibrium, and F
k
j (Tj)

is the force acting on object k due to the sources in object
j at temperature Tj (obtained from the stress tensor in
Eq. (4) for the field Csc

j (Tj)).
1

Let us first consider two spheres of radii Rj (j = 1, 2)
with complex dielectric and magnetic permeabilities εj
and µj , at center-to-center distance d and temperatures
Tj, embedded in an environment at temperature Tenv.
We derive the total force F

2 acting on sphere 2; F
1 is

then found by interchanging indices 1 and 2. In Eq. (5),
F

2 has three contributions: The equilibrium force for the
two spheres evaluated at the temperature of the environ-
ment, a contribution due to the deviation of T1 from Tenv

(F2
1) and a contribution due to the deviation of T2 from

Tenv (F2
2). The force F

2
1 follows from the heat radia-

tion of sphere 1, which can be written in terms of its T -
operator [15, 17]. For the case d ≫ Rj considered here, a
one reflection approximation for the operator in Eq. (3),
O1 ≃ (1 − G0T2), is asymptotically exact. It amounts to
a one time scattering of the field radiated by sphere 1 at
sphere 2, and subsequently performing the integration in
Eq. (4) over a surface enclosing sphere 2. This integra-
tion in terms of spherical waves has been discussed, e.g.
in Ref. [18]. The force F

2
2 is calculated similarly, only

here we consider the heat radiation of sphere 2, which is
once scattered by sphere 1, and the surface of integration
closed around sphere 2. Consistent with symmetries, the
force F

2 in Eq.(5) is parallel to the axis connecting the
spheres; we shall denote this component by F 2 and adapt
the notation where a positive sign corresponds to attrac-
tion. The resulting force [19], contains the T -operators as
well as translation matrices for spherical waves, organized
in a series of multipoles of orders l. To terminate the se-
ries at the dipole order (l = 1), for the equilibrium force
between spheres [20,21], it is sufficient to require d ≫ Rj ,
while in the non-equilibrium case, we have to additionally
require λT ≫ Rj (λT = ~c

kBT ≈ 7.6µm at room temper-
ature). This ensures R∗

j = Rjω/c ≪ 1 for all relevant
frequencies, and we restrict to terms linear in the two T -
operators T P

j ≡ T P
j,l=1(ω) for polarization P = N,M and

l = 1. Then F 2
1 (T ) is

lim
{d,λT }≫Rj

F 2
1 = − ~

cπ

∫ ∞

0

ω dω

e
~ω

kBT − 1

∑

P,P ′

Re[T P
1 ]

[

9c2

ω2d2

Re[T P ′

2 ] + Im[T P ′

2 ]

(

9c3

ω3d3
+

18c5

ω5d5
+

81c7

ω7d7
δPP ′

)

]

. (6)

1We note that Ref. [14] performs a different decomposition, in-
volving the equilibrium force at the temperatures of the objects
rather than at Tenv as in Eq. (5).
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In Eq. (6) (and Eqs. (7), (16) and (19) below) we omit
terms quadratic in T P

j for brewity, a simplification which

is justified for the cases considered below2.
For large separations, F 2

1 decays as d−2 and is repulsive.
This originates from momentum transfer to the second
sphere via absorption or scattering of photons. The other
terms in Eq. (6), with higher powers in 1/d, are (in most
cases) attractive. Similarly, the self force F 2

2 (T ), reads

lim
{d,λT }≫Rj

F 2
2 =

~

cπ

∫ ∞

0

dω
ω

e
~ω

kBT − 1

∑

P

Re[T P
2 ]

Re

{[

(T P
1 − T P̄

1 )

(

9c2

ω2d2
+ i

27c3

ω3d3

)

− (T P
1 − T P̄

1

2
)
72c4

ω4d4

− (T P
1 − T P̄

1

8
)i
144c5

ω5d5
+ T P

1

(

162c6

ω6d6
+ i

81c7

ω7d7

)

]

e2i
ω
c
d

}

,

(7)

originating from radiation of sphere 2. Here P̄ = M if
P = N and vice versa. In contrast to F 2

1 , this term can
oscillate as function of d at a scale set by material reso-
nances. These oscillations originate from interference of
two coherent traveling waves from sphere 2: i) a wave go-
ing to sphere 1, being reflected back past sphere 2, and ii) a
wave emitted in the reverse direction. Depending on ωd/c,
one has constructive or destructive interference. As these
waves interfere in the exterior region, we expect the oscil-
lations to become weaker as R2 becomes large compared
to the penetration (skin) depths. For a sharp resonance
of ε2(ω) at ω0 in Eq. (7), the oscillations as function of
distance have wavelength πc/ω0.
For small insulating spheres of radius Rj (with µj = 1),

we employ the following expansions of the T -operator

T N
j = i

2ω3

3c3
αj(ω) +O

(

R∗
j
5
)

, T M
j = O

(

R∗
j
5
)

, (8)

in terms of the complex frequency dependent dipole po-
larizability,

αj(ω) ≡
εj(ω)− 1

εj(ω) + 2
R3

j . (9)

Higher multipoles T P
j,l for l ≥ 2 are of order R∗

j
5, and

Eqs. (6) and (7) can be simplified by use of Eq. (8). The
range of applicability of this approximation depends on
material properties. An expansion of T P

j in both R∗
j and√

εR∗
j shows that the condition |√ε|Rj ≪ λT (in the rel-

evant frequency range) is sufficient for many materials,
including the ones studied below. For |εj| ≫ 1 (conduc-
tors), the expansion is generally not applicable (e.g. TM

j

is then of order R∗
j
3 [21]). With Eqs. (8) and (9), one sees

that F 2
j is only nonzero if Im εj 6= 0 (or for magnetic ma-

terials Imµj 6= 0), as only lossy spheres emit heat. This
holds for any Rj .

2It requires {| Im[T P
j ]|, |Re[T P

j ]|} ≫ |T P
j |2 in the relevant fre-

quency range. E.g. the emissivity of a sphere contains −Re[T P
j ] −

|T P
j |2 and vanishes for |ε| → ∞ or Im[ε] → 0 where Re[T P

j ] →

−|T P
j |2, captured only by inclusion of the quadratic terms [19].
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Fig. 1: Total force on sphere 2 in a system of two SiO2 spheres
at separation d in a cold (0 K) environment. Dashed lines in-
dicate repulsion. The crossing of solid red and dashed green
curves represent a point where the forces are equal in mag-
nitude and direction, see main text. Points of change from
repulsive to attractive with increasing d are stable equilibria.

The leading low temperature behavior of the force for
insulators can be derived by requiring λT ≫ λ0, where
λ0 is the wavelength of the lowest resonance of the mate-
rial. The dielectric functions and polarizabilities are then
expanded as [22]

εj(ω) = ε0,j + i
λin,jω

c
+O(ω2), (10)

αj(ω) = α0,j + iαi0,j
λin,jω

c
+O(ω2), (11)

with ε0,j , λin,j , α0,j and αi0,j = 3R3
j/(ε0,j + 2)2 real. For

λT ≫ λ0, the interaction term is then given in closed form,

lim
{d,λT }≫Rj

F 2
1 =

~c

3d2
λin,1αi0,1

λ7
T

[

−32π7λin,2αi0,2

5λT

+ α0,2

(

32π5λT

21d
+

8π3λ3
T

5d3
+

18πλ5
T

d5

)

]

. (12)

The self force F 2
2 does not oscillate to lowest order in tem-

perature and takes a lengthy form [19]. In the limit where
d is the largest scale, we have

lim
d≫λT≫{Rj ,λ0}

F 2
2 =

60~c

πd9
λin,2αi0,2α0,1 . (13)

While in this range of d the force F 2
2 is independent of tem-

perature, it vanishes as T → 0 since with λT the largest
scale (λT ≫ {d,Rj , λ0}), one has

lim
d≫Rj

F 2
2 =

6π~c

d7λ2
T

λin,2αi0,2α0,1, (14)

which is identical to F 2
1 in this limit, with indices 1 and 2

interchanged.
We evaluate the total force in dipole approximation nu-

merically for R1 = R2 = 1 µm using Eq. (5) and the
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Fig. 2: Total force on sphere 2 in a system of two SiO2 spheres
at separation d in a warm (300K) environment. Dashed lines
indicate repulsion. The thin dotted line is the red line divided
by 2, see main text.

equilibrium Casimir Polder force (Eq. (94) in Ref. [23])
which in the relevant limits reads

lim
λT ≫d≫Rj

F 2,eq =
161

4π

~c

d8
α0,1α0,2, (15a)

lim
d≫{Rj,λT }

F 2,eq =
18~c

d7λT
α0,1α0,2. (15b)

Figure 1 shows the forces on SiO2-spheres (we used op-
tical data with ε0 ≈ 3.7) in a cold (0 K) environment.
We evaluated Eqs. (6) and (7) together with (8), (9).
Within these simplifications, the forces are proportional
to R3

1R
3
2 (R = 1 µm is roughly the upper bound of valid-

ity of this approximation for SiO2 at room temperature,
where for the total heat emitted by an isolated sphere, the
asymptote ∝ R3 differs by 12% from the exact result [15]).
The force starts to deviate strongly from its equilibrium
value around d ≈ λT /2. Sphere 2 is repelled at large d if
T1 = 300K due to the radiation pressure. If additionally
T2 = 300K, the oscillating force F 2

2 is visible and it dom-
inates the total force for large d if T1 = 0K; the net force
now has many zero crossings, where every second one is
a stable equilibrium point. As discussed above, we expect
the wavelength of the oscillations to be roughly 4.75 µm
due to the resonance of SiO2 at wavelength 9.5 µm. Addi-
tional modulations are due to interferences with a second
resonance of SiO2 at 22 µm. The figure also provides com-
plete information about the force on sphere 1: e.g., in case
T1 = 0 and T2 = 300K, the red curve shows the force act-
ing on sphere 2, while the green curve shows the force
on sphere 1. At the crossing of the solid red and dashed
green curves the two spheres feel equal forces in the same

direction. This corresponds to what we define as a self-
propelled pair (SPP), where the spheres experience equal
acceleration in the same direction and hence remain at a
fixed separation. Note, however, that this is an unstable
arrangement in which any small perturbation leads to the
spheres moving apart.
Figure 2 shows the situation for a warm (300K) en-
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Fig. 3: Total forces on SiO2 spheres with shifted optic res-
onances. Dashed lines indicate repulsion. Unstable (U) and
stable (S) SPP and zero force points are visible.

vironment. Here, the force has repulsive parts only if
T1 = 300K and T2 = 0K where it shows multiple stable
equilibrium points. For all other cases, the force is purely
attractive, decaying as 1/d2 if T1 = 0. For T1 = 0 and
T2 = 300K, one has stable and unstable SPP’s, e.g., where
the black dotted curve crosses the dashed green curve in
Fig. 2, i.e., for R2 = R12

1/3 assuming solid spheres with
mass ∼ R3

j .

The 1/d2 contribution to F 2
1 in Eq. (6) (with Eq.(8))

is proportional to the product of the imaginary parts of
the polarizabilities. These are peaked at the resonances of
the material and this term can be suppressed by reducing
the overlap of resonances. Figure 3 shows the forces where
the dielectric function of sphere 2 is replaced by ε̃2(ω) =
εSiO2

(1.17ω), which, in principle, can be achieved by using
different isotopes. Now, the forces are asymmetric even for
T1 = T2, and due to the suppression of F 2

1 , we have stable
as well as unstable SPP’s for e.g. T1 = T2 = 300K, and
Tenv = 0K, in contrast to Fig. 1.
For a sphere (R, εs, µs, Ts) in front of a plate (εp,

µp, Tp) at center to surface separation d, Eq. (5) gives
distinct non-equilibrium forces acting on the plate, or on
the sphere. While both can be derived with equal effort,
we restrict to the force acting on the sphere, F s = −F

s ·
np (with outward normal np of the plate), separated into
F s
p and F s

s . Scattering from the plate is governed by the

Fresnel reflection coefficients rP for P = M , N , given by

rM (k⊥, ω) =
µ(ω)

√

ω2

c2 − k2⊥ −
√

ε(ω)µ(ω)ω
2

c2 − k2⊥

µ(ω)
√

ω2

c2 − k2⊥ +
√

ε(ω)µ(ω)ω
2

c2 − k2⊥

,

with rN obtained from rM by interchanging µ and ε. In
the one reflection approximation, the force F s

p is derived
by a one-time-scattering of the radiation of the plate at
the sphere. The subsequent integration in Eq. (4) is done
in plane waves basis, over two planes, enclosing the sphere
and separating it from the plate. For the contribution
F s
s , the sphere radiation is scattered at the plate with
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identical surface of integration. As before, this procedure
(valid for d ≫ R) [19] involves all multipoles of the sphere.
Only for R ≪ λT , we can further restrict the T operators
to l = 1. The interaction term F s

p (T ) has two distinct
contributions, F s

p = F s
p,pr + F s

p,ev, from propagating and
evanescent waves emitted by the plate,

lim
{d,λT }≫R

F s
p =

3~

2cπ

∫ ∞

0

dω
ω

e
~ω

kBT − 1
(fpr + fev) , (16)

where the functions

fpr =
( c

ω

)2
∫ ω/c

0

k⊥dk⊥
∑

P,P ′

(1− |rP |2)Re[T P ′

], (17)

fev = 2
( c

ω

)2
∫ ∞

ω/c

k⊥dk⊥e
−2d

√
k2

⊥
−ω2/c2

∑

P

Im

[

rP
(

2
k2⊥c

2

ω2
− 1

)

+ rP̄
]

Im[T P ], (18)

explicitly contain the radiation of the plate [4]. The force
F s
p,pr is d independent as it arises from absorption or scat-

tering of far field photons by the sphere, while the near
field contribution F s

p,ev depends on d. The self term F s
s (T )

lim
{d,λT }≫R

F s
s =

−3~c

π

∑

P

∫ ∞

0

dω
Re[T P ]

ω(e
~ω

kBT − 1)

∫ ∞

0

k⊥dk⊥

Re

{

e2id
√

ω2/c2−k2

⊥

[

rP
(

2
k2⊥c

2

ω2
− 1

)

+ rP̄
]}

, (19)

contains both evanescent and propagating contributions
but no separation independent term. Instead, F s

s behaves
similarly as F 2

2 in Eq. (7), oscillating as a function of d,
falling off at large separations as 1/d.
For a dielectric sphere and plate, we next employ

Eqs. (10) and (11), to obtain the leading behavior at low
temperatures (λT ≫ {λ0, R}, but not necessarily d). The
d independent part now becomes,

lim
d≫R

F s
p,pr = −8π5

63

~c

λ6
T

fpr(ω = 0)λin,sαi0. (20)

F s
p,ev can be analyzed in the following two limits, corre-

sponding to expansions of the function fev(ω, d),

lim
d≫λT≫{R,λ0}

F s
p,ev =

π

6

~c

λ2
T d

3
Re

[

1 + ε0,p
√

ε0,p − 1

]

α0. (21)

In the opposite limit, with λT ≫ {d,Rj , λ0}, we have

lim
d≫R

F s
p,ev =

π

2

~cλin,p

λ2
T d

4

1

(1 + ε0,p)2
α0. (22)

Equation (21) is similar to Eq. (12) in Ref. [8]. As was the
case for F 2

2 , in leading order in temperature the self part
F s
s does not oscillate. For d ≫ λT ≫ {R, λ0}, we have

F s
s ∝ 1/d6, the counterpart of Eq. (13), with a lengthy

prefactor. For λT ≫ {d,Rj , λ0} we have

lim
d≫R

F s
s =

π

4

~c

λ2
T d

4

ε0,p − 1

ε0,p + 1
λin,sαi0, (23)
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Fig. 4: Total force on a SiO2 sphere of R = 1µm in front of a
SiO2 plate in a cold environment. Dashed lines indicate repul-
sion. Every second zero of the red curve is a stable equilibrium
point.

which is identical to Eq. (22) when interchanging real and
imaginary parts for rP and α. The equilibrium force can
be found in Ref. [24]. For d ≫ R one has

lim
λT≫d≫R

F s,eq =
3

2π

~c

d5
ε0,p − 1

ε0,p + 1
α0Φ(ε0,p), (24a)

lim
d≫{R,λT }

F s,eq =
3~c

4d4λT

ε0,p − 1

ε0,p + 1
α0, (24b)

where Φ(ε0,p) is e.g. given in Ref. [24]. Figure 4 shows
numerical results for the force on a sphere in front a plate
(both made of SiO2) for R = 1µm in a cold (0 K) environ-
ment. Again, we use the simplification of Eq. (8) and the
resulting force is proportional to R3 (also here, R = 1µm is
roughly the upper bound of validity of this simplification).
If the plate is warm, the distance independent repulsion
is visible. If only Ts is different from Tenv, the force F s

s

dominates at large d, leading to multiple stable points.
Figure 5 shows the curves for a warm (300K) environ-

ment. Here, the d independent force (for Tp = 0) is attrac-
tive. Again, if only Ts is different from Tenv, we observe
many changes of the sign of the force. Exploring the ef-
fects of shifting resonances, we found that in contrast to
the case of two spheres, here shifting suppresses the self
term more strongly than the interaction term. For the
special case of a (resonance-shifted) SiC sphere3 in front
of a SiO2 plate, see Fig. 6, the temperature of the sphere
is almost irrelevant for the force. This is beneficial to ex-
perimental setups, as it is presumably harder to maintain
Ts at a constant value, compared to keeping Tp and Tenv

constant. Additionally, in Fig. 6, the special choice of pa-
rameters leads to a stable equilibrium point, which, again,
is almost independent of Ts.
The presented formulae for the forces, i.e., Eqs. (6), (7),

(16) and (19) after substitution of TN
j = i 2ω

3

3c3 αj(ω) and

3We found that the described effect appears most pronounced by
adjusting the resonance of SiC (see Ref. [25] for ε(ω)) by insertion
of a factor of 0.75 in frequency.
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Fig. 5: Total force on a SiO2-sphere of R = 1µm in front of
a SiO2 plate in a warm (300K) environment. Dashed lines
represent repulsion.

TM
j = i 2ω

3

3c3 βj(ω) with βj(ω) = ((µj(ω)−1)/(µj(ω)+2))R3
j

the magnetic dipole polarizability, can be derived inde-
pendently from diluting two plates of vanishing thickness,
confirming the correctness of our formalism for compact
objects. This calculation will be presented elsewhere.
Our results constitute a macroscopic generalization of

non-equilibrium interactions between thermal gases of
atoms and interactions between atoms in excited states
4. However, we emphasize that the forces on two macro-
scopic objects are not equal and and opposite, an effect
which cannot be found from the interaction potential as
used in studies of two atoms [10–13]. We hope that our
results may eventually shed new light on the debated non-
equilibrium interactions of atoms.
While, for simplicity, we discussed the forces for small

radii and moderate temperatures, our formalism is more
generally applicable for any values of R, d and T . Future
work will consider the cases of larger spheres where non-
equilibrium effects may be stronger.
This research was supported by the DFG grant No. KR

3844/1-1, NSF Grant No. DMR-08-03315 and DARPA
contract No. S-000354. We thank R. L. Jaffe, N. Gra-
ham, M. T. H. Reid, M. F. Maghrebi and V. A. Golyk for
discussions.

REFERENCES

[1] Casimir H. B. G., Proc. K. Ned. Akad. Wet. , 51 (1948)
793.

[2] Lifshitz E. M., Sov. Phys. JETP , 2 (1956) 73.
[3] Milonni P. W., The Quantum Vacuum (Academic Press,

San Diego) 1994.
[4] Rytov S. M., Kravtsov Y. A. and Tatarskii V. I.,

Principles of statistical radiophysics 3 (Springer, Berlin)
1989.

4There are intriguing similarities to previous work on atoms: Our
interaction force in Eq. (16) shares certain terms with the studies in
Refs. [7, 8]. The force in Ref. [9] shows similar behavior as our self
force in Eq. (19). Additionally, the last three terms of our Eq. (6)
have common structure as Eq. (2.17) in Ref. [11].

10-4

10-3

10-2

10-1

1

10 20 30 40 50

F
 [1

0-1
8  N

]

d [µm]

Ts=150 K , Tp=150 K
Ts=0 K , Tp=0 K

Ts=150 K , Tp=0 K

Fig. 6: Total force on a SiC sphere in front a SiO2 plate in an
environment at 150 K. Dashed lines indicate repulsion. The
second zero is a stable equilibrium point. Eqs. (16) and (19),
together with Eq. (8), are strictly valid for SiC spheres with
R . 0.3µm, but for comparison to the previous graphs we show
the force computed for R = 1µm.

[5] Antezza M., Pitaevskii L. P., Stringari S. and Sve-

tovoy V. B., Phys. Rev. A , 77 (2008) 022901.
[6] Bimonte G., Phys. Rev. A , 80 (2009) 042102.
[7] Henkel C., Joulain K., Mulet J.-P. and Greffet

J.-J., J. Opt. A Pure Appl. Opt. , 4 (2002) S109.
[8] Antezza M., Pitaevskii L. P. and Stringari S., Phys.

Rev. Lett. , 95 (2005) 113202.
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