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Abstract

Local aspects of singular F-theory compactifications for SUSY GUT model-building are fairly
well understood in terms of Higgs bundles and their spectral data. Several global issues remain,
however, including a description of G-fluxes, which are key to constructing chiral matter and
stabilizing moduli, and the global realization of U(1) symmetries that can forbid phenomeno-
logically unfavorable couplings. In this paper, we sharpen our earlier proposal for describing
G-fluxes through “spectral divisors” and introduce a distinguished “Tate divisor”, which can
be used to describe both G-flux and U(1)s when present. As an application, we give a general
discussion of M5-instanton contributions in the presence of G-flux and exemplify this in a con-
crete example, where we comment on the ability of instanton induced superpotential couplings
to stabilize Kähler moduli.

http://arxiv.org/abs/1107.1718v2


Contents

1 Introduction and Summary 3

1.1 Approach to G-flux and U(1) symmetries . . . . . . . . . . . . . . . . . . . . . . 4
1.2 M5-instantons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 U(1)s, G-flux, and the “Tate Divisor” 7

2.1 Geometric Setup and U(1)s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Local geometry and dP9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 From dP9 to U(1)s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 The “Tate divisor” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 G-Fluxes, Matter Surfaces, and Chiral Spectrum . . . . . . . . . . . . . . . . . . 14
2.6 D3-brane tadpole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Remarks on Flux Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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1 Introduction and Summary

While the rules for local1 model-buiding in F-theory GUTs are becoming fairly well understood
[1–6], any such model still carries intrinsic assumptions about the global completion. For
starters, local models describe only a local notion of the fluxes required to generate chiral
matter. Further, local models often rely on U(1)s which have become massive through a
Stückelberg mechanism [2, 6, 7] to solve important phenomenological problems. These U(1)s
are intrinsically global in nature, though, so their presence or absence depends on details of the
global completion [8].

These two points have received some attention in the past [8–10] but they do not represent
the only bulk physics to which local models must appeal. In many models [6, 7, 11–14] the
presence of GUT-singlets must be assumed for a variety of reasons, whether it be to generate
neutrino mass, break supersymmetry, or lift unwanted exotic particles. Crucial in all such
models are the superpotential couplings involving the singlets, which are typically assumed
to be generated by some bulk physics. Here, bulk physics usually means one or more M5-
instantons. Of course M5-instantons are important for more than just singlet physics; the issue
of moduli stabilization, which will involve M5-instantons in a crucial way, is lurking behind
everything that local model-builders do.

Our objective in this paper is to make some progress toward understanding these global
issues in order to build continually improving global completions of local models. We begin
with a discussion of the two important constructs that underlie all global models: G-flux and
U(1) symmetries. This discussion aims to extend and clarify that of [10] and clearly state
how U(1) symmetries can be understood within the “spectral divisor” formalism through the
introduction of a distinguished object that we refer to as the “Tate divisor”. U(1)s have
received careful treatment also in [9] and we believe our approach is consistent with the results
contained therein. Our construction extends the spectral cover description of Higgs bundles
and G-fluxes in the local setup to the full Calabi-Yau fourfold. It is motivated from heterotic/F-
theory duality [15–20] and is compatible with the spectral cover in that context whenver such
a dual Heterotic description exists [10]. Along the way, we make comments on U(1) fluxes, the
D3-brane tadpole, and flux quantization.

We then turn to a discussion of M5-instantons where our aim is to study the conditions for
which the couplings that they generate are nonzero. There is a vast literature on M5-instantons
detailing many of these issues, including recent work focused on the connection to F-theory and
the relation to D3-brane instantons in type IIB [21–28]. We pay particular attention to recasting
the fermi zero mode computation in terms of cohomologies on divisors in the base B3 of Y4

and the interplay of M5-instantons with the G-fluxes that we construct with spectral divisors
as in [10]. With this knowledge, we turn to geometries based on the threefold of [29], specify
which divisors support M5s that generate nonzero couplings, and comment on the implications
for moduli stabilization in those models. We also take this opportunity to present a cleaner

1We refer to “local” in this context as the complete description of the 8d SYM theory on 7-branes in terms
of Higgs bundle data, which does include information on the local geometry and monodromies (also sometimes
refered to as “semi-local”).
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description of the threefold in [29]. Before getting to the details, let us summarize our general
approach to these issues as well as some of the results.

1.1 Approach to G-flux and U(1) symmetries

The constructs of G-flux and U(1) symmetries are not completely unrelated because each
admits a similar geometric description. Consider, for instance, an elliptically fibered Calabi-
Yau fourfold Y4 with a surface of SU(5)GUT singularities. The G-fluxes that generate chiral
matter are (2, 2)-forms in Y4 that have exactly 1 leg on the torus, which is to say that they can
be thought of as (linear combinations of) holomorphic surfaces that are effectively orthogonal
to all horizontal and vertical divisors. If Y4 were smooth this condition would tell us that G
is completely trivial because it would integrate to zero over every holomorphic surface but Y4

is crucially not smooth. The resolution Ỹ4 will contain holomorphic surfaces that do not sit
inside the preimage of horizontal or vertical divisors under the blow-down map P : Ỹ4 → Y4.
These include the matter surfaces that one obtains when a curve of singularities is resolved2.
Curves of singularities support matter fields that descend from wrapped M2-branes and our
G-flux should have nonzero integral over some of the matter surfaces that result from resolving
those singularities. Any nontriviality in the G-flux, then, is crucially tied to the resolution.

The issue with U(1) symmetries is very similar. U(1)s that couple to our charged matter
fields, which themselves originate from wrapped M2-branes, come from the reduction of the
M-theory 3-form C3 on harmonic (1, 1)-forms ω

C3 = A1 ∧ ω . (1.1)

When we compactify M-theory on Y4, this gives a 3-dimensional gauge field on R
2,1. To ensure

that this carries over to a 4-dimensional gauge field in the F-theory limit, where the volume of
the elliptic fiber is scaled to zero, the (1, 1)-form ω must be chosen to have 1 leg on the elliptic
fiber. If we wish to think of ω as a divisor in Y4, then, this condition means that ω cannot be
horizontal or vertical. If Y4 were smooth, this would force ω to be trivial so once again any
nontriviality in ω is intrinsically tied to the singularities. This is to be expected because we
anticipate that ω has nonzero integral over degenerate cycles. This is how 4-dimensional states
from wrapped M2-branes manage to couple to U(1) vector bosons in the first place.

In each of these cases we seek a simple geometric description, whether it be a holomorphic
surface to specify G or a divisor to specify the (1, 1)-form ω that we need to get a U(1).
Unfortunately, these concepts must be refined when the geometry is singular and all of the
nontriviality is contained in that refinement. In this paper, as in previous work [10], we adopt
the approach that the physics on a singular Calabi-Yau fourfold Y4 should be specified by
starting with a particular smooth resolution Ỹ4 and taking a singular limit. This is essentially
what we do when assigning gauge groups and charged matter to ADE singularities anyway. We
specify the physics by saying that we start with a resolution Ỹ4 in which the ADE singularities

2Of course these also include surfaces that sit inside the divisors that one obtains from the resolution of
surfaces of singularities.
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are resolved by small resolutions, i.e. growing 2-cycles (as opposed to, say, deforming). We
can wrap M2-branes on the finite volume 2-cycles in Ỹ4 where their physics is clear and then
we see that these states become massless in the singular limit. The physical D3-brane charge
should also include the geometric contribution from the resolved geometry Ỹ4 as computed in
several examples over the past couple of years [30,31]. In the same way, we should understand
backgrounds for C3, including G-fluxes and reductions of C3 that yield U(1)s, in the resolved
geometry Ỹ4. G-flux of the type that we need to induce chirality should be describable as a
holomorphic surface in Ỹ4 and U(1)s should be describable as ordinary divisors in Ỹ4. In each
case, the “1 leg on the torus” condition just tells us that the corresponding surface or divisor
is orthogonal to everything that survives the singular limit.

To describe G-flux and U(1) symmetries, then, it is crucial to specify a resolution Ỹ4. We
actually do not describe the resolution explicitly but rather, following ideas from Heterotic/F-
theory duality, we use dP9-fibrations to do the job. The basic strategy is to take advantage of
the fact that we are interested in small resolutions which should be describable entirely within
the local geometry near a surface of singularities, SGUT, which we typically assume to be of
A4 type. Because the resolution does not care about what happens beyond the local geometry,
we can excise it from Y4 and insert it into a different fourfold Ŷ4 that has the structure of a
dP9-fibration. This allows us to describe the vanishing cycles in terms of the homology of dP9

and, in particular, to think about the singularity structure in terms of the Mori cone of the
dP9 fiber as one moves along the base SGUT. The geometry of dP9 tells us about the structure
of small resolutions, which simply grow back the zero volume homology cycles that sit in the
Mori cone, and allows us to specify holomorphic surfaces and divisors in Ŷ4 that interact in
the right way with resolved cycles. We can then restrict these to the local geometry and, in so
doing, obtain noncompact surfaces and divisors that we can try to globally extend after putting
everything back into Y4.

A procedure based on dP9 is a natural way to extend the ideas of F-theory/Heterotic duality
beyond the realm of K3-fibered Calabi-Yau fourfolds and is at the heart of the approach in [10].
The spectral divisor in that work was just a tool for understanding holomorphic divisors and
surfaces in the resolved geometry in terms of objects that we can describe in the singular one.
In this work, we extend these ideas by introducing a distinguished spectral divisor that allows
for the engineering of U(1) symmetries. We also comment on how the Higgs bundle picture
naturally emerges and discuss briefly some issues related to the counting of GUT-singlets, the
D3-brane tadpole, and flux quantization. Note that the dP9 approach only works, of course,
when the surface of singularities contains no structure larger than E8. Gauge groups that are
not of this type require cycles that simply do not fit into the homology of dP9, as reflected by
the fact that a local geometry capable of engineering such gauge groups cannot be embedded
into a dP9-fibration.

As we were finalizing this work [32] appeared, where small resolutions of singular Calabi-Yau
fourfolds with an SU(5) singularity are studied in general. There are several small resolutions,
which are birationally equivalent, and it would be interesting to put our analysis of G-fluxes
and U(1)s in this context.
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1.2 M5-instantons

In the second part of this paper we turn to the study of M5-instantons, by which we really mean
those Euclidean M5s in M-theory compactified on Y4 that descend to D3-brane instantons in
the F-theory limit. M5s of this type wrap vertical divisors of the form π∗S2 with S2 a divisor
in the base B3 of Y4 and π : Y4 → B3 is the elliptic fibration. In this setting, we focus on
the two things that can destroy an M5s ability to contribute a superpotential coupling: fermi
zero modes and G-flux. Because our M5s are really describing type IIB D3s wrapping S2

3,
one expects that the computation of fermi zero modes should be related to how “moveable” S2

is inside B3, that is to cohomologies of the normal bundle NS2|B3
. We work out this relation

using the Leray spectral sequence and then use those results to determine all surfaces S2 in the
threefold of [29] that can support an instanton with the right fermi zero mode structure.

We then discuss the interplay of G-flux with M5-instantons. If the restriction of G to an M5
is nontrivial, its effect is to introduce a source term for the chiral 2-form b2. This source can
sometimes be effectively canceled by introducing wrapped M2-branes ending on the M5 and, in
those cases, the M5 generates a charged coupling involving the wrapped M2-brane states. One
can see on general grounds that such a coupling will not only be invariant under any U(1)s that
were engineered but more generally that it will be invariant under bulk gauge transformations
of the M-theory 3-form C3. We believe this should incorporate the selection rules alluded to
in [28] involving “massive U(1)s” at the KK scale. When the source cannot be canceled by
wrapped M2-branes, we believe the superpotential coupling is forced to vanish4.

Using the spectral divisor description of G-fluxes, we are able to argue that fluxes used to
generate chirality in F-theory GUT models generically have trivial restriction to M5-instantons
so they generate “uncharged” couplings that can play a role in moduli stabilization when the
fermi zero mode structure is correct. This is actually easy to see without a detailed computation.
The G-fluxes for chirality are engineered so that they only have nonzero integral over matter
surfaces obtained by combining a curve of singularities Σsing,i with the curve Ci that degenerates
there. In order for G to have nontrivial restriction to the M5, then, it must contain a full curve
of singularities in Y4 and hence contain a full matter surface in its entirety in Ỹ4; otherwise,
G would integrate to zero over all divisors in the M5. Any curve of singularities, though, will
generically meet an M5 in isolated points in Y4

5. The restriction of G to such an M5 will be
trivial and the coupling generated, if any, will be “uncharged” in the sense that it will involve
only moduli and not any fields that arise from wrapped M2s.

3For a review of D3-instantons in type IIB orientifolds see [33].
4The absence of wrapped branes that can cancel the source amounts to the statement that there are no

classical solutions to the equations of motion for b2 in the presence of the source that are properly quantized.
There is a factor of 1

2 that we discuss which leads to a scenario where wrapped branes cannot cancel the source.
It is possible that some object exists that can do the job but we do not see a candidate at the moment.

5Of course, the M5 will contain curves of singularities Σ′
sing along which it intersects surfaces of singularities

like SGUT. The only G-flux that would integrate nonzero under the surface obtained by resolving the singularity
over Σ′

sing will be one that corresponds to a worldvolume flux. In F-theory GUT models we typically do not
turn on any worldvolume fluxes except for hypercharge flux, which is globally trivial. As the intersection of the
M5 with a surface SGUT of singularities in Y4 is isomorphic to a curve in SGUT that is nontrivial in the base B3

of Y4, the hypercharge flux will integrate to zero over it.
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The upshot of this analysis is that vertical divisors of elliptically-fibered fourfolds based on
the threefold geometry of [29] that we identify as having the right zero mode structure will
have no problem generating uncharged couplings if the only G-fluxes we introduce are spectral
divisor fluxes for inducing a chiral spectrum. This gives an indication of whether we have any
right to expect Kähler moduli stabilization to be possible in geometries constructed from the
threefold of [29]. Note that to combine Kähler moduli stabilization with complex structure
moduli stabilization we must assume that the latter does not require any G-fluxes that restrict
nontrivially to the M5 instantons that are used for the former. This is not a new problem
and it is somewhat canonical to assume that complex structure moduli stabilization does not
interfere with Kähler moduli stabilization in this way. Such an assumption should not be made
cavalierly, though; it is an important one whose validity cannot be taken for granted. Any
claims to actually achieve moduli stabilization in an F-theory GUT model must justify it. To
be sure, we make no such claims in the present paper.

1.3 Outline

The remainder of this paper is organized as follows. In section 2 we extend the spectral divisor
formalism of [10] to describe U(1)s as well as G-fluxes. We also comment on the connection
to Higgs bundles, the D3-brane tadpole, and flux quantization. In section 3, we turn to the
study of M5-instantons and discuss the two ways that their contribution to the superpotential
can be ruined: fermi zero modes and G-flux. Finally, in section 4 we apply these ideas in some
generality to geometries based on the threefold of [29]. We identify divisors in the threefold
that form the base of vertical divisors in an elliptically fibered Calabi-Yau fourfold that can
lead to nontrivial M5 instanton corrections. We also verify that the G-flux needed to generate
chirality will restrict trivially to the worldvolumes of those M5s. Appendix A contains a cleaner
description of the threefold geometry that we use than the one contained in [29]. Because this
description does not utilize any flop transitions we believe it to be more transparent.

2 U(1)s, G-flux, and the “Tate Divisor”

In this section, we review and extend the formalism described in [10] for describing (2, 2) G-
fluxes in F-theory GUTs that generate chiral spectra. We would like to emphasize a few things
that were not addressed in [10]. The first is a description of how the spectral divisor formalism
can be used to take the apparent U(1)s of a local F-theory GUT and explicitly engineer these
gauge bosons in a global extension6. To explicitly realize U(1)s we will be lead to consider a
distinguished object that we term the “Tate divisor”, which is a special example of a type of
object referred to as a “spectral divisor” in [10]7. In addition to allowing an explicit description

6That this issue is subtle was emphasized in [8] while a focused study of U(1)s in global F-theory models,
with which we believe our discussion is consistent, can be found in [9].

7As described in [10], a spectral divisor in our singular Calabi-Yau fourfold is one that contains important
singularities and whose limiting behavior near those singualrities causes it to behave in a favorable way upon
resolution. The “Tate divisor” is a distinguished example of such a divisor that is suitable for describing not
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of U(1)s, the “Tate divisor” also helps to obtain an explicit description of U(1) flux following
ideas of [10]. After this, we turn to a discussion of chiral spectra, whose determination we
formulate in a language that is more amenable to the study of GUT singlets that localize on
curves that do not sit inside the GUT surface (or any other surface above which the elliptic
fibration exhibits non-Abelian singularities). Finally, we make some comments about the D3-
brane tadpole including a general argument that the contribution from our G-fluxes arises only
from surfaces of singularities in accord with a conjecture of [31]8. The extension of ideas that
we describe here to surfaces of exceptional type singularities should be straightforward and we
have some comments on this. Further generalizations are beyond the scope of this paper but
would be an interesting topic of future study.

2.1 Geometric Setup and U(1)s

Our basic setup is an elliptically fibered Calabi-Yau fourfold, Y4, that exhibits a surface of
SU(5)GUT singularities9. We let π denote the elliptic fibration

π : Y4 → B3 (2.1)

and write the defining equation for Y4 in the “Tate form”

y2 = x3 + a0z
5 + a2z

3x+ a3z
2y + a4zx

2 + a5xy . (2.2)

Here, z is the holomorphic section on B3 whose vanishing defines the surface SGUT and the
am’s are sections of the bundles O((m − 6)KB3

+ (m − 5)SGUT). This geometry exhibits an
SU(5)GUT singularity along z = 0 [34] with enhancements in singularity type to SO(10) where
z = a5 = 0 and SU(6) where z = a0a

2
5 − a2a3a4 + a23a4 = 0. The divisor z = 0 supports

the degrees of freedom of an N = 1 supersymmetric gauge theory with gauge group SU(5)
while the curves of SO(10) and SU(6) enhancement support charged chiral matter. The string
theoretic origin of that matter is well understood: matter fields arise from M2-branes wrapping
the extra vanishing cycles or, equivalently, the (p, q) strings that become massless there in the
type IIB language.

In this setting, both U(1) symmetries and the G-fluxes responsible for chiral spectra are
somewhat subtle to describe. This is because both are sensitive to the monodromic structure
of the geometry near z = 0 (among other things), where the SU(5)GUT degrees of freedom live.
We focused on G-fluxes in [10] so we will place a greater emphasis on U(1)s in the present
paper.

only G-fluxes but also U(1)s, as we shall see.
8More specifically, [31] checks that the difference in the Euler character of several resolved fourfolds and the

naive computation of the Euler character based on data of the singular fourfold only seems to get contributions
from surfaces of singularities. As authors of [31] have suggested, this is indicative of flux-induced tadpoles
getting contributions only from surfaces of singularities as well.

9There may be hidden sectors consisting of additional surfaces of singularities but we ignore this possibility
for now, and will return to this in the context of M5 instantons.
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One of the nice features of U(1)s from a phenomenological perspective is that they can
distinguish different types of 4-dimensional fields that sit in the same SU(5)GUT representation.
We are usually interested in distinguishing 5’s (so that left-handed leptons do not participate
in the same couplings as down type Higgs doublets) but, for simplicity of presentation, we focus
instead on 10’s that localize on the curve z = a5 = 0. This curve, Σ10, is the locus of SO(10)
singularities and, if a5 is chosen appropriately, may split into multiple components. The type of
U(1) we are interested in should couple differently to 10’s associated to the different components
so, to think about U(1)s geometrically, we ask a related question: is there a way to distinguish
(or tell if it is possible to distinguish) between the 2-cycles that degenerate along different
components of Σ10 when it is reducible? In trying to distinguish these 2-cycles geometrically
we will end up building the U(1) that we want.

As reviewed in the introduction, U(1)s in F-theory originate from harmonic 2-forms, which
integrate to zero over the fiber class, F , and any curve that sits inside the section of the elliptic
fibration. Given such a 2-form in our Calabi-Yau fourfold, we can reduce the M-theory 3-form
C3 on it to obtain a 3-dimensional gauge field that becomes a 4-dimensional gauge field in the
F-theory limit (where the elliptic fiber is shrunk to zero volume while holding τ fixed). The
U(1) charge of chiral fields that descend from M2-branes wrapped on a cycle C, then, is simply
the integral of ω over C

qC ∼

∫

C

ω . (2.3)

The cycles C that house chiral matter are holomorphic so we will want ω to be a (1, 1)-form.
Alternatively, we specify ω by a dual divisor Dω in the resolved geometry, so that

qC ∼ Dω · C . (2.4)

If two curves C1 and C2 that support wrapped M2s are homologously distinct, it should be
possible to construct a divisor Dω such that

Dω · C1 6= Dω · C2 . (2.5)

This can be used to construct a U(1) with respect to which the fields from C1 and C2 carry
distinct charges.

2.2 Local geometry and dP9

Because U(1) charges involve integrations over vanishing 2-cycles, the existence of a U(1) that
distinguishes charged fields is closely tied to how singularities are resolved. This can be quite
complicated in general so our strategy will be to take a somewhat indirect route motivated by
the cylinder map of Heterotic/F-theory duality [15,16,18–20]. Rather than explicitly resolving
all singularities, we will embed our local geometry into a different fourfold Ŷ4 in which the
singularity structure can be related to the geometry of a family of dP9 surfaces. The advantage
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of embedding our local geometry into a family of dP9’s is that we can describe the singularity
structure in terms of dP9 homology cycles that degenerate above various loci in SGUT

10.
To proceed, then, consider the local geometry

y2 = x3 + b0z
5 + b2z

3x+ b3z
2y + b4zx

2 + b5xy (2.6)

where the bm’s are just the restrictions of the global holomorphic sections am in (2.2) to SGUT

bm = am|SGUT
. (2.7)

This is the local model for the geometry near SGUT and its defining data admits a well-known
mapping to Higgs bundle data of the 7-brane worldvolume gauge theory [1, 18–20, 35]. It is
a trivial matter to embed this local geometry into a K3-fibered Calabi-Yau fourfold Ŷ4 by
embedding SGUT into the threefold B̂3 = P(O ⊕N) with N the normal bundle of SGUT inside
B3. By construction, our surface SGUT has an identical normal bundle in B̂3 as in B3 and all
of the holomorphic sections bm can be trivially extended to global ones in B̂3 that can be used
to define Ŷ4

11.
With this K3-fibered Calabi-Yau we can utilize Heterotic/F duality. Indeed, the spectral

divisor formalism for G-fluxes [10] is a strategy to apply ideas of the cylinder map in a more
general setting [1, 15, 16, 18, 19, 36]. We are not interested in Heterotic/F duality here per se,
but rather in the stable degeneration limit [37, 38] of Ŷ4 so that our local geometry becomes
embedded into a dP9 fibration, which we think of as a family of dP9’s parametrized by SGUT.
We can explicitly present the family as

y2 = x3 + f4z
4 + g6z

6 + w
(

b0z
5 + b2z

3x+ b3z
2y + b4zx

2 + b5xy
)

, (2.8)

where w and z are homogeneous coordinates on the P
1 fiber of B̂3

12.
In presenting the dP9 as an elliptic fibration over P

1 with section, we have distinguished
two curve classes. These are the base, e9, and the elliptic fiber, F , which is a representative of
the anti-canonical class. Additional cycles that degenerate correspond to −2 curves that fail
to intersect either e9 or F . Elements of H2(dP9,Z) with this property are referred to as roots
and, following [36], we label this collection by R8

R8 = {C ∈ H2(dP9,Z)|C · F = C · e9 = 0, C2 = −2} . (2.9)

10Of course this limits the type of cycles we can consider but there is no problem for phenomenologically
relevant examples in which all singularities that we deal with embed into E8.

11It may be that Ŷ4 has some rather sick singularities far from SGUT. This will not have any affect on what
we say here, though, as our interest is only in small resolutions of singularities along SGUT.

12Because the power of w out front is only 1 this does not define a Calabi-Yau fourfold. Rather, it is only
‘half’ of the Calabi-Yau fourfold Ŷ4 that we can split off in the stable degeneration limit. It has the advantage
that if the local geometry of Y4 is well behaved then the dP9-fibration is also well-behaved in that there are no
‘sick’ singularities at w = 0. Even though the dP9-fibration is not itself Calabi-Yau, it is a fine place to study
the small (crepant) resolutions we need to desingularize Y4. As described in the introduction, we could skip the
K3-fibration altogether and simply start by embedding our local geometry into the dP9-fibration (2.8).
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The intersection matrix on R8 is equivalent to (−1 times) the Cartan matrix of E8 so the roots
C are naturally identified with elements of the E8 root lattice. One inconvenient feature of the
C’s is that they do not have effective holomorphic representatives in generic dP9 surfaces (i.e.
they do not sit in the Mori cone). Of course, these dP9’s are somewhat special in that all of
them exhibit SU(5)GUT singularities. The 4 roots of SU(5)⊥ are therefore in the Mori cone
throughout the family13 so the monodromy group as we move in the family must sit inside the
Weyl group of the SU(5)⊥ commutant of SU(5)GUT inside E8, which is the symmetric group
on five objects.

2.3 From dP9 to U(1)s

The dP9 fibers over matter curves like Σ10 exhibit an additional holomorphic curve correspond-
ing to the new vanishing cycle. We can think of this as coming from a new root that enters the
Mori cone. Our task of distinguishing different kinds of 10’s boils down to determining whether
the new effective root on one component of Σ10 is related by monodromy to the new effective
root on another component as we move in the family. The easiest way to do this would be to
simply follow one of the roots through the family. This cannot be done easily because the root
exits the Mori cone as soon as we move off of Σ10. Fortunately, however, the roots are in 1-1
correspondence with elements of a second distinguished set

I8 = {ℓ ∈ H2(dP9,Z)|ℓ · F = 1, ℓ · e9 = 0, ℓ2 = −1} (2.10)

according to the identification
ℓ = (F + e9)− C . (2.11)

Elements of I8 are precisely the exceptional lines of dP9 that miss the section e9. They are in the
Mori cone of generic dP9’s so they have nice effective holomorphic representatives throughout
the family. If we want to follow the behavior of a particular root as we move along SGUT, then,
it is often easier to look at what happens to the effective line from I8 that is dual to that root
in the sense of (2.11).

We are interested in a particular subset of the roots that correspond to 10’s of SU(5)GUT.
The group theoretic decomposition of the E8 adjoint under

E8 → SU(5)GUT × SU(5)⊥

248 → (24, 1)⊕ (1, 24)⊕ [(10, 5)⊕ cc]⊕
[

(5, 10)⊕ cc
] (2.12)

tells us that, modulo the action of SU(5)GUT roots, there are five such roots, transforming as
a fundamental of SU(5)⊥, that can move into the Mori cone above a given component of Σ10.
To see how their homological classes mix in the family, we study instead the behavior of the
5 exceptional lines ℓi dual to those roots in the sense of (2.11). Given the form of the dP9

13 This can be achieved in the standard picture of dP9 as P
2 blown up at 9 points by taking the limit as

several of the blown up points move to nongeneric locations, such as sitting on top of one another or sitting on
a common line.
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fibration (2.8), we can describe the union of these five exceptional lines (fibered over SGUT) by
the divisor C [36]14

C : b0z
5 + b2z

3x+ b3z
2y + b4zx

2 + b5xy = 0 . (2.13)

To ensure that some 10’s are distinct from others, what we need is for the divisor (2.13) to
split into multiple components in our dP9-fibration. If this happens, some exceptional lines will
not mix with others in the fibration. We will have two distinct sets of lines {ℓi} and {ℓa} and,
correspondingly, two distinct sets of roots, {Ci} and {Ca}.

Along with guaranteeing that the {Ci} and {Ca} do not mix, the splitting of our exceptional
lines into the sets {ℓi} and {ℓa} also provides a means for distinguishing them. For concreteness,
let us suppose that there are n roots in the group {Ci} and m in the group {Ca}. In that case,
consider the following element of H2(dP9,Z)

w = m

n
∑

i=1

ℓi − n

m
∑

a=1

ℓa . (2.14)

This is a nontrivial element of H2(dP9,Z) that distinguishes roots in the sets {Ci} and {Ca}
via the intersection relations

w · Ci = m, w · Ca = −n , (2.15)

which follow from the local intersection data between the exceptional lines ℓi and roots Ci

(i = 1, . . . , 5) in dP9

ℓi · Cj = 1 + δij . (2.16)

The action of w therefore reduces to that of a Cartan generator of SU(5)⊥

w ↔ diag(m,m, . . . ,m,−n,−n, . . . ,−n) . (2.17)

When the divisor (2.13) splits into two components C(m) and C(n) with m and n sheets, re-
spectively, the combination w is invariant under the monodromy action of our family so that
it fibers over SGUT to yield a nontrivial divisor given by the linear combination nC(m) −mC(n).
This divisor, in turn, provides a (1, 1)-form that can be used to obtain a U(1) gauge field that
couples differently to M2-branes wrapping the roots {Ci} and {Ca} according to the group
theoretic intersection (2.15).

While the preceding discussion made use of dP9 geometry to describe the nature of the
singularity, the prescriptions for distinguishing roots and computing U(1) charges relied only
on local intersection data near SGUT. To be sure, even though the object C was defined globally,
its intersections with the roots {Ci} and {Ca} all occur in the neighborhood of SGUT. In that
sense, the collection of exceptional lines provides us with the construction of a noncompact

14When restricted to any single dP9 of the family, C describes a union of five exceptional lines. Because it is
irreducible for a generic family with SU(5)GUT singularity at z = 0, these five exceptional lines are mixed by
the generic S5 monodromy group and hence are precisely the ℓi’s that are dual to the 10 roots in the sense of
(2.11) provided we take a proper transform in the dP9.
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divisor in the local geometry near SGUT that yields a U(1) symmetry capable of distinguishing
the 10’s on different components of Σ10

15. Engineering an honest U(1) in a compact model just
requires us to provide a global extension of this noncompact divisor in a more general setting
without the global structure of a dP9 or K3.

2.4 The “Tate divisor”

Given a “Tate model” of the form (2.2), we propose that a suitable object that extends the
noncompact divisor of our local model is the “Tate divisor” defined by

CTate : a0z
5 + a2z

3x+ a3z
2y + a4zx

2 + a5xy , (2.18)

where it is understood that we take a suitable proper transform when passing to the resolution
of Y4

16. In the neighborhood of SGUT this behaves in precisely the same way as the object C
above so that we can directly apply the local intersection data (2.16) without having to work
through the explicit resolution of singularities for each Y4. When this object becomes reducible
into components C(m) and C(n) with m and n sheets, respectively, it reflects the fact that some
of the 10 roots that degenerate along curves in SGUT are distinguished from others and also
provides us with a U(1) that can make the distinction. Explicitly, the U(1) that does the job
is a traceless combination

ω = nC(m) −mC(n) − π∗δ , (2.19)

where δ is chosen to ensure that ω is orthogonal to the horizontal and vertical divisors of Y4
17.

The object CTate is an example of a “spectral divisor”, an object that we introduced in [10]
for defining global G-fluxes in a way that exploited the connection to Heterotic using essentially
the same type of reasoning as above. What makes CTate special is that there is a simple way to
take a local splitting of CTate, by which we mean a situation in which CTate appears to contain
several distinct components when restricted to the local neighborhood of π∗SGUT, and extend
it into a global splitting that honestly divides the full CTate into components. The reason for
this is that the meromorphic section t defined as

t =
y

x
(2.20)

is actually holomorphic when restricted to CTate so that we can write the defining equation
(2.18) as18

a0z
5 + a2z

3t2 + a3z
2t3 + a4zt

4 + a5t
5 . (2.21)

15Factoring of this noncompact divisor is of course trivially equivalent to factoring of the Higgs bundle spectral
cover.

16This is pretty important since CTate is singular along the surface of SU(5)GUT singularities where all 5 sheets
come together. Resolution of the SU(5)GUT singularities separates the sheets and removes this singularity.

17We have to take a traceless combination because something with pure trace, like say C(m), will have nontrivial
intersection with the fiber class by virtue of the fact that ℓi · F = 1 (2.10).

18We use the fact that y = t3 and x = t2 on CTate.
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As a homogeneous polynomial of degree 5 in z and t it is fairly easy to choose the am’s so that
this object splits. The algebra is completely equivalent to the splitting of Higgs bundle spectral
covers in local model building [2, 7, 30, 31].

2.5 G-Fluxes, Matter Surfaces, and Chiral Spectrum

The “Tate divisor” can also be used to construct G-fluxes for chirality as described in [10]. We
do not repeat that discussion here but simply remind the reader of the prescription to describe
these G-fluxes as (1, 1)-forms inside CTate. Such a (1, 1)-form effectively defines a (2, 2)-form
in the fourfold obtained by resolving the singularities of Y4 that, as an object inside CTate, is
sensitive to the details of that resolution. It is this last fact that allows G to know about the
degenerate roots and integrate nontrivially over the matter surfaces, which we define as the
surface in Ỹ4 that maps to a curve of singularities in Y4 under the blow-down map. In general,
these surfaces should have the structure of a resolved root fibered over a curve.

The G-fluxes needed to engineer chiral matter can be defined when CTate is irreducible and,
in fact, we can even use a different “spectral divisor” to construct G-flux whose local defining
equation near the surface of SU(5)GUT singularities is equivalent to that of CTate despite differing
globally. Nevertheless, to keep things simple we will always use CTate to study G-fluxes in this
paper. In that case, we get a particularly nice type of G-flux when CTate is reducible and can be
used to construct U(1)s. We simply take a (1, 1)-form ρ in B3, pull it back to each component
of CTate, and take a traceless combination of the two

G =
(

nC(m) −mC(n)
)

· π∗ρ−G0 , (2.22)

where G0 is a subtraction term that we must include to ensure that G is orthogonal to horizontal
and vertical divisors in Y4. The form (2.22) is very much in the spirit of how G-fluxes in F-theory
should heuristically be related to U(1) flux as

G ∼ ωi ∧ Fi (2.23)

with ωi the (1,1)-form specifying a U(1) and Fi the flux associated to that U(1).
Let us turn now to determining the chiral spectrum, which involves integrating G over

various matter surfaces. In [10] we studied ways to do this with a focus on rephrasing the
computation as one that can be done in terms of divisor classes and intersections in Y4. Rather
than executing gymnastics like that, we just review here how the Higgs bundle picture emerges.

The G-flux that we build will have the generic form

G = G −G0 , (2.24)

where G is obtained from the “Tate divisor” (as a holomorphic surface inside CTate) and G0 is
some holomorphic surface in Y4 whose contribution we must add to ensure that G is orthogonal
to horizontal and vertical divisors in Y4. Chiral matter localizes on curves of singularities Σ
where 2-cycles C degenerate and the flux that they couple to is obtained by restricting G to the
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matter surface ‘Σ × C’19 and integrating it over C. The net chirality follows from integrating
G over the entire matter surface and this is the computation we ultimately want to describe.

Intersecting G with any holomorphic surface will require a special type of calculation. From
the form (2.24) we see that intersections of G with generic holomorphic surfaces will generally
be cancelled by intersections with G0. The types of intersections for which this does not
happen are those that occur at the singular locus, to which G is sensitive but G0 is not. By
construction, then, G only has nonzero integral over surfaces that include degenerate cycles so
for any computation we can focus our attention on the neighborhood of the curve of singularities
in question. For SU(5)GUT-charged matter, it is enough to focus on the limiting behavior of
CTate and G near the surface of SU(5)GUT singularities, which we do by taking y/x = t → 0
and z → 0 with s = z/t fixed. Recall that CTate is described by

a0z
5 + a2z

3x+ a3z
2y + a4zx

2 + a5xy . (2.25)

In the limit, then, CTate becomes

CTate → t5
(

b0s
5 + b2s

3 + b3s
2 + b4s+ b5

)

(2.26)

with the bm’s now restricted to sections on SGUT and s a section of the canonical bundle on
SGUT. The term in ( )’s here is nothing other than the Higgs bundle spectral cover, CHiggs [1].
The limiting behavior of G also produces something familiar; it gives us a divisor γ inside CHiggs

that we would like to interpret as the corresponding object in the local model.
It is interesting to see in some detail how the approach of CTate to the surface of SU(5)GUT

singularities takes place. For starters, the t5 factor tells us that every (local) sheet of CTate
meets the surface of SU(5)GUT singularities once above each point on SGUT. This reflects the
fact that each exceptional line ℓi in the dP9 picture transforms in a 10 of SU(5)GUT and must
therefore intersect some of the SU(5)GUT roots at each point on the surface of singularities.
This accounts for the ‘1’ in the local intersection data (2.16) and has no effect on any of our
computations when the G-flux is chosen to be traceless20.

The rest of the approach is captured by the behavior of the Higgs bundle spectral cover.
Consider first the curve of SO(10) singularities, Σ10, which sits at y = b5 = 0. Within the
second piece of (2.26) there is a distinguished curve, t = b5 = 0, that coincides with Σ10. It
captures part of the “Tate divisor” that lands exactly on Σ10 as we approach the surface of
SU(5)GUT singularities. The curve t = b5 = 0 is familiar from local model building: it is the
“local 10 matter curve” by which we mean the 10 matter curve of the local model that sits
inside the Higgs bundle spectral cover CHiggs. Here we call this curve Σ10,Higgs and it appears
naturally in the Calabi-Yau fourfold as describing the limiting behavior of the specific (local)

19We put Σ× C in quotes because the surface does not have to be a direct product.
20Indeed, from this point of view, the traceless condition of the G-flux that we imposed in [10] is really just

the statement that we require our G-flux to be orthogonal to all SU(5)GUT roots. Trace parts may have an
important role to play, however. It has been known for some time [19] that what is commonly referred to as
hypercharge flux must include some component from the bulk in the sense that it is not a flux in the pure
U(1)Y direction. A G-flux constructed within the “Tate divisor” that has a pure trace piece is exactly the sort
of thing we need to give a proper definition of this hypercharge flux.
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sheet of CTate that lands directly on the curve of SO(10) singularities. This is just another way
of saying that Σ10,Higgs describes a cross section of the exceptional line ℓi that is dual to the
root Ci whose degeneration causes the SO(10) enhancement.

From this point of view, it is clear that restricting G to the matter surface ‘Σ10 × C’ is
equivalent to projecting G onto Σ10,Higgs, which is isomorphic to the 10 matter curve in the
copy of SGUT that sits in the section21. This reproduces the standard result from Higgs bundles
that charged fields are sections of

Hm(Σ10, K
1/2
Σ10

⊗ i∗γ) m = 0, 1 (2.27)

with Σ10 the curve of SO(10) enhancements in SGUT. Recall that γ is a divisor in CHiggs that
represents the limiting behavior of G in our global approach and specifies the “local flux” in a
local model. The map i is just the usual embedding i : Σ10,Higgs → Σ10.

There is a similar story for the 5 curve. To see this, recall that the surface of SU(5)GUT

singularities is concretely given by the intersection of the “Tate form” (2.2)22

y −
1

2
(b3x+ b5z

2) = z = 0 . (2.28)

With our current variables, the first of these corresponds to23

t3 −
z2

2
(b3s

2 + b5) = 0 . (2.29)

Now, the 5 curve Σ5,Higgs of the local model with Higgs bundle spectral cover CHiggs is described
by

b3s
2 + b5 = b0s

4 + b2s
2 + b4 = 0 , (2.30)

which we can essentially think of as the intersection of b3s
2 + b5 = 0 with CHiggs. As we send

t → 0, then, the curve Σ5,Higgs lands directly on the curve of SU(6) singularities.
As in the case of 10’s, this suggests that restricting G to the matter surface ‘Σ5 × C’ is

equivalent to projecting G onto the curve of SU(6) singularities. This projection is now 2-1
for the usual reasons and leads to the familiar result from Higgs bundles that 5’s and 5’s are
sections of

Hm(Σ5, K
1/2
Σ5

⊗ ν∗γ) m = 0, 1 , (2.31)

where ν is the 2-1 covering map from the curve Σ5,Higgs in CHiggs to the curve Σ5 of SU(6)
singularities inside SGUT. We know from the seminal work of [36] that we should actually take
Σ5 to be the normalization of the curve of SU(6) singularities. We understand this statement
here in the following way. Singularities of Σ5 come from nodes where the singularity type
enhances. The two branches of Σ5 that meet at such a node are places where homologously

21Note that the singularities of Y4, including the surface of singularities above SGUT, do not lie in the section.
22This corresponds to ŷ = z = 0 in the corresponding Weierstrass model. The equation for y reflects the shift

that is needed to go from Tate to Weierstrass form.
23This relation is just setting the Y coordinate of the Weierstrass form to zero.
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distinct cycles are degenerating so those branches are separated in the lift to CHiggs (which we
view as the limiting behavior of CTate) upon resolution.

Note that this picture makes clear why matter fields are associated with sections on matter
curves inside the Higgs bundle spectral cover. Those curves are capturing the actual curves of
singularities, as seen by the G-flux, in the fourfold. It is along the curves of singularities, not
their projection to the section (which does not meet the singularities), that the wrapped branes
are found.

Even though we can say something about the actual cohomology groups associated to various
charged matter fields, let us say a few more things about the simpler question of net chirality. On
general grounds we expect that the net chirality on a matter curve Σ is obtained by integrating
G over the corresponding matter surface ‘Σ×C’ and, from our discussion above, this amounts
to integrating γ over the “local matter curves” ΣR,Higgs inside the Higgs bundle spectral cover.
The only reason for the appearance of CHiggs, though, was our insistence on studying the chiral
spectrum on matter curves that sit inside the surface of SU(5)GUT singularities24. We can give
a description of the computation of chiral matter that does not make reference to CHiggs as
follows. First, we embed the curve of singularities Σ associated to a matter surface ‘Σ×C’ into
CTate. Then, we determine the intersection of G with that surface.

The nice thing about this prescription is that it works equally well for matter curves that do
not sit inside the surface of SU(5)GUT singularities. In principle, then, we should be able to de-
termine the net chirality of SU(5)GUT-singlet fields that carry U(1) charge in SU(5)GUT models
that engineer an extra U(1). We hope to report soon on models in which this computation is
explicitly carried out.

2.6 D3-brane tadpole

Let us now make some remarks about the D3-brane tadpole. To compute the D3-brane tadpole
induced by a G-flux, what we need to evaluate is a self-intersection

∫

Y4

G ∧G , (2.32)

which we can think of in two pieces

G · (G −G0)−G0 · (G −G0) (2.33)

with G and G0 defined as in (2.24). The second term here vanishes by construction because
G0 is an honest surface in Y4 that is constructed as a linear combination of intersections of
horizontal and vertical divisors. What we are after, then, is the first term. We can think of
this as integrating G over the surface SG in the resolution of Y4 that is determined by G. As
usual, any integral of G over a surface will receive contributions only from places where G meets
singularities that have to be resolved. So, what we want is to look at the full locus where G

24The presence of the ambient surface of singularities was also responsible for the gymnastics associated with
imposing tracelessness and dropping the t5
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meets singularities and restrict G to that locus. If we consider, for instance, the surface of
SU(5)GUT singularities then the restriction of G is the curve γ that sits inside the Higgs bundle
spectral cover CHiggs. From the surface of SU(5)GUT singularities, then, we get a contribution
to (2.32) from each point in the self-intersection γ ·CHiggs

γ. The setup is in fact almost identical
to the computation of chiral matter except that we have replaced the matter curve by the
curve γ in order to reflect the fact that we are integrating over the curve SG determined by
G. When we do this, though, we must be a little careful because G is defined on a union of
ℓi ∼ (x9−e9)−Ci’s and the contribution to (2.32) that comes from a singular point arises from
the Ci. As the sign is opposite from what we have when we integrate G over a matter surface
we find that the contribution to (2.32) is in fact −γ ·CHiggs

γ. Note that this type of reasoning is
not at all new and should be familiar from studies of Heterotic/F-theory duality [15,16,18–20].

More generally, we expect (2.32) to be computed by the restriction of G ·CTate
G to the locus

of singularities with the appropriate signs. Note that G ·CTate
G is a curve inside CTate so it

will generically miss curves of singularities or isolated point singularities. This means that
(2.32) should get contributions only from surfaces of singularities in accord with a conjecture
of [31]. The discussion for a surface of SU(5)GUT singularities should generalize to something
like the following for the D3-brane tadpole induced by G-flux when there are multiple surfaces
of singularities that do not intersect one another

QD3,induced = −
1

2

∫

Y4

G ∧G =
1

2

∑

surfaces of singularities,i

∫

Ci

γ2
i , (2.34)

where Ci is essentially the Higgs bundle spectral cover for the ith surface and γi the limit of
G. It is actually not hard to see that a spectral cover for an SU(n) Higgs bundle emerges from
the limiting behavior of CTate near any surface of singularities whose commutant inside E8 is
an SU(n) group or a product of such groups. Looking at the behavior of CTate for more general
types of singularities and interpreting the result would be very interesting but is beyond the
scope of this paper.

2.7 Remarks on Flux Quantization

We now turn to flux quantization, an issue that we somewhat neglected in [10]. Rather than
simply rewriting Witten’s famous condition [39], let us recall one of the original observations
that points to the need for modifying the G-flux quantization rule. This will motivate a con-
sistency check that we perform later.

The D3-brane tadpole in Calabi-Yau fourfold compactifications of F-theory receives both
a flux contribution, which we have described, and a geometric contribution from the Euler
character

nD3 =
χ

24
−

1

2
G2 . (2.35)

For smooth Calabi-Yau fourfolds, it was shown in [40] that χ is always divisible by 6 but not
necessarily by 12. When χ/24 fails to be an integer, the quantization of G must be modified
in order to account for this fact and ensure an integral induced D3-brane charge. In [40],
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it is proven that χ is always divisible by 24 when the fourfold admits a smooth Weierstrass
description. More recent work [29,41] uses similar reasoning to argue directly that G-fluxes are
integrally quantized in such cases 25. When our Y4 is singular, though, we need to ask questions
about χ and G-flux quantization on the smooth resolution Ỹ4 which is not of this type. We can
think of Ỹ4 as a smooth Calabi-Yau fourfold but cannot use any special properties attributed
to fourfolds that can be realized as smooth Weierstrass models.

The connection between χ and G-flux quantization arises from a few simple facts about
Calabi-Yau fourfolds. First of all, the Todd genus of a smooth Calabi-Yau fourfold Ỹ4 is 2,
which implies that

λ2 = 480 +
χ

3
, (2.36)

where λ denotes the second Chern class

λ = c2(Ỹ4) . (2.37)

Using this, we can write the induced D3-brane charge as

nD3 = 60−
1

2

[

G2 −

(

λ

2

)2
]

= 60−
1

2

[

(

α−
λ

2

)2

−

(

λ

2

)2
]

= 60−
1

2

[

α2 − α · λ
]

,

(2.38)

where we implicitly defined

α = G+
λ

2
. (2.39)

Writing things in this way is helpful because the intersection of any holomorphic surface S̃
inside Ỹ4 with the class λ satisfies [39]

S̃ · λ = S̃2 mod 2 (2.40)

so that the induced D3-brane charge is guaranteed to be an integer whenever α is an integral
class

α = G+
λ

2
∈ H4(Ỹ4,Z) . (2.41)

This is just the quantization law derived by Witten [39]. We emphasize here that the joint
geometric and flux contributions to the D3-brane tadpole reflect a connection between χ and
the G-flux quantization law that is embodied by (2.36). This will allow a useful consistency
check on any proposed quantization rule.

25 [29] showed that c2(Ỹ4) is even whenever the class c1(B3)
2 − c2(B3) is even in B3 and argued that com-

pactifications in which c1(B3)
2 − c2(B3) is odd are necessarily Lorentz-violating. The work [41] actually proved

that c1(B3)
2 − c2(B3) is always even.
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2.7.1 New surfaces in Ỹ4

We now turn to the quantization of G-flux directly, which is to say a characterization of the
odd part of λ. Because λ is always even in smooth Weierstrass models, such as the fourfold
we get by deforming away the singularities of Y4, we expect that any odd piece of c2(Ỹ4) comes
from holomorphic surfaces in Ỹ4 that do not survive the blow-down map Ỹ4 → Y4. Surfaces of
this type include matter surfaces, which have the form ‘C × Σ’ for some degenerating root C,
as well as the surfaces (or rather formal linear combinations of surfaces) that can be described
in the spectral divisor formalism [10]26. The latter are of the form S −S0 for S a divisor inside
CTate and S0 the usual subtraction piece that ensures S −S0 is trivial after the blow-down map.
Given S̃, we will use the notation S̃S to denote a surface class in Ỹ4 that is constructed via the
S − S0 procedure from a divisor S in CTate.

We will later be interested in computing intersections of these new surfaces S̃S ·Ỹ4
S̃S . In

principle, we can use our knowledge of the local geometry near singularities of Y4 to do this.
For simplicity, let us suppose that our Y4 has a single surface of SU(5)GUT singularities and
no others. In that case, the local intersection data (2.16) from the dP9 picture tells us that
the computation should reduce to one within the Higgs bundle spectral cover. Suppose that a
divisor S in CTate restricts to a divisor s inside CHiggs. In the same way that we computed the
D3-brane tadpole contribution (2.34), we can use the local intersection data (2.16) to obtain

S̃S1
·Ỹ4

S̃S2
= −s1 ·CHiggs

s2 − (p∗s1) ·SGUT
(p∗s2) , (2.42)

where p is the projection map
p : CHiggs → SGUT . (2.43)

The first term is familiar from the discussion preceding (2.34). The new term involving p∗si’s
accounts for the fact that S need not be traceless. It effectively computes the contribution from
the ‘1’ in (2.16).

We can tabulate a few interesting results here. When CHiggs is generic, which means among
other things that it does not split, the divisors of CHiggs are of the form

σ ·X CHiggs and p∗Σ , (2.44)

where Σ is a curve in SGUT, X = P(O ⊕KSGUT
) is the usual ambient space in which CHiggs is

embedded for ease of study, and σ is a section of the P1-fibration X that transforms trivially as
we move along SGUT

27. Given this, we know that any divisor S must restrict to a combination

S → n (σ ·X CHiggs) + p∗Σ . (2.45)

This allows us to give general formulas. Writing c1 as shorthand for c1(SGUT) as usual and
denoting the class of CHiggs inside X as

CHiggs = 5σ + π∗
Xη , πX : X → SGUT (2.46)

26We do not claim to have identified a distinguished linearly independent basis for the set of surfaces under
consideration.

27This is the conventional notation introduced to the F-theory literature by [1].
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we have that

(

S̃σ·CHiggs

)2

= −30c21 + 11c1η − η2

(

S̃σ·CHiggs

)

·Ỹ4

(

S̃p∗Σ

)

= −6Σ ·SGUT
(η − 5c1)

(

S̃p∗Σ1

)

·Ỹ4

(

S̃p∗Σ2

)

= −30Σ1 ·SGUT
Σ2 .

(2.47)

We have abused notation somewhat here. By S̃σ·XCHiggs
we mean S̃S for a divisor S that restricts

to σ ·X CHiggs in the Higgs bundle spectral cover.

2.7.2 G-flux quantization

A rule for G-flux quantization is naturally motivated from the study of Higgs bundles. In the
latter setting, the object γ that represents the restriction of G to CHiggs satisfies the rule

γ +
r

2
∈ H2(CHiggs,Z) , (2.48)

where r is the ramification divisor of the covering

p : CHiggs → SGUT . (2.49)

The divisor r naturally descends from a divisor class r̃ inside CTate obtained by taking the
ramification divisor of the covering CTate → B3 and removing the component along the surface
of SU(5)GUT singularities. The proposed quantization rule is now that G should be chosen so
that

G +
r̃

2
∈ H4(CTate,Z) . (2.50)

This is equivalent to the claim that the combination r̃ − r0 captures the odd part of c2(Ỹ4)
where r0 represents our usual subtraction term. In equations, the conjecture is

1

2

[

λ(Ỹ4)− (r̃ − r0)
]

∈ H4(Ỹ4,Z) . (2.51)

As usual, this is something that has been conjectured, at least in some form, in the setting
of Heterotic/F-theory duality. In addition to describing everything intrinsically in terms of
F-theory and the geometry of Ỹ4, we would like to perform a consistency check that we do not
believe has been studied previously using duality or otherwise. This check has to do with the
connection between λ and the Euler character (2.36), which tells us that the odd part of the
former is related to the part of the latter that fails to be divisible by 24. More specifically,
suppose we compute χ and λ in a smooth deformation of Y4 and follow the resulting classes as
we move back to the singular Y4. The result of this is the naive χ and λ that we would obtain
by blindly applying formulae for smooth Weierstrass models without properly accounting for
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the singularity structure. If we pull these back to the resolved geometry Ỹ4, they will differ
from the actual χ(Ỹ4) and λ(Ỹ4) there by shifts

δχ = χ(Ỹ4)− χ(Y4) , δλ = λ(Ỹ4)− λ(Y4) . (2.52)

The general relation (2.36) tells us that28

δχ

12
+

1

4
(δλ)2 ∈ Z . (2.53)

The odd part of δλ is thus directly connected to the failure of χ to be divisible by 12. In our
SU(5)GUT example, we conjecture that the odd part of δλ is given by (r̃−r0) so the non-integer
part of (δλ)2/4 can be computed using the rules of section 2.7.1

S̃(r̃−r0) ·Ỹ4
S̃(r̃−r0) = −15(32c21 − 25ηc1 + 5η2) . (2.54)

We can now compare this to the formulae conjectured in [30] for the shift in Euler character
due to the SU(5)GUT singularity. This leads to the result

δχ = −15(488c21 − 211η · c1 + 23η2) . (2.55)

From this, it is easy to verify that

δχ

12
+

1

4
(δλ)2 ∈ Z . (2.56)

We believe this represents nice evidence in favor of the conjectures of [30] relating to the Euler
character and the conjectured odd part of λ.

Note that the conjecture for δλ will take a slightly different form when U(1)s are engineered.
This is because a split “Tate divisor” CTate will lead to a split Higgs bundle and what enters
the quantization condition for γ in that case are the ramification divisors rn of the different
components of CHiggs. We therefore expect that the shift in Euler character δχ will be similarly
affected.

The above story also provides more evidence that surfaces of singularities (and likely the
local behavior of the “Tate divisor”) play a dominant role in determining the Euler character. If
we have multiple non-intersecting surfaces of singularities in Y4, we expect a local Higgs bundle
description (or something like it) near each one and each will carry with it a new potentially
odd contribution to λ. Shifts in λ go hand in hand, according to (2.36), with shifts in the Euler
character.

3 M5 instantons, G-flux, and charged couplings

We now move to a simple application of our description of G-flux: the influence of flux on M5
instantons. More generally, we would like to know, for a given choice of Calabi-Yau fourfold

28We use the fact that λ(Y4) is an even class.
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and G-flux, which divisors can support M5-instantons that generate nonzero couplings and
whether any of those couplings involve charged fields, by which we mean states that arise from
M2-branes that wrap degenerate cycles.

For starters, recall that in F-theory we are really studying backgrounds of the type R3,1×B3

in IIB string theory with axio-dilaton that varies over B3. Nonperturbative superpotential
corrections can arise not just from D3-instantons [42–47] wrapped on divisors in B3 but also
from gaugino condensation [44,48,49] which may occur along divisors in B3 that support non-
Abelian gauge groups. For applications to F-theory GUT model-building the visible sector will
not undergo gaugino condensation but, as we will review in the next section, hidden sector gauge
groups can often appear and the corresponding gaugino condensates can play an important role
in stabilizing Kähler moduli.

In this paper, we adopt the perspective of M-theory to describe D3-instantons as a limit
of M5-instantons that are wrapped on vertical divisors of the elliptically fibered Calabi-Yau
fourfold Y4. These vertical divisors are complex threefolds D of the form π∗S2 where S2 is a
holomorphic divisor in B3. In the F-theory limit, where the volume of the elliptic fiber of Y4 is
taken to zero, these M5-instantons descend to D3-instantons wrapped on S2.

In general, there are two reasons that an M5-instanton wrapping a vertical divisor fails to
contribute a superpotential coupling Winst

• Winst = 0 if there are not precisely two fermion zero modes on the M5-brane worldvolume

• Winst may be zero if the restriction of the G-flux to the M5 worldvolume is nontrivial

Before proceeding, let us say a few more words about the second point. The influence of G-
flux is evident already from the fact that the complexified Kähler modulus29 T =

∫

D
(volD+iC6)

shifts under gauge transformations of the M-theory 3-form C3 when the restriction of G4 to the
M5 is nontrivial. To see why, recall that under C3 → C3 + dΛ2 the 6-form C6 shifts as

C6 → C6 +
1

2
Λ2 ∧G4 . (3.1)

This is a general consequence of the gauge invariance of G7 = ∗G4 and the Bianchi identities

dG7 = −
1

2
G4 ∧G4 , (3.2)

which implies that

G7 = dC6 −
1

2
C3 ∧G4 . (3.3)

As a result, the complexified Kähler modulus T =
∫

D
(volD+ iC6) and hence the classical action

of the M5 shifts under gauge transformations of the M-theory 3-form C3 → C3+ dΛ2 according
to

δT =
i

2

∫

D

Λ2 ∧G4 . (3.4)

29C6 is the magnetic dual of the 3-form gauge potential C3 in M-theory.

23



An interesting special case of this arises when we have a U(1) symmetry of the type considered
in section 2.3, by which we mean a harmonic (1, 1)-form ω on which we can reduce C3 as
C3 = A1 ∧ ω.30 A gauge transformation with respect to this U(1) corresponds to the special
choice Λ2 = φ ∧ ω with φ the product of a constant 0-form on the Calabi-Yau fourfold and a
nontrivial function of the Minkowski directions. In that case, the classical M5-instanton action
e−T transforms as though it carries charge

qM5 =
1

2

∫

D

ω ∧G4 . (3.5)

Any coupling generated by the M5-instanton must be gauge invariant under all potential gauge
transformations of C3. When G4 restricts trivially to the M5 worldvolume this is not a problem
and, in that case, the fermi zero mode structure should represent the only obstacle to obtain-
ing a nonzero coupling. When G4 has nontrivial restriction, we will argue that this can be
accomplished in some cases by inserting wrapped M2-brane states31. In those cases the M5
generates a coupling, again provided the fermi zero mode structure is appropriate. When this
is not possible, the M5 should not generate any coupling.

Note that invariance under bulk gauge transformations of C3 is a stronger statement than
invariance under U(1) symmetries of the type described in section 2.3. The full condition of
bulk gauge invariance should incorporate the selection rules alluded to in [28]32.

In the rest of this section we discuss each of the two obstacles to obtaining a nonzero coupling
in turn. In section 3.1, we review the counting of fermion zero modes applying those results
to M5-instantons in the specific geometry of [29] in section 4. Then in section 3.2 we discuss
the effect of G-flux in a bit more detail, describe the impact of the G-fluxes that we discussed
in section 2.5, clarify how they could in principle generate charged couplings, and demonstrate
that, for the G-fluxes described in section 2.5, the restriction to M5 worldvolumes is generically
trivial. This means that vertical divisors with the right number of fermi zero modes should,
in the absence of additional G-fluxes with nontrivial restriction, generate uncharged couplings
that can play a role in the stabliization of Kähler moduli.

3.1 Counting fermion zero modes

3.1.1 Review of fermions living on M5-instanton

To count fermion zero modes one recasts the equations of motion for fermions living on the
M5-instanton as a set of equations on differential forms on the divisor D. For this purpose
we recall below how world-volume fermions transform under the rotations of the normal and
tangent directions. The normal bundle to the M5-brane has a product form R

3 ×N , where R3

30Here A1 gives a 3-dimensional gauge field on R
2,1 in M-theory that descends to a 4-dimensional gauge field

on R
3,1 in the F-theory limit when ω has exactly 1 leg on the elliptic fiber.

31What is really happening is that the flux induces a source term for the chiral 2-form b2 so that the vacuum
solutions about which we expand are solitons that describe suitable M2s ending on the M5.

32As we understand it, gauge transformations corresponding to the massive U(1)s of [28] correspond to
choosing Λ2 to be of the form φ ∧ ω̃ with φ as above and ω̃ a 2-form on Y4 that is not necessarily harmonic.
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stands for external space33 and N is the line bundle describing one complex normal direction
inside Y4. Let us introduce complex coordinates zi, i = 1, 2, 3 along the divisor D and the
complex coordinate w normal to D inside Y4.

The fermions θ =

(

θA+
α

θA−
α

)

living on the M5-brane transform in the representation 4⊗ 2⊗ 2

under Spin(6) × SO(3) × SO(2). Here A = 1, 2 is a spinor under external SO(3), the +(−)
stands for a chiral(anti-chiral) spinor of SO(2) and α = 1, . . . , 4 is a chiral spinor of Spin(6).
Now we use the fact (see for example [42]) that the bundle S+ of chiral spinors on a Kähler
manifold of complex dimension three is isomorphic to the bundle

(

Ω(0,0) ⊗K
1
2

)

⊕
(

Ω(0,2) ⊗K
1
2

)

. (3.6)

Here Ω(0,p) stands for the bundle of (0, p) forms. We will further use that the normal bundle
on the divisor in Y4 is isomorphic to the canonical bundle K. Recalling that θ is a section of
the bundle34 S+⊗K

1
2 ⊕S+ ⊗K− 1

2 , we find the following degrees of freedom. A (0,2) form aw(2)
taking values in the canonical bundle K, a section of K, aw(0), as well as a (0,2) form b(2) and a
scalar b(0).

Locally we write θ in terms of these degrees of freedom as follows

θ =
(

aw(0) + awīj̄γ
īγ̃ j̄

)

Twǫ+
(

b(0) + b̄ij̄γ
īγ̃ j̄

)

ǫ , (3.7)

where the chiral spinor ǫ satisfies

γ̃iǫ = 0, i = 1, 2, 3, Tw̄ǫ = 0 . (3.8)

Here Tw, Tw̄ are SO(2) Dirac matrices:

TwTw̄ + Tw̄Tw = 2gww̄. (3.9)

Meanwhile, the six dimensional chiral(anti-chiral) gamma matrices γ̃i, γ̃j̄(γi, γj̄) have the prop-
erties

γj̄ γ̃i + γiγ̃j̄ = 2gij̄ , (3.10)

where gij̄ is Kähler metric on the divisor D.
The equation of motion for fermions reads [50]

γ̃i∇iθ + γ̃ ī∇īθ −
1

8
Tw̄γ̃

īj̄kG w̄
īj̄k θ −

1

8
Twγ̃

ijk̄G w
ijk̄ θ = 0 . (3.11)

Here the covariant derivatives ∇j,∇j̄ include the connection on the bundle of chiral Spin(6)
spinors as well as connection on the spin bundle derived from the normal bundle N .

33 For computation of instanton generated superpotential we work in Euclidean signature in external 3D
space.

34Here we are not writing explicitly spinor index in R
3.
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Using (3.7) we find from (3.11) the following set of equations35:

∂[̄ibj̄k̄] =0

4∂ j̄bj̄k̄ + ∂k̄b(0) =0

D[m̄1
awm̄2m̄3]

=0

4Dj̄awj̄k̄ +Dk̄a
w
(0) =−Gīj̄ w

k̄
b̄ij̄ .

(3.12)

In the equations (3.12) the covariant differentials include connection on the canonical bundle
and we used the primitivity condition on G-flux.

There are always universal modes counted by 2 × h(0,0)(D) = 2, where the factor of 2
accounts for two spinor indices in R3. Non-universal modes without G-flux are counted by

2×
[

h(0,1)(D) + h(0,2)(D) + h(0,3)(D)
]

. (3.13)

It is further known [45, 46, 51, 52] that modes counted by h(0,2)(D) may be lifted by G-flux
since the G-flux couples to them directly in (3.12). An especially simple case of such lifting
occurs [45] if h(0,1)(D) = h(0,3)(D) = 0 and h(0,2)(D) = 1.

3.1.2 h(0,k)(D) for D = p∗S2

To study the zero mode structure of an M5 then we must be able to compute the Hodge numbers
h(0,k)(D) for a vertical divisor D = p∗S2. From the connection to D3-instantons, one intuitively
expects that these should be related to cohomologies of the normal bundle of S2 inside B3. We
describe this relation for the special case where S2 is Hirzebruch Fn or del Pezzo dPm in the
following.

Let P : D → S2 be the elliptic fibration arising as a restriction of π : Y4 → B3. We
now use the Leray spectral sequence to relate the cohomology of the divisor D = π∗S2 to the
cohomology of S2. We start from Eij

2 with i = 0, 1, 2 and j = 0, 1, where each entry Eij
2 is given

by H i(S2, R
jP∗OD)

Eij
2 :

H0(S2, R
1P∗OD) H1(S2, R

1P∗OD) H2(S2, R
1P∗OD)

H0(S2,OS2
) H1(S2,OS2

) H2(S2,OS2
)

(3.14)

We will always take S2 to be Fano Fn or del Pezzo dPm so

H1(S2,OS2
) = H2(S2,OS2

) = 0 . (3.15)

Then Ei,j
∞ = Ei,j

2 and

h(0,0)(D) = 1, h(0,k)(D) = hk−1(S2, R
1P∗OD) , k = 1, 2, 3. (3.16)

35 X[̄i1...̄ip] =
1
p!

(

Xī1...̄ip
± permutations

)
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Now the key step is to relate R1P∗OD with the normal bundle of S2 in B3:

R1P∗OD = NS2|D = KB3
|S2

= KS2
⊗N−1

S2|B3
. (3.17)

So that using Serre duality
h(0,1)(D) = h2(S2, NS2|B3

)

h(0,2)(D) = h1(S2, NS2|B3
)

h(0,3)(D) = h0(S2, NS2|B3
) .

(3.18)

The absence of non-universal fermi zero modes therefore corresponds to the vanishing of suitable
cohomologies of the normal bundle of S2 inside B3.

3.2 G-flux, the M5 path-integral, and charged couplings

Let us now turn to the effect of G-flux on the M5-instanton partition function and the cor-
responding generation of charged couplings. For this, we only really need to consider the
topological couplings:

SM5 ∼ iτM5

∫

M5

(

C6 −
1

2
b2 ∧G4 + . . .

)

. (3.19)

Here, b2 is the chiral 2-form while C6 and G4 are restrictions of the corresponding 11d fields
to the M5 worldvolume. The form of the second coupling is essentially determined by the fact
that b2 and C6 shift under the bulk gauge transformation C3 → C3 + dΛ2 according to

b2 → b2 + Λ2 , C6 → C6 +
1

2
Λ2 ∧G4 . (3.20)

Once the second coupling in (3.19) is included the sum is nicely gauge invariant. One useful
feature of (3.19) is that it makes clear how the physics of our M5-instanton is impacted by a
nontrivial G-flux: the G-flux introduces a source for the 2-form b2

36. This, in turn, means that
classical solutions for b2 correspond to solitons that we should interpret as M2 branes ending
on the M5 [53]. In the case at hand, our M5 is Euclidean so the M2s will have two spatial
directions parallel and a timelike direction transverse to the M5.

In principle, if we know the G-flux then we can determine exactly what M2-brane config-
uration will be described by the solitonic solutions to the equations of motion for b2. It is
easier to think not in terms of solitons of the M5 worldvolume theory, however, but to instead
introduce M2s directly into the game in order to cancel the flux-induced tadpole. Each M2 has
a worldvolume coupling to C3 along with a boundary coupling to the 2-form b2 [54, 55]

SM2 ∼ iτ2

(
∫

M2

C3 −

∫

M2∩M5

b2 + . . .

)

. (3.21)

36We are grateful to S. Sethi for emphasizing to us the important role played by the chiral 2-form and for
helpful discussions about this point.
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The idea now is to include M2-branes in such a way that the coupling to b2 in (3.21) exactly
cancels the one induced by the G-flux in (3.19). The resulting action for b2 will be the ordinary
one that we would have if no G-flux were present at all. Note that the individual gauge invari-
ance of (3.19) and (3.21) guarantees that the sum is gauge invariant as well. When the source
terms for b2 in (3.19) cancel off the boundary couplings in (3.21), then this guarantees that the
net charge of the individual M2-branes under a bulk gauge transformation, as determined by
the shifts in iτ2

∫

M2
C3, is precisely canceled by the charge of the M5-instanton, as determined

by the shift in iτ5
∫

M5
C6. Invariance under bulk gauge transformations is thus automatic and

hence invariance under any U(1)s of the type considered in section 2.3 is automatic as well.
To see which M2-branes we have to add, let us rewrite the G4-dependent part of (3.19) as

−
i

2
τ5

∫

M5

b2 ∧G4 = −
i

2
τ5

∫

PDM5[G4]

b2 , (3.22)

where PDM5[G4] is the Poincare dual of G4 inside the M5. A collection of M2-branes that
cancels this is one for which the curves Σi = M5 ∩M2i satisfy

∑

i

τ2Σi = −
1

2
τ5PDM5[G4] . (3.23)

The M2s that participate in our instanton-generated coupling are determined by the Poincare
dual of the G-flux inside the M5 worldvolume. Note that the gymnastics we have just described
is nothing more than a procedure for describing how to associate a collection of Wilson surface
observables of the type considered in [26] with a charged coupling involving 4-dimensional
fields associated to a particular collection of wrapped M2’s. Our description in terms of (3.23)
is particularly convenient because our construction of G-flux is one in which we essentially define
it by the Poincare dual. Before going too far, though, we have to be somewhat careful about
normalization. When we build G-flux as in section 2.5 by specifying an integer combination of
holomorphic surfaces G inside the “Tate divisor”, that flux is quantized according to

GTate +
1

2
c2(Y4) ∈ H4(Y4,Z) . (3.24)

In terms of the 3-form C3 appearing in the action above, this GTate is then really37

GTate =
2π

τ2
dC3 , (3.25)

so that, using the M2 and M5 tensions τ2 = (2π)−2 and τ5 = (2π)−5, we have that

∑

i

Σi = −
1

2
PDM5[GTate] . (3.26)

37This can be determined in the usual way by looking at the phase of an M2 as it moves around in a flux
background [39].
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Up to a factor (−1
2
), then, the surface that we use to describe the G-flux tells us precisely which

wrapped M2-brane states participate in the instanton-generated coupling.
We still have to discuss the nature of PDM5[GTate] to get our prescription for determining

the charged coupling generated by an M5 instanton. Before getting to that, though, we should
say something about the puzzling factor of −1

2
. This seems to be the statement that G-flux

can induce a half-integral M2 charge on the M5 worldvolume. We are not aware of any reason
for this charge failing to be integer quantized and, correspondingly, do not know of any ways to
suitably cancel it. It seems, then, that a vertical divisor π∗S2 to which the restriction of GTate

is an odd class simply cannot house an M5 instanton. We would be very interested in a better
understanding of this issue but unfortunately do not have anything substantive to say about it
at the moment.

3.2.1 The nature of PDM5[GTate]

Let us now consider how the 2-cycles specified by PDM5[GTate] can be determined from the
geometric construction of G-fluxes in section 2.5. The G-flux there was actually constructed as
a difference

GTate = G −G0 , (3.27)

where G is a surface inside the “Tate divisor”, CTate, and G0 is a class in Y4 that we must
subtract to ensure that GTate is orthogonal to horizontal and vertical divisors. The restriction
of CTate to an M5 worldvolume will be a spectral surface CTate|M5 in that worldvolume while G
will be a curve ΣG that sits inside it. The restriction G0|M5 is also a curve ΣG0

inside the M5
but will not lie in the spectral surface CTate|M5. The object PDM5[GTate] is then given by the
difference

PDM5[GTate] = ΣG − ΣG0
(3.28)

in the resolved geometry.
To get a better feel for PDM5[GTate], let us look at its intersections with divisors inside

the M5. Any intersection of ΣG with a horizontal or vertical divisor will be canceled by a
corresponding contribution from ΣG0

. The M5 may however contain additional divisors upon
resolution, if it contains a curve of singularities Σsing,i. Associated with that curve of singulari-
ties is a matter surface ‘Σsing,i×Ci’ that will represent a divisor in the M5 where the intersection
with ΣG is not canceled by a contribution from ΣG0

38. Divisors of this type represent the only
ones in M5 over which GTate can give a nonzero integral. If the M5 does not contain any
curves of singularities, then, GTate will have a trivial restriction to its worldvolume. Given our

38Note that ΣG will generically intersect Σsing,i inside the M5 even though they are both codimension 2. This
is because both curves actually sit inside the spectral surface CTate|M5, with respect to which each is codimension
1. Let us also emphasize that it is not enough for the M5 to contain isolated points of singularities. Even though
ΣG and an isolated point singularity both sit inside CTate, they will generically not intersect. Said differently,
an isolated point singularity inside the M5 does not give rise to a new divisor in the M5 upon resolution over
which we can integrate GTate.
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geometric description of GTate, the curve PDM5[GTate] is actually easy to describe. We have

PDM5[GTate] =
∑

i

niCi , (3.29)

where Ci is a degenerate cycle and ni is the intersection number ΣG ·CTate|M5
Σsing,i with Σsing,i

the curve of singularities inside CTate|M5 along which Ci degenerates.
We can say all of this in a much simpler way. We constructed GTate so that it would

correspond to a (2,2)-form in the resolved fourfold that has nonzero integral only over matter
surfaces, that is to say surfaces comprised of curves inside Y4 and 2-cycles that degenerate along
those curves. The restriction of GTate to an M5 instanton will therefore only be nontrivial if the
instanton contains at least one of these matter surfaces in its entirety since otherwise there will
not be surfaces over which we can integrate GTate to get a nonzero answer. Now, the M5 wraps
a divisor in Y4 while the singularities of interest lie along curves in Y4

39. The generic situation,
then, is for the M5 to intersect a curve of singularities only in isolated points. This means
that bulk G-fluxes of the type described in section 2.5 generically have trivial restriction to M5
instantons. Based on our previous discussions, this means that the topological term is absent
from the M5-instanton action and there is no source term for b2. This removes one obstacle
to obtaining a nonzero coupling, leaving only the structure of fermi zero modes to be checked.
The classical action of such an M5-instanton is invariant under all bulk gauge transformations
so this is consistent with all of the usual U(1) selection rules.

4 Instanton induced superpotential: an Example

In this paper so far we have developed the general framework for studies of global G-fluxes and
U(1) symmetries, and gave criteria when instanton contributions to the superpotential arise.
We will next apply these in a concrete example, with the base threefold that we constructed
in [29]. The construction of B3 in our earlier work [29] relied on a chain of blowups along
a nodal curve in P

3, and the final threefold was obtained after a flop transition. There is a
slightly more elegant way to reach this geometry, which does not require a flop, that effectively
reverses the order of the blow-ups. We only give a heuristic description of this approach in the
main text below but a detailed description can be found in appendix A.

4.1 Divisors that contribute superpotential couplings

The first obstruction to obtaining superpotential couplings from an M5-instanton is the fermi
zero mode structure. As we discussed in section 3.1, obtaining the right structure for a vertical

39It is true that the M5 intersects surfaces of singularities (like the one above SGUT) in curves. G-fluxes that
can have nonzero integral over these singularities are precisely fluxes that break the corresponding non-Abelian
gauge group, i.e. worldvolume flux associated to the stack of 7-branes. Hypercharge flux is an example of such
a flux so this will be an important issue for model-building applications (though trivializable hypercharge fluxes
should not pose a problem because the curves in question are homologically nontrivial in B3 as the intersection
of a surface SGUT ⊂ B3 with the divisor S2 ⊂ B3 that is the base of the M5-instanton). For simplicity, we focus
only on bulk G-fluxes in this paper.
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divisor of the form π∗S2 requires the cohomology groups Hp(S2, NS2/B3
) to be trivial for p =

0, 1, 2. As a start, then, we should look for divisors S2 in B3 that are not moveable so that at
least the p = 0 condition is satisfied. More precisely, the relevant divisors D = π∗S2 have to
satisfy h(0,3)(D) = h0(S2, NS2|B3

) = 0. Before listing candidate divisors in the threefold of [29]
that satisfy this criterion, though, let us quickly review its basic structure.

We can obtain the threefold of [29] by starting with P
3 and picking out a distinguished plane

cubic curve Cnodal with a node. Because of the node, we can think of Cnodal as a pinched torus
obtained by gluing together the north and south poles of a P

1. The construction of B3 now
proceeds in two steps:

• First, blow up P
3 at the node

This step separates the two branches of Cnodal so that its proper transform, C ′
nodal, is a

smooth P
1. The exceptional divisor of this blow-up, E, is a P

2 that meets C ′
nodal in exactly two

points. Now, onto the second step

• Second, blow up along C ′
nodal

Because C ′
nodal is a P

1, the exceptional divisor D′ of this second blow-up is a Hirzebruch
surface Fn where n is determined by the normal bundle of C ′

nodal. It is easy to show, as we do
in Appendix A, that D′ is in fact an F4. Note that since E met C ′

nodal in exactly two points, the
preimage E ′ of E under the second blow-up is a dP2 surface. Further, D

′ meets E ′ in a sum of
two curves. From the perspective of E ′, these are the two exceptional curves of the dP2. From
the perspective of D′, these curves are both in the fiber class of the Hirzebruch. As a result,
the two exceptional curves of E ′ are in fact homologous to one another in B3 by a 3-chain that
sits inside D′. This construction can easily be generalized to engineer threefolds where E ′ is
replaced by a dPn surfaces provided we replace Cnodal with a curve that has a higher degree
singularity in place of the node.

We reproduce the cartoon of B3 from [29] in figure 4.1. From its construction, we see that
there are two obvious divisors for which h0(S2, NS2/B3

) = 0

E ′ ∼= dP2

D′ ∼= F4 .
(4.1)

All other divisors descend from polynomials in our original P3 that have specified intersections
with the original nodal curve, Cnodal, or its node. Almost all of these are obviously deformable
but there is one more candidate that is not: the specific hyperplane of P3 in which our plane
curve Cnodal sat. The proper transform of this hyperplane is the divisor

H −D′ − E ′ ∼= dP1 . (4.2)

Indeed, the hyperplane becomes a dP1 after the first blow-up that is unaffected by the second
blow-up.
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Figure 1: Cartoon of the threefold B3 from [29]. When D′ and E ′ are blown down we are left
with a nodal cubic that lies in the plane H − D′ − E ′. ℓ and G′ label curve classes in the
notation of [29].

So, in total, we have three candidate divisors in B3 that can serve as the base of M5
instantons with the right zero mode structure. In our discussion above, though, we have only
argued that H0(S2, NS2/B3

) is trivial for each candidate. It remains to check Hp(S2, NS2/B3
) for

p = 1, 2. We do this in Appendix A with the following results. All of the required cohomologies
vanish for E ′, H − D′ − E ′, and D′ so that the fermi zero mode structure is exactly right in
each of these cases.

Let us turn now to the restriction of G-flux. In general, D′ and H−D′−E ′ will not contain
any entire curves of singularities. As discussed in section 3.2, this means that the G-flux used
to engineer a chiral spectrum restricts trivially. Provided no other G-fluxes have nontrivial
restriction, both π∗D′ and π∗(H −D′ −E ′) can be expected to yield superpotential couplings
that can be used for Kähler moduli stabilization.

What about E ′? This divisor is special because it is exactly the GUT divisor on which the 7-
branes are wrapped in SU(5)GUT models based on the geometry of [29]. Any M5 wrapping π∗E ′

will therefore contain several curves of singularities. The restricted G-flux will be nontrivial in
general so the M5 wrapping π∗E ′ (which is really just capturing the contribution of a gauge
theory instanton of the 7-brane worldvolume theory) will not play any role in Kähler moduli
stabilization40.

4.1.1 Any hope for Kähler moduli stabilization?

Since only two divisors in B3 can lead to superpotential corrections from M5-instantons, it may
be difficult to stabilize Kähler moduli. This is because we have 3 Kähler moduli, which can be

40In three generation models, in fact, the Poincare dual of the G-flux inside π∗E′ should be odd. In this case,
we are led to expect that a single M5 wrapping π∗E′ does not contribute any superpotential coupling at all.
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parametrized by writing the divisor corresponding to the Kähler form as

J = mH − aE ′ − bD′ . (4.3)

Explicitly, the Kähler cone is easy to determine and corresponds to m, a, and b satisfying

a > 2b > 0, m > a+ b . (4.4)

While it is not always true that we need as many nonperturbative terms in the superpotential
as we have Kähler moduli [56], we believe that instanton corrections from D′ and H −D′ −E ′

in the threefold B3 are not enough by themselves to stabilize everything. Fortunately, it might
be possible to engineer a little help from an unexpected place. The geometry of [29] admits
a nice divisor class that does not intersect the GUT divisor SGUT = E ′. This class, which we
call H because it descends from a hyperplane in P

3 that does not contain the node of Cnodal, is
somewhat like the divisor that supports the other E8 in models with Heterotic dual. If we can
manage to engineer a hidden sector gauge group on H that undergoes gaugino condensation,
the resulting superpotential correction can be used as the third nonperturbative term that we
need to stabilize all of the Kähler moduli.

4.1.2 Hidden Sector

We therefore propose that models based on the geometry of [29] should, in the future, realize a
hidden sector on H and study the interplay of global fluxes with that sector to determine the
presence or absence of gaugino condensation. Note that even the realization of a hidden sector
is nontrivial; it is relatively easy to see that a generic SU(5)GUT model based on [29] will not
have surfaces of singularities anywhere away from SGUT. When trying to engineer a surface
of singularities along the divisor H , one must take some care to make sure that non-minimal
singularities are not introduced. We now proceed to describe one example that implements a
hidden sector. In the future, we hope to report on model-building efforts that engineer hidden
sectors in more realistic models while implementing the approach to U(1)s and global fluxes
described earlier in this paper.

To get a simple example of a hidden sector on H , let us start with the global Weierstrass
models studied in [29]. There we engineered an SU(5)GUT singularity at z = 0 (on SGUT = E ′)
by specifying a rather general Tate form. Expressed in the notation of [29, 57] this is

y2 = x3 + z5g5 +
1

48
f3xz

3 + hxy −
1

4
Hx2z +

1

12
qz2y . (4.5)

Here, the global sections g5, f3, h,H, q are rescalings of am in the global Tate model. We use
P = −3Hq2 − 3hf3q + 2g5h

2 to denote the section that gives rise to the codimension two
enhancement to SU(6). The holomorphic sections on B3 that we use to build the sections in
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(4.5) are
Holomorphic Section Divisor class

Z4 H
Z1,2 (H − E ′) + E ′ = H
Z3 (H −D′ − E ′) + (D′ + E ′) = H
W1,2,3 H −E ′

W4 3H −D′ − 2E ′

V1 (3H −D′ − 2E ′) + E ′ = 3H −D′ −E ′

V0 H −D′ − E ′

z E ′

(4.6)

We actually never use Z1,2,3 or V1 explicitly. The divisors defined by each of these are reducible
which indicates that each is the product of more elementary sections. Consider the ansatz for
the section h of (4.5) which is in the class 4H −D′ − 2E ′

h = (Z4 + zP1(W1,W2,W3))(W4 − (Z4 + zP1(W1,W2,W3))V0A1(W1,W2,W3)) , (4.7)

where A1 and P1 are linear polynomials in Wi, i = 1, 2, 341. Making the same choices otherwise
for P,H, q and f3 = 0 and g5(P,H, q) determined in terms of the sections P,H, q as in example
1 of appendix E in [29], we arrive at an elliptic fibration, which automatically realizes the
SU(5)GUT singularity at z = 0 with matter curves and Yukawas.

To determine whether there is any nonabelian gauge enhancement along the divisor H , we
expand the discriminant around Z4 = 0. For P1 = 0 the discriminant has vanishing order
∆ ∼ Z12

4 and in fact, can be brought into non-minimal Tate form, which is disfavored. We
therefore consider P1 a generic polynomial in W1,2,3, which yields

∆ = Z6
4∆̃ +O(Z7

4) , (4.8)

where ∆̃ has vanishing order in the other sections of the order z12, V 6
0 , W

6
i and W 0

4
42. After

shifting x, y by Z4, the Weierstrass form can be brought globally into Tate form for I6 without
monodromy, which is SU(6) [34, 58], i.e.

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 , (4.9)

where

a1 = O(Z0
4) , a2 = O(Z1

4) , a3 = O(Z3
4) , a4 = O(Z3

4) , a6 = O(Z6
4) . (4.10)

So in summary this exemplifies that a non-abelian gauge group can reside on the divisor H .

41Note that in the examples in appendix E of [29] we considered a slightly less general ansatz, where P1 = 0.
42We do not worry about the high degree of z in ∆̃ since z = Z4 = 0 admits no solutions.
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4.2 Superpotential and SUSY vacua

Thus far, we have argued that geometries based on the threefold of [29] will exhibit superpo-
tential couplings from M5-instantons wrapping π∗D′ and π∗(H − D′ − E ′). Provided we get
help from a gaugino condensate on H , this should be enough to stabilize Kähler moduli. In
this subsection, we investigate the potential that would result and show that it indeed exhibits
a supersymmetric minimum.

Concretely, the superpotential of interest is

Wnon−pert =
∑

D∈{D′,H−D′−E′,H}

aDe
−TD . (4.11)

To proceed, we should write the real parts of the TD’s of interest in terms of the Kähler
moduli. Recall that we parametrize the Kähler form as

J = mH − aE ′ − bD′ (4.12)

with the Kähler cone specified by

a > 2b > 0, m > a+ b . (4.13)

The divisors of interest that give contributions from wrapped instantons are (4.1) and (4.2)
and have volumes given by

Re TD′ = 2b(3m− 2a− 3b)

Re TH−D′−E′ = (m− a− b)(m+ a− 5b)

ReTH = m2 − 3b2 .

(4.14)

Furthermore, the Kähler potential is

K = −2 lnJ3 = −2 ln
(

m3 − a3 + 6b3 − 9mb2 + 6ab2
)

. (4.15)

The superpotential contribution from M5 instantons is then

W = a1e
−T

H−D′
−E′ + a2e

−T
D′ + a3e

−TH +W0 . (4.16)

We will in the following set a1 = 1 without loss of generality. The scalar potential is

V = eK
(

Kab̄(DaW )(Db̄W )− 3|W |2
)

, (4.17)

where Da is the usual Kähler covariant derivative

Daf = ∂af + (∂aK)f . (4.18)

To find SUSY vacua inside the Kähler cone, consider the three equations

Da,b,mW = 0 . (4.19)
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In these equations, we follow convention and absorb the axion vevs into the coefficients aD.
These vevs are ultimately determined by the phases of the aD. Instead of looking for solutions
for m, a, and b in terms of the superpotential parameters, we instead solve (4.19) for W0, a2,
and a3 as functions of the Kähler moduli. That way, given a particular place in the Kähler
cone, we can determine the precise superpotential couplings that give rise to a supersymmetric
vacuum there. Doing this, we find

W0 =−
e(a+b−m)(a−5b+m)(3(a− b+m) + Vol)

3a
(4.20)

where
Vol = −a3 + 6ab2 + 6b3 − 9b2m+m3 , (4.21)

as well as

a2 =
(a− b)ea

2−8ab−11b2+12bm−m2

a

a3 =
(m− a)ea

2−4ab−8b2+6bm

a
.

(4.22)

From these expressions it is clear that we can achieve supersymmeric solutions inside the Kähler
cone with a2, a3 (and a1) all positive and W0 < 0.
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A Three-fold

In this appendix we explain an alternative construction of the threefold of [29], which was
already outlined in section 4.1. We start with P

3 parametrized by homogeneous coordinates
[Z1, Z2, Z3, Z4] and blow up the point p0 = [0, 0, 0, 1]. We let H denote the class that descends
from the hyperplane of P3 and E denote the exceptional divisor. There are correspondingly
two curve classes. We use ℓ0 for the descendent of the intersection of hyperplanes in P

3 and ℓ
the nontrivial P1 inside E. The intersection data in this blown-up space, which we refer to as
X , is

H E
H ℓ0 0
E 0 −ℓ

(A.1)

H E
ℓ0 1 0
ℓ 0 −1

(A.2)

In these computations, we used the fact that (H−E) ·E = ℓ and (H−E) · ℓ = 1. Nonvanishing
triple intersections are

H3 = 1 E3 = 1 . (A.3)

Within this blown-up space, we consider the proper transform of the nodal cubic curve

C : Z3 = 0 , Z4Z1Z2 + (Z1 + Z2)
3 = 0 . (A.4)

A smooth cubic curve inside the P
2 defined by Z3 = 0 is a torus. The nodal cubic here is a

pinched torus which is topologically equivalent to a P
1 glued to itself by identifying the north

and south poles. When we take the proper transform of C, we separate the north and south
poles and get an honest P1. If we want to describe the proper transform in equations, we can
do it as follows. Each of the hyperplanes Zi = 0 for i = 1, 2, 3 becomes irreducible, containing
one component in the class H −E and another in the class E. Accordingly, we can write

Zi = ζWi , i = 1, 2, 3 (A.5)

for Wi sections of the bundle O(H − E) and ζ a section of O(E) whose vanishing defines the
exceptional divisor. The equations for C now become

ζW3 = 0 , ζ2
(

Z4W1W2 + ζ(W1 +W2)
3
)

= 0 . (A.6)

The proper transform is obtained by dropping the ζ prefactors. Note that there are no solutions
to W1 = W2 = W3 = 0 since they are really just (global extensions of) projective coordinates
on the exceptional P2. This is what ensures that the curve

C′ : W3 = 0 , Z4W1W2 + ζ(W1 +W2)
3 = 0 (A.7)
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is smooth. As we said C′ is a P
1 so, when we blow up along C′ to get our B3, the exceptional

divisor of that blow-up will be a Hirzebruch. To see which one, note that C′ is in the class

[C′] = (H − E) · (3H − 2E) . (A.8)

The normal bundle is a sum of line bundles and, because C′ is a P
1, these are determined by

their degrees. The normal bundle inside (H − E) is computed by (H − E)(3H − 2E)2 = 5
while the normal bundle inside 3H − 2E is computed by (H −E)2(3H − 2E) = 1. The normal
bundle is therefore O(5)⊕O(1) so when we blow up along C′ the exceptional divisor D′ is an
F4.

The final step, as we said, is blowing up along C′ to get the threefold B3 of [29]. We get an
exceptional divisor D′ and let E ′ denote the proper transform of E, which is a dP2 surface. We
get a new curve class as well which is the P

1 fiber of D′. For our curve classes, we take ℓ0 to
be the descendent of the curve of the same name in both P

3 and X . By ℓ we mean the proper
transform of the curve of the same name (ℓ) in X . Finally, let us take the third curve class to
be the fiber of our F4. Because it is the fiber of a Hirzebruch surface, let us call this curve f 43

The intersection of divisors with curves is easy to compute

H E ′ D′

ℓ0 1 0 0
ℓ 0 −1 1
f 0 0 −1

(A.9)

The intersection of theHirzebruch D′ with ℓ is 1 because ℓ is the proper transform of a hy-
perplane in E ′ (in the class h − ei) while the Hirzebruch is a fibration of f over the curve C′.
The curve f reduces to an exceptional curve in E ′ which intersects h − ei exactly once. The
intersection of D′ with f is computed by noting that H −D′ − E ′ meets f exactly once.

We now turn to intersections of divisors. Part of the intersection table is easy to compute

H E ′ H −D′ − E ′

H ℓ0 0 ℓ0 − 3f
E ′ 0 ∗ ∗

H −D′ − E ′ ℓ0 − 3f ∗ ∗

(A.10)

We can fill in the rest by noting some useful facts. First, the intersection of H −E with E
is just ℓ so the intersection of H −E ′ with E ′ is the total transform ℓ+ f . The reason for this
is that H − E does not contain the curve C′. From this we conclude that

(H − E ′) · E ′ = ℓ+ f =⇒ E ′ 2 = −(ℓ+ f) . (A.11)

Now, we know that E ′ meets D′ in twice the curve class f so we have that

E ′ ·D′ = 2f =⇒ (H −D′ − E ′) · E ′ = ℓ− f . (A.12)

43Note that f is the curve that we called ℓ−G′ in [29].
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Finally, we need (H −D′ − E ′)2. For this, it will be enough to get D′ 2. We can discern this,
however, from

(H −D′ − E ′) · (3H −D′ − 2E ′) = 0 . (A.13)

This leads to
(H −D′ − E ′)2 = ℓ+ 5f − 2ℓ0 (A.14)

and we complete the intersection table as

H E ′ H −D′ − E ′

H ℓ0 0 ℓ0 − 3f
E ′ 0 −ℓ− f ℓ− f

H −D′ − E ′ ℓ0 − 3f ℓ− f ℓ+ 5f − 2ℓ0
D′ 3f 2f 3ℓ0 − 7f − 2ℓ

(A.15)

Now, for instantons we are particularly interested in divisors S2 with trivial H0(S2, NS2/B3
).

These will be divisors that do not move in families inside B3. The candidate divisors are

E ′ ∼= dP2

D′ ∼= F4

H −D′ − E ′ ∼= dP1 .

(A.16)

A.1 Divisors and Normal Bundles

To study whether a divisor S2 plays a role in the generation of nonperturbative couplings via
M5 instantons, it is not enough to know that h0(S2, NS2/B3

= 0. We would also like to know
hp(S2, NS2/B3

) for p = 1, 2. In this subsection, we compute these cohomologies for the divisors
in (A.16).

A.1.1 E ′ = dP2

First we start with E ′ = dP2. Denote by h, e1, and e2 the standard generators of H2(dP2,Z).
We have

e1 ∼ e2 = f , h = ℓ+ f . (A.17)

Now, the normal bundle is given by

E ′ 2 = −ℓ− f = −h . (A.18)

We can compute the relevant cohomologies as follows

H0(dP2,O(−h)) = 0

H2(dP2,O(−h)) = H0(dP2,O(−2h + e1 + e2)) = 0 .
(A.19)

These vanishings mean that

h1(dP2,O(−h)) = −χ(dP2,O(−h))

= 0 .
(A.20)
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To do this computation, we use the fact that

χ(S, L) =

∫

S

ch(V ) ∧ Td(S)

=

∫

S

[

1

12

(

c1(TS)
2 + c2(TS)

)

+
1

2
c1(L)

2 +
1

2
c1(L)c1(TS)

] (A.21)

along with

c1(TdPn
) = O(3h−

n
∑

i=1

ei)

∫

dPn

[

c2(TdPn
) + c1(TdPn

)2
]

= 12 . (A.22)

To summarize, we find

h0,p(E ′, NE′/B3
) = 0 (A.23)

Of course we needed this just to ensure that the 7-brane GUT theory did not contain chiral
adjoints.

A.1.2 D′ = F4

We now turn to D′ = F4. We usually use b for the base of the Hirzebruch and f for the fiber.
We know that the curve f in B3 is just the fiber of F4 by construction. On the other hand, we
expect that b is given by the intersection of D′ with (H−D′−E ′). This is because H−D′−E ′

is the proper transform of the hyperplane containing the P1 along which we blew up to get D′.
Intersecting D′ with this hyperplane should give the base of the Hirzebruch. This means we
have

f ∼ f b ∼ (H −D′ − E ′) ·D′ = 3ℓ0 − 2ℓ− 7f . (A.24)

We can check this identification by computing some intersections inside D′. Using the relations

D′ · E ′ = 2f D′ · (H −D′ − E ′) = b (A.25)

we find

2f ·D′ f = E ′ · f

= 0

2f ·D′ b = E ′ · (3ℓ0 − 2ℓ− 7f)

= 2

b ·D′ b = (H −D′ − E ′) · (3ℓ0 − 2ℓ− 7f)

= −4 .

(A.26)

From this, we learn that

f ·D′ f = 0 f ·D′ b = 1 b ·D′ b = −4 , (A.27)

which is precisely the intersection table of F4.

40



To move further, it is useful to know the Chern classes of F4. Viewing Fn properly as a P
1

fibration over P1 we have (recalling that c(P1) = 1 + 2f)

c(Fn) = c(P1)(1 + b)(1 + b+ nf) (A.28)

so that
c1(Fn) = 2b+ (n + 2)f c2(Fn) = 4 (A.29)

Note that
c1(Fn)

2 = 8 (A.30)

Now, the normal bundle of D′ is given by

(D′)2 = 8f + 2ℓ− 3ℓ0 = f − b (A.31)

so what we want to compute is h0,p(F4,O(f − b)). It is rather clear that

H0(F4,O(f − b)) = 0 . (A.32)

We also have
H2(F4,O(f − b)) = H0(F4,O(b− f − (2b+ 6f)) = 0 . (A.33)

Now, we can evaluate

χ(F4,O(f − b)) =
1

2
(f − b) · (b+ 7f) = 0 . (A.34)

This means that
H1(F4,O(f − b)) = 0 . (A.35)

To summarize, we find that

h0,p(D′, ND′/B3
) = 0 (A.36)

A.1.3 H −D′ −E ′ = dP1

Let us start by identifying the hyperplane h̃ and exceptional curve ẽ of H −D′ −E ′. We have

h̃ = (H −D′ − E ′) ·H = ℓ0 − 3f ẽ = (H −D′ − E ′) · E ′ = ℓ− f (A.37)

To check this, we can compute

h̃ ·H−D′−E′ h̃ = H · (ℓ0 − 3f)

= 1

h̃ ·H−D′−E′ ẽ = H · (ℓ− f)

= 0

= E ′ · (ℓ0 − 3f)

= 0

ẽ ·H−D′−E′ ẽ = E ′ · (ℓ− f)

= −1 .

(A.38)
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The normal bundle of H −D′ − E ′ is given by

(H −D′ −E ′)2 = ℓ+ 5f − 2ℓ0 = −2h̃ + ẽ . (A.39)

Now it immediately follows that

H0(dP1,O(−2h̃+ ẽ) = 0

H2(dP1,O(−2h̃+ ẽ) = H0(dP1,O(−h))

= 0 .

(A.40)

Now we compute

χ(dP1,O(−2h̃+ ẽ) = 1 +
1

2
(−2h̃ + ẽ) · (h̃) = 0 (A.41)

to conclude that
H1(dP1,O(−2h̃+ ẽ)) = 0 . (A.42)

So, to summarize, we have that

h0,p(H −D′ − E ′, N(H−D′−E′)/B3
) = 0 (A.43)

42
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