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ABSTRACT: Twist operators in the closed sl(2) sector of planar N = 4 SYM are character-

ized by their spin. The explicit dependence of anomalous dimensions on this important

parameter is a source of interesting information. Wrapping corrections are a non triv-

ial part of the calculation and are under control in the framework of thermodynamical

Bethe Ansatz valid for the full theory and thoroughly checked in that sector. The ex-

tension to more general twist operators beyond sl(2) has been recently accomplished for

the so-called 3-gluon operators that are a special case of the generalized twist operators

introduced by Freyhult, Rej and Zieme. Such operators are dual to spinning strings con-

figurations with two spins S
1

, S
2

in AdS

5

and charge in S

5. We compute the expansion

of the weak-coupling leading order wrapping correction in the gauge theory limit dual

to large S

1

and fixed S

2

. We present a simple algorithm for the calculation and provide

explicit results illustrating the general structure of the expansion.
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1. Introduction

The computation of finite size corrections to states/operators in AdS/CFT correspon-

dence is an important technical issue. Recently, in the integrable planar limit, this problem

has been solved in full generality by means of the mirror thermodynamic Bethe Ansatz

developed for the AdS

5

� S

5 superstring in [1]. Formerly, the associated Y-system had

been proposed in [2] based on symmetry arguments and educated guesses about the ana-

lyticity and asymptotic properties of the Y-functions. The predicted finite size corrections

have been deeply tested in [3], mainly in the closed sl(2) subsector. The relevant operators

are represented by the insertion of n covariant derivatives D into the protected half-BPS

state TrZL (Z being one of the three complex scalars of N = 4 SYM)

O
Z

n;L

=

X

s

1

;:::;s

L




s

1

;:::;s

L

Tr (Ds

1

Z � � �D
s

L

Z) ; with n = s

1

+ � � � + s

L

: (1.1)

Their anomalous dimensions can be obtained from a non-compact, length-L sl(2) invari-

ant integrable spin chain with n excitations. The interaction range between scattering

magnons increases with the perturbative order. As soon as it exceeds the length of the

spin chain and wraps around it, the S-matrix picture fails and no asymptotic region can be
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defined any longer. For lengthL operators this effect is delayed by superconformal invari-

ance and starts at order g2L+4. In this regime, wrapping corrections cannot be obtained

within the asymptotic Bethe Ansatz and require the full use of the thermodynamical Bethe

Ansatz framework. The most accurate available calculations are at five-loop order for the

special length L = 2 [4] and at six-loop order for L = 3 [5]. In these cases, the minimal

anomalous dimension of OZ
n;L

can be obtained in closed form as a function of the number

of excitations n.

The availability of n as a control parameter is a remarkable fact since it opens the

door to very interesting cross checks of the calculations. For instance, at large n, it is

found that a generalized Gribov-Lipatov reciprocity (see [6] and the recent review [7])

holds predicting half of the large n expansion in terms of the other half. Also, in the twist-

2 case, the analytic continuation in the spin parameter n allows to test the predictions of

the BFKL equation [8] governing the poles around unphysical negative values of n.

Apart from these important tests, the computation of wrapping corrections as func-

tions of (or series expansions in) the parameter n is also very useful in order to predict

general features. For instance, a recurring theme in AdS/CFT is the assumption that

wrapping corrections are somewhat suppressed at large n

1. This permits, in first ap-

proximation, to neglect them. A nice example where such an approximation is needed

is the computation of Maldacena et al. of the two loop expressions for polygonal Wilson

loops expectation values [9] . It is based on an operator product expansion where the

spectrum of excitations of the flux tube stretching between two null Wilson lines can also

be viewed as the spectrum of excitations around the infinite spin limit of finite twist oper-

ators in the sl(2) sector ofN = 4 SYM , or the GKP [10] string. Integrability and AdS/CFT

correspondence effectively help in computing such spectrum and wrapping corrections

are assumed to be negligible. Such a statement is safe for the GKP background, but is

only a conjecture (although reasonable) for the excitations over the GKP string.

Thus, generally speaking, it is clearly important to increase our knowledge of the

structure of wrapping corrections to twist operators beyond the simple sl(2) sector 2. Such

an extension has been recently presented in [11] where we studied wrapping corrections

to operators whose multi-loop asymptotic contributions had been computed in [12]. We

shall refer to these operators as 3-gluon operators 3. Indeed, in [11] we computed the

leading order wrapping correction to the lowest anomalous dimension of such operators

in closed form as a function of n.

Actually, 3-gluon operators are related by superconformal invariance to a special case

of a larger family studied in [13] which we shall dub Freyhult-Rej-Zieme (FRZ) twist op-

erators. For the length 3 case we are interested in, they take the following (schematic)

1In all known cases they scale like 1

n

2

with possible enhancement factors growing like powers of logn.
2Here, the loose term twist operator refers to gauge invariant composite operators built with a fixed number

of elementary fields and an increasing number of covariant derivatives acting on them.
3At one-loop they have the same form as sl(2) operators, with the scalar Z being replaced by a physical

gauge field component.
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form

O
FRZ

n;m

= Tr (Dn+m

�D
m

Z

3

) + � � � ; (1.2)

where dots denote a linear combination of similar terms with the covariant derivatives

spread over the scalar fields. These operators reduce to length 3 operators in the sl(2)

subsector for m = 0. For m = 1 we get descendants of twist–2 operators. For m = 2 we

get the 3-gluon operators. At strong coupling, the FRZ operators are duals to minimal

energy spinning strings configurations with two spins S
1

and S

2

in AdS

5

and charge J in

S

5 given by

S

1

= n+m�

1

2

; S

2

= m�

1

2

; J = L = 3: (1.3)

The main result of [13] is the large n expansion of the asymptotic minimal anoma-

lous dimension of OFRZ

n;m

for fixed ratio n=m or fixed m. The expansion is obtained at all

orders in the coupling and including the leading term � log n as well as the subleading

asymptotically constant correction � n

0. These two contributions are expected to be free

of wrapping corrections. In this paper, we consider precisely the leading order wrapping

correction which appears at four loops. We provide an algorithm to compute its large n

expansion for fixed m and present explicit results for m = 2; 3; 4. As we mentioned, for

m = 2 we have to match the 3-gluon result obtained in [11]. The expansions for the other

two values are new. In full generality, we prove the logn

n

2

scaling behaviour at large n thus

confirming the assumption in [13]. Notice that for the considered states with m > 2 no

asymptotic closed form of the anomalous dimension is known beyond one-loop.

The plan of the paper is the following. In Sec. (2), we summarize the one-loop solution

of the Bethe Ansatz equations for FRZ operators. Sec. (3) presents the necessary Y-system

formulae for the efficient computation of the leading order wrapping correction. The

algorithm for the derivation of its large spin expansion is described and tested in Sec. (4).

Our results are summarized in Sec. (5) .

2. One loop solution of the FRZ operators

In this section, we review the one-loop solution of the FRZ states and give explicit infor-

mation on the Baxter polynomials entering the wrapping calculation. In particular, we

shall provide the explicit form of the Baxter polynomials whose degree is independent on

the spin n.

The excitation pattern of the operators in Eq. (1.2) has the following form in the higher

Dynkin diagram of psu(2; 2j4) in the su(2) grading

♥�❅ ♥ ♥�❅
n+ 2m� 1

♥
+1

n+ 2m

♥�❅
n+ 2m� 2

♥

m� 1

♥�❅ (2.1)
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By dualizing the diagram on node 1, 3 we arrive at the simpler configuration

♥�❅ ♥ ♥�❅ ♥�❅

+1

n+ 2m

♥�❅
n+ 2m� 2

♥

m� 1

♥�❅ (2.2)

The Bethe equations in this grading (2.2) are 4

 

u

+

4;k

u

�

4;k

!

3

=

Q

�

5

Q

+

5

�

�

�

�

u

4;k

; 1 =

Q

+

6

Q

�

6

�

�

�

�

u

5;k

Q

�

4

Q

+

4

�

�

�

�

u

5;k

; �1 =

Q

++

6

Q

��

6

�

�

�

�

u

6;k

Q

�

5

Q

+

5

�

�

�

�

u

6;k

: (2.5)

The solution to the system (2.5) is explicitly written out in Appendix A where we provide

the expressions of the polynomials Q
4;5;6

. Since the degree of Q
4;5

is dependent on n, the

computation of the large n limit is definitely non - trivial.

Although the definition of Q
6

is rather complicated, it is a polynomial of order m� 1

whose coefficients depend on n. We can reconstruct them explicitly for general values of

n at least for the first values of m. We do this for m = 2; 3; : : : ; 8. The polynomials are

Q

m=2

6

= u;

Q

m=3

6

= 4(n+ 3)(n + 8)u

2

+ 32 + 11n + n

2

;

Q

m=4

6

= (132 + 4n(n + 14)) u

3

+ (213 + 4n(n + 14)) u;

Q

m=5

6

= 16(n + 3)(n+ 5)(n + 12)(n + 14)u

4

+8(n+ 5)(n+ 12)(402 + 5n(n + 17))u

2

+47256 + 3n(n+ 17)(434 + 3n(n + 17));

Q

m=6

6

= 16(n + 3)(n+ 5)(n + 15)(n + 17)u

5

+(681000 + 40n(n + 20)(377 + 2n(n + 20)))u

3

+(670425 + 8n(n + 20)(1633 + 8n(n + 20)))u;

Q

m=7

6

= 64(n + 3)(n+ 5)(n + 7)(n + 16)(n + 18)(n + 20)u

6 (2.6)

+80(n+ 5)(n + 7)(n+ 16)(n + 18)(7n(n + 23) + 1068)u

4

+4(n+ 7)(n+ 16)(n(n + 23)(259n(n + 23) + 71250) + 4936680)u

2

+45(n(n + 23)(n(n + 23)(5n(n + 23) + 1958) + 255720) + 11140992);

Q

m=8

6

= 64(n + 3)(n+ 5)(n + 7)(n + 19)(n + 21)(n + 23)u

7

4Shifted quantities are defined as

F

�� � � �

| {z }

a

(u) = F

[�a℄

(u) = F

�

u� i

a

2

�

: (2.3)

Q

`

’s are the Baxter polynomials vanishing on the `-th node roots

Q

`

(u) =

K

`

Y

i=1

(u� u

`;i

) ; (2.4)

K

`

being the number of excitations on the `-th node.
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+112(n + 5)(n+ 7)(n + 19)(n + 21)(8n(n + 26) + 1581)u

5

+196(n + 7)(n+ 19)(4n(n + 26)(4n(n + 26) + 1431) + 516495)u

3

+3(4n(n + 26)(16n(n + 26)(12n(n + 26) + 6085) + 16477937) + 3724800415)u:

These results will be useful in the following since they are explicit in n and can be used to

extract large n contributions.

In order to efficiently evaluate wrapping corrections it is convenient to dualize the

diagram (2.2) at nodes 5 and 7. We get a configuration where the number of roots at

nodes 5, 6, 7 does not depend anymore on n. More precisely, we get

♥�❅ ♥ ♥�❅ ♥
+1

n+ 2m

♥�❅
m

♥

m� 1

♥�❅
m� 2

(2.7)

This is the direct extension of eq. (3.13) in [11]. An important difference are the m � 2

roots appearing on node 7.

The one–loop Bethe equations are now

�

 

u

+

4;k

u

�

4;k

!

3

=

Q

��

4

Q

++

4

�

�

�

�

u

4;k

e

Q

+

5

e

Q

�

5

�

�

�

�

u

4;k

; 1 =

Q

+

6

Q

�

6

�

�

�

�

u

5;k

Q

�

4

Q

+

4

�

�

�

�

eu

5;k

; 1 =

e

Q

�

5

e

Q

+

5

�

�

�

�

u

6;k

; 1 =

Q

�

6

Q

+

6

�

�

�

�

eu

7;k

;

(2.8)

where the dual Baxter functions eQ
5

, eQ
7

are defined by

e

Q

5

Q

5

= Q

+

4

Q

�

6

�Q

�

4

Q

+

6

;

e

Q

7

= Q

+

6

�Q

�

6

: (2.9)

They are polynomials of order m and m � 2 respectively. Explicitly, for m = 2; 3; : : : ; 8

they read

e

Q

m=2

5

= (n+ 3)(n+ 5)u

2

+

1

4

(n+ 4)

2

;

e

Q

m=3

5

=

1

2

�

(n+ 3)(n + 8)u

3

+ (n+ 5)(n+ 6)u

�

;

e

Q

m=4

5

=

1

16

�

+16(n + 3)(n + 5)(n+ 9)(n + 11)u

4

+ 8(n+ 5)(n + 9)(246 + 5n(n + 14)u

2

+9(n+ 6)

2

(n+ 8)

2

�

;

e

Q

m=5

5

=

1

4

�

(n+ 3)(n + 5)(n+ 12)(n + 14)u

5

+ 5(n+ 5)(n + 12)(74 + n(n+ 17))u

3

+4(n+ 7)(n + 8)(n + 9)(n+ 10)u) ;

e

Q

m=6

5

=

1

64

�

64(n + 3)(n + 5)(n + 7)(n+ 13)(n + 15)(n + 17)u

6

+80(n + 5)(n + 7)(n + 13)(n + 15)(732 + 7n(n + 20))u

4

+4(n+ 7)(n + 13)(2548800 + n(n+ 20)(51384 + 259n(n + 20)))u

2

+225(n + 8)

2

(n+ 10)

2

(n+ 12)

2

�

;
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e

Q

m=7

5

=

1

8

�

(n+ 3)(n + 5)(n+ 7)(n + 16)(n + 18)(n + 20)u

7

+14(n + 5)(n + 7)(n + 16)(n + 18)(n(n + 23) + 141)u

5

+7(n+ 7)(n + 16)(n(n + 23)(7n(n + 23) + 1860) + 123660)u

3

+36(n + 9)(n + 10)(n + 11)(n + 12)(n + 13)(n + 14)u) ; (2.10)

e

Q

m=8

5

=

1

256

�

256(n + 3)(n + 5)(n + 7)(n + 9)(n + 17)(n + 19)(n + 21)(n + 23)u

8

+1792(n + 5)(n+ 7)(n + 9)(n + 17)(n + 19)(n + 21)(3n(n + 26) + 550)u

6

+224(n + 7)(n + 9)(n + 17)(n + 19)(n(n + 26)(141n(n + 26) + 48544)

+4185720)u

4

+16(n + 9)(n + 17)(n(n + 26)(n(n + 26)(3229n(n + 26) + 1613162)

+268631440) + 14910974400)u

2

+11025(n + 10)

2

(n+ 12)

2

(n+ 14)

2

(n+ 16)

2

�

:

For eQ
7

we have

e

Q

m=2

7

= 1;

e

Q

m=3

7

= u;

e

Q

m=4

7

= n

2

+ 4(n + 3)(n+ 11)u

2

+ 14n + 60;

e

Q

m=5

7

= (n+ 3)(n + 14)u

3

+ (n(n+ 17) + 90)u;

e

Q

m=6

7

= 16(n + 3)(n + 5)(n + 15)(n + 17)u

4

+40(n + 5)(n+ 15)(n(n + 20) + 126)u

2

+3n(n + 20)(3n(n + 20) + 628) + 100800;

e

Q

m=7

7

= (n+ 3)(n + 5)(n + 18)(n + 20)u

5 (2.11)

+5(n+ 5)(n + 18)(n(n + 23) + 168)u

3

+4(n(n + 23)(n(n + 23) + 285) + 20790)u;

e

Q

m=8

7

= 64(n + 3)(n + 5)(n + 7)(n+ 19)(n + 21)(n + 23)u

6

+560(n + 5)(n + 7)(n+ 19)(n + 21)(n(n + 26) + 216)u

4

+28(n + 7)(n+ 19)(n(n + 26)(37n(n + 26) + 13788) + 1315440)u

2

+45(n(n + 26)(n(n + 26)(5n(n + 26) + 2564) + 439712) + 25276160):

3. Explicit formulae for the leading order wrapping correction

The Y-system is a set of functional equations for the functions Y
a;s

(u) defined on the fat-

hook diagram associated with psu(2; 2j4) which is a suitable (a; s) grid described in details

in [2, 14]. The anomalous dimension of a generic state is given by the TBA formula

E =

X

i

�

1

(u

4;i

)

| {z }

asymptoti


+

X

a�1

Z

R

du

2�i

��

?

a

�u

log(1 + Y

?

a;0

(u))

| {z }

wrapping W

: (3.1)
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In this formula, the dispersion relation is

�

a

(u) = a+

2 i g

x

[a℄

�

2 i g

x

[�a℄

; (3.2)

and the star means evaluation in the mirror kinematics 5. The first term in E is the sum

of asymptotic one-magnon energies and is the so-called asymptotic contribution to the

anomalous dimension. The second term is the wrapping correction. The Bethe roots

fu

4;i

g are fixed by the exact Bethe equations (in physical kinematics) Y
1;0

(u

4

) = �1. Any

solution of the Y-system can be written in terms of a solution of the Hirota integrable

discrete equation. For large L, (or small g) it can be shown that the Hirota equation splits

in two su(2j2)
L;R

wings. One can have a simultaneous finite large L limit on both wings

after a suitable gauge transformation of the Hirota solution. Thus, we have

Y

a;0

(u) '

 

x

[�a℄

x

[+a℄

!

L

�

[�a℄

�

[+a℄

T

L

a;1

T

R

a;1

; (3.5)

where � is an arbitrary function and T

L;R

a;1

are transfer matrices of the antisymmetric rect-

angular representations of su(2j2)
L;R

. They are given explicitly by the generating func-

tional

1

X

a=0

(�1)

a

T

[1�a℄

a;1

D
a

=

 

1�

Q

+

3

Q

�

3

D

!

�1

 

1�

Q

+

3

Q

�

3

Q

��

2

Q

2

R

(+)�

R

(�)�

D

!

(3.6)

�

 

1�

Q

++

2

Q

2

Q

�

1

Q

+

1

R

(+)�

R

(�)�

D

!  

1�

Q

�

1

Q

+

1

B

(+)+

B

(�)+

R

(+)�

R

(�)�

D

!

�1

;

where D = e

�i�

u and

R

(�)

=

K

4

Y

i=1

x(u)� x

�

4;i

(x

�

4;i

)

1=2

; B

(�)

=

K

4

Y

i=1

1

x(u)

� x

�

4;i

(x

�

4;i

)

1=2

: (3.7)

The function � has been determined in [2] and reads

�

�

�

+

= �

2

B

(+)+

R

(�)�

B

(�)�

R

(+)+

B

+

1;L

B

�

3;L

B

�

1;L

B

+

3;L

B

+

1;R

B

�

3;R

B

�

1;R

B

+

3;R

; (3.8)

where � is the dressing phase . At weak coupling, evaluating the various terms at leading

order in the mirror dynamics, the wrapping correction (second term in the r.h.s. of (3.1))

is simply given by the expression

W = �

1

�

1

X

a=1

Z

R

duY

?

a;0

: (3.9)

5We recall that the physical and mirror branches of the Zhukowsky relation

x+

1

x

=

u

g

; (3.3)

are

x

ph

(u) =

1

2

�

u

g

+

r

u

g

� 2

r

u

g

+ 2

�

; x

mir

(u) =

1

2

�

u

g

+ i

r

4�

u

2

g

2

�

: (3.4)
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3.1 Explicit formulae for the computation of Y ?

a;0

In the following, we shall need a compact efficient formula for the evaluation of Y ?

a;0

. Ac-

cording to (3.5), we need the contribution from the dispersion (ratio of x�), the fusion of

scalar factors (� terms), and the su(2j2) transfer matrices. After a straightforward compu-

tation we obtain:

Transfer matrices

Using the relations, valid at leading order in the coupling constant

R

(+)

R

(�)

=

Q

[+℄

4

Q

[�℄

4

�

1 + g

2

i


u

+O(g

4

)

�

;

B

(+)

B

(�)

=

�

1� g

2

i


u

+O(g

4

)

�

;


 =

X

j

1

u

+

4;j

u

�

4;j

= i (log (Q

4

))

0

�

�

�

�

u=+

i

2

u=�

i

2

: (3.10)

we get the following expression for the transfer matrices T �
a;1

in mirror dynamics:

T

�

a;1

= (�1)

a+1

Q

[a℄

5

Q

[�a℄

7

Q

[1�a℄

4

a�1

X

k=1�a

�k=2

Q

[k℄

4

Q

[k℄

6

0

�

Q

[k+2℄

6

�Q

[k℄

6

Q

[k+1℄

5

Q

[k+1℄

7

+

Q

[k�2℄

6

�Q

[k℄

6

Q

[k�1℄

5

Q

[k�1℄

7

1

A

+O(g

2

):

(3.11)

We remark that this expression is valid for any distributions of roots on Dynkin diagrams

like the one of the right wing of picture (2.7). So, for example, taking the expression for
e

Q

5;m=2

, Q
6;m=2

, eQ
7;m=2

from equations (2.10), (2.6) and (2.11), we get back to eq. (4.22) of

[11]. If Q
6

is trivial, i.e. Q
6

= 1, formula (3.11) shows that the transfer matrix is O(g2).

To compute the wrapping corrections we can use formula (3.11) for the transfer ma-

trices of the right wing of the diagram (2.7), while for the O(g2) left wing we use

T

�;L

a;1

= i
g

2

(�1)

a+1

Q

[1�a℄

4

a

X

k=�a

�k=2

Q

[�1�k℄

4

�Q

[1�k℄

4

u� i

k

2

�

�

�

�

Q

[�1�a℄

4

;Q

[�1�a℄

4

!0

+O(g

4

): (3.12)

Dispersion relation

This is the universal factor
 

4g

2

a

2

+ 4u

2

!

3

: (3.13)

Fusion scalar factor

From the relation
�

�

�

+

= �

2

B

(+)+

R

(�)�

B

(�)�

R

(+)+

B

+

1

B

�

3

B

�

1

B

+

3

B

+

7

B

�

5

B

�

7

B

+

5

; (3.14)
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the following formula follows

�

�

a

=

h

Q

+

4

(0)

i

2

Q

[1�a℄

4

Q

[�1�a℄

4

Q

[a�1℄

4

Q

[a+1℄

4

Q

[�a℄

5

Q

5

(0)

Q

7

(0)

Q

[�a℄

7

: (3.15)

This formula is valid for even Q

4

, Q
5

and Q

7

, i.e. for even values of n and m. For m odd,

the ratio Q

7

=Q

5

is indeterminate at u = 0, but has a smooth limit for u! 0.

4. Large n expansion: The algorithm

The wrapping correction can be computed by summing the residues of the Y
a

–functions

at u =

ia

2

. The precise relation is

W = �

1

�

1

X

a=1

Z

R

duY

?

a;0

= �2i

1

X

a=1

Res
u=i

a

2

Y

?

a;0

: (4.1)

The physical reason of this property, that we explicitly checked for all the cases we are

interested in, is presumably the same as in the Konishi case discussed in [15]. The pole

at u =

ia

2

is of kinematical origin and does not depend on the scattering matrix. Instead,

other poles are determined by the dynamics and correspond to � terms in the Lüscher

approach to wrapping corrections. It is expected that such terms are absent in the weakly

coupled limit [16].

Since we are interested in the large spin limit of W , we can attempt to exchange this

limit with the sum over the intermediate virtual states in the r.h.s of Eq. (4.1). This possi-

bility is supported by the fact that the large n structure perfectly matches the exact result

in all known cases in the sl(2) sector of N = 4 SYM theory, in its �-deformed version and

in ABJM theory as shown in [17].

In practice, one evaluates the above residue at fixed a = 1; 2; : : : without assigning n

and then taking the limit over it in two steps: The dependence onn, in fact, comes from the

polynomials Q
4

, its derivatives (which are written in terms of the basic hypergeometric

function F

n;m

defined in (A.2)) and from the explicit n-dependent coefficients of the other

Baxter polynomials. At this point one can use the Baxter equation to shift the argument

of F
n;m

to some minimal value and take the large n limit on the coefficients. This gives

a first expansion containing various derivatives of the logarithm of F
n;m

which in turn

can be systematically computed as explained in Appendix B or by means of the method

explained in [18]. The outcome of this procedure are sequences of rational numbers being

the a-dependent coefficients of the large n expansion of Res
u=i

a

2

Y

?

a;0

. These sequences

turn out to be rather simple rational functions which are easily identified and summed

over a.

In the following, we first apply this strategy to the case m = 2 reproducing the known

results for 3-gluon operators. Then, we move to unexplored cases m > 2 for which we

provide new asymptotic expansions for the wrapping correction.

– 9 –



4.1 m = 2, checking 3-gluon operators

Let L(u) be the logarithm of the basic hypergeometric function

L(u) = log F

n;m=2

(u); (4.2)

and R

a

be the residue

g

8

R

a

(n) = Res
u=

ia

2

Y

?

a;0

(u): (4.3)

We find the following explicit results for the first residues expanded at first order for large

n � 1=�

R

1

=

160

81

�

2

�

L

0

�

i

2

�

� 5i

��

76 + 9L

00

�

i

2

��

+O

�

�

3

�

;

R

a�2

= 32�

2

�

L

0

�

i

2

�

� 5i

��

f

1

(a) + f

2

(a)L

00

�

i

2

��

+O

�

�

3

�

: (4.4)

Notice that the whole dependence on the spin n is inside the derivatives ofL(u) evaluated

at special points. Instead, the dependence on the label of intermediate virtual states a is in

the coefficient functions f
1;2

(a). In principle these functions could be very non trivial. In

our case, we find that they are rather simple rational functions precisely as in other cases

analyzed in [17]. In particular, we find

f

1

(a) =

�

192a

10

� 960a

9

+ 2640a

8

� 4800a

7

+ 4916a

6

� 1980a

5

� 405a

4

+ 430a

3

+ 12a

2

� 45a + 9

�

(a� 1)

3

a

3

(2a� 3)

3

(2a � 1)

3

(2a+ 1)

3

;

f

2

(a) =

1

(a� 1) a (2a � 3)(2a � 1)(2a + 1)

: (4.5)

The derivatives L(n)

�

i

2

�

are computed in Appendix A. Summing over a and in terms of

n �

1

2

e




E

n (

E

is the Euler number), we find

1

X

a=1

R

a

= �

256 i

3

(3�

3

� 1)

log n+ 1

n

2

+O

�

log �n

n

3

�

:

This result is in perfect agreement with the large n expansion of the results of [11]. This

provides the validity of the computational method we are using. We now apply this same

method to cases with m > 2.

4.2 m = 3

As in the previous case, let L(u) be the logarithm of the basic hypergeometric function

L(u) = log F

n;m=3

(u); (4.6)

and R

a

be the residue

g

8

R

a

(n) = Res
u=

ia

2

Y

?

a;0

(u): (4.7)
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We find the following explicit results for the first three residues expanded at large n � 1=�

R

1

=

9

2

�

2

�

2L

0

(i)� 11i

� �

6 + L

00

(i)

�

�

99

2

�

3

��

2L

0

(i)� 11i

� �

6 + L

00

(i)

��

+

+

3

8

�

4

�

�11624iL

00

(i) + 12590L

0

(i) + 2096L

0

(i)L

00

(i)� 69821i

�

+O

�

�

5

�

; (4.8)

R

2

=

1

36

�

2

�

2L

0

(i)� 11i

� �

191 + 18L

00

(i)

�

�

11

36

�

3

��

2L

0

(i)� 11i

� �

191 + 18L

00

(i)

��

+

+

1

216

�

4

�

�84816iL

00

(i) + 177886L

0

(i) + 15264L

0

(i)L

00

(i)� 987541i

�

+O

�

�

5

�

;

R

3

= �

35

288

�

2

�

2L

0

(i)� 11i

�

+

385

288

�

3

�

2L

0

(i)� 11i

�

+

+

1

576

�

4

�

�8448iL

00

(i)� 1758L

0

(i) + 1536L

0

(i)L

00

(i) + 10229i

�

+O

�

�

5

�

:

For a � 4, we find instead

R

a�4

= (�

2

� 11 �

3

)

�

L

0

(i)�

11i

2

�

f

1

(a) + (4.9)

+�

4

[L

0

(i) f

2

(a) + f

3

(a)℄ +O(�

5

); (4.10)

where again we can match the functions f ’s with rational functions

f

1

(a) = �

12(2a � 1)

�

3a

2

� 3a� 4

�

(a� 2)

2

(a� 1)

3

a

3

(a+ 1)

2

; (4.11)

f

2

(a) = �

12

�

20a

8

+ 426a

7

� 4399a

6

+ 12288a

5

� 6156a

4

� 19036a

3

+ 17131a

2

+ 8538a � 6108

�

(a� 3)

2

(a� 2)

3

(a� 1)

3

a

3

(a+ 1)

3

;

f

3

(a) =

6i

�

220a

8

+ 4734a

7

� 48797a

6

+ 136256a

5

� 68196a

4

� 211220a

3

+ 190033a

2

+ 94734a � 67764

�

(a� 3)

2

(a� 2)

3

(a� 1)

3

a

3

(a+ 1)

3

:

The derivatives L(n)

(i) are computed in Appendix A. Summing over a, we find the final

result (setting now n � e




E

n)

1

X

a=1

R

a

= �

2 i

3

(2 log n+ 1)(�3 + 5�

2

+ 36�

3

)

1

n

2

+ (4.12)

44 i

3

log n (�3 + 5�

2

+ 36�

3

)

1

n

3

+

�

�

4 i

9

(�615 + 1289�

2

+ 9108�

3

) log n+

i

9

(�1527 + 2017�

2

+ 14868�

3

)

�

1

n

4

+ : : :

A comparison with a numerical estimate of the (imaginary part of the) sum of the residues

is shown in the following table

n estimate (LO NLO NNLO) full expansion diff %

10 �1:857411 (�4:038730 3:785374 �2:548066) �2:801422 51%

30 �0:438781 (�0:594614 0:193683 �0:045355) �0:446286 1:7%

50 �0:197270 (�0:238478 0:047207 �0:006716) �0:197986 0:36%

(4.13)
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4.3 m = 4

Again, let L(u) be the logarithm of the basic hypergeometric function

L(u) = log F

n;m=4

(u); (4.14)

and R

a

be the residue

g

8

R

a

(n) = Res
u=

ia

2

Y

?

a;0

(u): (4.15)

We find the following explicit results for the first two residues expanded at large n � 1=�

R

1

= �

2

0

�

�

9632

225

iL

00

�

i

2

�

+

942928L

0

�

i

2

�

16875

+

448

75

L

0

�

i

2

�

L

00

�

i

2

�

�

20272952i

50625

1

A

+ (4.16)

+�

3

0

�

134848

225

iL

00

�

i

2

�

�

13200992L

0

�

i

2

�

16875

�

6272

75

L

0

�

i

2

�

L

00

�

i

2

�

+

283821328i

50625

1

A

+

+�

4

0

�

�

7420192iL

00

�

i

2

�

1125

+

28672

75

L

0

�

i

2

�

3

�

917504

225

iL

0

�

i

2

�

2

�

328511984L

0

�

i

2

�

84375

+

+

288448

375

L

0

�

i

2

�

L

00

�

i

2

�

�

12897148504i

253125

�

+O

�

�

5

�

;

R

2

= �

2

0

�

�

688

105

iL

00

�

i

2

�

+

4510928L

0

�

i

2

�

385875

+

32

35

L

0

�

i

2

�

L

00

�

i

2

�

�

96984952i

1157625

1

A

+ (4.17)

+�

3

0

�

1376

15

iL

00

�

i

2

�

�

9021856L

0

�

i

2

�

55125

�

64

5

L

0

�

i

2

�

L

00

�

i

2

�

+

193969904i

165375

1

A

+

+�

4

0

�

�

48512752iL

00

�

i

2

�

55125

+

2048

35

L

0

�

i

2

�

3

�

65536

105

iL

0

�

i

2

�

2

�

10476726928L

0

�

i

2

�

28940625

+

+

1831328L

0

�

i

2

�

L

00

�

i

2

�

18375

�

872054313448i

86821875

1

A

+O

�

�

5

�

:

For a � 3, we find the same general structure

R

a�3

= �

2

�

f

2;0

(a) + f

2;1

(a)L

0

�

i

2

�

+ f

2;2

(a)L

00

�

i

2

�

+ f

2;12

(a)L

0

�

i

2

�

L

00

�

i

2

��

+

+�

3

�

f

3;0

(a) + f

3;1

(a)L

0

�

i

2

�

+ f

3;2

(a)L

00

�

i

2

�

+ f

3;12

(a)L

0

�

i

2

�

L

00

�

i

2

��

+

+�

4

 

f

4;0

(a) + f

4;1

(a)L

0

�

i

2

�

+ f

4;11

(a)L

0

�

i

2

�

2

+ f

4;111

(a)L

0

�

i

2

�

3

+

+f

4;2

(a)L

00

�

i

2

�

+ f

4;12

(a)L

0

�

i

2

�

L

00

�

i

2

��

+ : : : ;
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where

f

2;0

(a) =

344 i

(a� 1)

3

a

3

(2a� 5)

3

(2a � 3)

3

(2a� 1)

3

(2a + 1)

3

(2a+ 3)

3

�

�

15360 a

14

� 107520 a

13

+ 302848 a

12

� 419328 a

11

� 61824 a

10

+

1590400 a

9

� 2375328 a

8

� 260736 a

7

+ 3289132 a

6

� 2275140 a

5

�

26229 a

4

+ 382662 a

3

� 20277 a

2

� 34020 a + 8100

�

; (4.18)

f

2;1

(a) =

6 i

43

f

2;0

(a); (4.19)

f

2;2

(a) =

1376 i

(a� 1)a(2a � 5)(2a � 3)(2a � 1)(2a + 1)(2a + 3)

; (4.20)

f

2;12

(a) =

6 i

43

f

2;2

(a); (4.21)

f

3;0

(a) = �14 f

2;0

(a); f

3;1

(a) =

6 i

43

f

3;0

(a); (4.22)

f

3;2

(a) = �14 f

2;2

(a); f

3;1;2

(a) =

6 i

43

f

3;2

(a); (4.23)

f

4;0

(a) =

8i

(a� 2)

3

(a� 1)

3

a

3

(2a� 7)

3

(2a � 5)

3

(2a� 3)

3

(2a � 1)

3

(2a+ 1)

4

(2a + 3)

4

�

�

105676800 a

23

+ 193789952 a

22

� 30633238528 a

21

+ 374751035392 a

20

�

2338797209600 a

19

+ 9042207928320 a

18

� 21933773253120 a

17

+

25092446111744 a

16

+ 32261701882496 a

15

� 181183264537856 a

14

+

259510085417632 a

13

+ 62844522906624 a

12

� 666497213030424 a

11

+

681006561227024 a

10

+ 220531002799826 a

9

� 879621870442904 a

8

+

464871876325207 a

7

+ 160461344177928 a

6

� 197687865980727 a

5

+10634069596050 a

4

+ 27492240914352 a

3

� 3490888295808 a

2

�

1670217479280 a + 429309266400) ; (4.24)

f

4;1

(a) = �

16

(a� 2)

3

(a� 1)

3

a

3

(2a� 7)

3

(2a� 5)

3

(2a� 3)

3

(2a� 1)

3

(2a+ 1)

4

(2a+ 3)

4

�

�

7372800 a

23

� 655032320 a

22

+ 12236677120 a

21

�

103330938880 a

20

+ 446158370816 a

19

� 770280591360 a

18

�

1416142109184 a

17

+ 9605107320832 a

16

� 15447524759936 a

15

�

8228184007936 a

14

+ 60190240489376 a

13

� 59275890588672 a

12

�

47305035162840 a

11

+ 130190626486672 a

10

� 49532653784990 a

9

�

75968166506584 a

8

+ 70367565767567 a

7

+ 3329446699848 a

6

�
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21692142654831 a

5

+ 3791318445090 a

4

+ 2416824867888 a

3

�

531904185216 a

2

� 96835480560 a + 24890392800

�

; (4.25)

f

4;11

(a) =

131072 i

(a� 1)a(2a � 5)(2a � 3)(2a � 1)(2a + 1)(2a + 3)

; (4.26)

f

4;111

(a) = �

12288

(a� 1)a(2a � 5)(2a � 3)(2a � 1)(2a + 1)(2a + 3)

; (4.27)

f

4;2

(a) =

32i

�

1720 a

5

+ 56864 a

4

� 203410 a

3

� 163652 a

2

+ 521499 a + 270414

�

(a� 2)(a � 1)a(2a � 7)(2a � 5)(2a � 3)(2a � 1)(2a + 1)

2

(2a+ 3)

2

; (4.28)

f

4;12

(a) = �

192

�

40 a

5

+ 1120 a

4

� 4022 a

3

� 3148 a

2

+ 10129 a + 5226

�

(a� 2)(a� 1)a(2a � 7)(2a � 5)(2a � 3)(2a � 1)(2a + 1)

2

(2a+ 3)

2

: (4.29)

The derivatives L(n)

�

i

2

�

are computed in Appendix A. Summing over a, we find the final

result (n � 1

2

e




E

n)

1

X

a=1

R

a

= �

512 i

1215

(3 log n+ 4) (�32 + 81�

3

)

1

n

2

+

3584 i

1215

(6 log n+ 5) (�32 + 81�

3

)

1

n

3

+ (4.30)

512 i

8505

(135(1971�

3

� 760) log n+ 143289�

3

� 53248)

1

n

4

Again, we can present a numerical table showing the accuracy of the computed asymp-

totic expansion

n estimate (LO NLO NNLO) full expansion diff %

10 �1:201460 (�2:908787 3:493848 �3:576129) �2:991068 149%

30 �0:293765 (�0:424071 0:176476 �0:061888) �0:309484 5:4%

50 �0:134246 (�0:169551 0:042847 �0:009090) �0:135794 1:2%

(4.31)

5. Summary and a reciprocity conjecture

In summary, our results for the large spin expansion of the leading order wrapping cor-

rection at m = 2; 3; 4 are (we set here �n = e




E

n for all m)

g

�8

W

n;m=2

= �

512

3

(3 �

3

� 1)

3 log

�n

2

+ 1

n

2

+

2048

3

(3 �

3

� 1)

2 log

�n

2

+ 1

n

3

+ (5.1)

�

1536

5

(77 �

3

� 24)

log

�n

2

n

4

+ : : : ;

g

�8

W

n;m=3

= �

4

3

(36 �

3

+ 5�

2

� 3)

2 log �n+ 1

n

2

+

88

3

(36 �

3

+ 5�

2

� 3)

log �n

n

3

+ (5.2)

�

2

9n

4

h

4 (9108 �

3

+ 1289�

2

� 615) log �n� 14868 �

3

� 2017�

2

+ 1527

i

+ : : : ;

g

�8

W

n;m=4

= �

1024

1215

(81 �

3

� 32)

3 log

�n

2

+ 4

n

2

+

7168

1215

(81 �

3

� 32)

6 log

�n

2

+ 5

n

3

+ (5.3)
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�

1024

8505n

4

�

138240 (1971 �

3

� 760) log

�n

2

+ 143289 �

3

� 53248

�

+ : : : :

Following the general idea of [6] (see for instance the review [7] for its many tests in

AdS/CFT), we are led to rewrite the above large n expansions in terms of the quantity

J

2

m

= n (n+ a

m

): (5.4)

The possible vanishing of odd terms 1=J 2k+1 is linked to the Gribov-Lipatov reciprocity

and allows to interpret J as the Casimir of a suitable additional symmetry of anomalous

dimensions. From previous experience, it can be expected such reciprocity relations to

hold not only for the full anomalous dimension, but also separately for the leading order

wrapping correction. It turns out that the coefficients of the two odd terms 1=J

3 and

log J =J

3 indeed vanish for the choice

a

2;3;4

= 8; 11; 14: (5.5)

This is not completely trivial since we have one parameters and two structures. It is tempt-

ing to conjecture the simple relation a

m

= 3m + 2 and to claim that reciprocity in the

above sense holds for the full anomalous dimension as well. This remark could help in

the task of finding a closed expression for the asymptotic anomalous dimensions which

is currently unavailable beyond one loop. For completeness, we report the expansion of

wrapping in terms of J
m

= n (n + 3m+ 2)

g

�8

W

n;m=2

= �

256

3J

2

2

(3 �

3

� 1)

 

log

�

J

2

2

4

+ 2

!

+ (5.6)

+

256

15J

4

2

"

(267 �

3

� 104) log

�

J

2

2

4

+ 480 �

3

� 160

#

;

g

�8

W

n;m=3

= �

4

3J

2

3

(36 �

3

+ 5�

2

� 3)

�

log

�

J

3

2

+ 1

�

+ (5.7)

+

4

9J

4

3

h

2 (1980 �

3

+ 263�

2

� 237) log

�

J

3

2

+ 900 �

3

+ 101�

2

� 219

i

;

g

�8

W

n;m=4

= �

512

1215J

2

4

(81 �

3

� 32)

 

3 log

�

J

4

2

4

+ 8

!

+ (5.8)

+

512

8505J

4

4

"

(67311 �

3

� 29112) log

�

J

2

4

4

+ 102384 �

3

� 47168

#

:

6. Conclusions

In this paper we have applied a simple algorithm to derive the large spin expansion of the

leading order wrapping correction to a class of twist operators introduced by S. Zieme, A.

Rej and L. Freyhult in [13]. Our analysis extends previous work on simple sl(2)-like rank

one classes of states in �-deformed or ABJM theories. We could easily obtain accurate

asymptotic expansions for various special cases. This analytic results can be used to claim

– 15 –



the correct scaling behaviour of the wrapping correction, but also to explore other inter-

esting properties like reciprocity constraint. In principle, our analysis could be helpful in a

possible attempt to derive the currently unavailable explicit expression of the asymptotic

anomalous dimension beyond one-loop.
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A. One-loop explicit Baxter polynomials

The general solutions to the 1-loop Bethe equations (2.5) are given by the following Baxter

polynomials [13]

Q

4

(u) =

m

X

k=0

(�1)

k

 

m

k

!

k

Y

j=1

�

u� i

2j � 1

2

�

3

m�k

Y

j=1

�

u+ i

2j � 1

2

�

3

F

n;m

�

u+ i

m� 2k

2

�

;

Q

5

(u) =

m�1

X

k=0

(�1)

k

 

m� 1

k

!

k

Y

j=1

(u� ij)

3

m�1�k

Y

j=1

(u+ ij)

3

F

n;m

�

u+ i

m� 1� 2k

2

�

;

Q

6

(u) =

m�2

Y

k=0

f

k

�

u+ i

k

2

�

(A.1)

+

m�1

X

r=1

(�1)

r

m�2

X

j

1

=0

j

1

�1

X

j

2

=0

� � �

j

r�1

�1

X

j

r

=0

r

Y

s=1

~

f

j

s

�

u+ i

j

s

� 2(r � s)

2

�

j

r

�1

Y

k=0

f

k

�

u+ i

k

2

�

�

r

Y

s=2

j

s�1

�1

Y

k=j

s

+1

f

k

�

u+ i

k � 2(r � s+ 1)

2

�

m�2

Y

k=j

1

+1

f

k

�

u+ i

k � 2r

2

�

;

where the hypergeometric function

F

n;m

(u) =

4

F

3

 

�

n

2

n

2

+ 1 +

3m

2

1

2

+ i u

1

2

� i u

1 +

m

2

1 +

m

2

1 +

m

2

�

�

�

�

�

1

!

: (A.2)

obeys the Baxter equation

�

u� i

m+ 1

2

�

3

F

n;m

(u� i) +

�

u+ i

m+ 1

2

�

3

F

n;m

(u+ i) = t

3

(u)F

n;m

(u);

t

3

(u) = 2u

3

�

�

n

2

� n+ 3(m+ 1)n +

3

2

(m+ 1)

2

�

u: (A.3)

In the formula for Q
6

, we defined

f

l

(u) = �

P

l

�

u�

i

2

�

P

l+1

(u)

~

f

l

(u) = �

P

l

�

u+

i

2

�

P

l+1

(u)

; (A.4)

and

P

l

(u) =

m�1�l

X

k=0

(�1)

k

 

m� 1� l

k

!

k

Y

j=1

�

u� i

2j + l

2

�

3

� (A.5)
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�

m�1�k�l

Y

j=1

�

u+ i

2j + l

2

�

3

F

n;m

�

u+ i

m� 1� l� 2k

2

�

:

B. Expansion of various hypergeometric functions

Let

L

n;m

(u) = log F

n;m

(u): (B.1)

We can easily obtain closed expressions for the specialized derivatives

L

(k)

n;m

�

m+ 1

2

i

�

: (B.2)

In particular, the first two derivatives for m = 2; 3; 4 are

L

0

n;2

(3i=2) = �

i

�

4(n+ 4)S

1

�

n

2

+ 1

�

� 5n� 16

�

2(n+ 4)

; (B.3)

L

00

n;2

(3i=2) =

n(n+ 8)

4(n+ 4)

2

; (B.4)

L

0

n;3

(2 i) = �iS

1

�

n

2

+ 2

�

� iS

1

�

n

2

+ 4

�

�

1

2

i(4 log(2) � 9); (B.5)

L

00

n;3

(2 i) = S

2

�

n

2

+ 2

�

� S

2

�

n

2

+ 4

�

+

1

12

�

4�

2

� 37
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; (B.6)

L

0

n;4

(5i=2) = �iS

1

�

n

2

+ 2

�

� iS

1

�

n

2

+ 4

�

+

43i
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; (B.7)

L

00

n;4

(5i=2) =

n

�

25n

3

+ 700n

2

+ 6148n + 17472

�

144 (n

2

+ 14n + 48)

2

: (B.8)

We can now use the Baxter equation to shift the arguments and move them to i=2 for even

m of i for odd m. Expanding at large n, we find

�n =

1

2

e




E

n; (B.9)

L

0

n;2

(i=2) = (3i� 2i log (�n))�

8i

n

+

62i

3

� 8i log (�n)

n

2

+
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n

3

+ : : : ;

L
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n

2

+
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2
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n

3

+ : : : ;
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L

0

n;3

(i) =

�

9i

2

� 2i log (�n)

�

�

11i

n

+

217i

6n

2

�
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– 17 –



�n =

1

2

e




E
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