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Finite temperature Casimir effect of massive fermionic fields in the presence of

compact dimensions
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We consider the finite temperature Casimir effect of a massive fermionic field confined between
two parallel plates, with MIT bag boundary conditions on the plates. The background spacetime
is Mp+1

× T q which has q dimensions compactified to a torus. On the compact dimensions, the
field is assumed to satisfy periodicity boundary conditions with arbitrary phases. Both the high
temperature and the low temperature expansions of the Casimir free energy and the force are
derived explicitly. It is found that the Casimir force acting on the plates is always attractive at any
temperature regardless of the boundary conditions assumed on the compact torus. The asymptotic
limits of the Casimir force in the small plate separation limit are also obtained.
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I. INTRODUCTION

Casimir effect is a manifestation of the zero-point energy of a quantum field [1–3]. Since spacetimes with extra
dimensions are fundamental in most of the theories of high energy physics, there have been some intensive activities in
investigating the Casimir effect in spacetime with extra compactified dimensions [4–29]. The case of scalar fields with
Dirichlet or Neumann boundary conditions or more general Robin conditions, and the case of electromagnetic field with
perfectly conducting or infinitely permeable boundary conditions have been studied at either zero or finite temperature,
for different extra-dimensional spacetimes such as the Kaluza-Klein spacetime and the Randall-Sundrum spacetime.
One of the common findings of these works is that on a pair of parallel plates with the same boundary conditions, the
Casimir force is always attractive at any temperature. For fermionic fields, so far only the zero temperature effect has
been investigated in [16, 21–23] for extra-dimensional spacetimes with toroidal extra dimensions. It was found that for
a massive fermionic field with MIT bag boundary conditions on a pair of parallel plates, the zero temperature Casimir
force is attractive regardless of the boundary conditions imposed on the compactified dimensions. The temperature
correction to the Casimir force of a fermionic field is different from that of a bosonic field. Therefore, it would be
interesting to investigate whether the Casimir force of a fermionic field would stay attractive at any temperature. The
purpose of this work is to answer this question.
The zero temperature Casimir effect of fermionic fields in (3+1)-dimensional Minkowski spacetime has been inves-

tigated in [30–32] for the massless case and in [33, 34] for the massive case. The zero temperature effect in Minkowski
spacetime with arbitrary number of dimensions was discussed in [35, 36]. The finite temperature correction to the
fermionic Casimir effect is less considered. For massless fermions in (3+1)-dimensional Minkowski spacetime, it was
discussed in [37, 38]. In this article, we consider the finite temperature Casimir effect of a massive fermionic field in a
spacetime of the form Mp+1 × T q, where Mp+1 is the (p+ 1)-dimensional Minkowski spacetime and T q is a compact
q-dimensional torus. This will cover the massless case by taking the limit m → ∞ and the case of a Minskowki
spacetime with arbitrary dimensions by setting q = 0 or by letting the radii of the torus go to infinity.
In this paper, we use units with ~ = c = kB = 1.

II. THE CASIMIR FREE ENERGY

As in [22], we consider a quantum fermionic field ψ on a (D+1)-dimensional spacetime with q compact dimensions
of the form Mp+1 × T q, where Mp+1 is the (p + 1)-dimensional Minkowski spacetime, and T q = (S1)q is a q torus.
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The background metric is the flat metric

ds2 = gµνdx
µdxν = dt2 −

D
∑

j=1

(dxj)2.

Here t = x0, xj ∈ R for j = 0, 1, . . . , p and 0 ≤ xj ≤ Lj for j = p+ 1, . . . , D. The field ψ has ND components, where

ND is given by 2
D+1

2 if D is odd and 2
D
2 if D is even. On the compact dimensions, the field ψ is assumed to satisfy

the general periodicity conditions

ψ(t,x+ Ljej) = e2πiαjψ(t,x), (1)

where x = (x1, . . . , xD), ej is the unit vector in the xj direction, and 0 ≤ αj < 1, j = p+ 1, . . . , D, are the constant
phases. The cases αj = 0 for all j = p + 1, . . . , D, and αj = 1/2 for all j = p + 1, . . . , D, correspond respectively to
untwisted and twisted fields.
In this paper, we consider the finite temperature Casimir effect of the fermionic field ψ when it is confined between

two parallel plates placed at x1 = 0 and x1 = a. The equation of motion of the field ψ is the Dirac equation:

iγµ∂µψ −mψ = 0. (2)

On the plates x1 = 0 and x1 = a, the field ψ satisfies the MIT bag boundary conditions:

(1 + iγµnµ)ψ|x1=0 and x1=a
ψ = 0. (3)

Here γµ are the Dirac matrices, and nµ is a unit outward normal vector to the boundaries.
As in [22], using the chiral representation of the Dirac matrices:

γ0 =

(

1 0
0 −1

)

, γj =

(

0 σj
−σ+

j 0

)

, j = 1, . . . , D,

with σjσ
+
l + σlσ

+
j = 2δjl, the positive-frequency and the negative-frequency solutions of the Dirac equation can be

written respectively as

ψ(+) = e−iωt

(

ϕ(+)

−iσ+
· ∇ϕ(+)/(ω +m)

)

and ψ(−) = eiωt

(

iσ ·∇ϕ(−)/(ω +m)
ϕ(−)

)

. (4)

Here σ = (σ1, . . . , σD), the spinors ϕ(+) and ϕ(−) are given by

ϕ(±) =
(

ϕ
(±)
+ eik1x

1

+ ϕ
(±)
− e−ik1x

1
)

exp



±i
D
∑

j=2

kjx
j



 , (5)

and ω2 =

D
∑

j=1

k2j +m2. The boundary conditions on the compact dimensions (1) imply that

kj =
2π(nj + αj)

Lj

for j = p+ 1, . . . , D,

where nj are integers. On the uncompactified directions x2, . . . , xp, there are no boundary conditions and hence
k2, . . . , kp ∈ R. The boundary condition (3) on the plate located at x1 = 0 implies that

ϕ
(±)
+ =−

m(ω +m) + k21 ∓ k1σ1σ
+
‖ · k‖

(m− ik1)(ω +m)
ϕ
(±)
− , (6)

whereas the boundary conditions on the plate located at x1 = a implies

ϕ
(±)
+ =−

m(ω +m) + k21 ∓ k1σ1σ
+
‖ · k‖

(m+ ik1)(ω +m)
e−2ik1aϕ

(±)
− . (7)
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Here σ‖ = (σ2, . . . , σD) and k‖ = (k2, . . . , kD). Comparing (6) and (7), we find that in order to have nontrivial

solutions for (ϕ
(+)
+ , ϕ

(+)
− ) and (ϕ

(−)
+ , ϕ

(−)
− ), one requires k1 to satisfy a transcendental equation

F (z) := m sinaz + z cos az = 0. (8)

Therefore, the eigenfrequencies of the field ψ are given by

ω =

√

√

√

√k21 +

p
∑

j=2

k2j + λ2
n
+m2, λ2

n
=

D
∑

j=p+1

[

2π(nj + αj)

Lj

]2

, n = (np+1, . . . , nD),

where k1 are positive solutions of (8), kj ∈ R for j = 2, . . . , p, and nj , j = p+ 1, . . . , D, are integers. Each of these ω
appears with multiplicity ND.
To regularize the Casimir free energy of the parallel plate system, we take the piston approach, where the Casimir

free energy is given by [39]:

E
‖
Cas = lim

L1→∞

(

ECas(a) + ECas(L1 − a)− ECas (L1/η)− ECas (L1 [1− 1/η])
)

. (9)

See Figure 1. Here ECas(a) is the Casimir free energy between the parallel plates which are separated by a distance
a, and η is a constant greater than 1. Using Matsubara imaginary time formalism, for a fermionic system in thermal

L
1
−a

L
1
−L

1
/ηL

1
/η

a

|

FIG. 1: The piston regularization scheme.

equilibrium at temperature T , the partition function is given by

Z =

∫

DψDψ̄ exp

(

∫ β

0

dτ

∫

dDxL
)

,

where

L =
i

2

(

ψ̄γµ∂µψ − ∂µψ̄γ
µψ
)

−mψ̄ψ

is the Dirac Lagrangian density. The time direction t is rotated to the imaginary axis, i.e., t 7→ iτ , and compactified to
a circle of radius β = 1/T . The field ψ satisfies the antiperiodic boundary conditions on the imaginary time direction:

ψ(x, τ + β) = −ψ(x, τ).

The finite temperature Casimir free energy is then given by

ECas = − 1

β
lnZ = −T lnZ .
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Using zeta function techniques [39–41], we have

ECas =
T

2

(

ζ′T (0) + [log µ2]ζT (0)
)

, (10)

where µ is a normalization constant with the dimension of mass, and ζT (s) is the zeta function

ζT (s) =
∑

ω eigenfrequencies

∞
∑

l=−∞

(

ω2 + ξ2l
)−s

.

Here ξl = 2π

(

l +
1

2

)

T are the Matsubara frequencies. For the Casimir free energy between the parallel plates which

are separated by a distance a,

ζT (s; a) =
AND

(2π)p−1

∞
∑

l=−∞

∑

n∈Zq

∑

k1

∫

Rp−1



k21 +

p
∑

j=2

k2j + λ2
n
+ ξ2l +m2





−s

dk2 . . . dkp

=
ANDΓ

(

s− p−1
2

)

2p−1π
p−1

2 Γ (s)

∞
∑

l=−∞

∑

n∈Zq

∑

k1

(

k21 +m2
n,l

)−s+ p−1

2 ,

where A is the area of the plates and m2
n,l = λ2

n
+ ξ2l +m2. In order to perform the summation over k1, which are

positive solutions of the equation F (z) = 0, we need to use the generalized Abel-Plana summation formula, which
states that [24, 42, 43]: If f0(z), f+(z) and f−(z) are functions such that

lim
Y→∞

∫ ∞

0

{

f0(x± iY )− f±(x± iY )
}

dx = 0, lim
X→∞

∫ ∞

0

{

f0(X ± iy)− f±(X ± iy)
}

dy = 0, (11)

then
∑

Re z≥0

w0(z)Reszf0(z)−
∑

Re z≥0
Im z≥0

w+(z)Reszf+(z)−
∑

Re z≥0
Im z≤0

w−(z)Reszf−(z)

=− 1

2π

∫ ∞

0

{

f0(iy)− f+(iy)
}

dy − 1

2π

∫ ∞

0

{

f0(−iy)− f−(−iy)
}

dy − 1

2πi

∫ ∞

0

{

f+(x)− f−(x)
}

dx.

(12)

Here w0(z), w1(z) and w2(z) are weight functions defined by

w0(z) =

{

1, if Re z > 0,

1/2, if Re z = 0
, w+(z) =











1, if Re z > 0 and Im z > 0,

1/2, if Re z = 0 or Im z = 0,

1/4, if z = 0,

,

and w−(z) = w+(z̄). Notice that

F (z) =
z − im

2
eiaz +

z + im

2
e−iaz.

Taking

f0(z) =
ANDΓ

(

s− p−1
2

)

2p−1π
p−1

2 Γ (s)

∞
∑

l=−∞

∑

n∈Zq

(

z2 +m2
n,l

)−s+ p−1

2
d

dz
lnF (z),

f±(z) =
ANDΓ

(

s− p−1
2

)

2p−1π
p−1

2 Γ (s)

∞
∑

l=−∞

∑

n∈Zq

(

z2 +m2
n,l

)−s+ p−1

2
d

dz
ln

(

z ± im

2
e∓iaz

)

,

we find that the conditions (11) are satisfied. Since the poles of f0(z) are the zeros of the function F (z), and the
function f+(z) (resp. f−(z)) does not have poles on the upper (resp. lower) half plane, the left hand side of (12) gives

ζT (s; a) +
1

2

ANDΓ
(

s− p−1
2

)

2p−1π
p−1

2 Γ (s)

∞
∑

l=−∞

∑

n∈Zq

m−2s+p−1
n,l , (13)
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where the second term comes from the pole of f0(z) at z = 0. This term is independent of a. On the other hand,

f0(±iy)− f±(±iy) =
ANDΓ

(

s− p−1
2

)

2p−1π
p−1

2 Γ (s)

∞
∑

l=−∞

∑

n∈Zq

d

dy
ln

(

1 +
y −m

y +m
e−2ay

)

×







∓ i
(

m2
n,l − y2

)−s+ p−1

2 , y < mn,l

∓ i
(

y2 −m2
n,l

)−s+ p−1

2 e∓iπ(s− p−1

2 ), y > mn,l

,

f+(x)− f−(x) =
ANDΓ

(

s− p−1
2

)

2p−1π
p−1

2 Γ (s)

∞
∑

l=−∞

∑

n∈Zq

(

x2 +m2
n,l

)−s+ p−1

2

(

− 2im

x2 +m2
− 2ia

)

.

Therefore, the right hand side of (12) gives

sinπ
(

s− p−1
2

)

π

ANDΓ
(

s− p−1
2

)

2p−1π
p−1

2 Γ (s)

∞
∑

l=−∞

∑

n∈Zq

∫ ∞

mn,l

(

y2 −m2
n,l

)−s+ p−1

2
d

dy
ln

(

1 +
y −m

y +m
e−2ay

)

dy

+
ANDΓ

(

s− p−1
2

)

2p−1π
p+1

2 Γ (s)

∞
∑

l=−∞

∑

n∈Zq

∫ ∞

0

(

x2 +m2
n,l

)−s+ p−1

2

(

m

x2 +m2
+ a

)

dx.

(14)

Notice that the second term depends on a linearly. From (13) and (14), one finds that

ζT (s; a) = ζT ;0(s)+aζT ;1(s)+
AND

2p−1π
p−1

2 Γ
(

p+1
2 − s

)

Γ (s)

∞
∑

l=−∞

∑

n∈Zq

∫ ∞

mn,l

(

y2 −m2
n,l

)−s+ p−1

2
d

dy
ln

(

1 +
y −m

y +m
e−2ay

)

dy.

Here ζT ;0(s) and ζT ;1(s) do not depend on a. From this, we have

ζT (0; a) =ζT ;0(0) + aζT ;1(0),

ζ′T (0; a) =ζ
′
T ;0(0) + aζ′T ;1(0) +

AND

2p−1π
p−1

2 Γ
(

p+1
2

)

∞
∑

l=−∞

∑

n∈Zq

∫ ∞

mn,l

(

y2 −m2
n,l

)

p−1

2
d

dy
ln

(

1 +
y −m

y +m
e−2ay

)

dy,

and thus

ECas(a) = E0 + aE1 −
ATND(p− 1)

2pπ
p−1

2 Γ
(

p+1
2

)

∞
∑

l=−∞

∑

n∈Zq

∫ ∞

mn,l

y
(

y2 −m2
n,l

)
p−3

2 ln

(

1 +
y −m

y +m
e−2ay

)

dy,

where E0 and E1 are independent of a. After regularization using the piston scheme (9), the terms E0 and E1 are
canceled, and we find that the Casimir free energy between the parallel plates is given by

E
‖
Cas = − ATND

2p−1π
p−1

2 Γ
(

p−1
2

)

∞
∑

l=−∞

∑

n∈Zq

∫ ∞

mn,l

y
(

y2 −m2
n,l

)

p−3

2 ln

(

1 +
y −m

y +m
e−2ay

)

dy. (15)

Since mn,l > m, the Casimir free energy is always negative. The expression (15) also shows that in the high
temperature (i.e., aT ≫ 1) limit, the Casimir free energy is dominated by the terms with Matsubara frequency zero,
i.e., the term

Ecl
Cas = − ATND

2p−1π
p−1

2 Γ
(

p−1
2

)

∑

n∈Zq

∫ ∞

mn

y
(

y2 −m2
n

)

p−3

2 ln

(

1 +
y −m

y +m
e−2ay

)

dy, (16)

m2
n
= λ2

n
+m2,

which is linear in T . This term is called the classical term since it is independent of the Planck constant ~.
To study the low temperature (i.e., aT ≪ 1) behavior, we need an alternative expression for the Casimir free energy

which we derive in Appendix A. We find that

E
‖
Cas = E

‖,T=0
Cas +∆TE

‖
Cas,
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where E
‖,T=0
Cas is the zero temperature Casimir energy given by

E
‖,T=0
Cas = − AND

2pπ
p
2 Γ
(

p
2

)

∑

n∈Zq

∫ ∞

mn

y
(

y2 −m2
n

)

p−2

2 ln

(

1 +
y −m

y +m
e−2ay

)

dy, (17)

and ∆TE
‖
Cas is the temperature correction given by

∆TE
‖
Cas =− AND

2p−2π
p−1

2

∑

n∈Zq

∞
∑

l=1

(−1)l

{

a

4π

(

2mnT

l

)
p+1

2

K p+1

2

(

lmn

T

)

+
1

2π
3
2

∫ ∞

0

m

y2 +m2

(

2T
√

y2 +m2
n

l

)
p
2

K p

2

(

l
√

y2 +m2
n

T

)

dy

− 1

2
√
π

∑

k1>0 :F (k1)=0

(

2T
√

k21 +m2
n

l

)
p

2

K p

2

(

l
√

k21 +m2
n

T

)}

.

(18)

In the case mn = 0, which happens if and only if the field is massless and untwisted, and n = 0, the term

(

2mnT

l

)
p+1

2

K p+1

2

(

lmn

T

)

is understood as

lim
mn→0

(

2mnT

l

)
p+1

2

K p+1

2

(

lmn

T

)

=
Γ
(

p+1
2

)

2

(

2T

l

)p+1

. (19)

Therefore, for an untwisted massless fermionic field, the temperature correction contains a term of order T p+1.

III. THE CASIMIR FORCE AND ITS ASYMPTOTIC BEHAVIOR AT SMALL SEPARATION

The Casimir force acting on the plates induced by the vacuum fluctuation of the field is given by

F
‖
Cas = −∂E

‖
Cas

∂a
.

Using (15), we have

F
‖
Cas = − ATND

2p−2π
p−1

2 Γ
(

p−1
2

)

∞
∑

l=−∞

∑

n∈Zq

∫ ∞

mn,l

y2
(

y2 −m2
n,l

)
p−3

2

y+m
y−m

e2ay + 1
dy. (20)

On the other hand, using (17) and (18), we find that the Casimir force can be written as a sum of the zero temperature
term and the temperature correction term, where the zero temperature term is

F
‖,T=0
Cas = − AND

2p−1π
p

2 Γ
(

p
2

)

∑

n∈Zq

∫ ∞

mn

y2
(

y2 −m2
n

)
p−2

2

y+m
y−m

e2ay + 1
dy, (21)

and the thermal correction term is

∆TF
‖
Cas =

AND

2p−2π
p−1

2

∑

n∈Zq

∞
∑

l=1

(−1)l

{

1

4π

(

2mnT

l

)
p+1

2

K p+1

2

(

lmn

T

)

− 1√
π

∑

k1>0 :F (k1)=0

k21
a+ m

m2+k2
1

(

2T
√

k21 +m2
n

l

)
p−2

2

K p−2

2

(

l
√

k21 +m2
n

T

)}

.

(22)
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Here we have used

∂k1
∂a

= −
∂F
∂a
∂F
∂z

∣

∣

∣

∣

∣

z=k1

= − k1
a+ m

m2+k2
1

,

which follows from F (k1) = 0.
Since mn,l > m, the expression (20) shows manifestly that the Casimir force is always attractive (negative) at any

temperature and for any mass m.
In the massless case, the integrals in (20) and (21) can be evaluated explicitly, which gives

F
‖
Cas =

ATND

2p−2π
p−1

2 Γ
(

p−1
2

)

∞
∑

l=−∞

∑

n∈Zq

∞
∑

j=1

(−1)j
∫ ∞

mn,l

y2
(

y2 −m2
n,l

)

p−3

2 e−2jaydy

=
ATND

2p−1π
p

2

∞
∑

l=−∞

∑

n∈Zq

∞
∑

j=1

(−1)j
(

mn,l

ja

)
p
2 (

2jamn,lK p+2

2

(2jamn,l)−K p

2
(2jamn,l)

)

,

(23)

where now mn,l =
√

λ2
n
+ ξ2l ; and

F
‖,T=0
Cas =

AND

2pπ
p+1

2

∑

n∈Zq

∞
∑

j=1

(−1)j
(

λn
ja

)
p+1

2 (

2jaλnK p+3

2

(2jaλn)−K p+1

2

(2jaλn)
)

. (24)

(23) and (24) are also the leading terms for the finite temperature Casimir force and the zero temperature Casimir
force when am ≪ 1. For the temperature correction, one put directly m = 0 in (22) and uses (19) in the untwisted
case.
Next, let us consider the small separation limit where am ≪ 1 and a ≪ Lj for j = p+ 1, . . . , D. In this case, we

replace the summation over n ∈ Z
q to integration over n ∈ R

q, which is equivalent to replacing p in (23) by D. We
find that for the finite temperature Casimir force,

F
‖
Cas ∼

ATND

2D−2π
D−1

2 Γ
(

D−1
2

)

∞
∑

l=−∞

∞
∑

j=1

(−1)j
∫ ∞

ξl

y2
(

y2 − ξ2l
)

D−3

2 e−2jaydy

=− ATNDΓ(D)

22D−2π
D−1

2 Γ
(

D−1
2

)

aD
(1− 21−D)ζR(D) +

ATND

2D−2π
D
2

∞
∑

l=1

∞
∑

j=1

(−1)j
(

ξl
ja

)
p
2 (

2jaξlKD+2

2

(2jaξl)−KD
2
(2jaξl)

)

.

(25)

This can also be interpreted as the finite temperature Casimir force acting on a pair of parallel plates in (D + 1)-
dimensional Minkowski spacetime. In the high temperature (aT ≫ 1) limit, we find that

F
‖
Cas ∼ − ATNDΓ(D)

22D−2π
D−1

2 Γ
(

D−1
2

)

aD
(1− 21−D)ζR(D).

In the low temperature (aT ≪ 1) limit, (24) shows that the Casimir force is dominated by

F
‖,T=0
Cas ∼ − ANDΓ(D + 1)

22Dπ
D
2 Γ
(

D
2

)

aD+1
(1− 2−D)ζR(D + 1).

For the temperature correction, since in the limit m = 0, F (z) = z cos az, we deduce from (22) that

∆TF
‖
Cas ∼− AND

π
D+1

2

Γ

(

D + 1

2

)

(1 − 2−D)ζR(D + 1)TD+1 − ANDπT
D−2

2

2
D−2

2 a
D+4

2

∞
∑

l=1

(−1)l
∞
∑

k=0

(

k + 1
2

)
D+2

2

l
D−2

2

KD−2

2

(

π
(

k + 1
2

)

l

aT

)

.

Notice that the leading term is of order TD+1.
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IV. CONCLUSION

In this article, we have investigated the finite temperature Casimir effect on a pair of parallel plates in a (D + 1)-
dimensional spacetime due to the vacuum fluctuations of a massive fermionic field with MIT bag boundary conditions
on the plates. We assume that q < D of the dimensions are compactified to a torus and the field assumes general
periodicity conditions on these compact dimensions. The Casimir free energy is computed using zeta function tech-
niques and generalized Abel-Plana summation formula. Piston approach is employed to regularize the Casimir free
energy. Low and high temperature expressions of the Casimir free energy and the Casimir force are derived. The
asymptotic limits of the Casimir force when the separation between the plates is small are computed.
The most important result we obtain in this paper is that the force acting on the plates is always attractive at any

temperature and for any boundary conditions assumed on the compact dimensions. This extends the result obtained
in [22] for the zero temperature case. On the other hand, we also observe that this result is the same as the case of
a scalar field with the same Robin condition on both plates [19, 24]. It can be considered as a manifestation of the
principle that the Casimir force between two bodies with the same property is attractive [44, 45].

Appendix A: Low temperature expansion of the Casimir free energy

Let f(z) be a function that does not have poles on the positive real axis. Assume that f(z) is such that the functions
f0(z), f+(z) and f−(z) defined by

f0(z) = f(z)
d

dz
ln
(

eiπz + e−iπz
)

= iπf(z)

(

1− 2

e2iπz + 1

)

,

f±(z) = f(z)
d

dz
ln
(

e∓iπz
)

= ∓iπf(z),

satisfy (11). As in [24], one can derive the following formula from (12):

∞
∑

l=0

f

(

l +
1

2

)

=

∫ ∞

0

f(x)dx− i

∫ ∞

0

f(iy)− f(−iy)
e2πy + 1

dy

− πi
∑

y>0

Resz=iyf(z)− Resz=−iyf(z)

e2πy + 1
− 2πi

∑

Re z>0
Im z>0

Reszf(z)

e−2iπz + 1
+ 2πi

∑

Rez>0
Im z<0

Reszf(z)

e2iπz + 1
.

(A1)

To derive the low temperature expansion for the Casimir free energy (15), keep in mind that m2
n,l = m2

n
+ [2π(l +

1/2)T ]2 and notice that if f is an even function,

∞
∑

l=−∞

f

(

l +
1

2

)

= 2

∞
∑

l=0

f

(

l +
1

2

)

.

Let

f(z;n) =
p− 1

2

∫ ∞

√
m2

n
+[2πTz]2

y
(

y2 −m2
n
− [2πTz]2

)
p−3

2 ln

(

1 +
y −m

y +m
e−2ay

)

dy

=

∫ ∞

0

a− m
y2+m2

n
+[2πTz]2−m2

√
y2+m2

n
+[2πTz]2+m√

y2+m2
n
+[2πTz]2−m

e2a
√

y2+m2
n
+[2πTz]2 + 1

ypdy
√

y2 +m2
n
+ [2πTz]2

=

∫ ∞

0

g(y, z;n)ypdy,

so that

E
‖
Cas = − ATND

2p−2π
p−1

2 Γ
(

p+1
2

)

∞
∑

l=0

∑

n∈Zq

f

(

l +
1

2
;n

)

. (A2)

Then straightforward computation gives
∫ ∞

0

f(x;n)dx =
p− 1

2

1

2πT

∫ ∞

0

∫ ∞

√
m2

n
+x2

y
(

y2 −m2
n
− x2

)

p−3

2 ln

(

1 +
y −m

y +m
e−2ay

)

dydx

=
1

4
√
πT

Γ
(

p+1
2

)

Γ
(

p
2

)

∫ ∞

mn

y
(

y2 −m2
n

)

p−2

2 ln

(

1 +
y −m

y +m
e−2ay

)

dy,
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−i
∫ ∞

0

f(iu;n)− f(−iu;n)
e2πu + 1

du =− 1

2πT

∫ ∞

0

∫ ∞

√
y2+m2

n

(

a− m

y2 +m2
n
− u2 −m2

)

1

e
u
T + 1

du
√

u2 − y2 −m2
n

ypdy

=− 1

2πT

∫ ∞

mn

∫

√
u2−m2

n

0

(

a+
m

y2 +m2

)

(

u2 −m2
n
− y2

)

p−1

2 dy
du

e
u
T + 1

=
a

4
√
πT

Γ
(

p+1
2

)

Γ
(

p+2
2

)

∫ ∞

mn

(

u2 −m2
n

)

p

2

∞
∑

l=1

(−1)le−
lu
T du

+
1

2πT

∫ ∞

0

∫ ∞

√
y2+m2

n

m

y2 +m2

(

u2 −m2
n
− y2

)

p−1

2

∞
∑

l=1

(−1)le−
lu
T dudy

=
aΓ
(

p+1
2

)

4πT

∞
∑

l=1

(−1)l
(

2mnT

l

)
p+1

2

K p+1

2

(

lmn

T

)

+
Γ
(

p+1
2

)

2π
3
2T

∞
∑

l=1

(−1)l
∫ ∞

0

m

y2 +m2

(

2T
√

y2 +m2
n

l

)
p

2

K p

2

(

l
√

y2 +m2
n

T

)

dy.

On the other hand, all the poles of g(y, z;n) are on the imaginary axis, and they are given by

z = ± i

2πT

√

k21 + y2 +m2
n
,

where k1 are the solutions of F (z) = 0. Therefore, the last two terms in (A1) are zero, whereas

−πi
∑

y>0

Resz=iyf(z;n)− Resz=−iyf(z;n)

e2πy + 1
=

1

2T

∑

k1>0 :F (k1)=0

∫ ∞

0

1

exp

(√
k2
1
+y2+m2

n

T

)

+ 1

ypdy
√

k21 + y2 +m2
n

=
1

2T

∑

k1>0 :F (k1)=0

∫ ∞

√
k2
1
+m2

n

(

y2 − k21 −m2
n

)
p−1

2

exp
(

y
T

)

+ 1
dy

=− Γ
(

p+1
2

)

2
√
πT

∑

k1>0 :F (k1)=0

∞
∑

l=1

(−1)l

(

2T
√

k21 +m2
n

l

)
p
2

K p

2

(

l
√

k21 +m2
n

T

)

.

Therefore,

E
‖
Cas =− AND

2pπ
p
2 Γ
(

p
2

)

∑

n∈Zq

∫ ∞

mn

y
(

y2 −m2
n

)

p−2

2 ln

(

1 +
y −m

y +m
e−2ay

)

dy

− AND

2p−2π
p−1

2

∑

n∈Zq

∞
∑

l=1

(−1)l

{

a

4π

(

2mnT

l

)
p+1

2

K p+1

2

(

lmn

T

)

+
1

2π
3
2

∫ ∞

0

m

y2 +m2

(

2T
√

y2 +m2
n

l

)
p

2

K p

2

(

l
√

y2 +m2
n

T

)

dy

− 1

2
√
π

∑

k1>0 :F (k1)=0

(

2T
√

k21 +m2
n

l

)
p

2

K p

2

(

l
√

k21 +m2
n

T

)}

.
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