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Abstract

We study the Causal Dynamical Triangulation (CDT) with extended interactions in 1+1 dimensions
applying the method in the non-critical string field theory (SFT) constructed by Ishibashi and Kawai.
For this model, we solve Schwinger-Dyson’s equation (SDE) for disk amplitude perturbatively, and find a
matrix model in the continuum limit reproducing the SDE in the non-critical SFT approach as the loop
equation.
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1 Introduction

As a consequence of general relativity, “un-countable” lots of physics about Universe have been uncovered.
Now, we have to go beyond the theory and into the quantum realm, i.e. quantum gravity. However, it
has been known that there is a difficulty in the case that we extend general relativity to quantum gravity.
Namely, general relativity is not renormalizable at least perturbatively.

As a candidate to overcome such a serious problem, a kind of non-perturbative method has been
proposed, which is called Euclidean Dynamical Triangulation (EDT). In EDT, discretizing Euclidean
space-time by simplices having the lattice spacing a as each side length, we can carry out the Euclidean
gravitational path-integral non-perturbatively. An important point here is that the lattice spacing a
is about the inverse energy cut-off Λgrav. Unfortunately, in EDT, no reasonable classical space-time
has been found in 4 dimensions, and what has been found are only the skinny polymer-like geometry
or the dense crumpled geometry, which has been calculated with the help of Monte-Carlo simulations.
This is because the geometries based on EDT is too “wild” to handle. Alternatively speaking, infinite
numbers of baby universes are produced in this approach. However, EDT had a great deal of success in
2 dimensions. In the suitable continuum limit, physical quantities such as several critical exponents and
correlation functions in EDT realize those of the so-called quantum Liouville theory. Furthermore, a dual
expression of EDT has been found, and it is called the matrix model. Utilizing the powerfulness of the
matrix model, conformal matters realized in the so-called minimal model have been successfully included
in EDT approach.

In this line of thought, a kind of breakthrough has been casted out, which is known as Causal
Dynamical Triangulation (CDT) [1]. In CDT approach, the path-integral of dynamically triangulated
geometries can be done non-perturbatively under the two new additional restrictions. First, one gives the
Lorentzian signature to simplices. Second, the time-foliation structure is imposed. In this approach, our
de-Sitter universe can be “realized” in 3 + 1 dimensions [2]. Furthermore, in 1 + 1 dimensions physical
quantities, say disk amplitude, can be solved analytically [1]. An outstanding feature of the pure CDT is
that no baby universe is allowed according to the non-anomalous scaling dimension of time. Related to
the fact above, for instance the Hausdorff dimension dH in the (1+1)-dimensional setup is not anomalous,
dH = 2, compared to that in EDT, dH = 4. This is one of attractive traits of CDT.

The CDT approach really restricts the configurations of geometries to the causal ones a priori, but in
fact we do not understand whether or not we should exclude the contributions from the baby universes and
furthermore from the geometries with different space-time topologies. Focusing on the (1+1)-dimensional
case, CDT has been extended to the one including topology changing processes within the criterion that
the scaling behavior does not change, i.e. the causal geometries are still dominant, via the non-critical
String Field Theory (SFT) [3]. In addition, the matrix model expression for the non-critical SFT based
on CDT has been found [4]. Such extended models including baby universes and topology changes are
called Generalized CDT’s (GCDT). As for the matter-coupled CDT’s, there is not any analytical tool
to calculate even in 1+1 dimensions. From the lessons based on the subsequent works in CDT, it can
be said that the dominance of causal geometries, characterized by the fact that space and time have
the same scaling dimension, prevents the stampede of geometries. Alternatively speaking, the causality
makes geometries obedient to handle. If the CDT approach is on a correct direction as quantum gravity,
this may be a pretty nice property.

In this paper, to read off some hidden traits of CDT, we quest for possibilities to extend the GCDT
approach without changing the scaling dimensions of space and time in 1+1 dimensions. We actually
extend GCDT applying the method in the non-critical SFT techniques in [5] and [6]. We solve the
Schwinger-Dyson’s equation (SDE) for disk amplitude in our model by the perturbation w.r.t. the string
coupling constant. Moreover, we define the corresponding matrix model in the continuum limit. In
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Section 2, we review known facts for GCDT. In Section 3, our extended model is explained in detail.
Both sections are almost separated by the two different subsections, Non-critical SFT Approach and
Matrix Model Approach. At the end of Section 3, as a consistency check, we also consider the inclusive
process, which turns out to reproduce our differential equation for disk amplitude. In Section 4, we
discuss our model from the two different field theories, the non-critical SFT and the matrix model.

2 Generalized CDT

2.1 Non-critical SFT Approach

We shall review the non-critical SFT of the original GCDT formulated in [3]. This model really reproduces
the disk amplitude derived in the continuum limit of the strictly causal CDT in the case that the string
coupling constant is zero. In this model, closed strings with length L are created and annihilated from
the vacuum, |0〉 (〈0|) by the operators, ψ†(L) and ψ(L), respectively:

〈0|ψ†(L) = ψ(L)|0〉 = 0. (2.1)

These creation and annihilation operators obey the following commutation relations:

[ψ(L), ψ†(L′)] = δ(L− L′), (2.2)

and the others are zero. The world-sheet which closed strings sweep out can be seen as the whole
space-time itself. Corresponding Hamiltonian can be written as:

H0 =

∫ ∞
0

dLψ†(L)H0(L,Λ)ψ(L) +Gs

∫ ∞
0

dL1

∫ ∞
0

dL2ψ
†(L1)ψ†(L2)ψ(L1 + L2)(L1 + L2)

+ αGs

∫ ∞
0

dL1

∫ ∞
0

dL2ψ
†(L1 + L2)ψ(L2)ψ(L1)L2L1 −

∫ ∞
0

dLδ(L)ψ(L), (2.3)

where
H0(L,Λ) = −L∂2

L + ΛL. (2.4)

Gs and Λ are the string coupling constant and the cosmological constant, respectively. The parameter

Figure 1: Terms in the Hamiltonian

α in (2.3) was introduced to count the numbers of genus in amplitudes. In the following discussion we
shall take α = 0, which suppresses the creation of handles. The Hamiltonian above has been determined
under the following scaling dimensions:

[S] = a, [ψ†(L)] = a0, [ψ(L)] = a−1, [Gs] = a−3, (2.5)
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where a is the scaling dimension of space, or alternatively speaking the lattice spacing, and [S] is the scal-
ing dimension of time. A crucial difference between the Hamiltonian of the non-critical SFT constructed
by Ishibashi and Kawai [5] and that of GCDT is the existence of the propagator term,

∫
dLψ†(L)H0ψ(L).

In GCDT the propagator term actually exists but IK’s theory does not. This difference comes from the
fact that both theories have quite different definitions of “time”.

The authors in [3] derived Schwiner-Dyson’s equation (SDE) for the Laplace-transformed disk ampli-
tude, W̃Λ(Z) =

∫∞
0
dLe−LZ〈0|e−SH0ψ†(L)|0〉|S→∞, in GCDT as 1:

∂Z
[
(Λ− Z2)W̃Λ(Z) +GsW̃

2
Λ(Z)

]
+1 = 0. (2.6)

The solution of the above SDE was also derived by a perturbative expansion w.r.t. the string coupling
constant in [3]:

W̃Λ(Z) =
1

Z +
√

Λ
−Gs

Z + 3
√

Λ

4Λ(Z +
√

Λ)3
+O(G2

s). (2.7)

The first term in the solution above is equivalent to the strictly causal solution [1]. In this formalism,
the contributions from baby universes are weighted by the string coupling constant Gs.

2.2 Matrix Model Approach

The hermitian N ×N matrix model reproducing the SDE of GCDT was introduced. We start with the
following matrix integral [4]: ∫

dφ e−
N
gs
V (φ), (2.8)

where

V (φ) = −gφ+
1

2
φ2 − 1

3
gφ3, (2.9)

and φ, g and gs are a N × N hermitian matrix, the ’tHooft coupling constant and the string coupling
constant, respectively. Then, by introducing the infinitesimal lattice spacing a, we can expand the
coupling constants and the matrix w.r.t. a:

gs =
1

2
a3Gs, φ = Î − aΦ +O(a2), g =

1

2

(
1− 1

2
a2Λ +O(a4)

)
, (2.10)

where Î is the unit N ×N matrix, and Gs, Φ and Λ are the corresponding renormalized values. Substi-
tuting the fine-tuned values above into the potential N

gs
V (φ), we find

N

gs
trV (φ) =

N

Gs
tr

(
1

3
Φ3 − ΛΦ

)
+(terms independent of Φ) +O(a). (2.11)

Here we define the partition function in the continuum limit as:

Z ≡
∫
dΦ exp

[
− N
Gs

tr

(
1

3
Φ3 − ΛΦ

)]
. (2.12)

In the large-N limit, the saddle-point equation becomes2

∂Z
[
(Λ− Z2)W̃Λ(Z) +GsW̃Λ(Z)2

]
+1 = 0, (2.13)

1The authors derived the more general result with arbitrary α, but here we restricted our situation to that with α = 0.
2In [4], the authors derived the general saddle-point equation beyond the large-N limit. The general saddle-point equation

really coincides with the SDE with arbitrary α by the treatment, α = 1/N2.
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where W̃Λ(Z) is the resolvent for the matrix Φ. We notice that the saddle-point equation coincides with
the SDE of GCDT.

3 Generalized CDT with Extended Interactions

3.1 Non-critical SFT Approach

Applying the method in [6], we shall construct the non-critical SFT Hamiltonian of GCDT with extended
interactions.

The propagator term in (2.3),
∫
dLψ†(L)H0(L,Λ)ψ(L), induces the strictly causal geometry. To make

this propagator survive, we should impose the scaling dimension of space and time as:

[L] = a, [S] = a, (3.1)

where a is the lattice spacing for space. From now, we shall extend the non-critical SFT based on GCDT
without changing the scalings above. Since we think that the causality is the identity of CDT, this sort
of extension is meaningful to get some deep understanding of what CDT is.

First, we consider the strings with different charges, (+)-type and (−)-type. The creation and anni-

hilation operators for (+)-type string, Ψ†+(L) and Ψ+(L), and for (−)-type string, Ψ†−(L) and Ψ−(L),
are defined as the following vacuum conditions, respectively:

〈0|ψ†+(L) = ψ+(L)|0〉 = 〈0|ψ†−(L) = ψ−(L)|0〉 = 0. (3.2)

We assume these operators obey the following commutation relations:

[ψ+(L), ψ†+(L′)] = [ψ−(L), ψ†−(L′)] = δ(L− L′), (3.3)

and the others are zero. Additionally, we assume the same scaling dimensions with those of GCDT:

[ψ†±(L)] = a0, [ψ±(L)] = a−1, [Gs] = a−3, (3.4)

where Gs is the string coupling constant as before. Under the conditions above, we can extend the
Hamiltonian for GCDT applying the interaction for spin clusters introduced by Ishibashi and Kawai [6].
Here we call such an interaction the IK-type interaction. It is based on the so-called peeling procedure in
a discrete random surface. For example, considering a randomly triangulated surface coupled with Ising
spins with one boundary and furthermore assuming that the boundary triangles have homogeneous spins
(all spins are up-type or down-type), one peels triangles along with the boundary as if one peels an apple.
If one continues to peel off triangles over the boundary triangles and one encounters the triangle having a
different spin, then one surrounds the triangles having different spins by the triangles having same spins
with the boundary triangles. In short, the randomly triangulated surface is separated by domain walls.
In this case, the SDE for their approach coincides with the loop equation for the chain-type two-matrix
model describing the random geometry coupled with Ising spins. We emphasize here that the above
closed strings are not seen as the spin boundary as in the case of IK but the equal-time hypersurfaces
with different charges. If we apply the IK-type interaction, we can write down the extended Hamiltonian
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for GCDT:

Hm =

∫ ∞
0

dLψ†+(L)H0(L,Λ)ψ+(L) +Gs

∫ ∞
0

dL1

∫ ∞
0

dL2ψ
†
+(L1)ψ†+(L2)ψ+(L1 + L2)(L1 + L2)

+ bGs

∫ ∞
0

dL1

∫ ∞
0

dL2ψ
†
+(L1 + L2)ψ†−(L2)ψ+(L1)L1

+ αGs

∫ ∞
0

dL1

∫ ∞
0

dL2ψ
†
+(L1 + L2)ψ+(L2)ψ+(L1)L2L1

−
∫ ∞

0

dLδ(L)ψ+(L) +

[
ψ+( ψ†+)↔ ψ−( ψ†−)

]
, (3.5)

where α and b are dimension-less constants3. In the Hamiltonian above, for simplicity, we will restrict

Figure 2: Terms in the extended Hamiltonian: The red string stands for the one having the (+)-type
charge, and the blue for the (−)-type charge. Of course, terms whose charges are flipped exist in the
Hamiltonian, but here we do not include the graphical expressions of those terms.

the topology of geometries to that of a disk, which can be realized by the following Hamiltonian:

HD
m ≡ lim

α→0
Hm. (3.6)

Next we will derive the SDE in our extended model. The SDE corresponds to Wheeler-DeWitt’s equa-
tion for the wave function of the universe. To begin, we define a partition function and disk amplitudes:

Z ≡ lim
S→∞

〈0|e−SH
D
m |0〉 ≡ 1, (3.7)

and
W±(L) ≡ lim

S→∞
〈0|e−SH

D
mψ†±(L)|0〉. (3.8)

The SDE for W±(L) is

lim
S→∞

∂

∂S
〈0|e−SH

D
mψ†±(L)|0〉 = 0. (3.9)

Using the equation, HD
m |0〉 = 0, and the commutation relations (3.3), we can rewrite the SDE as:

0 = −L∂2
LW±(L) + ΛLW±(L)− δ(L) +GsL

∫ ∞
0

dL1 lim
S→∞

〈0|e−SH
D
mψ†±(L1)ψ†±(L− L1)|0〉

+ bGsL

∫ ∞
0

dL1 lim
S→∞

〈0|e−SH
D
mψ†±(L+ L1)ψ†∓(L+ L1)|0〉. (3.10)

3In fact, it is possible to include the interactions,
∫
dLψ†−(L)H0(L,Λ)ψ+(L) and its spin-flipped term. However, because

of the Z2-symmetry as to the spin reflection, such terms merely cause a constant shift of the string coupling constant, so
that we have not included these terms in the Hamiltonian.
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Here we introduce the factorization theorem:

lim
S→∞

〈0|e−SH
D
mψ†±(L1)ψ†±(L2)|0〉 = lim

S→∞
〈0|e−SH

D
mψ†±(L1)|0〉 lim

S→∞
〈0|e−SH

D
mψ†±(L2)|0〉. (3.11)

Applying the above factorization theorem, the SDE (3.10) becomes

0 = −L∂2
LW±(L) + ΛLW±(L)− δ(L) +GsL

∫ ∞
0

dL1W±(L1)W±(L− L1)

+ bGsL

∫ ∞
0

dL1W±(L+ L1)W∓(L1). (3.12)

In fact, our system has Z2-symmetry w.r.t. a spin-reflection, so that we will focus on a Z2-symmetric
solution of the SDE:

W+(L) = W−(L) ≡WΛ(L). (3.13)

Next, we implement the Laplace transformation, L[WΛ(L)] ≡
∫∞

0
dLe−LZWΛ(L) ≡ W̃Λ(Z). Applying

the expression, WΛ(L), and Laplace transforming (3.12) yields

0 = ∂Z

[
(Z2 − Λ)W̃Λ(Z)−GsW̃Λ(Z)2

]
−1 + bGsL

[
L

∫
dL1WΛ(L+ L1)WΛ(L1)

]
. (3.14)

We notice that the last term includes a divergent part as Z → ∞. To regularize this divergence, it is
good to symmetrize it w.r.t. the reflection, Z ↔ −Z [6] [7]:∫ ∞

0

dL

∫ ∞
0

dL1e
−Z(L+L1)WΛ(L+ L1)e+ZL1WΛ(L1) + (Z ↔ −Z) = W̃Λ(Z)W̃Λ(−Z). (3.15)

Subtracting the SDE with the reflection (Z → −Z) from the original SDE (3.12), we get the finite SDE:

0 = ∂Z

[
(Z2 − Λ)

(
W̃Λ(Z) + W̃Λ(−Z)

)
−Gs

(
W̃Λ(Z)2 + W̃Λ(−Z)2 + bW̃Λ(Z)W̃Λ(−Z)

)]
. (3.16)

Integration of the SDE above over Z yields

c = (Z2 − Λ)
(
W̃Λ(Z) + W̃Λ(−Z)

)
−Gs

(
W̃Λ(Z)2 + W̃Λ(−Z)2 + bW̃Λ(Z)W̃Λ(−Z)

)
, (3.17)

where c is a constant.
We will derive a perturbative solution for the SDE above around the weak coupling region, Gs < 1,

by expanding the loop amplitude W̃Λ(Z) and c like:

W̃Λ(Z) =

∞∑
n=0

GnsWn(Z), c =

∞∑
n=0

Gns cn. (3.18)

As for W0(Z), we find

W0(Z) =
1

Z +
√

Λ
, (3.19)

where we have chosen an overall constant for W0(Z) to coincide with that of pure CDT [1]. As for W1(Z)
and W1(−Z), we find

W1(Z) +W1(−Z) =
1

(Z +
√

Λ)3(Z −
√

Λ)3

[
c1Z

4 + (2− b− 2Λc1)Z2 + c1Λ2 + 2Λ + bΛ

]
. (3.20)
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Assuming that the disk amplitude behaves as 1/Z in the large Z-region, we can determine that c1 =
−(b + 1)/2Λ. Furthermore, we can extract W1(Z) by considering that W1(Z) is analytic in the region,
Re[Z] > 0. Thus, the perturbative solution is

W̃Λ(Z) =
1

Z +
√

Λ
−Gs

1

4Λ

[
Z + 3

√
Λ

(Z +
√

Λ)3
+

b

(Z +
√

Λ)2

]
+O(G2

s). (3.21)

The solution with b = 0 is equivalent to that of the pure GCDT (2.7).

3.2 Matrix Model Approach

We start with the following matrix integral:∫
dφ+dφ−e

− N
gs
V (φ+,φ−), (3.22)

where

V (φ+, φ−) = −g(φ+ + φ−) +
1

2
(φ2

+ + φ2
−)− g

3
(φ3

+ + φ3
−) + xφ+φ−. (3.23)

In the integral above, φ±, g, gs and x are N ×N hermitian matrices, the ’tHooft coupling constant, the
string coupling constant and the coupling constant characterizing the interaction, respectively. Then, we
expand the fields and coupling constants w.r.t. the lattice spacing a as follows:

φ+ = Î − a(A+B) +O(a2), φ− = Î − a(A−B) +O(a2), (3.24)

and

gs = a3Gs, g =
1

2

(
1− 1

2
a2(Λ− 2X) +O(a4)

)
, x = Xa2, (3.25)

where A and B are N × N hermitian matrices, and Î is the unit matrix, and Gs, Φ, Λ and X are the
corresponding renormalized values. Thus, our model can be seen as the one that the cut-length shrinks
to zero (gs → 0), and the strength of the interaction falls off (x→ 0). The causality induces the scaling,
gs → 0, and in addition, by taking the limit, x → 0, we can get our model as the weakly interacting
model. Substituting the fine-tuned values, we can write down the partition function of the matrix model
in the continuum limit:

Z =

∫
dAdB exp

[
− N
Gs

tr

(
1

3
A3 +AB2 − ΛA

)]
. (3.26)

An interesting thing is that in the matrix model having this type of potential, the Gaussian integral over
B can be performed by introducing the eigenvalues λi’s for the matrix A [8]:

Z ∝
∫ ∏

i

dλi∆
2(λ)

∏
i,j

(λi + λj)
−1/2e−

N
Gs
V , (3.27)

where

V =

N∑
i=1

V (λi) =

N∑
i=1

(
1

3
λ3
i − Λλi

)
, (3.28)
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and ∆(λ) denotes the Vandermonde determinant, ∆(λ) =
∏
i<j(λj−λi). In the large-N limit, the saddle

point equation becomes
2

N

∑
j 6=i

1

λi − λj
=

1

N

∑
j

1

λi + λj
+

1

Gs
V ′(λi), (3.29)

where V ′(λi) = λ2
i−Λ. Here we define the resolvent for A as W̃Λ(Z) ≡ 1

N tr(Z−A)−1, and the distribution
of eigenvalues as ρ(λ) ≡ 1

N

∑
i δ(λ−λi). Multiplying (3.29) by 1/(Z−λi) and summing over i, we obtain

the loop equation in the large-N limit:

V ′(Z)W̃Λ(Z) + V ′(−Z)W̃Λ(−Z)−Gs(W̃Λ(Z)2 + W̃Λ(Z)W̃Λ(−Z) + W̃Λ(−Z)2) +Gsr1(Z) = 0, (3.30)

where

Gsr1(Z) =

∫
dλρ(λ)

[
V ′(λ)− V ′(Z)

Z − λ
− V ′(λ)− V ′(−Z)

Z + λ

]
= −2

∫
dλρ(λ)λ. (3.31)

In the calculation above, we used the two identities:

2

N2

∑
i 6=j

1

Z − λi
1

λi − λj
= W̃Λ(Z)2 +

1

N
W̃ ′Λ(Z), (3.32)

and
1

N2

∑
i,j

1

λi + λj

(
1

Z − λi
− 1

Z + λi

)
= −W̃Λ(Z)W̃Λ(−Z). (3.33)

Putting explicit form of the potential into the loop equation (3.30), we find

(Z2 − Λ)
(
W̃Λ(Z) + W̃Λ(−Z)

)
−Gs

(
W̃Λ(Z)2 + W̃Λ(Z)W̃Λ(−Z) + W̃Λ(−Z)2

)
= 2

∫
dλρ(λ)λ. (3.34)

Remembering the SDE derived in the non-critical SFT approach (3.17), we can find a great similarity
between the two. Namely, if we set b = 1 in the SDE, then the two equations are exactly same. Thus,
this matrix model in the continuum limit can reproduce our GCDT with extended interactions in b = 1.

We can extend the matrix model in the continuum limit above to the general O(n) vector model [8]
such that:

Z =

∫
dAdB1 · · · dBne−

N
Gs

trU(A,B1,··· ,Bn), (3.35)

where

U(A,B1, · · · , Bn) = A(B2
1 + · · ·+B2

n) +
1

3
A3 − ΛA, (3.36)

and A, B1, . . . , Bn are N ×N hermitian matrices. One can find that the previous matrix model in the
continuum limit is O(1) vector model. Again, we can integrate out all Bi’s, and a consequence is

Z ∝
∫ N∏

i=1

dλie
− N

Gs
V
∏
i,j

(λi + λj)
−n/2∆2(λ), (3.37)
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where λis are eigenvalues of A, and V =
∑
i V (λi) =

∑
i(

1
3λ

3
i − Λλi). A saddle-point equation becomes

2

N

∑
j 6=i

1

λi − λj
=

n

N

∑
j

1

λi + λj
+

1

Gs
V ′(λi). (3.38)

In the similar manner as O(1) vector model, we get the loop equation for the resolvent W̃Λ(Z):

(Z2 − Λ)(W̃Λ(Z) + W̃Λ(−Z))−Gs(W̃Λ(Z)2 + nW̃Λ(Z)W̃Λ(−Z) + W̃Λ(−Z)2) = 2

∫
dλρ(λ)λ. (3.39)

Thus, the loop equation of this O(n) vector model coincides with the SDE labeled by a free parameter b
(3.17) only if we identify n with b.

3.3 Inclusive Process

In the above, we derived the differential equation for disk amplitude in our extended model, and solved
it by perturbative expansions. As a confirmation, we shall reproduce the same differential equation for
disk amplitude using the so-called inclusive process ([5], [6] and [12]). In the inclusive process, putting
caps (disk amplitudes) on one of two loops (universes) at branch points we can focus on the amplitude
with one loop, which has its origin in the so-called transfer matrix formalism [13]. If we focus on the case
that initial and final strings have the same charges, then the inclusive SFT Hamiltonian can be written
as follows:

HIN =

∫ ∞
0

dLψ†+(L)H0(L,Λ)ψ+(L) + 2Gs

∫ ∞
0

dL1

∫ ∞
0

dL2W+(L1)ψ†+(L2)ψ+(L1 + L2)(L1 + L2)

+ bGs

∫ ∞
0

dL1

∫ ∞
0

dL2ψ
†
+(L1 + L2)W−(L2)ψ+(L1)L1 +

[
ψ+( ψ†+)↔ ψ−( ψ†−)

]
. (3.40)

Cylinder amplitudes are defined as:

G++(L1, L2) ≡
∫ ∞

0

dSG++(L1, L2;S) ≡
∫ ∞

0

〈0|ψ+(L2)e−SHINψ†+(L1)|0〉, (3.41)

G−−(L1, L2) ≡
∫ ∞

0

dSG−−(L1, L2;S) ≡
∫ ∞

0

〈0|ψ−(L2)e−SHINψ†−(L1)|0〉. (3.42)

By a differentiation of G++(L1, L2) w.r.t. time S, we find

∂SG++(L1, L2;S) = −〈0|ψ+(L2)e−SHIN [HIN , ψ
†
+(L1)]|0〉, (3.43)

where we have used HIN |0〉 = 0. With the calculation similar to (3.10), the equation above can be
rewritten as:

∂SG++(L1, L2;S) = L1(∂2
L1
− Λ)G++(L1, L2;S)− 2GsL1

∫
dLW+(L1 − L)G++(L,L2;S)

− bGsL1

∫
dLW−(L)G++(L1 + L,L2;S). (3.44)

Limiting the length L2 to 0 and integrating over S in (3.44), we have

0 = L1(∂2
L1
− Λ)W+(L1)− 2GsL1

∫
dLW+(L1 − L)W+(L)− bGsL1

∫
dLW−(L)W+(L1 + L), (3.45)
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where W+(L) ≡
∫∞

0
dSG++(L, 0;S), and we have used the fact that G++(L1, 0;∞) = G++(L1, 0; 0) = 0.

Our system has the Z2-symmetry as to the spin reflection, so that we focus on a Z2-invariant solution,
WΛ(L) ≡W±(L), as in (3.13). Then, implementing the Laplace transformation of (3.45) yields

0 = ∂X

[(
−(X2 − Λ) + 2GsW̃Λ(X)

)
W̃Λ(X) + bGs

∫
dL1e

−XL1

∫
dLWΛ(L)WΛ(L1 + L)

]
, (3.46)

where W̃Λ(X) ≡
∫∞

0
dLe−LXWΛ(L). Again, the last term includes divergent part as X →∞. Thus, we

need to remove the divergence by the symmetrization as in (3.15):

0 = ∂X

[
(X2 − Λ)

(
W̃Λ(X) + W̃Λ(−X)

)
− 2Gs

(
W̃Λ(X)2 +

b

2
W̃Λ(X)W̃Λ(−X) + W̃Λ(−X)2

)]
. (3.47)

After the proper shifts of the string coupling constant Gs and the free parameter b, the equation (3.47)
coincides with the SDE for the disk amplitude (3.17) as expected.

Next, we start with a discrete model, and then reconstruct our model as its continuum limit. To carry
it out, based on the transfer matrix formalism [13] we derive the differential equation for disk amplitude,
which turns out to be equivalent to (3.17) in the continuum limit. Here the transfer matrix is the one-
time-step propagator having the length-l1 initial loop with (±)-charge and the length-l2 final loop with
(±)-charge denoted by G±±(l1, l2; 1). First, we derive the non-interacting propagator which is one of parts
in the transfer matrix, GI±(l1, l2; 1). This can be easily calculated introducing the generating function of

it, i.e. G̃I±±(x±, y±; 1) ≡
∑
l1,l2

xl1±y
l2
±G

I
±±(l1, l2; 1). Namely, we prepare four types of triangles weighted

by gx± and gy± (Fig. 3), and only from the combinatorics we can find the generating function of the
one-time-step propagator [1]:

Figure 3: Four types of triangles weighted by gx± and gy±: gx± and gy± are the weights for the
triangles which are the elements of an initial loop with (±)-charge and of a final loop with (±)-charge in
the generating function, respectively.

G̃I±±(x±, y±; 1) =
g2x±y±

(1− gx±)(1− gx± − gy±)
. (3.48)

In the calculation above, we marked a point on one of initial links following [1]. For the later discussion,
we give the specific form of weights:

g =
1

2
e−

1
2a

2Λ, x± = e−aX± , y = e−aY± , (3.49)

where a is the lattice spacing, and Λ, X± and Y± are the renormalized coupling constants. Then, we
introduce the transfer matrix combing the disk amplitude with the length-l initial loop with (±)-charge
w±(l) and the non-interacting propagator GI±±(l1, l2; 1) as follows:

G±±(l1, l2; 1) = GI±(l1, l2; 1) + 2gs

l1−1∑
l=1

l1w±(l1 − l)GI±±(l, l2; 1) + b̂gs

∞∑
l=1

l1w∓(l)GI±±(l + l1, l2; 1),

(3.50)
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Figure 4: Terms in the transfer matrix, G++(l1, l2; 1): dots in the arguments are replaced by some suitable
variables on a case-by-case basis, and dots on loops in pictures are marked points on links.

where gs is the bare string coupling constant and b̂ is a free parameter (Fig. 4). A natural property of
the propagator is the decomposition law:

G±±(l1, l2; s) =

∞∑
l=1

G±±(l1, l; 1)G±±(l, l2; s− 1). (3.51)

After the Laplace transformation, the equation (3.51) becomes

G̃±±(x±, y±; s) =

∮
dz±

2πiz±
G̃±±(x±, z

−1
± ; 1)G̃±±(z±, y±; s− 1). (3.52)

Substituting (3.48) into the equation (3.52), one finds

G̃±±(x±, y±; s) =

∮
dz±

2πiz±

∞∑
l1,l2,l=1

xl1±y
l2
±z
−l+l
± G±±(l1, l; 1)G±±(l, l2; s− 1)

=

∮
dz±

2πiz±

[
G̃I±±(x±, z

−1
± ; 1) + 2gsx±∂x±

(
w̃±(x±)G̃I±±(x±, z

−1
± ; 1)

)
+

∞∑
l1=1

∞∑
l′=1

b̂gsx±∂x±

(
xl1±w∓(l′)G̃I±±(l′ + l1, z

−1
± ; 1)

)]
G̃±±

(
z±, y±; s− 1

)
, (3.53)

where w̃±(x±) ≡
∑
l x
l
±w±(l), and G̃I±±(l′ + l1, z

−1
± ; 1) ≡

∑
l z
−l
± G

I
±±(l′ + l1, l; 1). Here we introduce lcut

to regularize the divergent summation over l′ in (3.53):

G̃±±(x±, y±; s)→
[
1 + 2gsx±(∂x±w̃±(x±) + w̃±(x±)∂±)

]
gx±

1− gx±
G̃±±

(
g

1− gx±
, y±; s− 1

)
+

∞∑
l1=1

lcut∑
l′=1

b̂gsx±∂x±

[
xl1±w∓(l′)

∮
du±

2πiu±
u
−(l′+l1)
±

gu±
1− gu±

G̃±±

(
g

1− gu±
, y± : s− 1

)]
,

(3.54)

where u± ≡ e−aU± .
In the following, we focus on Z2-symmetric solutions, i.e. Gλ(x, y; s) ≡ G±±(x±, y±; s) and wλ(x) ≡

w±(x±). Under the scalings, i.e., S ≡ as, L1 ≡ al1 and L2 ≡ al2, one finds the following renormalized
functions:

G̃Λ(X,Y ;S) = lim
a→0

aG̃λ(x, y; s), W̃Λ(X) = lim
a→0

aw̃λ(x), WΛ(L) = lim
a→∞

wλ(l). (3.55)
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From (3.49), (3.53), (3.54) and (3.55), one finds

∂SG̃Λ(X,Y ;S) = −∂X
[
(X2 − Λ)G̃Λ(X,Y ;S) + 2GsW̃Λ(X)G̃Λ(X,Y ;S)

+ lim
Lcut→∞

b̂Gs

∫ ∞
0

dL1

∫ Lcut

0

dL′eL
′XWΛ(L′)e−(L′+L1)XG̃Λ(L′ + L1, Y ;S)

]
, (3.56)

where Lcut ≡ alcut, and we have used G̃Λ(L′ + L1, Y ;S) ≡
∫ i∞
−i∞ dUe(L′+L1)U G̃Λ(U, Y ;S). Implementing

the inverse Laplace transformation w.r.t. Y and integrating over S in (3.56), one finds

0 = −∂X
[
(X2 − Λ)G̃Λ(X,L) + 2GsW̃Λ(X)G̃Λ(X,L)

+ b̂Gs

∫ ∞
0

dL1

∫ ∞
0

dL′eL
′XWΛ(L′)e−(L′+L1)XGΛ(L′ + L1, L)

]
, (3.57)

where G̃Λ(X,L) ≡
∫∞

0
dSG̃Λ(X,L;S), and GΛ(L′ + L1, L) ≡

∫ i∞
−i∞ dY eLY G̃Λ(L′ + L1, Y ). Limiting the

length L to 0 in (3.57), one finds

0 = ∂X

[
(X2 − Λ)W̃Λ(X) + 2GsW̃Λ(X)2 + b̂Gs

∫ ∞
0

dL1

∫ ∞
0

dL′eL
′XWΛ(L′)e−(L′+L1)XWΛ(L′ + L1)

]
,

(3.58)

where W̃Λ(X) ≡ G̃Λ(X, 0) and WΛ(L′ +L1) ≡ GΛ(L′ +L1, 0). As for the last term in (3.58), we use the
same procedure as in (3.15) and (3.47):∫ ∞

0

dL1

∫ ∞
0

dL′eL
′XWΛ(L′)e−(L′+L1)XWΛ(L′ + L1) + (X ↔ −X) = W̃Λ(−X)W̃Λ(X). (3.59)

Therefore, we obtain the finite differential equation for disk amplitude:

0 = ∂X

[
(X2 − Λ)

(
W̃Λ(X) + W̃Λ(−X)

)
+ 2Gs

(
W̃Λ(X)2 +

b̂

2
W̃Λ(X)W̃Λ(−X) + W̃Λ(−X)2

)]
(3.60)

Finally, after the proper shifts of the string coupling constant Gs and the free parameter b̂, one finds that
(3.60) is equivalent to (3.17) as expected.

4 Discussions

We have shown the equivalence between the two different field theories at the level of differential equations,
the Schwinger-Dyson’s equation in the non-critical SFT and the loop equation of the matrix model in the
continuum limit. We hope that our model is a first step toward matter-coupled systems based on CDT.
In the following, we will examine the model constructed in this paper from different point of view.

To begin with, we will discuss our model in terms of the SFT approach. Although we have used the
IK-type interaction to construct the extended SFT based on GCDT, we do not understand whether or
not our model is on the critical point of the Ising model characterized by the Curie temperature. In the
following, we will explain two complications around this problem. First, at the critical point of Ising
spins the spin configuration must be random. In other words, the spins are supposed to fluctuate all
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length scales between the lattice spacing and the correlation length. Contrary to that, in our model
the homogeneous spin (charge) configurations survive as the propagators. Second, the definition of time
induced by our Hamiltonian (3.5) is different from the would-be GCDT coupled with Ising spins. Namely,
we consider the closed strings in our model as not spin-cluster boundaries but spacial boundaries, so that
we pursue the time flow of spatial boundaries. Thus, our time is nothing but the proper time. This
proper time is crucially different from the time defined via the spin-cluster boundary [14] [15]. If we
consider our time as the one defined via the spin-cluster boundary, which is equivalent to treating our
model as the GCDT coupled with Ising spins, then the scaling dimension of time may be different from
the lattice spacing a according to [14]. This contradicts our first setup (3.1). Anyhow, the free parameter
b might be the key to know what our model is.

In addition, it is possible to extend our non-critical SFT to the multi-“colored” system:

H(n)
m =

n∑
i=1

∫ ∞
0

dLψ†i (L)H0(L,Λ)ψi(L) +Gs

n∑
i=1

∫ ∞
0

dL1

∫ ∞
0

dL2ψ
†
i (L1)ψ†i (L2)ψi(L1 + L2)(L1 + L2)

+Gs

n∑
i=1

n∑
j 6=i

bij

∫ ∞
0

dL1

∫ ∞
0

dL2ψ
†
i (L1 + L2)ψ†j (L2)ψi(L1)L1

+ αGs

n∑
i=1

∫ ∞
0

dL1

∫ ∞
0

dL2ψ
†
i (L1 + L2)ψi(L2)ψi(L1)L2L1

−
n∑
i=1

∫ ∞
0

dLδ(L)ψi(L). (4.1)

We can derive the free parameter b in our model from the multi-“colored” system above under the
treatment, W1(L) = · · ·Wn(L) ≡WΛ(L), bij = 0 for j = i and bij = 1 for j 6= i.

Next, we will closely look at our matrix model. Considering the direct product of the two copies of the
potential, each of which yields the pure GCDT, and introducing the linear combinations of the matrices
as Φ+ = A+B and Φ− = A−B, we find

1

G̃s

(
1

3
Φ3

+ − ΛΦ+ +
1

3
Φ3
− − ΛΦ−

)
=

1

Gs

(
1

3
A3 +AB2 − ΛA

)
, (4.2)

where G̃s = 2Gs. This is the potential of our O(1) vector model in the continuum limit. Then, diago-
nalizing the matrix A as A = diag(λ1, · · · , λN ) and integrating out the matrix B, we get the effective
theory for the eigenvalues of A with the potential,[

1

Gs

∑
i

(
1

3
λ3
i − Λλi

)
− 1

N
log ∆2(λ)

]
︸ ︷︷ ︸

terms appeared in the pure GCDT

+
1

N
(terms induced by the integration over B). (4.3)

The important point here is that our model is slightly different from the pure GCDT matrix model
because integrating out the matrix B an extra correction is added to terms appeared in the pure GCDT.
From the matrix A’s point of view, the matrix B can be seen like some external field. The strength of
such an external field can be bigger by inserting the integrated-out matrices, which leads to the O(n)
vector model in the continuum limit.
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