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Abstract: We study the properties of the space-time that emerges dynamically from the

matrix model for type IIB superstrings in ten dimensions. We calculate the free energy and

the extent of space-time using the Gaussian expansion method up to the third order. Unlike

previous works, we study the SO(d) symmetric vacua with all possible values of d within

the range 2 ≤ d ≤ 7, and observe clear indication of plateaus in the parameter space of the

Gaussian action, which is crucial for the results to be reliable. The obtained results indeed

exhibit systematic dependence on d, which turns out to be surprisingly similar to what

was observed recently in an analogous work on the six-dimensional version of the model.

In particular, we find the following properties: i) the extent in the shrunken directions is

given by a constant, which does not depend on d; ii) the ten-dimensional volume of the

Euclidean space-time is given by a constant, which does not depend on d except for d = 2;

iii) The free energy takes the minimum value at d = 3. Intuitive understanding of these

results is given by using the low-energy effective theory and some Monte Carlo results.
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1. Introduction

In recent years a lot of efforts have been devoted to constructing a stable (or long-lived

meta-stable) vacuum in string theory, which is appropriate to describe our real world.

In this kind of approach, however, there is no objective criterion to pick up one of the

tremendously many possible vacua, which is commonly referred to as the landscape problem

in the literature. It would be of course scientifically more desirable if a unique vacuum is

chosen nonperturbatively and the chosen vacuum actually describes our real world. The

aim of the present paper is to show that this possibility should not be totally forgotten as

theorists’ dream. Our explicit calculations rather suggest that we might be quite close to

it although a big twist may still be needed to achieve the final goal.

In order to address such an issue, we certainly need a nonperturbative formulation of

superstring theory. There are actually quite a few proposals made in the late 90s [1, 2, 3]

after the discovery of D-branes. In this paper we study the type IIB matrix model [2],

which is proposed as a nonperturbative formulation of type IIB superstring theory in

ten dimensions. This model can be obtained formally by taking the zero-volume limit

of SU(N) super Yang-Mills theory in ten dimensions.1 The integer N can be viewed as

a sort of regularization parameter, which should be taken to infinity eventually. In this

formulation of superstring theory, the ten-dimensional target space is represented by the

ten bosonic Hermitian matrices [4], which originate from the ten-dimensional gauge field

1This relationship to SU(N) super Yang-Mills theory is considered at the level of classical action. There-

fore the well-known gauge anomaly in the ten-dimensional super Yang-Mills theory is not an issue.
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in the super Yang-Mills theory. The model has manifest SO(10) invariance,2 which is

inherited from the super Yang-Mills theory. The question we would like to ask is whether

this SO(10) symmetry is spontaneously broken in the large-N limit down to SO(4), which

is the symmetry corresponding to our space-time.3

In ref. [6] two of the authors applied the Gaussian expansion method to this issue. The

free energy of the SO(d) symmetric vacua for d = 2, 4, 6, 7 was calculated up to the third

order of the expansion, and d = 4 was found to give the smallest value. Moreover, the

extent of space-time in the d directions was found to be larger than those in the remaining

(10− d) directions. This result motivated higher order calculations up to the eighth order

[7, 8, 9, 10, 11] for the d = 4 and d = 7 cases. While the results revealed interesting

qualitative differences between the two cases, the situation turned out to be obscure.

In the Gaussian expansion method, the result depends on free parameters introduced

in the Gaussian action. The crucial point is that one can still make a reliable prediction by

identifying the “plateau region” in the parameter space, in which the result becomes almost

constant. A practical approach is to obtain the points in the parameter space at which

the result becomes stationary. As one goes to higher orders, one typically obtains more

and more stationary points giving totally different results. However, if it turns out that

there are quite a few points that give approximately the same results, one may regard it

as indication of the plateau region. Such behaviors were indeed observed in various simple

models and the obtained results confirmed the validity of the method. (For example, see

refs. [7, 12, 13].) However, in the case of type IIB matrix model, the plateau region has

not yet been identified unambiguously.

Recently it was suggested [14] that the above situation might be due to the extra

symmetry Σd, which was imposed on the shrunken (10−d) directions in order to make the

calculations feasible. By imposing a symmetry SO(d) × Σd ⊂ SO(10), which is stronger

than just SO(d), one can reduce the number of free parameters considerably. While this

makes it much easier to obtain stationary points, it also makes the available stationary

points strongly restricted by the chosen extra symmetry Σd. As a result, one might miss

the opportunity to observe clear indication of plateaus for the SO(d) symmetric vacua that

might otherwise be there.

This possibility was noticed in a similar study for the six-dimensional version of the

type IIB matrix model [14]. The model can be obtained formally by the zero-volume limit

of SU(N) super Yang-Mills theory in six dimensions, and it is expected to have properties

analogous to the type IIB matrix model such as the spontaneous breakdown of the SO(6)

symmetry. On the technical side, the analysis becomes much easier than in the type IIB

matrix model, and it was possible to perform calculations for all the values of d within the

range 2 ≤ d ≤ 5. Moreover, calculations were done imposing only the SO(d) symmetry

up to order 3 for d = 3, 4, 5, and up to order 5 for d = 4, 5. Quite a few stationary

2This should be considered as a virtue of this model, which is important for the issue we address in this

paper. In any other proposal for a nonperturbative formulation of superstring/M theory, the space-time

symmetry is not manifestly preserved.
3See ref. [5] for discussions on the idea of the emergent gravity, which is deeply related to the above

scenario.
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points were found for each d, and clear indication of plateaus was observed. This enabled

reliable predictions for both the free energy and the extent of space-time, which exhibited

interesting qualitative features summarized as follows.

i) The extent of space-time in the shrunken directions is given by a constant (r), which

is independent of d. (universal “compactification” scale)

ii) The six-dimensional volume of the Euclidean space-time is given by a constant (v ≡
ℓ6), which is independent of d except for d = 2. (constant volume property)

iii) The free energy takes the minimum value at d = 3.

Intuitive understanding for these properties is also given in ref. [14]. The properties i)

and ii) can be understood by considering the low-energy effective theory, which is given in

terms of a system similar to the branched polymer [4, 15]. The two dynamical scales r and

ℓ, which characterize the properties i) and ii), respectively, are reproduced numerically by

Monte Carlo simulation [16]. The property iii) as well as the anomaly for d = 2 in the

property ii) can be understood from the properties of the fermion determinant [17].

With all these new insights, we redo the calculations for the type IIB matrix model

and study the SO(d) symmetric vacua for all values of d within the range 2 ≤ d ≤ 7.

Unlike in the six-dimensional case, it is difficult to perform calculations imposing only the

SO(d) symmetry. However, the calculations in the six-dimensional case [14] suggest that

the stationary points obtained in the plateau region have all the variety of symmetries in

the shrunken directions. Therefore, we perform calculations in the ten-dimensional case

imposing SO(d)×Σd ⊂ SO(10) with various possible Σd for each d. In fact we exhaust all

the possible extra symmetries that leave not more than five free parameters in the Gaussian

action. By combining all the solutions obtained in this way, we were able to observe clear

indication of plateaus already at the 3rd order calculations as we did in the six-dimensional

case. This should be contrasted to the situation with the previous calculations for the type

IIB matrix model, where one particular symmetry Σd was chosen for each d, and hence the

number of solutions was not enough to clearly identify the plateau.

The free energy and the extent of space-time obtained for each d in the plateau region

indeed exhibit systematic d dependence analogous to i)-iii) observed for the six-dimensional

case. This is understandable theoretically given that the low-energy effective theory is de-

scribed by a similar branched-polymer-like system [4, 15] and that the fermion determinant

has similar properties [17]. Let us emphasize, however, that the Gaussian expansion method

knows neither of these facts, and yet it revealed the same qualitative behaviors of the two

models. Moreover, the free energy obtained for the SO(d) symmetric vacua is actually

quite close to the value obtained from the formula for the partition function conjectured

by Krauth, Nicolai and Staudacher [18], for both the 6d and 10d models. We consider these

as strong evidence for the validity of the present calculations.

The rest of this article is organized as follows. In section 2 we define the model and the

observable which serves as an order parameter for the spontaneous breaking of rotational

SO(10) symmetry. In section 3 we describe the method we use to study the model. In
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section 4 we present our results for the free energy and the extent of space-time in the

SO(d) symmetric vacua (2 ≤ d ≤ 7). Section 5 is devoted to a summary and discussions.

In appendix A we present the details of the ansatz we use to study each of the SO(d)

symmetric vacua. In appendix B we derive the value of free energy from the formula for

the partition function conjectured by Krauth, Nicolai and Staudacher.

2. The model and the order parameter

The type IIB matrix model can be obtained formally by the zero-volume limit of D = 10

SU(N) pure super Yang-Mills theory, and its partition function is given by

Z =

∫

dAdΨ e−Sb−Sf , (2.1)

Sb = − 1

4g2
Tr[Aµ, Aν ]

2 , (2.2)

Sf = − 1

2g2
Tr (Ψα(CΓµ)αβ[Aµ,Ψβ]) . (2.3)

Here Aµ (µ = 1, · · · , 10) are traceless N × N Hermitian matrices, whereas Ψα (α =

1, · · · , 16) are traceless N × N matrices with Grassmannian entries. The parameter g

can be scaled out by appropriate redefinition of the matrices, and hence it is just a scale

parameter rather than a coupling constant. We therefore set g2N = 1 from now on without

loss of generality. The integration measure for Aµ and Ψα is given by

dA =

N2−1∏

a=1

10∏

µ=1

dAa
µ√

2π
, dΨ =

N2−1∏

a=1

16∏

α=1

dΨa
α , (2.4)

where Aa
µ and Ψa

α are the coefficients in the expansion Aµ =
∑N2−1

a=1 Aa
µT

a etc. with respect

to the SU(N) generators T a normalized as Tr(T aT b) = 1
2δ

ab.

The model has an SO(10) symmetry, under which Aµ and Ψα transform as a vector

and a Majorana-Weyl spinor, respectively. The 16×16 matrices Γµ are the gamma matrices

after the Weyl projection, and C is the charge conjugation matrix, which satisfies (Γµ)
T =

CΓµC
† and CT = C.

In order to discuss the spontaneous symmetry breaking (SSB) of SO(10) in the large-N

limit, we consider the “moment of inertia” tensor [4, 19]

Tµν =
1

N
Tr(AµAν) , (2.5)

which is a 10 × 10 real symmetric tensor. We denote its eigenvalues as λj (j = 1, · · · , 10)
with the specific order

λ1 ≥ λ2 ≥ · · · ≥ λ10 . (2.6)

If the SO(10) is not spontaneously broken, the expectation values 〈λj〉 (j = 1, · · · , 10)
should be all equal in the large-N limit. Therefore, if we find that they are not equal, it

implies that the SO(10) symmetry is spontaneously broken. Thus the expectation values
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〈λj〉 serve as an order parameter of the SSB. In ref. [17] it was found that the phase of

the fermion determinant (or Pfaffian, strictly speaking) favors d(≥ 3)-dimensional config-

urations, which have λj (j = d + 1, · · · , 10) much smaller than the others. This suggests

the possibility that the SO(10) symmetry is broken down to SO(d) with d ≥ 3. Since the

eigenvalue distribution of Aµ represents the extent of space-time in the type IIB matrix

model [4], the above situation realizes the dynamical compactification to d-dimensional

space-time.

In general one can obtain supersymmetric matrix models by taking the zero-volume

limit of pure super Yang-Mills theories in D = 3, 4, 6 and 10 dimensions, where the D = 10

case corresponds to the type IIB matrix model. The convergence of the partition function

for general D was investigated both numerically [18] and analytically [20]. The D = 3

model is ill-defined since the partition function is divergent. The D = 4 model has a real

positive fermion determinant, and Monte Carlo simulation suggested the absence of the

SSB of rotational symmetry [21]. (See also refs. [22, 23].) The D = 6 model and the

D = 10 model both have a complex fermion determinant, whose phase is expected to play

a crucial role [17, 24, 25, 26, 27] in the SSB of SO(D).

3. The Gaussian expansion method

Since there are no quadratic terms in the actions (2.2) and (2.3), we cannot perform a

perturbative expansion in the ordinary sense. Finding the vacuum of this model is therefore

a problem of solving a strongly coupled system. It is known that a certain class of matrix

models can be solved exactly by using various large-N techniques, but the present model

does not belong to such a category.4 The use of the Gaussian expansion method in studying

large-N matrix quantum mechanics has been advocated by Kabat and Lifschytz [28], and

various black hole physics of the dual geometry has been discussed [29]. Applications to

simplified versions of the type IIB matrix model were pioneered by refs. [30].

The starting point of the Gaussian expansion method is to introduce a Gaussian term

S0 and to rewrite the action S = Sb + Sf as

S = (S0 + S)− S0 . (3.1)

Then we can perform a perturbative expansion regarding the first term (S0 + S) as the

“classical action” and the second term (−S0) as the “one-loop counter term”. The results

at finite order depend, of course, on the choice of the Gaussian term S0, which contains

many free parameters in general. However, it is known in various examples that there exists

a region of parameters, in which the results obtained at finite order are almost constant.

Therefore, if we can identify this “plateau region”, we can make concrete predictions.

It should be emphasized that the method enables us to obtain genuinely nonperturbative

results, although most of the tasks involved are nothing more than perturbative calculations

as emphasized in ref. [31].

4Note, however, that the large-N limit simplifies the calculation in the Gaussian expansion method

considerably since it allows us to consider only the planar diagrams.
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There are some cases in which one finds more than one plateau regions in the parameter

space. In that case, each of them is considered to correspond to a local minimum of the

effective action, and the plateau which gives the smallest free energy corresponds to the

true vacuum. These statements have been confirmed explicitly in exactly solvable matrix

models [13].

As the Gaussian action for the present model, we consider the most general one that

preserves the SU(N) symmetry. Note, in particular, that we have to allow the Gaussian

action to break the SO(10) symmetry so that we can study the SSB of SO(10). In practice

we are going to restrict the parameter space by imposing the SO(d) symmetry with 2 ≤ d ≤
7. The plateau region identified for each d corresponds to a local minimum which breaks

the SO(10) symmetry spontaneously. By comparing the free energy, we can determine

which local minimum is actually the true vacuum.

Making use of the SO(10) symmetry of the model, we can always bring the Gaussian

action into the form

S0 = S0b + S0f , (3.2)

S0b =
N

2

10∑

µ=1

MµTr(Aµ)
2 , (3.3)

S0f =
N

2

16∑

α,β=1

Aαβ Tr(ΨαΨβ) , (3.4)

where Mµ and Aαβ are arbitrary parameters. The 16 × 16 complex matrix Aαβ can be

expanded in term of the gamma matrices as

Aαβ =
10∑

µ,ν,ρ=1

i

3!
mµνρ(CΓµΓ

†
νΓρ)αβ , (3.5)

using a 3-form mµνρ. We can then rewrite the partition function (2.1) as

Z = Z0 〈e−(S−S0)〉0 , (3.6)

Z0 =

∫

dAdΨ e−S0 , (3.7)

where 〈 · 〉0 is a vacuum expectation value with respect to the partition function Z0. From

this we find that the free energy F = − logZ can be expand as

F =

∞∑

k=0

fk ,

f0 = − logZ0 ,

fk = −
k∑

l=0

(−1)k−l

(k + l)!
k+lCk−l

〈

(Sb − S0)
k−l(Sf)

2l
〉

C,0
for k ≥ 1 , (3.8)

where the subscript ‘C’ in 〈 · 〉C,0 implies that the connected part is taken. The expansion

is organized in such a way that it corresponds to the loop expansion regarding the insertion
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of the 2-point vertex (−S0) as a contribution from the one-loop counterterm. Similarly the

expectation value of an observable O can be evaluated as

〈O〉 = 〈O〉0 +
∞∑

k=1

Ok ,

Ok =
k∑

l=0

(−1)k−l

(k + l)!
k+lCk−l〈O (Sb − S0)

k−l (Sf)
2l〉C,0 . (3.9)

In practice we truncate the series expansion at some finite order. Then the free energy

(3.8) and the observable (3.9) depend on the free parameters Mµ and Aαβ in the Gaussian

action. We search for the values of parameters, at which the free energy becomes stationary

by solving the “self-consistency equations”

∂

∂Mµ
F = 0 ,

∂

∂mµνρ
F = 0 , (3.10)

and estimate F and 〈O〉 at the solutions. As we increase the order of the expansion, the

number of solutions increases. If we find that there are many solutions close to each other

in the parameter space which give similar results for the free energy and the observables,

we may identify the region as a plateau.

In actual calculation it is convenient to derive the series expansion (3.8) in the following

way. First we consider the action

S̃ = S0 + ǫSb +
√
ǫSf , (3.11)

and the partition function

Z̃ =

∫

dAdΨ e−S̃ , (3.12)

where ǫ is a fictitious expansion parameter. Next we calculate the free energy in the

ǫ-expansion as

F̃ = − log Z̃ =

∞∑

k=0

ǫkf̃k . (3.13)

Each term f̃k depends on the parameters Mµ and mµνλ in the Gaussian action S0. Then

we substitute these parameters as

Mµ → (1− ǫ)Mµ , mµνρ → (1− ǫ)mµνρ , (3.14)

reorganize the series with respect to ǫ, and set ǫ to 1. In this way we reproduce the

expression (3.8). The action (3.11) is introduced to obtain the ordinary perturbation

theory for the first term in (3.1), and the final step (3.14) corresponds to taking account of

the second term in (3.1) as the one-loop counter term. The main task is to obtain the series

(3.13), which is nothing more than what is required for ordinary perturbation theory.5 We

use a similar procedure to obtain the expansion (3.9) for the observables.

5Further simplification is possible by exploiting the fact that the free energy F is related to the two-

particle irreducible (2PI) free energy through the Legendre transformation [7]. The number of Feynman

diagrams decreases considerably by the restriction to 2PI diagrams. While we do not use this technique for

the 3rd order calculations in the present work, it would be crucial in performing higher order calculations.
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ansatz discrete symmetry for shrunken directions symbol

SO(7) ◦
SO(6) Z4(7,8,9,10|1) ◦

Z3(8,9,10) •
Z2(7,8|1) △

SO(5) Z5(6,7,8,9,10) ◦
Z4(6,7,8,9|1) •
Z4(6,7,8,9|10) △

Z2(6,7|1) × Z3(8,9,10) N

Z2(6,7|8,9,10) × Z3(8,9,10) ▽

Z2(6,7|1) × Z2(8,9|1) H

Z2(6,7|10) × Z2(8,9|10) × Z2({6,7},{8,9}|1,10) ♦

SO(4) Z2(5,6|1) × Z2(7,8|1) × Z2(9,10|1) ◦
Z3(5,6,7) × Z3(8,9,10) × Z2({5,6,7},{8,9,10}|1) •
Z4(5,6,7,8|1) × Z2(9,10|1) △

Z5(6,7,8,9,10) × Z2(−|1,6,7,8,9,10) N

Z3(5,6,7) × Z3(8,9,10) × Z2(−|1,8,9,10) ▽

SO(3) Z2(4,5|1) × Z2(6,7|1) × Z2(8,9|1) × Z3({4,5},{6,7},{8,9}) ◦
Z2(4,5|10) × Z2(6,7|10) × Z2(8,9|10) •
×Z3({4,5},{6,7},{8,9}) × Z2({4,5},{6,7})

Z2(4,5|10) × Z2(6,7|10) × Z2(8,9|10) △

×Z3({4,5},{6,7},{8,9}) × Z2(−|1,10)

Z3(4,5,6) × Z3(7,8,9) × Z2({4,5,6},{7,8,9}|1) × Z2(−|1,10) N

Z3(4,5,6) × Z2(7,8|1) × Z2(9,10|1) × Z2({7,8},{9,10}) ▽

Z3(4,5,6) × Z4(7,8,9,10|1) × Z2(−|7,8,9,10) H

Z2(4,5|1) × Z5(6,7,8,9,10) × Z2(−|1,6,7,8,9,10) ♦

Z6(5,6,7,8,9,10|1) × Z2(−|5,6,7,8,9,10) �

Z2(4,5|1) × Z5(6,7,8,9,10|4,5)

SO(2) Z2(3,4|1) × Z2(5,6|1) × Z2(7,8|1) × Z2(9,10|1) ◦
×Z4({3,4},{5,6},{7,8},{9,10})

Z4(3,4,5,6|1) × Z4(7,8,9,10|1) × Z2({3,4,5,6},{7,8,9,10}) •
Z3(3,4,5) × Z3(6,7,8) × Z2({3,4,5},{6,7,8}|1) △

×Z2(9,10|1) × Z2(−|3,4,5,6,7,8)

Z3(3,4,5) × Z3(6,7,8) × Z2({3,4,5},{6,7,8}|1) N

×Z2(9,10|1) × Z2(−|9,10)

Table 1: The list of the SO(d) ansatz (d = 2, · · · , 7), which leave us with not more than 5

parameters in the Gaussian action. The symbols shown in the right-most column are used in figs. 1,

2, 4 and 5 to represent the solutions to the self-consistency equations. For the SO(3)× Z2(4,5|1) ×
Z5(6,7,8,9,10|4,5) ansatz, we find no solutions in the range −2 < f < 7 displayed in fig. 1, and hence

we do not assign any symbol.

Since we are interested in the large-N limit, we list up Feynman diagrams in the

double-line notation, and keep only the planar diagrams when evaluating the free energy

(3.8) and the observable (3.9).

There are many free parameters in the Gaussian action; i.e., we get 10 from Mµ

and 120 from mµνρ. There are as many self-consistency equations as these parameters.
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Unfortunately it seems impossible to solve them in full generality. However, it is reasonable

to expect that some subgroup of SO(10) symmetry such as SO(d) with 2 ≤ d ≤ 7 remains

unbroken. This allows us to impose the corresponding symmetry on the Gaussian action,

and hence to reduce the number of parameters.

In order to study the SO(d) symmetric vacuum, we impose the SO(d) symmetry on

the Gaussian action. For d ≥ 4, this leads to M1 = · · · = Md and mµνρ = 0 unless µ, ν and

ρ are three different numbers in {d+ 1, · · · , 10}. Therefore we obtain (11− d) parameters

from Mµ and 10−d C 3 parameters from mµνρ. For d = 3, m123 can also be non-zero, and

for d = 2, m12µ with µ = 3, 4, · · · , 10 can also be non-zero. Thus the total number of

parameters is 5, 9, 16, 27, 44, 73 for d = 7, 6, 5, 4, 3, 2, respectively. For d ≥ 8, the SO(d)

symmetry enforces mµνρ = 0, which makes the Gaussian expansion ill-defined. However,

the SO(d) symmetric vacua with d ≥ 8 are expected to exist, and they should be realized

as a plateau with the SO(d) ansatz (d ≤ 7). See ref. [11] for an explicit example of this

claim for the SO(10) symmetric vacuum.

It turned out that solving the self-consistency equations (3.10) is possible for the num-

ber of parameters not more than 5. Except for d = 7, we therefore impose extra discrete

symmetries (Σd) in the shrunken directions xd+1, · · · , x10, where we require that SO(d)×Σd

is a subgroup of SO(10). Let us introduce the following notations. First, Zp(i1,··· ,ip) repre-

sents the group of cyclic permutations acting on xi1 , · · · , xip . Similarly, Zp({i1,j1},··· ,{ip,jp})

represents the group of cyclic permutations acting on the sets {xi1 , xj1}, · · · , {xip , xjp}. We

also combine them with a reflection. For instance, the symbol Zp(i1,··· ,ip|j1,··· ,jq) implies that

we make a reflection (xj1 , · · · , xjq) 7→ (−xj1 , · · · ,−xjq) together with a cyclic permutation

of xi1 · · · , xip . The symbol Z2(−|j1,··· ,jq) implies that we make a reflection without any

cyclic permutations. Note that the permutation is odd if the integer p is even and the

number of elements in the set to be permuted is odd. In that case, we have to combine it

with a reflection in an odd number of directions in order to make the imposed symmetry

an element of SO(10). Table 1 shows the list of the ansatz that leave us with not more

than 5 parameters. In the previous works [6, 7, 8, 9, 10, 11] one particular extra symmetry

was chosen for each d so that the number of parameters is reduced to 3. All the extra

symmetries used in the literature are included in the list of ansatz we study. See appendix

A for more detail.

4. Results

For each ansatz, we first obtain the free energy up to the third order as a function of the

free parameters in the Gaussian action. By differentiating the free energy with respect to

the free parameters, we obtain the self-consistency equations, which we solve numerically

by Mathematica. The free energy evaluated at each solution is plotted in fig. 1 for the

SO(d) ansatz (2 ≤ d ≤ 7) described in the previous section. More precisely, we actually

plot “the free energy density” defined as

f = lim
N→∞

{
F

N2 − 1
− (−3 logN)

}

, where F = − logZ . (4.1)
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Figure 1: The free energy density (4.1) evaluated at the solutions to the self-consistency equations

at the orders 1 (Top) and 3 (Bottom). Each symbol represents the largest symmetry in Table 1

that the solution has. The horizontal line represents the value log 8− 3
4 = 1.32944... obtained from

the KNS conjecture. The data points surrounded by the dashed lines correspond to the “physical

solutions”, which indicate the plateau region.
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Figure 2: The zoom-up of fig. 1 (Bottom) for d = 6, 5, 4, 3 near the “physical solutions”, which

are surrounded by the dashed line.
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Figure 3: The free energy density averaged over the “physical solutions” for each d is plotted

against d. We put error bars representing the mean square error when there are more than one

physical solutions. The horizontal line represents the KNS value f = log 8 − 3
4 = 1.32944 . . ., and

the dotted line connecting the data points is drawn to guide the eye.
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The horizontal line log 8 − 3
4 = 1.32944... represents the result obtained in appendix

B from the analytic formula of the partition function conjectured by Krauth, Nicolai and

Staudacher (KNS) [18]. At order 3, the “physical solutions” identified for each d as de-

scribed below are surrounded by a dashed line. In fig. 2 we zoom up the region containing

these solutions for d = 6, 5, 4, 3, which gives the free energy density f ∼ 1.5, 1.3, 0.7, −1.4,

respectively.

In fig. 3 we show the free energy density obtained by averaging over the physical

solutions for each d at order 3. We put error bars representing the mean square error

when there are more than one physical solutions. The result decreases monotonically as d

decreases from 7 to 3, and it becomes much larger for d = 2. Thus, the SO(3) symmetric

vacuum gives the smallest free energy density. The d-dependence of the free energy density

is quite analogous to the one observed in the six-dimensional case [14]. There the value of

the free energy tends to decrease slightly as one goes from order 3 to order 5. Considering

such artifacts due to truncation, we speculate that the KNS conjecture actually refers to

the partition function for the SO(10) symmetric vacuum.

Let us then explain how we identify the “physical solutions”. For that we also refer to

the results for the extent of space-time. In appendix A we give the explicit form of 〈Tµν〉
for each ansatz. Let us note that it is not diagonal in general, and therefore we need to

diagonalize it in order to obtain the eigenvalues 〈λj〉. Then we find that some solutions

give smaller values in the directions involved in the preserved SO(d) symmetry than in

the remaining directions. Such solutions are not shown in the figures, and will not be

considered in what follows. For the SO(d) ansatz, the d large eigenvalues 〈λj〉 (1 ≤ j ≤ d)

are equal due to the imposed SO(d) symmetry, and we denote the corresponding value as

R2. The remaining (10− d) eigenvalues for each solution turn out to be quite close to each

other and we denote the mean value as r2. In figs. 4 and 5, we plot the values of R2 and

r2 evaluated at the solutions for each ansatz.

At order 3, we find a set of solutions for 3 ≤ d ≤ 6 giving similar values for the

free energy density f and the extent of space-time R2 and r2. We consider this as the

concentration of solutions [7], which indicates a plateau region in the space of parameters

explained in section 3. Thus we can pick up the “physical solutions” for 3 ≤ d ≤ 6 without

much ambiguity. For the SO(2) ansatz, we find two solutions close to each other with

f ∼ 3.0, R2 ∼ 3.6 and r2 ∼ 0.11, which we identify as the physical solutions. For the

SO(7) ansatz, we obtain only two solutions at order 3, which are not close to each other.

From fig. 1 (Bottom), however, it looks reasonable to identify the one with smaller free

energy density as the physical solution.

In fig. 6 we plot the result for R2 and r2 averaged over all the physical solutions for

each d. We put error bars representing the mean square error when there are more than one

physical solutions. We find that r2 stays almost constant at r2 = 0.1 ∼ 0.15, which seems

to be universal for all the SO(d) symmetric vacua with 2 ≤ d ≤ 7. On the other hand,

the results for R2 are found to be larger for smaller d. Let us test whether this behavior is

consistent with the constant-volume property [14], which is given by Rd r̃10−d ≈ ℓ10, where

r̃2 represents the universal “compactification” scale, which we leave as a free parameter in

the present analysis.
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Figure 4: The extent of space-time R2 in the extended directions evaluated at the solutions to

the self-consistency equations at the first order (Top) and the third order (Bottom). Each symbol

represents the largest symmetry in Table 1 that the solution has. The data points surrounded by

the dashed lines correspond to the “physical solutions”, which indicate the plateau region.
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the self-consistency equations at the first order (Top) and the third order (Bottom). Each symbol

represents the largest symmetry in Table 1 that the solution has. The data points surrounded by

the dashed lines correspond to the “physical solutions”, which indicate the plateau region.
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d = 2, from which we obtain r̃2 = 0.155 and ℓ2 = 0.383.

– 15 –



From the constant-volume property, we obtain

logR2 ≈ 10

d
log

(
ℓ2

r̃2

)

+ log r̃2 . (4.2)

In fig. 7 we therefore plot R2 in the log scale against 1/d. Indeed we find that the results

can be fitted to a straight line except for d = 2. From the fit, we obtain ℓ2 = 0.383 and

r̃2 = 0.155. Note that the obtained value for r̃2 is consistent with r2 obtained directly

by the Gaussian expansion method as the extent of space-time in the shrunken directions.

The obtained value for ℓ2 is reproduced by Monte Carlo simulation [16].

5. Summary and discussions

In this paper we have applied the Gaussian expansion method to the type IIB matrix

model, which was conjectured to be a nonperturbative formulation of type IIB superstring

theory in ten dimensions. In particular, we have investigated the dynamical properties

of the model associated with the SSB of SO(10), which was speculated to realize the

dynamical compactification. Unlike previous works, we studied the SO(d) symmetric vacua

for 2 ≤ d ≤ 7 systematically. Moreover, we were able to observe clear indication of plateaus,

which is crucial for the method to be reliable. This was made possible by allowing various

extra symmetries in the shrunken directions as suggested by the success of a similar work

on the six-dimensional version of the model.

Indeed our results bear surprising similarity to the results for the 6d case. The free

energy was found to decrease as d is lowered until one reaches d = 3, and then it becomes

much larger for d = 2. This implies that the SO(10) symmetry is spontaneously broken

down to SO(3). The “compactification” scale is universal for all d. The extent of space-time

obeys the constant-volume property for d ≥ 3, while the volume for d = 2 is a bit smaller.

All these properties are common to the 6d and 10d cases, and they can be understood

intuitively as follows. (See ref. [14] for more detailed discussions.)

First of all, the long-distance effective theory of these models can be obtained by

integrating out the off-diagonal elements of the matrices perturbatively [4, 15]. One then

finds that the effective theory for the diagonal elements is described by a branched-polymer-

like system, where the diagonal elements of the bosonic matrices Aµ are identified with the

coordinates of the vertices in the polymer. This naturally explains the constant-volume

property since the branched polymer tends to occupy a fixed volume for entropic reasons.

The anomaly for d = 2 can be understood as a consequence of the fact that the fermion

determinant disfavors two-dimensional configurations [17]. The volume that appears in the

description of the constant-volume property can be calculated by Monte Carlo simulation,

and it agrees quite well with the value suggested by the Gaussian expansion method for

both 6d and 10d cases [16].

The driving force for the SSB comes from the phase of the fermion determinant [17] as

has been clearly demonstrated in a simplified non-supersymmetric model [25], which was

studied by both the Gaussian expansion method [26] and a Monte Carlo method [27], giving

consistent results. There the free energy was determined by subtle competition between the
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effect of the phase, which favors smaller d, and the dynamics of the phase-quenched model,

which favors larger d. In the present supersymmetric matrix models, the latter effect is

suppressed by 1/N [16, 24], and the free energy is determined essentially by the effect of

the phase. This explains the monotonic decrease of the free energy for smaller d. The

anomaly for d = 2 can be understood again from the property of the fermion determinant.

The extent in the shrunken directions is determined by the fluctuation of the off-

diagonal elements since the diagonal elements cannot fluctuate in the shrunken directions

due to the strong effect of the phase. At the leading order of the long-distance approxi-

mation, the dynamics of the off-diagonal elements is given by the Gaussian action, which

couples weakly to the dynamics of the diagonal elements. This explains the universal

compactification scale.

Since our results are obtained at the 3rd order of the Gaussian expansion, it remains

to be seen whether the main conclusions change qualitatively at higher orders. In fact the

6d case has been studied both at the 3rd and 5th orders. The results did change slightly,

but the qualitative features seemed to be robust. It is nonetheless desirable to perform

the 5th order calculations in the 10d case as well. It would be also important to perform

Monte Carlo studies analogous to [27] and to see whether the properties suggested by our

work can be reproduced.

Our calculations clearly demonstrate the SSB of SO(10), which is itself an interesting

dynamical property of the type IIB matrix model. However, in view of the scenario for

dynamical compactification, there are two problems. One is that it seems more likely

that the minimum of free energy occurs at d = 3 instead of d = 4, at least within the

approximation of the present work. The other is that the ratio of the extent of space-

time in the extended directions and that in the shrunken directions is finite for all d, as

suggested by the constant volume property and the universal compactification scale. We

consider that the nontrivial dynamics of the type IIB matrix model suggested by the present

work confirms the validity of the basic idea to use matrices as the microscopic degrees of

freedom in formulating superstring theory nonperturbatively. The detailed properties of

the space-time emerging from the model, however, suggest that it still lacks some important

ingredient in order to be capable of describing our real world.
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A. Details of the ansatz

In this section we describe the details of the ansatz, which are listed in Table 1. We exhaust

all the symmetries SO(d) × Σd with 2 ≤ d ≤ 7, which reduce the number of parameters
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in the Gaussian action to 5 or less. We also describe the general form of the moment of

inertia tensor (2.5) for each ansatz.

SO(7) ansatz

• SO(7)

5 parameters (M,M8,M9,M10, m̃)

Mµ = (M, · · · ,M
︸ ︷︷ ︸

7

,M8,M9,M10) , m8,9,10 = m̃ , and zero otherwise. (A.1)

The moment of inertia tensor takes the form

〈Tµν〉 =








SO(7) part

C × ×
× C ′ ×
× × C ′′








. (A.2)

Here and henceforth “×” represents a component which is found to vanish up to

order 3 by explicit calculation, although there is no such symmetry that enforces it.

By further imposing the symmetry Z3(8,9,10), which enforces M8 = M9 = M10, one

obtains the “SO(7) ansatz” used in refs. [6, 7, 8, 9, 10, 11].

SO(6) ansatz

• SO(6)× Z4(7,8,9,10|1)

3 parameters (M,M̃, m̃)

Mµ = (M, · · · ,M
︸ ︷︷ ︸

6

, M̃ , M̃ , M̃ , M̃) ,

m7,8,9 = m8,9,10 = m7,9,10 = m7,8,10 = m̃ , and zero otherwise. (A.3)

The moment of inertia tensor takes the form

〈Tµν〉 =










SO(6) part

C α α α

α C α α

α α C α

α α α C










. (A.4)

This ansatz is equivalent to the “SO(6) ansatz” used in ref. [6].

• SO(6)× Z3(8,9,10)

5 parameters (M,M̃, M̃ ′, m̃, m̃′)

Mµ = (M, · · · ,M
︸ ︷︷ ︸

6

, M̃ , M̃ ′, M̃ ′, M̃ ′) ,

m7,8,9 = m7,9,10 = −m7,8,10 = m̃ , m8,9,10 = m̃′ , and zero otherwise. (A.5)
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The moment of inertia tensor takes the form

〈Tµν〉 =










SO(6) part

C β β β

β C ′ α α

β α C ′ α

β α α C ′










. (A.6)

• SO(6)× Z2(7,8|1)

5 parameters (M,M̃, M̃ ′, M̃ ′′, m̃)

Mµ = (M, · · · ,M
︸ ︷︷ ︸

6

, M̃ , M̃ , M̃ ′, M̃ ′′) ,

m7,9,10 = m8,9,10 = m̃ , and zero otherwise. (A.7)

The moment of inertia tensor takes the form

〈Tµν〉 =










SO(6) part

C α × ×
α C × ×
× × C ′ ×
× × × C ′′










. (A.8)

SO(5) ansatz

• SO(5)× Z5(6,7,8,9,10)

4 parameters (M,M̃, m̃, m̃′)

Mµ = (M, · · · ,M
︸ ︷︷ ︸

5

, M̃ , · · · , M̃
︸ ︷︷ ︸

5

) ,

m6,7,8 = m7,8,9 = m8,9,10 = m6,9,10 = m6,7,10 = m̃ ,

m6,7,9 = m7,8,10 = m6,8,9 = m7,9,10 = m6,8,10 = m̃′ , and zero otherwise. (A.9)

The moment of inertia tensor takes the form

〈Tµν〉 =












SO(5) part

C α α α α

α C α α α

α α C α α

α α α C α

α α α α C












. (A.10)

• SO(5)× Z4(6,7,8,9|1)
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5 parameters (M,M̃, M̃ ′, m̃, m̃′)

Mµ = (M, · · · ,M
︸ ︷︷ ︸

5

, M̃ , M̃ , M̃ , M̃ , M̃ ′) ,

m6,7,8 = m7,8,9 = m6,8,9 = m6,7,9 = m̃ ,

m6,7,10 = m7,8,10 = m8,9,10 = −m6,9,10 = m̃′ , and zero otherwise. (A.11)

The moment of inertia tensor takes the form

〈Tµν〉 =













SO(5) part

C α α α β

α C α α β

α α C α β

α α α C β

β β β β C ′













. (A.12)

• SO(5)× Z4(6,7,8,9|10)

5 parameters (M,M̃, M̃ ′, m̃, m̃′)

Mµ = (M, · · · ,M
︸ ︷︷ ︸

5

, M̃ , M̃ , M̃ , M̃ , M̃ ′) ,

m6,7,8 = m7,8,9 = m6,8,9 = m6,7,9 = m̃ ,

m6,7,10 = −m7,8,10 = m8,9,10 = m6,9,10 = m̃′ , and zero otherwise. (A.13)

The moment of inertia tensor takes the form

〈Tµν〉 =













SO(5) part

C α α α 0

α C α α 0

α α C α 0

α α α C 0

0 0 0 0 C ′













. (A.14)

• SO(5)× Z2(6,7|1) × Z3(8,9,10)

5 parameters (M,M̃, M̃ ′, m̃, m̃′)

Mµ = (M, · · · ,M
︸ ︷︷ ︸

5

, M̃ , M̃ , M̃ ′, M̃ ′, M̃ ′) ,

m6,8,9 = m6,9,10 = −m6,8,10 = m7,8,9 = m7,9,10 = −m7,8,10 = m̃ ,

m8,9,10 = m̃′ , and zero otherwise. (A.15)
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The moment of inertia tensor takes the form

〈Tµν〉 =













SO(5) part

C α β β β

α C β β β

β β C ′ γ γ

β β γ C ′ γ

β β γ γ C ′













. (A.16)

• SO(5)× Z2(6,7|8,9,10) × Z3(8,9,10)

5 parameters (M,M̃, M̃ ′, m̃, m̃′)

Mµ = (M, · · · ,M
︸ ︷︷ ︸

5

, M̃ , M̃ , M̃ ′, M̃ ′, M̃ ′) ,

m6,8,9 = m7,8,9 = m6,9,10 = m7,9,10 = −m6,8,10 = −m7,8,10 = m̃ ,

m6,7,8 = m6,7,9 = m6,7,10 = m̃′ , and zero otherwise. (A.17)

The moment of inertia tensor takes the form

〈Tµν〉 =













SO(5) part

C α 0 0 0

α C 0 0 0

0 0 C ′ β β

0 0 β C ′ β

0 0 β β C ′













. (A.18)

• SO(5)× Z2(6,7|1) × Z2(8,9|1)

5 parameters (M,M̃, M̃ ′, M̃ ′′, m̃)

Mµ = (M, · · · ,M
︸ ︷︷ ︸

5

, M̃ , M̃ , M̃ ′, M̃ ′, M̃ ′′) ,

m6,8,10 = m7,8,10 = m6,9,10 = m7,9,10 = m̃ , and zero otherwise. (A.19)

The moment of inertia tensor takes the form

〈Tµν〉 =













SO(5) part

C α × × ×
α C × × ×
× × C ′ β ×
× × β C ′ ×
× × × × C ′′













. (A.20)

• SO(5)× Z2(6,7|10) × Z2(8,9|10) × Z2({6,7},{8,9}|1,10)
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5 parameters (M,M̃, M̃ ′, m̃, m̃′)

Mµ = (M, · · · ,M
︸ ︷︷ ︸

5

, M̃ , M̃ , M̃ , M̃ , M̃ ′) ,

m6,8,10 = −m7,8,10 = −m6,9,10 = m7,9,10 = m̃ ,

m6,7,10 = −m8,9,10 = m̃′ , and zero otherwise. (A.21)

The moment of inertia tensor takes the form

〈Tµν〉 =













SO(5) part

C α × × 0

α C × × 0

× × C α 0

× × α C 0

0 0 0 0 C ′













. (A.22)

SO(4) ansatz

• SO(4)× Z2(5,6|1) × Z2(7,8|1) × Z2(9,10|1)

5 parameters (M,M̃, M̃ ′, M̃ ′′, m̃)

Mµ = (M,M,M,M, M̃ , M̃ , M̃ ′, M̃ ′, M̃ ′′, M̃ ′′) ,

m5,7,9 = m6,7,9 = m5,8,9 = m6,8,9 = m5,7,10 = m6,7,10

= m5,8,10 = m6,8,10 = m̃ , and zero otherwise. (A.23)

The moment of inertia tensor takes the form

〈Tµν〉 =















SO(4) part

C α × × × ×
α C × × × ×
× × C ′ β × ×
× × β C ′ × ×
× × × × C ′′ γ

× × × × γ C ′′















. (A.24)

By further imposing Z3({5,6},{7,8},{9,10}), which enforces M̃ = M̃ ′ = M̃ ′′, one obtains

the “SO(4) ansatz” used in ref. [6].

• SO(4)× Z3(5,6,7) × Z3(8,9,10) × Z2({5,6,7},{8,9,10}|1)
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4 parameters (M,M̃, m̃, m̃′)

Mµ = (M,M,M,M, M̃ , · · · , M̃
︸ ︷︷ ︸

6

) ,

m5,6,7 = m8,9,10 = m̃ ,

m5,6,8 = m5,6,9 = m5,6,10 = m6,7,8 = m6,7,9 = m6,7,10

= −m5,7,8 = −m5,7,9 = −m5,7,10 = m5,8,9 = m6,8,9 = m7,8,9

= m5,9,10 = m6,9,10 = m7,9,10 = −m5,8,10 = −m6,8,10 = −m7,8,10 = m̃′ ,

and zero otherwise. (A.25)

The moment of inertia tensor takes the form

〈Tµν〉 =















SO(4) part

C α α β β β

α C α β β β

α α C β β β

β β β C α α

β β β α C α

β β β α α C















. (A.26)

By imposing SO(3) × SO(3) instead of Z3 × Z3, which enforces m̃′ = 0, one obtains

the “SO(4) ansatz” used in refs. [7, 8, 9, 10, 11].

• SO(4)× Z4(5,6,7,8|1) × Z2(9,10|1)

5 parameters (M,M̃, M̃ ′, m̃, m̃′)

Mµ = (M,M,M,M, M̃ , M̃ , M̃ , M̃ , M̃ ′, M̃ ′) ,

m5,6,9 = m6,7,9 = m7,8,9 = −m5,8,9 = m5,6,10 = m6,7,10 = m7,8,10 = −m5,8,10 = m̃ ,

m5,6,7 = m6,7,8 = m5,7,8 = m5,6,8 = m̃′ , and zero otherwise. (A.27)

The moment of inertia tensor takes the form

〈Tµν〉 =















SO(4) part

C α α α β β

α C α α β β

α α C α β β

α α α C β β

β β β β C ′ γ

β β β β γ C ′















. (A.28)

• SO(4)× Z5(6,7,8,9,10) × Z2(−|1,6,7,8,9,10)

5 parameters (M,M̃, M̃ ′, m̃, m̃′)

Mµ = (M,M,M,M, M̃ , M̃ ′, · · · , M̃ ′

︸ ︷︷ ︸

5

) ,

m5,6,7 = m5,7,8 = m5,8,9 = m5,9,10 = −m5,6,10 = m̃ ,

m5,6,8 = m5,7,9 = m5,8,10 = −m5,6,9 = −m5,7,10 = m̃′ , and zero otherwise. (A.29)
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The moment of inertia tensor takes the form

〈Tµν〉 =















SO(4) part

C × × × × ×
× C ′ α α α α

× α C ′ α α α

× α α C ′ α α

× α α α C ′ α

× α α α α C ′















. (A.30)

• SO(4)× Z3(5,6,7) × Z3(8,9,10) × Z2(−|1,8,9,10)

5 parameters (M,M̃, M̃ ′, m̃, m̃′)

Mµ = (M,M,M,M, M̃ , M̃ , M̃ , M̃ ′, M̃ ′, M̃ ′) ,

m5,8,9 = m5,9,10 = −m5,8,10 = m6,8,9 = m6,9,10 = −m6,8,10

= m7,8,9 = m7,9,10 = −m7,8,10 = m̃ ,

m5,6,7 = m̃′ , and zero otherwise. (A.31)

The moment of inertia tensor takes the form

〈Tµν〉 =















SO(4) part

C α α 0 0 0

α C α 0 0 0

α α C 0 0 0

0 0 0 C ′ β β

0 0 0 β C ′ β

0 0 0 β β C ′















. (A.32)

SO(3) ansatz

• SO(3)× Z2(4,5|1) × Z2(6,7|1) × Z2(8,9|1) × Z3({4,5},{6,7},{8,9})

5 parameters (M,M̃, M̃ ′, m̃, m̃′)

Mµ = (M,M,M, M̃ , · · · , M̃
︸ ︷︷ ︸

6

, M̃ ′) ,

m4,6,8 = m5,6,8 = m4,7,8 = m5,7,8 = m4,6,9 = m5,6,9 = m4,7,9 = m5,7,9 = m̃ ,

m4,6,10 = m5,6,10 = m4,7,10 = m5,7,10 = −m4,8,10 = −m5,8,10

= −m4,9,10 = −m5,9,10 = m6,8,10 = m7,8,10 = m6,9,10 = m7,9,10 = m̃′ ,

and zero otherwise. (A.33)
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The moment of inertia tensor takes the form

〈Tµν〉 =

















SO(3) part

C α β β β β γ

α C β β β β γ

β β C α β β γ

β β α C β β γ

β β β β C α γ

β β β β α C γ

γ γ γ γ γ γ C ′

















. (A.34)

• SO(3)× Z2(4,5|10) × Z2(6,7|10) × Z2(8,9|10) × Z3({4,5},{6,7},{8,9}) × Z2({4,5},{6,7})

5 parameters (M,M̃, M̃ ′,m, m̃)

Mµ = (M,M,M, M̃ , · · · , M̃
︸ ︷︷ ︸

6

, M̃ ′) ,

m1,2,3 = m , m4,5,10 = m6,7,10 = m8,9,10 = m̃ , and zero otherwise. (A.35)

The moment of inertia tensor takes the form

〈Tµν〉 =

















SO(3) part

C × × × × × 0

× C × × × × 0

× × C × × × 0

× × × C × × 0

× × × × C × 0

× × × × × C 0

0 0 0 0 0 0 C ′

















. (A.36)

• SO(3)× Z2(4,5|10) × Z2(6,7|10) × Z2(8,9|10) × Z3({4,5},{6,7},{8,9}) × Z2(−|1,10)

4 parameters (M,M̃, M̃ ′, m̃)

Mµ = (M,M,M, M̃ , · · · , M̃
︸ ︷︷ ︸

6

, M̃ ′) ,

m4,6,8 = m5,6,8 = m4,7,8 = m5,7,8 = m4,6,9 = m5,6,9 = m4,7,9 = m5,7,9 = m̃ ,

and zero otherwise. (A.37)

The moment of inertia tensor takes the form

〈Tµν〉 =

















SO(3) part

C α × × × × 0

α C × × × × 0

× × C α × × 0

× × α C × × 0

× × × × C α 0

× × × × α C 0

0 0 0 0 0 0 C ′

















. (A.38)
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• SO(3)× Z3(4,5,6) × Z3(7,8,9) × Z2({4,5,6},{7,8,9}|1) × Z2(−|1,10)

5 parameters (M,M̃, M̃ ′, m̃, m̃′)

Mµ = (M,M,M, M̃ , · · · , M̃
︸ ︷︷ ︸

6

, M̃ ′) ,

m4,5,ν = m5,6,ν = −m4,6,ν = m7,8,µ = m8,9,µ = −m7,9,µ = m̃ ,

where µ = 4, 5, 6 and ν = 7, 8, 9 ,

m4,5,6 = m7,8,9 = m̃′ , and zero otherwise. (A.39)

The moment of inertia tensor takes the form

〈Tµν〉 =

















SO(3) part

C α α β β β 0

α C α β β β 0

α α C β β β 0

β β β C α α 0

β β β α C α 0

β β β α α C 0

0 0 0 0 0 0 C ′

















. (A.40)

• SO(3)× Z3(4,5,6) × Z2(7,8|1) × Z2(9,10|1) × Z2({7,8},{9,10})

5 parameters (M,M̃, M̃ ′, m̃, m̃′)

Mµ = (M,M,M, M̃ , M̃ , M̃ , M̃ ′, M̃ ′, M̃ ′, M̃ ′) ,

m4,5,7 = m4,5,8 = m5,6,7 = m5,6,8 = −m4,6,7 = −m4,6,8

= m4,5,9 = m4,5,10 = m5,6,9 = m5,6,10 = −m4,6,9 = −m4,6,10 = m̃ ,

m4,5,6 = m̃′ , and zero otherwise. (A.41)

The moment of inertia tensor takes the form

〈Tµν〉 =

















SO(3) part

C α α γ γ γ γ

α C α γ γ γ γ

α α C γ γ γ γ

γ γ γ C ′ β β β

γ γ γ β C ′ β β

γ γ γ β β C ′ β

γ γ γ β β β C ′

















. (A.42)

• SO(3)× Z3(4,5,6) × Z4(7,8,9,10|1) × Z2(−|7,8,9,10)

5 parameters (M,M̃, M̃ ′, m̃, m̃′)

Mµ = (M,M,M, M̃ , M̃ , M̃ , M̃ ′, M̃ ′, M̃ ′, M̃ ′) ,

m4,7,8 = m4,8,9 = m4,9,10 = −m4,7,10 = m5,7,8 = m5,8,9

= m5,9,10 = −m5,7,10 = m6,7,8 = m6,8,9 = m6,9,10 = −m6,7,10 = m̃ ,

m4,5,6 = m̃′ , and zero otherwise. (A.43)
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The moment of inertia tensor takes the form

〈Tµν〉 =

















SO(3) part

C α α 0 0 0 0

α C α 0 0 0 0

α α C 0 0 0 0

0 0 0 C ′ × × ×
0 0 0 × C ′ × ×
0 0 0 × × C ′ ×
0 0 0 × × × C ′

















. (A.44)

• SO(3)× Z2(4,5|1) × Z5(6,7,8,9,10) × Z2(−|1,6,7,8,9,10)

5 parameters (M,M̃, M̃ ′, m̃, m̃′)

Mµ = (M,M,M, M̃ , M̃ , M̃ ′, · · · , M̃ ′

︸ ︷︷ ︸

5

) ,

m4,6,7 = m4,7,8 = m4,8,9 = m4,9,10 = −m4,6,10

= m5,6,7 = m5,7,8 = m5,8,9 = m5,9,10 = −m5,6,10 = m̃ ,

m4,6,8 = m4,7,9 = m4,8,10 = −m4,6,9 = −m4,7,10

= m5,6,8 = m5,7,9 = m5,8,10 = −m5,6,9 = −m5,7,10 = m̃′ ,

and zero otherwise. (A.45)

The moment of inertia tensor takes the form

〈Tµν〉 =

















SO(3) part

C α 0 0 0 0 0

α C 0 0 0 0 0

0 0 C ′ β β β β

0 0 β C ′ β β β

0 0 β β C ′ β β

0 0 β β β C ′ β

0 0 β β β β C ′

















. (A.46)

• SO(3)× Z6(5,6,7,8,9,10|1) × Z2(−|5,6,7,8,9,10)

5 parameters (M,M̃, M̃ ′, m̃, m̃′)

Mµ = (M,M,M, M̃ , M̃ ′, · · · , M̃ ′

︸ ︷︷ ︸

6

) ,

m4,5,6 = m4,6,7 = m4,7,8 = m4,8,9 = m4,9,10 = −m4,5,10 = m̃ ,

m4,5,7 = m4,6,8 = m4,7,9 = m4,8,10 = −m4,5,9 = −m4,6,10 = m̃′ ,

and zero otherwise. (A.47)
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The moment of inertia tensor takes the form

〈Tµν〉 =

















SO(3) part

C 0 0 0 0 0 0

0 C ′ α α α α α

0 α C ′ α α α α

0 α α C ′ α α α

0 α α α C ′ α α

0 α α α α C ′ α

0 α α α α α C ′

















. (A.48)

• SO(3)× Z2(4,5|1) × Z5(6,7,8,9,10|4,5)

5 parameters (M,M̃, M̃ ′, m̃, m̃′)

Mµ = (M,M,M, M̃ , M̃ , M̃ ′, · · · , M̃ ′

︸ ︷︷ ︸

5

) ,

m6,7,8 = m7,8,9 = m8,9,10 = m6,9,10 = m6,7,10 = m̃ ,

m6,7,9 = m7,8,10 = m6,8,9 = m7,9,10 = m6,8,10 = m̃′ ,

and zero otherwise. (A.49)

The moment of inertia tensor takes the form

〈Tµν〉 =

















SO(3) part

C × 0 0 0 0 0

× C 0 0 0 0 0

0 0 C ′ α α α α

0 0 α C ′ α α α

0 0 α α C ′ α α

0 0 α α α C ′ α

0 0 α α α α C ′

















. (A.50)

SO(2) ansatz

• SO(2)× Z2(3,4|1) × Z2(5,6|1) × Z2(7,8|1) × Z2(9,10|1) × Z4({3,4},{5,6},{7,8},{9,10})

3 parameters (M,M̃, m̃)

Mµ = (M,M, M̃ , · · · , M̃
︸ ︷︷ ︸

8

) ,

m3,5,7 = m3,6,7 = m3,5,8 = m3,6,8 = m4,5,7 = m4,6,7 = m4,5,8 = m4,6,8

= m5,7,9 = m5,8,9 = m5,7,10 = m5,8,10 = m6,7,9 = m6,8,9 = m6,7,10 = m6,8,10

= m3,7,9 = m3,8,9 = m3,7,10 = m3,8,10 = m4,7,9 = m4,8,9 = m4,7,10 = m4,8,10

= m3,5,9 = m3,6,9 = m3,5,10 = m3,6,10 = m4,5,9 = m4,6,9 = m4,5,10 = m4,6,10 = m̃ ,

and zero otherwise. (A.51)
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The moment of inertia tensor takes the form

〈Tµν〉 =



















SO(2) part

C α β β β β β β

α C β β β β β β

β β C α β β β β

β β α C β β β β

β β β β C α β β

β β β β α C β β

β β β β β β C α

β β β β β β α C



















. (A.52)

This ansatz is equivalent to the “SO(2) ansatz” used in ref. [6].

• SO(2)× Z4(3,4,5,6|1) × Z4(7,8,9,10|1) × Z2({3,4,5,6},{7,8,9,10})

4 parameters (M,M̃, m̃, m̃′)

Mµ = (M,M, M̃ , · · · , M̃
︸ ︷︷ ︸

8

) ,

m3,4,5 = m4,5,6 = m3,5,6 = m3,4,6 = m7,8,9 = m8,9,10 = m7,9,10 = m7,8,10 = m̃ ,

m3,4,7 = m4,5,7 = m5,6,7 = −m3,6,7 = m3,4,8 = m4,5,8 = m5,6,8 = −m3,6,8

= m3,4,9 = m4,5,9 = m5,6,9 = −m3,6,9 = m3,4,10 = m4,5,10 = m5,6,10 = −m3,6,10

= m3,7,8 = m3,8,9 = m3,9,10 = −m3,7,10 = m4,7,8 = m4,8,9 = m4,9,10 = −m4,7,10

= m5,7,8 = m5,8,9 = m5,9,10 = −m5,7,10 = m6,7,8 = m6,8,9 = m6,9,10 = −m6,7,10 = m̃′ ,

and zero otherwise. (A.53)

The moment of inertia tensor takes the form

〈Tµν〉 =



















SO(2) part

C α α α β β β β

α C α α β β β β

α α C α β β β β

α α α C β β β β

β β β β C α α α

β β β β α C α α

β β β β α α C α

β β β β α α α C



















. (A.54)

• SO(2)× Z3(3,4,5) × Z3(6,7,8) × Z2({3,4,5},{6,7,8}|1) × Z2(9,10|1) × Z3(−|3,4,5,6,7,8)
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5 parameters (M,M̃, M̃ ′, m̃, m̃′)

Mµ = (M,M, M̃ , · · · , M̃
︸ ︷︷ ︸

6

, M̃ ′, M̃ ′) ,

m3,4,9 = m4,5,9 = −m3,5,9 = m6,7,9 = m7,8,9 = −m6,8,9

= m3,4,10 = m4,5,10 = −m3,5,10 = m6,7,10 = m7,8,10 = −m6,8,10 = m̃ ,

m3,6,9 = m4,6,9 = m5,6,9 = m3,7,9 = m4,7,9 = m5,7,9

= m3,8,9 = m4,8,9 = m5,8,9 = m3,6,10 = m4,6,10 = m5,6,10

= m3,7,10 = m4,7,10 = m5,7,10 = m3,8,10 = m4,8,10 = m5,8,10 = m̃′ ,

and zero otherwise. (A.55)

The moment of inertia tensor takes the form

〈Tµν〉 =



















SO(2) part

C α α × × × 0 0

α C α × × × 0 0

α α C × × × 0 0

× × × C α α 0 0

× × × α C α 0 0

× × × α α C 0 0

0 0 0 0 0 0 C ′ β

0 0 0 0 0 0 β C ′



















. (A.56)

• SO(2)× Z3(3,4,5) × Z3(6,7,8) × Z2({3,4,5},{6,7,8}|1) × Z2(9,10|1) × Z2(−|9,10)

5 parameters (M,M̃, M̃ ′, m̃, m̃′)

Mµ = (M,M, M̃ , · · · , M̃
︸ ︷︷ ︸

6

, M̃ ′, M̃ ′) ,

m3,4,6 = m4,5,6 = −m3,5,6 = m3,4,7 = m4,5,7 = −m3,5,7

= m3,4,8 = m4,5,8 = −m3,5,8 = m3,6,7 = m3,7,8 = −m3,6,8

= m4,6,7 = m4,7,8 = −m4,6,8 = m5,6,7 = m5,7,8 = −m5,6,8 = m̃ ,

m3,4,5 = m6,7,8 = m̃′ , and zero otherwise. (A.57)

The moment of inertia tensor takes the form

〈Tµν〉 =



















SO(2) part

C α α β β β 0 0

α C α β β β 0 0

α α C β β β 0 0

β β β C α α 0 0

β β β α C α 0 0

β β β α α C 0 0

0 0 0 0 0 0 C ′ ×
0 0 0 0 0 0 × C ′



















. (A.58)
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B. Free energy from the Krauth-Nicolai-Staudacher conjecture

In this section we derive the value of free energy from the analytic formula for the partition

function conjectured by Krauth, Nicolai and Staudacher (KNS) [18]. This conjecture was

obtained by combining earlier analytic works [32, 33] with Monte Carlo results at small N

[18]. For the D = 10 model, the formula reads

ZKNS =

∫

dAdΨ e−SKNS =
2

N(N+1)
2 π

N−1
2

2
√
N
∏N−1

k=1 k!
×
∑

m|N

1

m2
, (B.1)

SKNS =
2

N
(Sb + Sf) , (B.2)

where Sb and Sf are defined by (2.2) and (2.3) respectively, and the sum runs over all the

divisors of N . The value of this sum is smaller than
∑∞

m=1
1
m2 = π2

6 for arbitrary N , and

hence it does not contribute to the “free energy density” (4.1) in the large-N limit.

As one can see from (B.2), the definition of the action SKNS differs from ours by

the factor of 2/N . In order to absorb this factor, we introduce the rescaled variables

A′
µ = (2/N)1/4Aµ and Ψ′

α = (2/N)3/8Ψα, whose integration measure is given by

dA′ dΨ′ =

(
N

2

) 7
2
(N2−1)

dAdΨ . (B.3)

As a result, the partition function (2.1) can be obtained as

Z =

(
N

2

) 7
2
(N2−1)

ZKNS = 2−3N2+N
2
+ 5

2π
N−1

2 N
7
2
N2−4

(
N−1∏

k=1

k!

)−1

×
∑

m|N

1

m2
. (B.4)

From this, we obtain the large-N asymptotics for F = − logZ as

F

N2 − 1
= −3 logN +

(

log 8− 3

4

)

+O

(
logN

N2

)

. (B.5)

The Gaussian expansion method reproduces the first term of (B.5) correctly for any ansatz.

Substituting (B.5) into the definition (4.1) of the free energy density, we obtain f = log 8−
3
4 = 1.32944... as a prediction from the KNS conjecture.
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